MINISTÉRIO DE MINAS E ENERGIA
Secretaria de Minas e Metalurgia
Companhia de Pesquisa de Recursos Minerais

Relatório de Viagem ao Exterior
Vail - Colorado - USA
GILBERTO JOSÉ MACHADO

Outubro de 1997
SUMÁRIO

I - INTRODUÇÃO ... 03

II - OBJETIVOS ... 03

III - PROGRAMA DA VIAGEM .. 04

IV - LOCAL DO EVENTO ... 04

V - DESCRIÇÃO E ANÁLISE DAS ATIVIDADES DESENVOLVIDAS 05

 V.1 - POSTER PRESENTATION - "The Application of Geochemistry Data to Environmental Concerns in the Minas Gerais Stated, Brazil" ... 05

 V.2 - REUNIÃO DO IGCP 360 - GLOBAL GEOCHEMICAL BASELINES ... 06

 V.3 - WORKSHOP - COLLECTING GEOCHEMICAL DATA FOR BOTH EXPLORATION AND ENVIRONMENTAL PURPOSES 07

 V.4 - 31 ST INTERNATIONAL GEOLOGICAL CONGRESS BRAZIL 2000 ... 07

 V.5 - APRESENTAÇÕES ORAIS ... 07

VI - CONCLUSÕES E RECOMENDAÇÕES 08

VII - AGRADECIMENTOS .. 09

RELAÇÃO DAS FIGURAS E ANEXOS
RELAÇÃO DAS FIGURAS E ANEXOS

FIGURAS
Figura 1 - Mapa de Localização de Vail - Colorado - USA
Figura 2 - Local de Realização do Simpósio - Hotel Cascade
Figura 3 - Poster Presentation - Brasil
Figura 4 - Efeito do Molibdênio no Gado - Dakota do Sul - USA
Figura 5 - Reunião do IGCP 360 - Mapeamento Geoquímico Internacional
Figura 6 - Divulgação do IGC - BRAZIL 2000 - Poster e Bottom
Figura 7 - Mina Summitville - Colorado - USA
Figura 8 - Rio Alamosa Próximo à Mina Summitville - Colorado - USA

ANEXOS

ANEXO 1 - Curriculum Vitae do Dr. John Fortescue

ANEXO 2 - Texto do Poster Presentation ""The Application of Geochemistry Data To Environmental Concerns in the Minas Gerais State, Brazil"

ANEXO 3 - Agenda do IGCP 360 - IGM

ANEXO 4 - Sumário do Foregs Geochemical Mapping - Field Manual

ANEXO 5 - Proposta para Criação da Association for Global Geochemical Baseline

ANEXO 6 - Sumário do workshop - Collecting Geochemical Data for both Exploration and Environmental Purposes

ANEXO 7 - Abstract do IV ISEG

ANEXO 8 - Programação da Sessão de Encerramento do IV ISEG

ANEXO 9 - Lista dos Participantes do IV ISEG
I - INTRODUÇÃO

A atividade de geoquímica ambiental está em grande expansão no mundo atual. Isto se deve ao fato de que esta ferramenta de pesquisa dá uma resposta mais rápida para as questões que afetam a sua relação com o meio ambiente. As atividades de mineração, industrialização, agricultura, desflorestamento e urbanização levam a problemas de degradação da terra e contaminação de grandes áreas. A concentração natural de determinados elementos químicos podem afetar tanto o homem como os animais que se alimentam continuamente de produtos
manteve contato com profissionais de diversos Serviços Geológicos sobre assunto de interesse mútuo.

III - PROGRAMA DE VIAGEM

O programa de viagem elaborado está descrito na tabela abaixo. No deslocamento foram percorridos dois trajetos, um por avião até a cidade de Denver no Colorado, e o último percurso por terra até a cidade de Vail.

O programa de viagem foi o seguinte:

Dia 05 (Domingo - 21:30 horas) - Viagem Rio/São Paulo/Atlanta
Dia 06 (Segunda-feira) - Viagem Atlanta/Denver/Vail
- Montagem do Post Presentation
Dia 07 (Terça-feira) - Atendimento ao Post Presentation
- Assistiu a apresentações orais
Dia 08 (Quarta-feira) - 2a reunião do IGCP 360 - International Geochemical Baselines
Dia 09 (Quinta-feira) - Assistiu a apresentações orais
Dia 10 (Sexta-feira) - Assistiu a apresentações orais
- Viagem retorno
- Vail/Denver/Atlanta
- Atlanta/São Paulo/Rio
Dia 11 (Sábado) - Chegada Rio de Janeiro

Foram mantidos contatos com diversos pesquisadores, como: Dr. John Fortescue (vide curriculum vitae anexo 1); Drs. Richard K. Glanzman (CH2M Hill) e L. Graham Gloss (Colorado School of Mines), coordenadores do Workshop Collecting Geochemical Data for both Exploration and Environmental Purposes - realizado no Domingo dia 05 de outubro; Dr. David Smith responsável pelas bases de dados de geoquímica do USGS e atual Project Leader do IGCP Project 360 Global Geochemical Baselines; Dra. Jane Plant - BSC UK, Dr. Arthur Damley Project Leader, Dra. Gloria Prieto Engeominas Colômbia, Dra. Gwendy Hall GSC Canada, Dr. Pavel Koval Vinogradov Institute of Geochemistry - URSS, Dr. P. K. Govil (Índia), Dr. Timo Tarnavian GSF Finlândia, e Dr. Maurice Chafee - USGS, que participaram da reunião do IGCP 360.
IV - LOCAL DO EVENTO

O simpósio foi realizado na cidade de Vail no Estado do Colorado na região central dos Estados Unidos (figura 1). Esta cidade está localizada a cerca de 160 km a oeste da capital Denver, no aprazível cenário das Montanhas Rochosas. É facilmente acessível por serviço de transporte de van ou por carro alugado, que pode ser feito no próprio aeroporto internacional de Denver. A cidade de Vail é mundialmente conhecida por sua beleza, atividades ao ar livre e rede hoteleira.

O simpósio foi realizado no Vail Cascade Hotel que possui um número considerável de suites de luxo, confortáveis apartamentos (figura 2) e apartamentos padrões. Tendo em vista que os conferencistas ficaram hospedados neste hotel, não houve dificuldades de acesso aos locais das palestras, apesar do hotel ficar distante do comércio local e não oferecer muitas opções de locais de alimentação.

A organização do Simpósio foi perfeita, principalmente as facilidades que o hotel oferecia para realização de eventos desse porte.

V - DESCRIÇÃO E ANÁLISE DAS ATIVIDADES DESENVOLVIDAS

V.1 - POSTER PRESENTATION - 'The Application of Geochemistry Data to Environmental Concerns in the Minas Gerais State, Brazil'

Tive a oportunidade de observar que o trabalho apresentado neste Simpósio 'The Application of Geochemistry Data to Environmental Concerns in the Minas Gerais State, Brazil (Anexo 2) é apropriado para ser executado por Serviços Geológicos, onde pude observar trabalhos semelhantes. O poster estava com uma boa apresentação quando comparado aos outros painéis exibidos no local. Neste trabalho ficou evidenciado que 100 ppm de molibdênio encontrados nos sedimentos de correntes na região de Poços de Caldas (figura 3) podem ser indicativos de problemas de saúde no gado da região. Segundo a publicação 'Understanding Our Fragile Environment - USGS Circular 1105' - foram encontrados até 40 ppm de molibdênio na grama do pasto região de Dakota do Sul, causando problema de molibdenose no gado (figura 4). O Projeto Geoquímica e Meio Ambiente terá prosseguimento na área de Poços de Caldas em parceria com a INB (Indústria Nucleares do Brasil), que possui um escritório técnico e laboratório nesta cidade, onde realiza um monitoramento ambiental na área ao redor e nas bacias de drenagens na fazendas circunvizinhas da mina de urânio, atualmente paralisada. A minha proposta é verificar se o elemento químico molibdênio presente em grande
quantidade nas rochas do Complexo Alcalino de Pocos de Caldas, uma vez sendo liberado pela ação do intemperismo para o solo e águas (superficiais e subterrâneas), está causando problemas de molibdenose no gado e na população. Sabe-se que na região nascem animais com deformações nas patas dianteiras. Além do molibdênio, existe também grande concentração de manganês, presente nos gonditos que ocorrem na região, que é liberado do rejeito da mina desativada, no tratamento das drenagens ácidas, que pode estar contribuindo para causar anomalias congênitas deformativas nas patas de animais, conforme registrado na literatura.

V.2 - REUNIÃO DO IGCP PROJECT 360 - GLOBAL GEOCHEMICAL BASELINES

Na quarta-feira, dia 08 de outubro foi realizada a segunda reunião do Grupo de trabalho do Global Geochemical Baselines (figura 5). A primeira reunião foi realizada no domingo, dia 05 de outubro, das 9 horas da manhã até as 5 horas da tarde, cuja agenda está apresentada em anexo 3. Na quarta-feira, a reunião foi reiniciada no item 4 da agenda: *Review of expanded regional field manuals and additional climatic field methods*, que foi apresentado pelo Dr. Timo Tarvainen do Serviço Geológico da Finlândia. O sumário do que foi tratado está apresentado no anexo 4. O Dr. Timo já enviou para o escritório do Rio de Janeiro o documento definitivo que será distribuído aos Coordenadores de Geoquímica da CPRM.

