

# DIRETORIA DE HIDROLOGIA E GESTÃO TERRITORIAL DEPARTAMENTO DE GESTÃO TERRITORIAL NÚCLEO DE APOIO DE CRICIÚMA

# RELATÓRIO DE ATIVIDADES DE CAMPO SEMESTRE 2023/2 MONITORAMENTO DAS ÁGUAS SUBTERRÂNEAS

PROGRAMA DE RECUPERAÇÃO AMBIENTAL DA BACIA CARBONÍFERA DO SUL DE SANTA CATARINA.

CRICIÚMA, DEZEMBRO DE 2023

## RELATÓRIO DE CAMPO – Segundo Semestre de 2023

Programa de Recuperação Ambiental da Bacia Carbonífera do Sul de Santa Catarina.

### 1. Monitoramento da 27ª Campanha de Águas Subterrâneas

No período de 18/10 à 16/11/2023 foram realizados os trabalhos de campo da 28ª Campanha de Monitoramento das Águas Subterrâneas. Essa campanha é composta por 40 poços, distribuídos conforme a Figura 1 e Tabela 1.

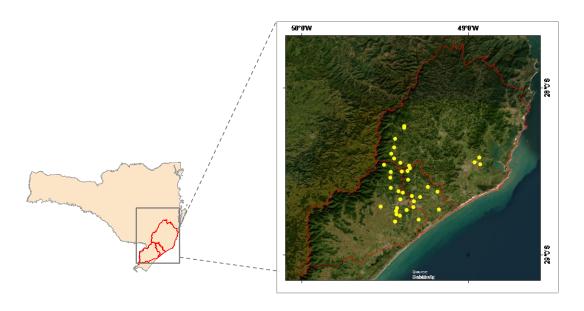



Figura 1: Localização dos pontos monitorados

| Tabela | 1: | Distribuic | cão o | dos pod | cos de | monitorame | ento por | bacias | hidro | gráficas e | tipo | de c | oleta. |
|--------|----|------------|-------|---------|--------|------------|----------|--------|-------|------------|------|------|--------|
|        |    |            |       |         |        |            |          |        |       |            |      |      |        |

| Bacia Hidrográfica | Quantidade<br>de poços | Tipo de coleta |
|--------------------|------------------------|----------------|
| Araranguá          | 06                     | Bailer         |
|                    | 11                     | Low Flow       |
| Tubarão            | 12                     | Low Flow       |
| Urussanga          | 11                     | Low Flow       |

Os trabalhos de campo consistem em amostragem de baixa vazão para os poços de profundidade até 60m, com uso do equipamento da marca *Solinst*, modelo 464 Pump Eletronic. Para poços com profundidades maiores do que 60m é utilizado para a amostragem o amostrador tipo bailer. Os níveis estáticos dos poços são registrados com uso de medidor manual de nível equipado de sensor sonoro e fita milimetrada.

Nas coletas de água subterrânea são medidos em campo os parâmetros pH, OD (mg.L-1), Potencial REDOX (mV), Condutividade Elétrica (µS/cm) e Temperatura (°C) com o auxílio de

uma sonda multiparâmétrica de marca Aquaread, modelo AP-800, sendo coletados 1000 ml de água nos pontos monitorados (2 frasco de 0,5 L).

Após a coleta, uma das amostras dos frascos de 0,5 L é preservada em campo com 10 ml de ácido clorídrico, onde é colocada uma fita vermelha para destacar. Posteriormente os 1,0 L de água são encaminhados para o Laboratório do CECOPOMIN-SUREG/SP para determinação dos parâmetros abaixo relacionados:

Tabela 2: Parâmetros analisados na última campanha pelo CECOPOMIN.

