

EXTENSÃO PARA ARCGIS 10.2 © APLICADA AO MAPEAMENTO DE ÁREAS SUSCETÍVEIS A ESCORREGAMENTOS DE MASSA, CORRIDAS DE DETRITOS E ENXURRADAS.

José Luiz Kepel Filho Pesquisador em geociências

> Porto Alegre, RS 2016

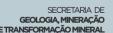
<u>Cartas de Suscetibilidade a Movimentos Gravitacionais de Massa e Inudações</u>

- Ação em desenvolvimento pelo Serviço Geológico do Brasil CPRM
- Atendimento as diretrizes especificas da Lei 12.608/2012 (BRASIL, 2012) Politica Nacional de Proteção e Defesa Civil (PNPDEC)
- Dirigida ao municípios sujeitos a desastres naturais deslizamentos, inundações, corridas de massa, enxurradas e outros processo correlatos
- Mapeamento de áreas suscetíveis a ocorrência de processo que possam resultar em desastres naturais 300 municípios (Janeiro/2016) Escala 1:50.000 (AC, AM, AP, PA, RO, RR), e 1:25.000 (Demais estados).

Desenvolvimento do método de modelagem.

- Parceria técnica CPRM IPT, inicialmente em 75 municípios.
- Aplicabilidade em nível nacional, com adaptações necessárias a cada região.
- Comparabilidade entre os munícipios mapeados, padronizando os produtos.
- Escassez de dados básicos e bases cartográficas em algumas regiões.

<u>Processos analisados – Movimentos de Massa</u>


Deslizamentos.

Corridas de massa e enxurradas.

- Movimentos Gravitacionais de Massa - Deslizamentos.

Modelagem matemática utilizando-se de tratamento estatístico – declividade, curvatura e densidade de lineamento.

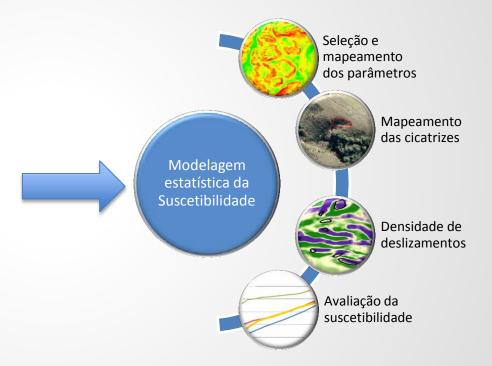
Determinação de ISD para áreas-chaves para cada Estado – Classes de Suscetibilidade.

- Corridas de massa e enxurradas.

Avaliação de critérios do meio físico, por micro bacias – Unidade do Terreno, Amplitude, suscetibilidade a movimentos de massa, indicie de Melton.

Suscetibilidade a deslizamentos de massa

- Características da região onde já ocorreram os processos.
- Onde vão ocorrer os processos?
- -Parâmetros do modelo: Declividade, Curvatura do terreno e Densidade de lineamentos.
- Mapeamento das cicatrizes para calculo estatístico.



Procedimentos para mapeamento da suscetibilidade a deslizamentos

Seleção de áreas piloto

- Os resultados obtidos na área piloto serão extrapolados para os municípios.
- Critérios para escolha das áreas piloto:
 - Grande número de cicatrizes de deslizamentos mapeáveis.
 - Semelhança com as unidades geológicogeomorfológicas dos municípios mapeados.

Densidade de deslizamentos

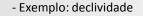
$$D = \frac{A_d}{A_t}$$

Onde: D= densidade de cicatrizes em cada classe do fator condicionante; A_d = área afetada por deslizamentos na classe; A_t = área total da classe.

$$D_n = \frac{D}{D_t}$$

Onde: D_n = densidade normalizada; D= densidade de cicatrizes em cada classe do fator condicionante; D_t = densidade total de deslizamentos na área de estudo.

 $I \diamond D = l \diamond g \diamond \bullet_{\diamond}$ Onde: ISD = Índice de Suscetibilidade a Deslizamentos; D_n = densidade normalizada.

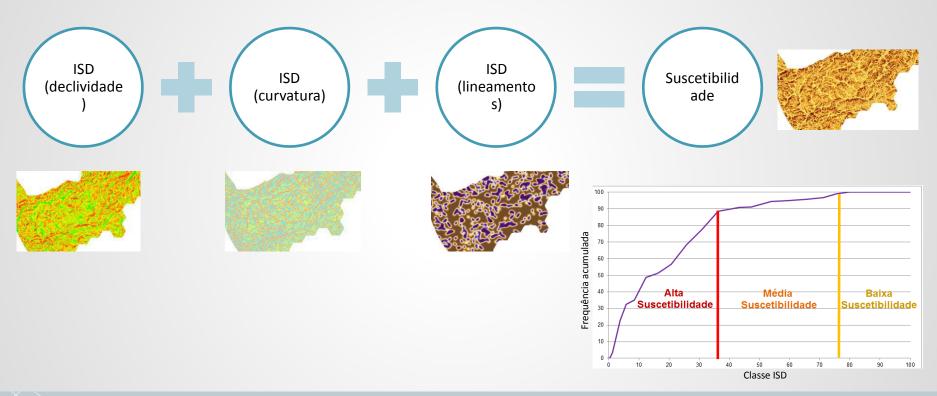


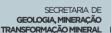
Índice de Suscetibilidade a Deslizamentos