O item seguinte da agenda: *Funding and PR* foi conduzido pelo Project Leader, Dr. A. Darnley e Dra. Jane Plant. Foi tratado da continuação do projeto e discutida a sua Organização. O Dr. Darnley informou que o IGCP 360 terminará no final deste ano, devendo ser feito um Review em fevereiro do ano seguinte. O Projeto deverá ter continuidade com a criação de uma Associação denominada International Association for Global Geochemical Baselines que será afiliada a International Union of Geological Sciences. A proposta anexa apresenta os Objetivos, Métodos e uma condicionante: “ter uma provisão suficiente de suporte financeiro pelas organizações interessadas públicas e comerciais”. O Dr. Darnley mencionou um suporte de cerca de US $ 2000,00 anuais. Com este fundo será patrocinado workshops e treinamentos em países em desenvolvimento. Essa Associação teria mais sucesso de levantar fundos do que um IUGS Working Group. (Anexo 5)

Em seguida houve a escolha do novo Coordinate leader, sendo escolhido o Dr. David Smith do USGS para substituir o Dr. Arthur Darnley. Foi escolhida a cidade
de Roma para sediar o próximo FOREGS.

V.3 - WORKSHOP - COLLECTING GEOCHEMICAL DATA FOR BOTH EXPLORATION AND ENVIRONMENTAL PURPOSES

Este Workshop foi realizado no domingo, 05 de outubro não foi possível assistir o curso. No entanto, devido ao tema ser de grande interesse para a CPRM e, tendo em vista os projetos atuais da empresa serem de cunho social, envolvendo também a área ambiental, procurei os Drs. Richard K. Glanzman e L. Graham Gloss que foram os organizadores desse workshop e solicitei que me fosse fornecido o material didático distribuído durante o curso. Ambos gentilmente me entregaram esses documentos, que são coletâneas de trabalhos técnicos versando sobre o assunto do workshop. Esses trabalhos serão posteriormente enviados aos Coordenadores de Geoquímica. No anexo 6 temos o Sumário dos assuntos tratados durante este evento.

V.4 - 31ST INTERNATIONAL GEOLOGICAL CONGRESS - BRAZIL 2000

V.5 - APRESENTAÇÕES ORAIS

No Anexo 7 temos o Abstract do IV ISEG. Dentro do possível procurou-se assistir às palestras que tratavam de estudos ambientais, que utilizavam dados regionais e estudo de tratamento de áreas degradadas por atividades de mineração. Verificou-se uma grande preocupação dos estudos de pesquisadores dos países
desenvolvidos em preservar o meio ambiente. Um exemplo bem documentado é o da Mina Summitville no estado do Colorado (Figuras 7 e 8). Esta mina funcionou entre 1985 e 1992 produzindo ouro de baixo teor utilizando a técnica moderna de lixiviação de pilha de minério por cianeto para retirar o ouro presente no rejeito da mina. O governo americano calculou que gastará entre 100 e 120 milhões de dólares para limpar a região dos efeitos da atividade de mineração. Neste Simpósio foram apresentados diversos trabalhos de pesquisa visando a remediação na região de Summitville.

Muitos dos profissionais que na década passada só desenvolviam atividades de geoquímica relacionadas com exploração mineral hoje realizam estudos que voltados para a geoquímica ambiental. O anexo 8 mostra a programação do Simpósio na sessão de encerramento.

VI - CONCLUSÕES E RECOMENDAÇÕES

1 - Creio ter sido altamente positiva a minha participação neste evento, em virtude da oportunidade de apresentar o trabalho que está sendo desenvolvido na CPRM utilizando a Geoquímica Ambiental. Somente dois trabalhos provenientes do Brasil foram apresentados neste Simpósio, sendo um da CPRM e outro da Universidade de Pernambuco;

2 - Quase 300 conferencistas de todo o mundo atenderam ao Simpósio de natureza tão específica. Foi possível estar em contato com diversos cientistas que há décadas vem realizando pesquisas na área ambiental (anexo 9).

3 - Isto evidencia que devemos dirigir nossos esforços para esta crescente atividade de Geoquímica Ambiental, sem no entanto esquecer que a geoquímica exploratória é uma atividade necessária para o crescimento do nosso país tão pouco explorado. Esta é a missão de um Serviço Geológico, fomentar a pesquisa geológica para atrair novos investimentos na área mineral e cuidar para que a terra seja preservada para que todos possam desfrutá-la da melhor maneira e deixá-la bem cuidada para nossos filhos e netos.

4 - As pesquisas que estamos iniciando na empresa na área da geoquímica ambiental mostra que estamos no caminho certo. Deveremos utilizar métodos analíticos de maior precisão e de limite de detecção bem baixos para que possamos observar as variações discretas dos elementos, mais precisamente naqueles meios de amostragem onde os elementos químicos podem estar em concentrações a nível de ppb ou mesmo ppt, como é o caso da água.

5 - A participação de profissionais da empresa em eventos internacionais serve também para treinamento, pois os coloca em contato com profissionais que realizam importantes estudos de ponta e utilizam equipamentos de última geração. Nossos geólogos podem divulgar os seus estudos e atrair empresas interessadas em investir em nosso país.
6 - A experiência brasileira em organizar eventos internacionais de grande porte nos qualifica a pleitear em futuro próximo que seja realizado no Brasil o Simpósio Internacional de Geoquímica Ambiental, que até o presente momento não é um evento de muitos cientistas;

8 - Esses Simpósios são uma grande oportunidade de divulgar o Simpósio Internacional de Geologia - Brazil 2000 assim como o nosso país, atraindo oportunidades de negócios e de turismo, melhorando a nossa balança comercial.

9 - A participação de geólogos da CPRM em eventos dessa natureza e em reuniões como as do Mapeamento Geoquímico Internacional consolida a presença do Serviço Geológico do Brasil junto à Comunidade Científica Internacional gerando oportunidades de parcerias com outros Serviços Geológicos;

VII - AGRADECIMENTOS

Agradeço ao Exmo. Ministro das Minas e Energia, Dr. Raimundo Brito, e ao Exmo. Secretário das Minas e Metalurgia, Dr. Giovanny Toniati a permissão para ausentar-me do país.

Da mesma forma agradeço ao Diretor Presidente, Dr. Carlos Oiti Berbert, ao Diretor de Geologia e Recursos Minerais, Dr. Antonio Juarez Milhmann Martins, ao Diretor de Administração e Finanças, Dr. Augusto Wagner Padilha Martins, ao Diretor de Relações Institucionais Dr. Gil Pereira de Souza Azevedo, e ao Diretor de Hidrologia e Gestão Territorial, Dr. Idelmar Cunha Barbosa a oportunidade de participar do Simpósio de Geoquímica Ambiental, onde foi possível apresentar o trabalho desenvolvido na empresa, divulgar o 31st International Geological Congress - Brazil 2000, bem como participar da reunião do IGCP IGM -360 (International Geochemical Mapping), que congrega cientistas de vários partes do mundo, manter contatos com geólogos de outros serviços geológicos e assistir palestras de interesse na área ambiental.

Agradeço, também, à ASSUNI na pessoa do Dr. Samir Nahass que preparou todo o processo que permitiu a viagem.

Finalmente, agradeço aos funcionários Sylvio Sergio Ferreira e Gerson José de Souza da ASSUNI que providenciaram as passagens, diárias e o passaporte junto à Embaixada Americana.
Figura 1 - Mapa de Localização de Vail - Colorado - USA
Figura 2 - Local de realização do Simpósio - Hotel Cascade
Painel "The Application of Geochemistry Data to Environmental Concerns in the Minas Gerais State, Brazil" de Cunha, F. G., Machado, G. J. e Mello, C.S.B. – CPRM

Painel "Trace-element Contamination in the Environment of Recife Metropolitan Area, Pernambuco, Brazil - Delima, Edmilson S. et alii - UFPE

Figura 3- Poster Presentation – Brasil
Participantes da Reunião do IGM – Mapeamento Geoquímico Internacional
Primeiro plano da esquerda para direita: agachado, Gilberto J. Machado (Brasil) Em pé: G. Ottonelo, (Ita), D. Smith (USA), Gloria Prieto (Col), T. Tarvanien (Fin), G. Hall (Can), e J. Plant (UK). No segundo plano temos P. Kovil (India), 3º A. Darnley (Can), J. Fortescue (antepenúltimo) e P. Koval (URSS)

Detalhe do Início da Reunião

Figura 5 – Reunião do IGCP 360 – Mapeamento Geoquímico Internacional
Figura 6 – Divulgação do IGC – BRAZIL 2000 – Poster e Bottom
Vista Aérea da Mina Summitville, 1991- Colorado
Fotografado pela Intrasearch

Poça vermelha escura rica em metais na Mina Summitville
Fotografado por Geoff Plumlee

Figura 7 - Mina Summitville - Colorado - USA
Figura 8 - Rio Alamosa Próximo à Mina Summitville
- Colorado - USA

USGS BULLETIN 2220
Anexo 1
JOHN A.C. FORTESCUE

Suite 40M
1315 East Grand Avenue
Escondido, CA. 92027

Phone/FAX 760-489-8177
E-mail jfortes@ttb.com
Resident of the U.S.A.