| Parâmetro                                           | Mínimo     | Método de Análise                      |
|-----------------------------------------------------|------------|----------------------------------------|
|                                                     | Detectável |                                        |
| pH (23°C)                                           | 0,1        | Potenciométrico                        |
| Condutividade (Scm <sup>-1</sup> 23°C)              | 0,001      | Condutivimétrico                       |
| Acidez (mgCaCO <sub>3</sub> L <sup>-1</sup> )       | 1          | Potenciométrico                        |
| Alcalinidade (mgCaCO <sub>3</sub> L <sup>-1</sup> ) | 1,7        | Potenciométrico                        |
| Cloreto (mg.L <sup>-1</sup> )                       | 0,1        | Potenciometria (Eletrodo Íon-Seletivo) |
| Sulfato (mg.L <sup>-1</sup> )                       | 0,1        | Análise Gravimétrica                   |
| Ferro Total (mg.L <sup>-1</sup> )                   | 0,01/1     | Espectrometria de emissão atômica      |
| Ferro II (mg.L <sup>-1</sup> )                      | 1          | Espectrofotometria de UV-Vis           |
| Alumínio total (mg.L <sup>-1</sup> )                | 0,010      | Espectrometria de emissão atômica      |
| Manganês total (mg.L <sup>-1</sup> )                | 0,002      | Espectrometria de emissão atômica      |
| Cobre (mg.L <sup>-1</sup> )                         | 0,002      | Espectrometria de emissão atômica      |
| Chumbo (mg.L <sup>-1</sup> )                        | 0,005      | Espectrometria de emissão atômica      |
| Arsênio (mg.L <sup>-1</sup> )                       | 0,002      | Espectrometria de emissão atômica      |
| Mercúrio (mg.L <sup>-1</sup> )                      | 0,0003     | Espectrometria de emissão atômica      |
| Cádmio (mg.L <sup>-1</sup> )                        | 0,002      | Espectrometria de emissão atômica      |
| Zinco (mg.L <sup>-1</sup> )                         | 0,005      | Espectrometria de emissão atômica      |
| Cálcio (mg.L <sup>-1</sup> )                        | 0,025      | Espectrometria de emissão atômica      |
| Magnésio (mg.L <sup>-1</sup> )                      | 0,010      | Espectrometria de emissão atômica      |
| Potássio (mg.L <sup>-1</sup> )                      | 0,070      | Espectrometria de emissão atômica      |
| Sódio (mg.L <sup>-1</sup> )                         | 0,070      | Espectrometria de emissão atômica      |

A Tabela 3 apresenta os dados dos parâmetros obtidos em campo durante a 28ª campanha de amostragem de água subterrânea. Importante ressaltar que as amostragens superficiais e subterrâneas ocorram concomitantemente.

Tabela 3: Resultados dos parâmetros analisados em campo durante a 28ª campanha de amostragem de água subterrânea.

| Ponto    | Tipo_Monitoramento | Data     | Temp<br>Celsius | pН   | ORP<br>mV | OD<br>mg_L | Cond<br>uS_cm |
|----------|--------------------|----------|-----------------|------|-----------|------------|---------------|
| PMAPUR01 | Subterrâneo        | 18/10/23 | 19,9            | 7,43 | -0190.0   | 0,00       | 387           |
| PMAPUR03 | Subterrâneo        | 18/10/23 | 19,0            | 4,17 | -0164.2   | 0,00       | 120           |
| PMAPUR04 | Subterrâneo        | 18/10/23 | 20,3            | 6,89 | -0128.6   | 0,00       | 351           |
| PMAPUR02 | Subterrâneo        | 19/10/23 | 18,9            | 6,57 | -0054.7   | 0,00       | 292           |
| PMAPUR05 | Subterrâneo        | 19/10/23 | 21,7            | 7,44 | -0193.1   | 0,00       | 351           |
| PMAPUR06 | Subterrâneo        | 19/10/23 | 20,8            | 4,72 | +0010.3   | 0,00       | 128           |
| PMAPUR07 | Subterrâneo        | 19/10/23 | 21,4            | 6,16 | -0117.5   | 0,00       | 150           |