DECLIVIDADE								
Início	Fim	Área Total	Área Afetada		Dn			
Classe	Classe	(hectares)	(hectares)		(D/Médi	a p	LN	
(graus)	(graus)	- T	- A	D (A/T))	L	(Dn)*100	ISD
0	1	40,4	0,0	0,00	0,0		#NÚM!	
1	2	94,5	0,2	0,17	0,1		-284,4	-318
2	3	108,6	0,1	0,06	0,0		-385,3	-210
3	4	123,3	0,2	0,18	0,1		-279,6	
4	5	135,7	0,4	0,31	0,1		-222,5	-207
5	6	148,4	0,6	0,41	0,1		-195,4	-207
6	7	165,7	1,3	0,77	0,3		-132,1	
7	8	183,1	1,2	0,63	0,2	V	-152,4	-142
8	9	202,0	1,5	0,75	0,3		-135,2	-142
9	10	229,7	1,5	0,65	0,2		-149,1	

- LN (Dn)*100

---- ISD





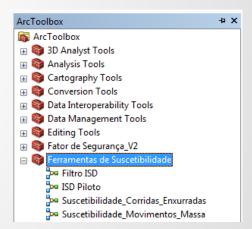
Índice de suscetibilidade a deslizamentos (ISD)

Corrida de Massa

- Critérios
 - -Unidade de relevo serrano;
 - -Alta suscetibilidade a movimentos de massa
 - -Amplitude > 500m; e
 - -Bacias de drenagem de 3ª ordem com área < 10km²;
 - -Indice de Melton > 0,3

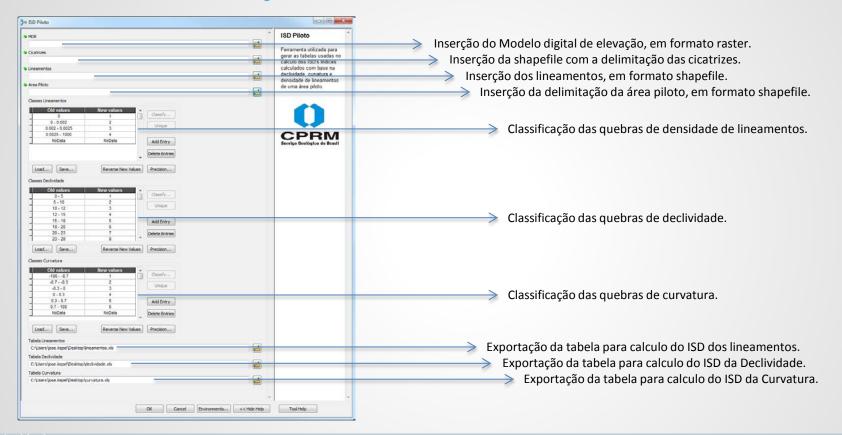
Enxurrada

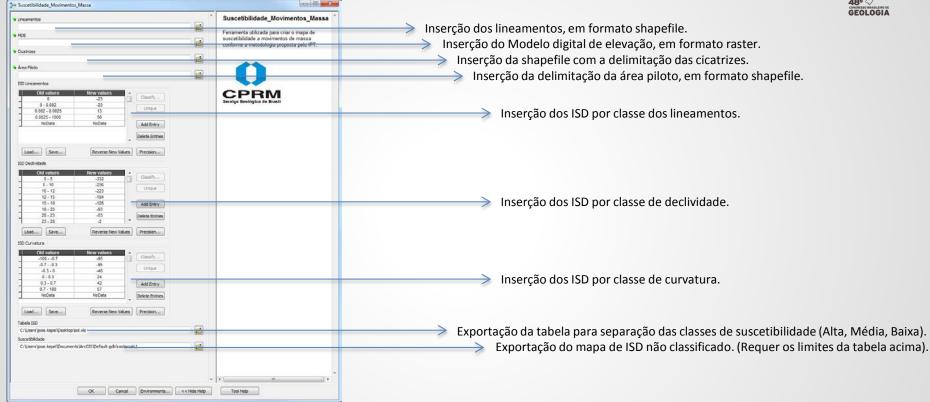
- Critérios
 - -Unidade de relevo serrano e/ou morros altos;
 - -Amplitude > 300m; e
 - -Bacias de drenagem de 3ª ordem com área < 10km².

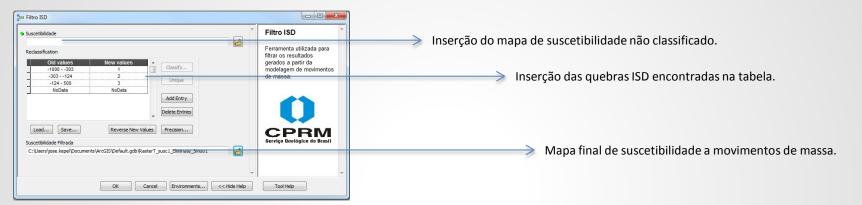


Elaboração da toolbox com base no método apresentado.

- Agilizar o processo de modelagem, permitindo o mapeamento de um maior numero de municípios por ano.
- Automatizar o processo, evitando erros de processamento durante os cálculos.
- Homogeneizar os produtos das modelagens, evitando adequações de formato, e de tabelas no futuro.
 - Ferramentas desenvolvidas para arcgis 10.2 ou superior. Requer as extensões spatial analyst e 3d analyst.
 - Algoritmo sequencial dos processos desenvolvido em model builder.







OBRIGADO.

José Luiz Kepel Filho

Pesquisador em Geociências

Companhia de Pesquisa de Recursos Minerais

Superintendência regional de Porto Alegre: Rua Banco da província, 105 – Santa Teresa Porto Alegre - RS - Cep: 90840-030

Tel.: 51 3406-7388

E-mail: jose.kepel@cprm.gov.br www.cprm.gov.br