INTERESTS

Independent writer and teacher in environmental geoscience. Major goal: to write books on environmental geochemistry. Prepared to give introductory courses on environmental geology, environmental geochemistry and geochemical mapping. Research interests: landscape geochemistry, global geochemical mapping. Plans to offer lectures and 1, 2, or 3 day workshops in environmental geochemistry in 1998.

UNIVERSITY EDUCATION

1954 M.Sc.(Geology) University of British Columbia, Canada.

1953 B.A. (Hons. Geology) University of British Columbia, Canada.

ADDITIONAL EDUCATION

TEACHING AND ACADEMIC RESEARCH EXPERIENCE

Associate professor: (Geochemistry) Department of Geological Sciences, Brock University, St Catharines, Ontario, Canada (1970-1977)

Visiting research professor: (Environmental Geochemistry) Environmental Trace Substances Research Centre, University of Missouri, Columbia (1977-1978).

Guest lecturer: Environmental Geochemistry,(Half course) Department of Geological Sciences, Laurentian University, Sudbury, Ontario, Canada (Jan.- April, 1994)

Invited lecturer: "Landscape Geochemistry" (2-day course) - Department of Geology, Parana Federal University, Curitiba, Brazil (June, 1994).

Invited lecturer: "Geochemical Mapping for Multiple Purposes" (3-day course) - V Congresso Brasileiro de Geoquimica, Fluminense Federal University Niteroi, Brazil (October, 1995).

EXPERIENCE

Anexo 2
The Application of Geochemical Data to Environmental Concerns in the Minas Gerais State, Brazil

CUNHA, F.G. MACHADO, G.J. and MELLO, C.S.B.

Geological Survey of Brazil - CPRM
Geosciences Consulting Ass. Pasteur 404, Prata Vermelha, Rio de Janeiro, Brazil 222900040

The Geological Survey of Brazil (CPRM) has an extensive geochemical database covering all of the Brazilian territory. The database, in conjunction with the Geochemistry and Environmental Project, assists in land-use planning such as uses of soil and agricultural productivity related to the control of endemic diseases, and environmental management. In 1977 the area for the Sapucaí Project was selected as the Poços de Caldas and Varginha cities, Minas Gerais, (MG) State. The region encompasses an area of about 44,880 km² and has geological and geochemical coverage made by CPRM. This study was based on the results from the chemical analyses of Pb, Zn, Ni, Cr, Cu, Co and Mo based on an environmental study of 590 stream sediment samples. Using GEOSOFT software, geochemical maps for the selected elements were created. After data analysis, two areas for detailed examination were selected: Poços de Caldas showed high concentrations of Mo and low contents of Cu (possible problems for livestock and human health, such as molybdenosis and hypocuprosis); and Sao Gonçalo de Sapucaí. These areas represent old mining activities and new agricultural activity. The correlation between these geochemical data sets and those available from public health sources are being examined for the Poços de Caldas area. The study examines the utility of these data sources in assisting local governments to solve environmental geochemical problems.

Application of Mine Fire Diagnostics

DALVERN, L.E., CHAIKEN, R.F., and KIM, A.G.

1Federal Energy Technology Center, P.O. Box 10940, Pittsburgh, PA 15236, USA
2Pittsburgh Research Center, NIOSH, P.O. Box 18070, Pittsburgh, PA 15236, USA

Mine Fire Diagnostics is based on the assumptions: (1) measurable changes in the emission of low molecular weight hydrocarbons from coal are temperature dependent, and (2) analysis of controlled underground air flow between borehole sampling points can determine the source of the hydrocarbons. Gas composition, temperature, and pressure are determined before and during operation of a suction fan attached to one of a network of cased boreholes. Fan suction influences gas movement at the base of neighboring boreholes, and differences in measured pressure indicate the degree of communication between the suction and other boreholes. A fire signature is based on a ratio of C₃ - C₈ hydrocarbons to total hydrocarbons. Using a gas chromatograph, the detection level for hydrocarbons is 1 ppm; a sample can be analyzed in less than 2 minutes. Laboratory studies confirm that changes in hydrocarbon emission are detectable at temperatures below 100°C. Integrating fire signatures from multiple tests, with different underground gas flow orientations, produces a three-dimensional map of heated and cold zones.

The methodology has been used at four abandoned coal mine sites, three bituminous and one anthracite. Three non-contiguous combustion zones were delineated at the first site. At the second site, it was determined that heating extended several hundred feet into the mine and along more than the buried outcrop than indicated by surface expression. The third evaluation indicated possible heating near some houses; assessment was complicated by apparent low permeability in the mine. In the anthracite mine, changes in methane concentrations indicated the presence of seven non-contiguous heated zones.

Environmental Applications of the Regional Geochemical Mapping of Soils and Stream Sediments in South Africa

de BRUIN, D., ELSENBROEK, J.H., and LOMBARD, M.

Council for Geoscience, Private Bag X 112, Pretoria, 0001, South Africa

A regional geochemical mapping program has been conducted in South Africa since 1973 by the Council for Geoscience. A total area of 280,000 square kilometers have been covered to date at a sampling density of one sample per km². This represents coverage of 23% of the surface area of South Africa. Samples from first order streams are preferentially collected, but representative soil samples are taken if these are not present within the designated square kilometer. The <75 μm fraction of samples is collected by dry sieving and analyzed for 24 elements (Ti, Cu, Fe, O₂, Cr, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Y, Zr, Nb, Mo, Sn, Sb, Ba, W, Pb, Th, U) by simultaneous XRF on pressed powder pellets. Samples from selected areas have also been analyzed for additional elements (Pt, Pd, Au and major elements) using other analytical techniques. The results are processed by using a Geographical Information System (GIS). The XRF results show an excellent correlation between soil chemistry and underlying geological formations. Geological units are clearly demarcated even on 1:50,000 scale maps (700 samples), and on larger scales the chemistry clearly reflects regional geological patterns. From geological correlations the data set can also be used for exploration purposes, the establishment of environmental baselines within geological units, and agricultural applications. An advantage of the methodology followed by this program is that all sample materials are stored and archived, which allows for samples to be analyzed by other and future advanced analytical techniques for additional elements as the need arises.

Prominent anthropogenic contamination can be readily detected in two separate mining areas. The area surrounding
Anexo 3
IUGS/IAGC WORKING GROUP ON GLOBAL GEOCHEMICAL BASELINES
IGCP PROJECT 360 GLOBAL GEOCHEMICAL BASELINES

Business meetings of the above project will be held in the Centennial Ballroom at the Vail Cascade Hotel and Resort from 9.00 AM to 5.00 PM on Sunday (5 October) and Wednesday (8 October) 1997.

AGENDA

1. Welcome and brief position statement
 (maximum 20 minutes)
 A Darnley/
 J A Plant

2. Present structure
 A Darnley/
 J A Plant

3. Regional progress reports:

 Europe
 FOREGS
 T Tarvainen on behalf of R Salminen; M J Battista; A Demetriades; M Duris; F M Fordyce; V Gregorauskiene; G Klaver; H Klein; J Locutura; K Marsina; L Martins; C Mouvet; L Odör; S-A Ohlsson; G Ottolengo; A Pasiecsna; M Pinto; J A Plant; C Reimann; U Sievers; J Van der Sluys; O Schermann; A Steenfelt.

 Russia
 P Koval

 Asia
 China
 X Xie

 India
 P K Govil

 S.E. Asia
 J A Plant on behalf of Y K Hong (Korea); C Johnson & M Muchsin (Indonesia)

 Australia
 J A Plant on behalf of B Minty

 South America
 G Priceto (Colombia) & A Darnley (on behalf of Brazil)

 North America
 R Garrett; Dr G Hall (Canada) & D Smith (USA)

 South Africa
 D De Bruin

4. Review of expanded regional field manuals
 Discussion
 and additional climatic field methods

5. Analytical strategies
 G Hall on behalf of the analytical committee

6. Data processing
 R Garrett & T Tarvainen on behalf of the data management committee

7. Funding and PR
 I Thornton on behalf of the PR committee

8. Future Activities
 A Darnley & J A Plant
IUGS/IA GC WORKING GROUP ON GLOBAL GEOCHEMICAL BASELINES
IGCP 360 GLOBAL GEOCHEMICAL BASELINES

Business Meeting, 5th & 8th October 1997, Vail, Colorado, USA.

ATTENDANCE

Arthur Darnley Canada
Jane Plant UK
David Smith USA
Lorraine Williams UK

Ottmar Schermann Austria
Jan Van der Sluys Belgium
Gilberto J. Machado Brazil
Gwendy Hall Canada
Prof X. Xie China
Luz Maryan Gonzalez Colombia
Gloria Prieto Colombia
Timo Tarvainen Finland
Manfred Birke Germany
Dinelli Enrico Italy
Benedetto de Vivo Italy
P.K. Govil India
Luis Martins Portugal
Pavel Koval Russia
Deon de Bruin South Africa
Olle Selnius Sweden
Joy Rae UK
Iain Thornton UK
Maurice Chaffee USA
John Fortescue USA
Robert R. Craig USA
Anexo 4
Dear members of the FOREGS Geochemistry Task Force and the IUGS Working Group on Global Geochemical Baselines.