| PMAPUR08  | Subterrâneo | 20/10/23 | 21,0 | 5,71 | -0016.3 | 0,00 | 148   |
|-----------|-------------|----------|------|------|---------|------|-------|
| PMAPAR04  | Subterrâneo | 20/10/23 | 20,1 | 7,78 | -0182.0 | 0,00 | 556   |
| PMAPAR02  | Subterrâneo | 20/10/23 | 20,1 | 5,20 | +0088.5 | 0,00 | 84    |
| PMAPAR05  | Subterrâneo | 21/10/23 | 21,7 | 6,30 | -0162.0 | 0,00 | 2012  |
| PMAPAR06  | Subterrâneo | 21/10/23 | 21,5 | 5,54 | -0045.0 | 0,00 | 282   |
| PMAPTB05  | Subterrâneo | 21/10/23 | 20,4 | 7,52 | -0138.7 | 0,00 | 791   |
| PMAPTB03  | Subterrâneo | 21/10/23 | 19,4 | 3,31 | +0205.8 | 0,00 | 1025  |
| PMAPTB04  | Subterrâneo | 21/10/23 | 19,5 | 6,02 | -0027.5 | 0,00 | 1271  |
| PMFLTB10  | Subterrâneo | 24/10/23 | 23,5 | 5,65 | -0145.4 | 0,00 | 10647 |
| PMFLTB11  | Subterrâneo | 24/10/23 | 23,7 | 4,26 | +0015.9 | 0,00 | 931   |
| PMFLTB09  | Subterrâneo | 24/10/23 | 21,4 | 1,58 | +0343.4 | 1,98 | 204   |
| РМАРТВО6  | Subterrâneo | 25/10/23 | 22,5 | 7,33 | -0124.8 | 0,00 | 985   |
| PMAPTB08  | Subterrâneo | 25/10/23 | 21,5 | 6,93 | -0058.2 | 0,00 | 366   |
| PMAPTB07  | Subterrâneo | 25/10/23 | 20,5 | 7,94 | -0318.4 | 0,00 | 642   |
| PMAPTB01B | Subterrâneo | 26/10/23 | 21,1 | 7,45 | -0004.5 | 2,27 | 576   |
| PMAPTB02  | Subterrâneo | 26/10/23 | 21,7 | 5,24 | +0129.3 | 3,50 | 217   |
| PMAPAR01  | Subterrâneo | 26/10/23 | 22,6 | 6,48 | -0011.2 | 2,77 | 745   |
| PMAPAR03  | Subterrâneo | 27/10/23 | 20,6 | 6,07 | +0095.0 | 2,88 | 103   |
| PMLAAR03  | Subterrâneo | 27/10/23 | 21,4 | 6,49 | -0055.5 | 0,00 | 627   |
| PMAPAR11  | Subterrâneo | 31/10/23 | 20,8 | 6,62 | -0144.8 | 3,98 | 9359  |
| PMAPAR10  | Subterrâneo | 31/10/23 | 22,3 | 7,52 | -0066.6 | 2,80 | 519   |
| PMLAAR04  | Subterrâneo | 31/10/23 | 21,0 | 6,12 | -0117.2 | 0,00 | 2222  |
| PMLAAR02B | Subterrâneo | 13/11/23 | 21,3 | 7,79 | -0177.9 | 0,08 | 377   |
| PMLAAR02  | Subterrâneo | 13/11/23 | 21,3 | 7,57 | +0018.0 | 3,53 | 284   |
| PMLAAR01  | Subterrâneo | 13/11/23 | 21,4 | 5,65 | +0134.6 | 2,22 | 104   |
| PMLAUR01  | Subterrâneo | 14/11/23 | 20,6 | 8,06 | -0238.1 | 0,00 | 317   |
| PMLAUR02  | Subterrâneo | 14/11/23 | 21,4 | 7,60 | -0251.4 | 0,00 | 274   |
| PMLAUR03  | Subterrâneo | 14/11/23 | 22,3 | 6,78 | -0008.0 | 0,60 | 455   |
| PMAPAR07B | Subterrâneo | 14/11/23 | 21,5 | 6,67 | -0028.5 | 0,35 | 176   |
| PMAPAR09  | Subterrâneo | 16/11/23 | 22,4 | 8,35 | -0067.8 | 2,01 | 2634  |

# 2. Resumo das atividades de campo do mês de março de 2023

A Tabela 4 apresenta resumo das atividades de monitoramento das águas subterrâneas.