As agreed in the Working Group meeting in Vail, we send the enclosed manuscript of the FOREGS field manual for your evaluation. Because this is already the 6th version of the manual and some countries have already taken part of the samples according to these instructions, only minor revision is possible. However, some parts were added to this manuscript very quickly and there are certainly some errors, both typing errors and unlogical instructions. Analytical part will not be added to this manual.

Please send your comments to me before 1 November 1997. The guide book will be printed in January 1998, and the full text with figures will be available on the web site of the Geological Survey of Finland (http://www.gsf.fi) on the same time.

Yours faithfully,

[Signature]

Timo Tarvainen
Senior Research Geologist
LIST OF CONTENTS

1. INTRODUCTION ... 6
 1.1 General ... 6
 1.2 Aims .. 8
 1.3 Regional laboratories and the coordinator 9
 1.4 Sample media ... 10

2. SELECTION OF SAMPLE SITES 13
 2.1 GTN grid cells 13
 2.2 Selecting sample sites 14
 2.3 Identifiers .. 17

3. SAMPLING .. 17
 3.1 Stream water sampling 17
 3.2 Stream sediment 22
 3.3 Humus and residual soil samples 28
 3.4 Floodplain sediments 34
 3.5 Overbank sediments 37

4. FIELD OBSERVATIONS 38
 4.1 Photographs ... 38
 4.2 Gamma ray spectrometry 39
 4.3 Sampling site coordinates 39

5. SENDING TO LABORATORY AND STORAGE OF SAMPLES 39

6. DIFFERENCES BETWEEN FOREGS GEOCHEMICAL SAMPLING AND IGCP 259 RECOMMENDATIONS 40

7. SAMPLE PREPARATION 41

8. REFERENCES ... 45
Anexo 5
A proposal for an

International Association for Global Geochemical Baselines

to be affiliated to the International Union of Geological Sciences

Objectives:

- implement the general recommendations of the UNESCO report, as identified by the UN Committee on Natural Resources;
- facilitate the assembly of a standardised global geochemical database pertaining to surface materials;
- facilitate the distribution and use of the data.

Method:

- provide continuity, information, training and quality assurance, by means of a small secretariat working in conjunction with regional, national or other organisations, as appropriate, under the general guidance of an international Steering Committee;

Conditional upon:

- the provision of sufficient financial support by interested public and commercial organisations.

Rationale:

The UN Committee on Natural Resources has passed a resolution stating that there is an urgent need for a global land monitoring program based on the UNESCO report. A strong case can be made for this activity.

The organizations which might be expected to provide financial support for such a program are unwilling and/or unable to do so for reasons such as the following:

- no money for new projects;
- must give priority to existing activities;
- currently reducing their activities;
- are concerned with process studies rather than systematic data collection;
- consider it outside their mandate.

Global geochemical baselines cannot be established without funds earmarked for the purpose. A direct approach must be made to those with money who will benefit from the existence of baseline data. A new international association created specifically for the purpose could be more successful at fund raising than an IUGS Working Group, even if the objectives are the same.

1 October, 1997
Anexo 6
COLLECTION GEOCHEMICAL DATA FOR BOTH EXPLORATION AND ENVIRONMENTAL PURPOSES

1. NATURAL VARIABILITY

Outline

Introduction -
Geochemical Cycle
Basic Principles of Applied Geochemistry
Survey Components - Orientation Surveys
Sampling and Sampling Design
Summary

Introduction

The Geochemical Cycle:
 Deep-seated bedrock
 Surficial

Bedrock Geochemistry
 Start with igneous rocks - crystal chemistry
Geochemical Variability
 rock types
 mineral deposits types
 geochemical associations
Data Compilations
 Mineral deposit models

Surficial Geochemical Environment
 Sedimentary geochemical differentiation - aqueous chemistry
 Range of environments - morphogenetic systems
Weathering and Soil Formation
 Principle sampling media - definitions
Sources of variability
 Soils - e.g., climate, catena, horizon
 Drainage - e.g., Eh/pH, sorption, site setting, seasons

Conceptual/Landscape Geochemistry Models

Geoenvironmental Mineral Deposit Models

Basic Principles of Applied Geochemistry

Introduction
 General - ala Goldschmidt
 Landscape Geochemistry
Exploration geochemistry
Environmental geochemistry
Geoepidemiology

Key: nature of the problem!

Basic Concepts
Geochemical Cycle
Mobility(Solubility) - chemical and physical
Dispersion
Geochemical Associations
Pathfinder or Indicator Elements

Patterns of Geochemical Dispersion
Geochemical Landscape
Geochemical Relief/Contrast
Background/Baseline
Threshold/Pattern Recognition
Anomaly (Significant/Non-Significant)
Classification
Environment (Deep-seated vs surficial)
Stage (syngenetic vs epigenetic)

Survey Components
Design and Planning
Field Sampling
Sample Preparation
Chemical analysis
Data Management and Presentation
Interpretation and Recommendations

Key: Only as good as the weakest link!

Orientation Surveys
Objectives
establish geochemical dispersion operative, at appropriate scales
establish optimum geochemical techniques for detecting
dispersion, considering both technical and economic factors

Questions to be addressed
Types of Orientation Surveys
traditional, case history, consultation

Result
does geochemistry work
how, why?
routine survey specifications
technically and economically sound solution

Sampling and Sampling Design

Introduction
- **Definitions**
 - Populations: conceptual/target/sampled
 - Sample: geological/statistical
 - Geological Sample - A composite!
 - Physical isolation
 - chemical speciation
 - geochemical fingerprints (association/statistics)
 - Sample representativity - of what?, for what purpose?

Sample Design
- Objectives of GX Program
 - Anomaly identification detection and definition
- General Statistical Model
 - Data distributions
 - Independence of samples/randomizing: Miesch 1976
- Analysis of Variance (ANOVA) Evaluation
 - \(V_T = V_R + V_S + V_A \)
 - Balanced vs Unbalanced Design
 - Do we have a problem?

Sampling: Geological & Statistical
- Objectives
- Types of Samples
- Representativity
 - Homogeneous vs heterogeneous
 - Nugget Effect - precision vs # of particles
 - Factors - sample weight/grain size/concentration
- Trouble Shooting
 - Design/Monitoring
 - Analytical Precision
 - Geological Representativity - process appreciation
 - (natural & anropogenic)
 - Statistical Representativity
 - natural heterogeneity
 - (larger samples/compositing)
 - sample preparation
 - (procedure assessment)
 - Geochemical Associations
 - an alternative approach

Geostatistics
- Regionalized vs Random variables
- Area of influence, continuity, anisotropy
- Variogram - regional vs local effects model
Kriging - weighting factors for samples via geostatistics
contouring and error estimate.

Summary
Assessment
How representative is the sample/your data
Significance to project

Summary
Geochemical Cycle: deep-seated and surficial environmental
Models - Conceptual and Geoenvironmental
Basic Principles - dispersion
Survey components - orientation surveys
Sampling: geological and statistical
Assumption: geological samples are composite

L. Graham Closs
10/2/97
Selected References

Fortescue, J.A.C., 1980, Environmental geochemistry - a holistic approach: Springer Verlag.
Anexo 7
4th International Symposium on Environmental Geochemistry

October 5-10, 1997
Vail, Colorado USA

organized by the
United States Geological Survey
Association of Exploration Geochemists
and
Society for Environmental Geochemistry and Health

in collaboration with the
International Association of Geochemistry and Cosmochemistry
4th International Symposium on Environmental Geochemistry

Program with Abstracts

By

Richard B. Wanty, Sherman P. Marsh, and Larry P. Gough

Open File Report 97-496
1997

The use of trade names in this report is for descriptive purposes only and does not constitute endorsement by the U.S. Geological Survey.

This report is preliminary and has not been edited or reviewed for conformity with U.S. Geological Survey standards and nomenclature.
Welcome to the
4th International Symposium on Environmental Geochemistry

Welcome to colorful Colorado. This Rocky Mountain valley is an area once used to train soldiers of the 10th Mountain Division for Alpine combat in Europe during World War II. After the war, one of those soldiers came back with the dream of starting a ski area. In 1962, Vail opened and has grown into the largest, single-mountain ski resort in North America. During your stay we hope you will be able to visit the surrounding regions and enjoy American hospitality, food, and beautiful scenery.

It is an honor to host the 4th International Symposium on Environmental Geochemistry and we are eager for you to have a successful and productive conference. You can rest assured that every member of the Organizing Committee will see to accommodating your needs. Details of the scientific program and social events are given in the following pages. If you need assistance or have any questions, please feel free to go to the Registration Desk or ask any Organizing Committee member.

The support from sponsors, exhibitors, and attendees is gratefully acknowledged. A special thank you is extended to the Association of Exploration Geochemists, the Society for Environmental Geochemistry and Health, and the International Association of Geochemistry and Cosmochemistry for their interest and financial support. The United States Geological Survey also gave significant financial support in allowing members of the Organizing Committee time to devote to the Symposium.

The Organizing Committee

This proceedings volume is published as U.S. Geological Survey Open-File Report OF97-496. Literature citations can appear as follows:

TABLE OF CONTENTS

HOTEL SITE MAP .. iv
GENERAL INFORMATION ... v
MEETING FACILITY FLOOR PLAN ... viii
CALENDAR OF EVENTS ... ix
WORKSHOPS ... xi
FIELD TRIPS .. xii
ACKNOWLEDGMENTS ... xiii
SESSION CHAIRPERSONS ... xiv
GUEST SPEAKERS .. xv
EXHIBITORS ... xvi
TECHNICAL PROGRAM MATRIX .. xvii
PROGRAM ... xviii
ABBREVIATIONS USED IN ABSTRACTS ... xxvi
ABSTRACT TITLE INDEX ... 1
ABSTRACTS ... 6
AUTHOR INDEX .. 102

4th International Symposium on Environmental Geochemistry

ORGANIZING COMMITTEE

<table>
<thead>
<tr>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ms. Cathy Ager</td>
</tr>
<tr>
<td>Dr. James Crock</td>
</tr>
<tr>
<td>Mr. David Detra</td>
</tr>
<tr>
<td>Dr. Larry Gough</td>
</tr>
<tr>
<td>Ms. Susan Kropschot</td>
</tr>
<tr>
<td>Ms. Pat Krupa</td>
</tr>
<tr>
<td>Dr. Paul Lamothe</td>
</tr>
<tr>
<td>Mr. Sherman Marsh</td>
</tr>
<tr>
<td>Ms. Coleen Schmitt</td>
</tr>
<tr>
<td>Mr. Richard Sanzolone</td>
</tr>
<tr>
<td>Dr. Ronald Severson</td>
</tr>
<tr>
<td>Dr. David Smith</td>
</tr>
</tbody>
</table>

SCIENTIFIC COMMITTEE

<table>
<thead>
<tr>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Willard Chappell</td>
</tr>
<tr>
<td>Dr. Brian Davies</td>
</tr>
<tr>
<td>Dr. Ron Fuge</td>
</tr>
<tr>
<td>Dr. Robert Garrett</td>
</tr>
<tr>
<td>Dr. Gwenneth Hall</td>
</tr>
<tr>
<td>Dr. Betsy Kagey</td>
</tr>
<tr>
<td>Dr. Donald Rannells</td>
</tr>
<tr>
<td>Dr. Olle Schims</td>
</tr>
<tr>
<td>Dr. Ian Thornton</td>
</tr>
<tr>
<td>Dr. Richard Witty</td>
</tr>
</tbody>
</table>

Graphical Design by
Ms. Barbara J. Ramsey
4th International Symposium on Environmental Geochemistry

Conference

October 5 - October 10, 1997

Vail Cascade Hotel & Club
Vail, Colorado

GENERAL INFORMATION

ACCOUNTS—All incidental expenses for items not covered by your registration fee are your responsibility and must be settled directly between you and the Hotel. These expenses include items such as: meals, telephone calls, room service, bar bill, additional accommodations, golf green fees, etc.

ACUTE MOUNTAIN SICKNESS—Please take the time to read the Colorado Altitude Research Institute information included in your registration bag. Vail Valley starts at 8,000-foot (2,500-m) elevation, with surrounding terrain rising higher. Depending upon the altitude, 20 to 30% of all visitors from sea level have one or more symptoms of acute mountain sickness. The Organizing Committee would like your stay to be safe and enjoyable.

- Increase Fluid Intake
- Decrease Salt Intake
- Moderate Your Physical Activity
- Eat Low Fat Meals
- Reduce Alcohol and Caffeine Consumption
- Feeling Lousy? Seek Help through Hotel
- Have Fun!

CASCADE ATHLETIC CLUB—For a nominal daily usage fee of $12.00 ($20/4 days, $30/week), delegates have privileges to the sports, fitness, and health facility. Located adjacent to the Hotel, the Club provides a variety of spa and recreation facilities including indoor/outdoor tennis, racquetball, squash, basketball, aerobics, Nautilus equipment, steam rooms, and more. Passes can be purchased at the front desk.

HOTEL CHECK-IN AND CHECK-OUT TIME—Hotel check-in time is 4:00 p.m. on day of arrival and check-out time is 12:00 p.m. on day of departure or Friday, October 10. Luggage may be stored at the front desk. Delegates staying in their rooms beyond check-out time will be charged for an additional room night.

MESSAGE CENTER—A message center will be maintained in the Centennial Foyer for the convenience of conference attendees. Incoming messages for attendees will be posted on individual room phones or the message center board, near the Registration Desk. To call the center, dial 970-476-7111 and ask for the 4th ISEG Message Center.

NO SMOKING—For the comfort of all, please refrain from smoking in the meeting rooms, eating areas, and foyer.

BUSINESS CENTER—Fax, photocopying, or transparencies. Check at Hotel Registration Desk.

EXHIBITS—The 4th International Symposium on Environmental Geochemistry will feature an exhibition of scientific equipment, accessories, and supplies. Exhibits will be located in the Centennial Foyer. Exhibits will be open Monday, Tuesday, Thursday, and Friday during conference hours. Check at Hotel Registration Desk.

EXHIBIT HOURS: Monday, October 5 9 a.m. to 8 p.m.
Tuesday, October 7 9 a.m. - 5 p.m.
Thursday, October 9 9 a.m. - 6:30 p.m.
Friday, October 10 9 a.m. - 12 noon

ORAL PRESENTATIONS—The Conference Center Centennial Ballroom will be the site for all lectures. Because of the parallel sessions, Session Chairs have been asked to keep strictly to the schedule timetable, which allows 20 minutes for presentations. Authors are requested to make themselves known to the Session Chairs before the session begins.

Speakers will be able to preview their slides in the Goldenrod Suite. Viewers will be available.
POSTER PRESENTATIONS—Posters will be on display in the Rocky Mountain Ballroom Sunday evenings through morning. Authors will be asked to attend their posters during the Monday mixer and Thursday social hour. Session 1.3 and 10 authors may put up their posters between 3:00 and 5:30 p.m. on Sunday and should take them down before noon Wednesday to ensure that the boards are available. Session 2.4.6. and 9 authors may put up their posters Wednesday and should take them down by 1:00 p.m. on Friday.

REGISTRATION—Registration badges are required for admission to all technical sessions, exhibits, and functions. Appropriate badge is required for admittance and will be checked at the entrance of all activities. Everyone attending the Conference, including speakers and exhibitors, is required to register. Advance registration pickup and on-site registration be conducted during the following hours:

Sunday, October 5 1 p.m. to 6 p.m. Lobby Terrace
Monday, October 6 7 a.m. to 5 p.m. Centennial Foyer
Tuesday, October 7 8 a.m. to 5 p.m. Centennial Foyer

Later registration will be available.

REGISTRATION FEE—The registration fee is $325. This includes the published program with abstracts, refreshments, breaks, opening reception on Sunday, October 5, and banquet on Thursday, October 9, and all other social functions. On-site passes will be available for attendance at the presentation sessions and refreshments breaks for $150 per day. Students register for $100 with a valid student card (excludes banquet); spouses for $100 (social functions including banquet).

SESSION CHAIRS—Please meet briefly with the Organizing Committee on Monday, October 6 at 12 noon in Centennial ABCD.

SHUTTLE BUS—The Hotel operates a complimentary shuttle from 7 a.m. - 12 midnight to Vail Village and Lionskin for general guest use. Shuttles operate on 20-minute intervals, depending on distance and weather conditions. Van transport from the Hotel to Denver International Airport is available from Colorado Mountain Express at Tel: 1-800-525-6363. When making your reservation, mention the special group code “ISEG” and receive a discount.

SOCIAL FUNCTIONS

Opening Reception—Sunday, October 6, from 6:00-8:00 p.m. in the Cascade Ballroom.

Mixer (in conjunction with Posters)—Monday, October 7, from 5:30-7:00 p.m. in the Centennial Foyer.

Social Hour (in conjunction with Posters)—Thursday, October 9, from 5:30-6:30 p.m. in the Centennial Foyer.

Banquet—Thursday, October 9, from 6:30-8:30 p.m. in the Cascade Ballroom.

Please notify the Organizing Committee by Monday evening if you have any special food requirements for the Banquet.

A presentation for guests on Vail Valley activities will be given by the Hotel concierge in the Lobby Terrace from 9:00 a.m., Monday, October 6. Recreation information will be available at the Conference Registration Desk Monday during lunch break and during the mixer.
FOOD SERVICE.—Breakfast will be available between 6:30 and 8:00 a.m. in the Cascade Ballroom every morning. Lunch will be served from 12:00 noon to 1:40 p.m. in the Cascade Ballroom. Refreshments will be served during the morning and afternoon breaks in the Centennial Foyer, where the exhibits will be displayed.

MENU—(All prices include tax and gratuity)

Breakfast options October 6-10

A la Carte Quick breakfast
Coffee ... $2.00
Juice ... $2.00
Bagel ... $3.00
Muffin, Danish, Doughnut .. $2.00

Full Continental breakfast $11.00
Coffee, juice, fresh fruit, cold cereals, breakfast breads, Danish, muffins, toast, hard breads, and international and domestic cheeses.

Full Buffet Breakfast .. $13.00
includes all of the above plus fluffy scrambled eggs, Colorado hash browns, sugar cured bacon or country sausage, and a daily griddle item.

Lunch option Monday, October 6

Italian Pasta Buffet .. $13.00
Two pastas, tomato basil and alfredo sauce, Caesar salad, garlic bread, Chef’s choice of Italian dessert, and iced tea.

Lunch option Tuesday, October 7

Executive Deli Buffet .. $13.00
Assorted cold cuts, soup du jour, assorted cold salads, appropriate condiments, tossed salad with two dressings, breads, brownies, and iced tea.