Tabela 4: Resumo das atividades de monitoramento das águas subterraneas.

| Período    | Pontos | Monitoramento     |
|------------|--------|-------------------|
| 18 a 31/10 | 29     | Aquífero Profundo |
| 24/10      | 03     | Fluvio Lagunar    |
| 13 a 14/11 | 08     | Leques Aluviais   |

#### 3. Amostras enviadas para laboratório CECOPOMIN/SP

Na Tabela 5 estão apresentados os lotes enviados com as respectivas datas e quantidade de amostras.

Tabela 5: Envio das amostras enviadas ao CECOPOMIN

| Data       | Lote    | Amostras | Monitoramento      |
|------------|---------|----------|--------------------|
| 08/11/2023 | 4º lote | 29       | Águas subterrâneas |
| 28/11/2023 | 5° lote | 08       | Águas subterrâneas |

#### 4. Conclusão:

Após a conclusão dos trabalhos de monitoramento do primeiro semestre de 2023 foram realizados:

- ✓ Foram realizadas as coletas de amostras de águas subterrâneas para as bacias dos rios Tubarão, Urussanga e Araranguá, abrangendo os aquíferos profundo, fluviolagunar e leques aluviais;
- ✓ Os poços PMAPAR07 e PMAPTB01 foram descontinuados e substituidos pelos poços PMAPAR07-B e PMAPTB01-B, respectivamente;
- ✓ O poço PMAPAR08 não pode ser amostrado por ter sido danificado;
- ✓ Todas as amostras de água foram enviadas para o Laboratório CECOPOMIN-CPRM/SP;
- ✓ Todos os resultados recebidos do laboratório foram inseridos nas planilhas que compõe o banco de dados.

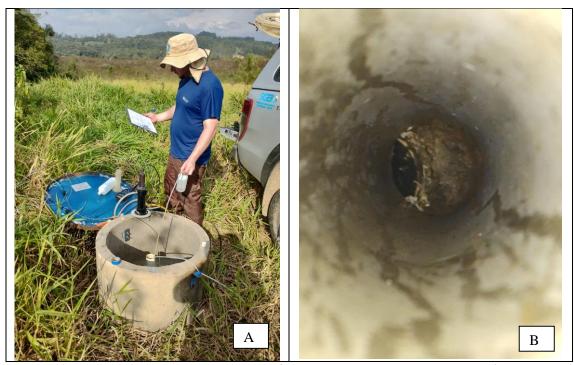
#### 5. Equipe Técnica

Chefe do Núcleo de Criciúma: Guilherme Casarotto Troian

Pesquisador em Geociências (Eng Ambiental) do Núcleo de Criciúma: Albert T. Cardoso

**Estagiária do Núcleo de Criciúma:** Bárbara Victória Pazzini Uribe **Técnico em Geociências na SUREG/PA:** Luiz Alberto Costa e Silva

Técnico em Hidrologia no NUMA: Patrícia Wagner Sotério


**Técnico em Hidrologia no NUMA:** Helton Roberto Gomes de Sousa **Técnico em Geociências na SUREG/SP:** Silvia Santana de Souza

Auxiliar de campo: Sammuel Marques

# 6. Relatório Fotográfico



Amostragem com uso do método de baixa vazão sendo realizada.



Em (A) amostra sendo coletada e em (B) foto mostrando a quebra do revestimento do PMAPAR08 causada pela colisão de um trator.