Lunch option Thursday, October 9

Mountain Grill Buffet
Grilled hamburgers and hot dogs, corn on the cob, cowboy beans, tossed salad, fresh lettuce and tomato, appropriate condiments, fruit cobbler, and iced tea.

Lunch option Friday, October 10

Mexican Madness Buffet $13.00
“Build-your-own-taco-station” with flour and corn tortillas, ground beef, shredded cheese, diced fresh tomatoes, onions, peppers, sour cream, guacamole, etc., tossed salad, sugared churros, and iced tea.
MEETING AND BANQUET FACILITIES
CONFERENCE CENTER

ROCKY MOUNTAIN BALLROOM
First Level

ROOM A ROOM C
ROOM B ROOM D

Rocky Mountain Foyer

CENTENNIAL BALLROOM
Second Level

ROOM A ROOM D
ROOM B ROOM C

Access to Conference Center from Main Hotel Second Level

MAIN HOTEL

CASCADE BALLROOM
First Level

CASCADE Foyer

Cascade Ballroom

THEATERS
Second Level

Cascade Auditorium Theater

Executive Screening Room

MEETING SUITE

Columbine Suite

Goldenrod Suite
CALENDAR OF EVENTS

SUNDAY, OCTOBER 5, 1997
9:00 a.m. - 5:00 p.m. Global Baselines Meeting .. Centennial B
9:00 a.m. - 5:00 p.m. SEGH Meeting ... Centennial C
9:00 a.m. - 5:00 p.m. Acid Forming Materials Workshop Centennial E
1:00 p.m. - 6:00 p.m. Registration .. Lobby Terrace
1:00 p.m. - 5:00 p.m. Geochemical Data Workshop Centennial F
3:00 p.m. - 5:30 p.m. Poster (Sessions 1, 3, 5, 7, 8, 10) and Exhibit Setup Rocky Mountain Ballroom
6:00 p.m. - 8:00 p.m. Opening Reception .. Cascade Ballroom

MONDAY, OCTOBER 6, 1997
6:30 a.m. - 8:00 a.m. Breakfast on your own .. Cascade Ballroom
7:00 a.m. - 5:00 p.m. Conference Registration Centennial Foyer
7:00 a.m. - 5:00 p.m. Speaker Ready Room .. Goldenrod
8:00 a.m. - 8:00 p.m. Poster Session (1, 3, 5, 7, 8, 10) Rocky Mountain Ballroom
8:20 a.m. - 10:00 a.m. General Session .. Centennial ABCD
9:00 a.m. - 10:00 a.m. Vail Valley activity presentation Lobby Terrace
9:00 a.m. - 8:00 a.m. Exhibits .. Centennial Foyer
10:00 a.m. - 10:20 a.m. Refreshment Break ... Centennial Foyer
10:20 a.m. - 12:00 noon Session 1-1 to 1-4 .. Centennial ABCD
10:20 a.m. - 12:00 noon Session 2-1 to 2-4 .. Centennial EF
12:00 noon - 1:40 p.m. Lunch on your own .. Cascade Ballroom
12:00 noon - 1:40 p.m. Tourist Information—Reg. Desk Registration Desk
12:00 noon - 1:40 p.m. Chairperson meeting Centennial ABCD
1:40 p.m. - 3:20 p.m. Session 1-5 to 1-9 ... Centennial ABCD
1:40 p.m. - 3:20 p.m. Session 2-5 to 2-9 ... Centennial EF
3:20 p.m. - 3:40 p.m. Refreshment Break ... Centennial Foyer
3:40 p.m. - 5:10 p.m. Session 1-10 to 1-13 .. Centennial ABCD
3:40 p.m. - 5:10 p.m. Session 2-10 to 2-13 .. Centennial EF
5:30 p.m. - 7:00 p.m. Mixer ... Centennial Foyer
5:00 p.m. - 6:30 p.m. Tourist Information .. Main Centennial Foyer

TUESDAY, OCTOBER 7, 1997
6:30 a.m. - 8:00 a.m. Breakfast on your own .. Cascade Ballroom
7:00 a.m. - 5:00 p.m. Speaker Ready Room .. Goldenrod
8:00 a.m. - 5:00 p.m. Registration .. Centennial Foyer
8:00 a.m. - 10:00 a.m. Session 3-1 to 3-6 .. Centennial ABC
8:00 a.m. - 10:00 a.m. Session 4-1 to 4-6 .. Centennial D
8:00 a.m. - 5:30 p.m. Poster Session (1, 3, 5, 7, 8, 10) Rocky Mountain Ballroom
9:00 a.m. - 5:00 p.m. Exhibits .. Centennial Foyer
10:00 a.m. - 10:20 a.m. Refreshment Break ... Centennial Foyer
10:20 a.m. - 12:00 noon Session 3-7 to 3-10 .. Centennial ABC
10:20 a.m. - 12:00 noon Session 4-7 to 4-10 .. Centennial D
12:00 noon - 1:40 p.m. Lunch on your own .. Cascade Ballroom
1:40 p.m. - 3:20 p.m. Session 3-11 to 3-15 .. Centennial ABC
1:40 p.m. - 3:20 p.m. Session 4-11 to 4-15 .. Centennial D
3:20 p.m. - 3:40 p.m. Refreshment Break ... Centennial Foyer
3:40 p.m. - 5:10 p.m. Session 3-16 to 3-19 .. Centennial ABC
3:40 p.m. - 5:10 p.m. Session 4-16 to 4-19 .. Centennial D
5:30 p.m. - 7:00 p.m. SFETH Business Meeting Centennial E
WEDNESDAY, OCTOBER 8, 1997
6:30 a.m. - 8:00 a.m. ... Breakfast on your own .. Cascade Ballroom
Field Trips
8:00 a.m. - 12:00 noon ... Poster Take Down (Sessions 1, 3, 5, 7, 8, 10) Rocky Mountain Ballroom
9:00 a.m. - 5:00 p.m. ... Global Baseline Meeting ... Centennial E
12:00 noon - 5:00 p.m. ... Poster Setup (Sessions 2, 4, 6, 9) Rocky Mountain Ballroom
1:00 p.m. - 5:00 p.m. ... International Geoscience and Geotechnology .. Centennial F
Health Working Group

THURSDAY, OCTOBER 9, 1997
6:30 a.m. - 8:00 a.m. ... Breakfast on your own .. Cascade Ballroom
7:00 a.m. - 2:00 p.m. ... Speaker Ready Room ... Goldenrod
8:00 a.m. - 5:30 p.m. ... Poster Session (2, 4, 6, 9) ... Rocky Mountain Ballroom
8:00 a.m. - 10:00 a.m. ... Session 5-1 to 5-6 ... Centennial ABC
8:00 a.m. - 10:00 a.m. ... Session 4-20 to 4-25 ... Centennial D
9:00 a.m. - 6:30 p.m. ... Exhibits ... Centennial Foyer
10:00 a.m. - 10:20 a.m. ... Refreshment Break ... Centennial Foyer
10:20 a.m. - 12:00 noon ... Session 6-1 to 6-4 ... Centennial ABC
12:00 noon - 1:40 p.m. ... Lunch on your own ... Cascade Ballroom
1:40 p.m. - 3:20 p.m. ... Session 6-5 tp 6-9 ... Centennial ABC
1:40 p.m. - 3:20 p.m. ... Session 8-5 to 8-9 ... Centennial D
3:20 p.m. - 3:40 p.m. ... Refreshment Break ... Centennial Foyer
3:40 p.m. - 5:10 p.m. ... Session 6-10 to 6-13 ... Centennial ABC
3:40 p.m. - 5:10 p.m. ... Session 8-10 to 8-13 ... Centennial D
5:30 p.m. - 6:30 p.m. ... AEG Business Meeting ... Cascade Ballroom
5:30 p.m. - 6:30 p.m. ... Social Hour ... Rocky Mountain Field
6:30 p.m. - 8:30 p.m. ... Banquet ... Centennial Ballroom

FRIDAY, OCTOBER 10, 1997
6:30 a.m. - 8:00 a.m. ... Breakfast on your own .. Cascade Ballroom
7:00 a.m. - 2:00 p.m. ... Speaker Ready Room ... Goldenrod
8:00 a.m. - 10:00 a.m. ... AEG Council Meeting ... Lobby Terrace
8:00 a.m. - 10:00 a.m. ... Session 5-7 to 5-12 ... Centennial ABC
8:00 a.m. - 10:00 a.m. ... Session 7-1 to 7-6 ... Centennial D
8:00 a.m. - 5:30 p.m. ... Poster Session & Take Down (2, 4, 6, 9) Rocky Mountain Ballroom
9:00 a.m. - 12:00 noon ... Exhibits ... Centennial Foyer
10:00 a.m. - 10:20 a.m. ... Refreshment Break ... Main Centennial Foyer
10:20 a.m. - 12:00 noon ... Session 9-1 to 9-5 ... Centennial ABC
10:20 a.m. - 12:00 noon ... Session 10-1 to 10-4 ... Centennial D
12:00 noon - 12:30 p.m. ... Closing General Session ... Centennial ABCD
12:30 p.m. ... Lunch on your own ... Cascade Ballroom
WORKSHOPS—SUNDAY, OCTOBER 5

Acid-Forming Materials and Land Reclamation
9:00 a.m. - 5:00 p.m.

Scott Fisher
River Bend Assoc.

Centennial E
Fee: $75

The workshop will provide the participant with an overview of the importance and types of pre-disturbance planning procedures. It will discuss methods of mitigation of acid forming materials (AFM) resulting from mining and related forms of drastic-land disturbance. Emphasis during the program will be placed on the identification of AFM and its proper handling during the mining operation. Integration of mining procedures with reclamation plans will be stressed. The limited potential for ecosystem reclamation where AFM contamination has taken place is an important thesis that will be stressed throughout the program.

Elements of the course will include a broad introduction, a discussion of pyrite and related mineral formation, processes associated with the weathering of pyrite, impact of acid plant growth media on land reclamation, and acid mine drainage. In addition, topics to be discussed include the sampling and analytical characterization of earthen materials potentially containing AFM, mitigation of terrestrial and aquatic impacts from AFM oxidation, and a review of several case studies involving AFM in the western United States.

Workshop leaders and their topical areas of expertise include: Dr. Terry Brown, Western Research Institute, Laramie, WY (analytical, mitigation, agronomy, and case studies); Margaret Condron, formerly with the Office of Surface Mining, Denver, CO (analytical, planning, agronomy); Scott Fisher, River Bend Associates and Arid Lands Reclamation Newsletter, Medicine Bow, WY (planning, analytical, mitigation).

Collecting geochemical data for both exploration and environmental purposes
1:00 p.m. - 5:00 p.m.

Richard K. Glanzman
CH2M Hill.
L. Graham Gloss,
Colorado School of Mines
and
Jeff Jaacks
BHP Minerals

Centennial E
Fee: $50

Data collected and analyzed for exploration purposes can be even more cost-effective and useful when it is used for environmental purposes. The seminar provides exploration and environmental professionals with the information to acquire more useful data for both purposes and to fulfill regulatory agency requirements. A few relatively minor changes can make exploration data not only more accurate and precise, it can also make the same data useful for environmental purposes. This approach can be used during reconnaissance but is intended for use on properties under serious exploration scrutiny.

Topics addressed in this four hour seminar include: definition of sampling objectives, orientation/background surveys, methods of efficiently collecting appropriate data of various media, sampling representativeness, background/baseline issues, analytical considerations/requirements, commercial standards versus site-specific standards (preparation/usefulness), statistical analysis, and risk/liability considerations. Exploration case histories illustrate the usefulness and advantages of this approach.

Decisions made based on the exploration data can be significantly improved. However, of considerably greater importance, the data can significantly reduce the cost and improve the effectiveness of environmental considerations. These considerations involve not only future environmental evaluation(s) but also provide data to support more effective design/evaluation of mine waste disposal to control and minimize environmental concerns.
FIELD TRIPS
David B. Smith, Coordinator

All trips start and end at the Vail Cascade Hotel & Club. Departure times will be announced and posted. If you have pre-registered for a trip, on-site registration may be possible; check at the Registration Area, Vail Cascade Hotel & Club. Participants will be accepted on a first-come, first-served basis.

Clear Creek Watershed—Wednesday, October 8

Clear Creek extends from the Continental Divide near the Loveland Ski Area to the confluence with the South Platte River in metro Denver. Waters in Clear Creek are impacted by abandoned mines and dumps within the Colorado Mineral Belt industrial and municipal wastewater, stormwater and sewer overflow, and accidental leaks and spills of toxic substances. Clear Creek has a nationally recognized award-winning watershed initiative underway, and field trips will capture both the substance of the initiative as well as the spirit of the effort. Major sources of pollution include mine drainages and tailings piles will be visited as well as major cleanup sites using both active and passive treatment technologies. The fee is $70, which includes a box lunch.

Leadville, Colorado—Wednesday, October 8

The historic mining town of Leadville sits near one of the world’s largest polymetallic replacement deposits. Since the discovery of gold in 1858, more than $5.4 billion (1989 prices) of gold, silver, lead, and zinc have been extracted from the Leadville mining district. This large-scale mining also extracted its toll on the environment. In 1983, the town was an 18-square-mile (46.6-square-kilometer) Superfund site by the U.S. Environmental Protection Agency as a result of impacts to water quality and human health due to heavy metal contamination. This field trip will explore the mining legacy and current remedial activities in and around Leadville. The fee is $55, which includes a box lunch.

Eagle Mine—Wednesday, October 8

The Eagle Mine is an inactive mining and milling facility located on the Eagle River between the towns of Redcliff and Minturn. Silver-lead and gold-silver ore attracted miners to the area in the late 1870’s. Lead-zinc sulfide ore was mined in the 1890’s with mining of zinc ore continuing until the early 1980’s. The environmental impact of more than 100 years of mining and milling operations on the Eagle River and adjacent areas was very evident and caused the U.S. Environmental Protection Agency to place the site on its Superfund list in 1986. Since that time a remedial action plan has provided for the mine to be flooded, consolidation of eight tailings piles into one, placement of a multi-layer clean soil cap on the remaining consolidated pile, and construction of a water treatment plant. This field trip will provide an overview of the mine site, its environmental and public health impacts, and the ongoing remedial actions. The fee is $35. Anticipated duration is about 3 hours—no lunch will be provided.

Climax Molybdenum Mine—Wednesday, October 8

The Climax Mine is the world’s largest molybdenum mine and rests atop the Continental Divide at an altitude of 11,400 feet (3,440 m). At the headwaters of three drainages, the Eagle and Arkansas Rivers and Tenmile Creek, Climax was staked out by gold miners in the late 1800’s for gold before uses of molybdenum had been developed. Gold was never recovered at the Climax Mine, but production of molybdenum began in 1918. The mine is currently not in production, but a small staff is conducting care and maintenance with reclamation and water management being major activities. Capping of tailing impoundments, water treatment, and revegetation activities take place in the short construction season afforded by this extreme climate. Climax has an average of 260 in. (660 cm.) of snow annually and manages water discharges in excess of 200 million gallons (757,000 meters) per day. This field trip will provide the opportunity to learn about the history, geologic setting, and current environmental activities at the mine. The fee is $55, which includes a box lunch.

Upper Animas Watershed—Friday through Sunday, October 10-12

The Upper Animas Watershed, in the heart of the rugged San Juan Mountains of southwest Colorado, has been severely impacted from metals in sediments and surface waters. The upper basin was heavily mined for gold, silver, and base metals in the past 120 years and thousands of inactive mine sites remain. The Animas River Stakeholders Group has developed a process (involving local, State, and Federal agencies, mine corporations, land owners, and citizens) for characterizing the extent of metals-related contamination throughout the watershed. The main sites are being characterized, evaluated, and prioritized for cleanup. The field trip will focus on the Silverton area, the last remaining major mining center in San Juan country. Sites will be visited that demonstrate the extent of the existing problems as well as those that reflect mine conditions. Presentations will be given on the history, geology, and ecology of the basin and the numerous geological and physical habitat studies underway. A number of sites that are undergoing remediation will be viewed. The fee is $310, which includes 3 lunches and 2 nights lodging—double occupancy.
ACKNOWLEDGMENTS

Sponsorship

The Organizing Committee would like to express their gratitude to the following companies, organizations, and professional societies for their generous support of the 4th International Symposium on Environmental Geochemistry.

The United States Geological Survey (USGS) is the leading earth-science organization in the United States. Its mission, since its creation in 1879, has been to investigate, analyze, and disseminate earth-science information needed to solve geological and environmental problems, and to identify and assess resources. The USGS has a long tradition of providing accurate and impartial information to all customers. The USGS conducts investigations and research in geology, geophysics, hydrology, mapping, remote sensing, environmental hazards, environmental issues, and related disciplines. The USGS also conducts mineral and energy resource assessment studies.

The Association of Exploration Geochemists (AEG) was founded in 1970 to provide an international forum for persons working in the field of applied geochemistry. It is a professional, non-profit organization promoting interest in the application of geochemistry to mineral and petroleum exploration, resource evaluation, environmental issues, and related fields around the world. The AEG encourages membership and/or contributions from individuals or organizations working with or providing geochemical data for a variety of uses including mineral exploration, analytical technology, computer processing, environmental issues, agriculture, geobotany, biochemistry, and other applications. The AEG disseminates timely information on geochemistry through its journal, the Journal of Geochemical Exploration and through its quarterly newsletter, EXPLORE.

The Society for Environmental Geochemistry and Health (SEGH) was founded in 1972 to provide a forum for scientists from various disciplines (geology, biology, epidemiology, medicine, risk assessment, ecology, etc.) to study the relationship between the geochemical environment and health and disease in plants, humans and animals. SEGH recognizes the importance of this approach in opening the lines of communication between academia, industry and regulatory agencies. SEGH, through annual conferences, our journal Environmental Geochemistry and Health, and Task Forces, provides our membership the opportunity to address environmental geochemistry and health issues from their representative disciplines and, at times, conflicting points of view.

The International Association of Geochemistry and Cosmochemistry (IAGC) is affiliated with the International Union of Geological Sciences and has been one of the preeminent international geochemical and cosmochemical organizations for over twenty-five years. The principal objective is to foster cooperation in and advancement of geochemistry and cosmochemistry in the broadest sense. This is achieved (1) by working with any interested group in planning symposia and other types of meetings related to geochemistry and cosmochemistry; (2) by sponsoring publications in geochemistry and cosmochemistry of a type not normally covered by existing organizations; and (3) through the activities of working groups which study problems that require, or would benefit from, international cooperation.

The scientific thrust of IAGC takes place through its Working Groups (many of which organize regular symposia) and the official journal APPLIED GEOCHEMISTRY. The interests of the Working Groups cover a wide spectrum of geochemical and cosmochemical activities, including (1) geochemical prospecting; (2) water-rock interaction; (3) interaction between water and living matter; (4) extraterrestrial geochemistry; (5) geochemistry of the earth surface; (6) geochemistry of isotopes; (7) thermodynamics of natural processes; (8) cooperation in applied geochemistry-special training for the developing countries; (9) geochemistry of health and disease. Although partial financial support for the Working Groups comes from IAGC, most are self-sustaining. Participants in the Working Groups may include geochemists who are not Individual Members of IAGC.
Session Chairpersons

The 4th ISEG Organizing Committee thanks the session chairs named below for their contribution:

Session 1:
Mine Drainage Formation and Geochemistry—
Kathleen Smith, Jenny Webster, Donald Runnells, and Willard Chappell

Session 2:
Geochemistry of Fresh Water & Marine Environments—
Frank Manheim, Edeltrauda Helios-Rybicka, Joy Rae, and Martin Fey

Session 3:
SEGH-Sponsored Session—Environmental Geochemistry and Health
Betsy Kagey, Iain Thornton, Brian Davies, and Ron Fuge

Session 4:
Methods of Environmental Geochemical Monitoring, Modeling, and Mapping and Use and Determination of Geochemical Baselines
Olle Selinus, Alina Kabata-Pendias, Jürg Matschullat, and Dave Smith

Session 5:
Trace Substances, Ecosystems, and Bioavailability—Aquatic/Atmosphere
Laurie Balistrieri, David Levy, John Gray, and Gianni Cortecchi

Session 6:
AGE-Sponsored Session—Environmental Geochemistry of Ore Deposits
Sherman Marsh, Eion Cameron, Robert Garrett, and Maurice Chaflee

Session 7:
Environmental Analytical Techniques & Applications
Gwennyth Hall and James Crock

Session 8:
Trace Substances, Ecosystems, and Bioavailability—Terrestrial
William Orem, Irina Stangeeva, Harald Püchelt, and Rama Kotra

Session 9:
Remediation of Mining-Related Disturbances
Harry Posey and Suresh Kumar

Session 10:
Natural and Man-Made Radiogenic Hazards
Rich Wanty and John Glendinning
GUEST SPEAKERS

P. Patrick Leahy
Chief Geologist
U.S. Geological Survey
Reston, Virginia

Dr. P. Patrick Leahy was named Chief Geologist of the Geologic Division of the U.S. Geological Survey in 1995. He has been with the U.S. Geological Survey since 1974, having served in various technical and managerial positions, including Chief of the National Water-Quality Assessment Program.

Dr. Leahy was born in Troy, New York, in 1947. He holds undergraduate and graduate degrees in geology (1968) and geophysics (1970) from Boston College. He received his doctorate in geology (1979) from Rensselaer Polytechnic Institute where he specialized in regional ground water studies and hydraulics.

Dr. Leahy is a Fellow in the Geological Society of America and is a member of the American Geophysical Union and the American Institute of Hydrology. He has received many awards and is active in numerous professional organizations. Currently he is President of the International Association of Hydrogeologists.

Linda C. Gunderson
U.S. Geological Survey
Mineral Resources Program
Reston, Virginia

For the last 18 years, Linda Gunderson has worked as a geologist with the US Geological Survey. She is Coordinator of the Mineral Resources Program which is a $58 million domestic program with a staff of 440 people and a $12 million international mission in Saudi Arabia. She started with the USGS as a field assistant working on diverse projects in sedimentology, stratigraphy, and economic geology. She spent 12 years conducting research and heading projects in the field of radionuclides—from determining the origin of hard rock uranium deposits to studying radon, uranium, and radium in soil, rocks, and water, and eventually assessing the geologic radon potential of the United States. In 1995, she took a temporary assignment as Coordinator of the Energy Program and in 1996 became the Coordinator of the Minerals Program—overseeing a major reorganization. Currently she also serves on a National Academy of Sciences Committee on Risk Assessment of Exposure to Radon in Drinking Water and on the Steering Committee of the IUGS-UNESCO Deposit Modeling Program. Her academic background includes undergraduate and graduate work in structural geology and geochemistry at the State University of New York at Stony Brook and at the University of Colorado in Boulder.

Alina Kabata-Pendias
Trace Element Laboratory
Pulawy, Poland

Professor Kabata-Pendias is Professor of Soil Chemistry and head of the Trace Element Laboratory of the Institute of Soil Science and Plant Cultivation in Pulawy, Poland, where she has worked for over 30 years. She is an author of more than a hundred publications on the occurrence of trace elements in natural and contaminated environments including the much-acclaimed book “Trace Elements in Soils and Plants” (CRC Press). Professor Kabata-Pendias also works in the Geological Institute in Warsaw on the mobility of trace elements and on the alteration of minerals in weathered zones of various geological formations. She has been involved in analytical and methodological studies on trace elements and clay minerals. Dr. Kabata-Pendias continues to be very active in numerous scientific societies as both counselor and committee member.

Thomas J. Noel
Banquet Speaker
University of Colorado at Denver
Denver, CO

Dr. Noel is a professor of history at the University of Colorado, Denver who specializes in Colorado history. He has authored over 20 publications including articles, books, reviews, and television scripts. He has won numerous awards for both his writing and his teaching. He is a recognized expert on the mining camps and "Old West" flavor of Colorado. He is active in many professional associations many of which are dedicated to the preservation of the architecture and culture of historical Colorado.
EXHIBITORS

Paul Lamothe, Coordinator

The 4th International Symposium on Environmental Geochemistry thanks vendors for providing an opportu
and discuss their products and services. The following exhibitors will be in attendance:

5th ISEG
University of Cape Town
Department of Geological Sciences
Rondebosch, South Africa 7700

ACZ Laboratories, Inc.
30400 Downhill Drive
Steamboat Springs, CO 80487
(800) 334-5493

Canadian Certified Reference Materials Project
555 Booth Street
Ottawa, Ontario, Canada
K1A 0G1
(613) 992-1055

Crystals Unlimited
P.O. Box 5054
Golden, CO 80401
(303) 278-1218

Quanterra Environmental Services, Inc.
4955 Yarrow Street
Arvada, CO 80002
(303) 421-6611

Shepherd Miller, Inc.
3801 Automation Way
Fort Collins, CO 80525
(970) 223-9600

U.S. Geological Survey
Mineral Resources Program
12201 Sunrise Valley Dr., MS-913
Reston, VA 20192
(703) 648-6620

AEG
P.O. Box 26099
72 Robertson Road
Nepean, ON K2H 9R0
Canada
4th International Symposium on Environmental Geochemistry
Program Matrix

Senior authors consult table of titles for presentation time
(please note that some changes have been made since the publication of the preliminary program matrix)

<table>
<thead>
<tr>
<th>Time:</th>
<th>Sun. Mon. 10/6</th>
<th>Tues. 10/7</th>
<th>Wed.</th>
<th>Thurs. 10/9</th>
<th>Fri. 10/10</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 - 8:20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:20 - 8:40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:40 - 9:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:00 - 9:20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:20 - 9:40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:40 - 10:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00 - 10:20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:20 - 10:40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:40 - 11:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00 - 11:40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:40 - 12:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00 - 1:40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:40 - 2:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:00 - 2:20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:20 - 2:40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:40 - 3:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:00 - 3:20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:20 - 3:40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:40 - 4:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:00 - 4:20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:20 - 4:40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:40 - 5:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Poster sessions: 1, 3, 5, 7, 8, 10, 2, 4, 6, 9
4th International Symposium On Environmental Geochemistry — PROGRAM

<table>
<thead>
<tr>
<th>SENIOR AUTHOR</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leahy P.</td>
<td>Patrick (USGS Chief Geologist, Reston, VA—INVITED) The role of environmental geochemistry in the U. S. Geological Survey</td>
</tr>
<tr>
<td>Kabata-Pendias Alina</td>
<td>(Trace Element Laboratory, Pulawy, Poland—INVITED) Soil parameters as a basis for the assessment of trace metal pollution</td>
</tr>
<tr>
<td>Smith Kathleen S.</td>
<td>Geochemical characterization of a fluvial tailings deposit along the Arkansas River, Colorado, USA</td>
</tr>
<tr>
<td>Baisthen Laure S.</td>
<td>A comparison of the geochemistry of water draining from adits and tailings piles in the Coeur d' Alene mining district—information for the geoenvironmental component of mineral deposit models</td>
</tr>
<tr>
<td>Kelley Karen D.</td>
<td>Natural acid drainage associated with shale-hosted Ag-Pb-Zn massive sulfide deposits in the Brooks Range, northern Alaska, USA USA</td>
</tr>
<tr>
<td>Overly Bryan M.</td>
<td>Variations in chemical and bacterial species of acid mine drainage affecting the Snow Fork drainage basin, Ohio— the Escoc 40 underground mine</td>
</tr>
<tr>
<td>Pearce Nicholas J.G.</td>
<td>Behavior of heavy metals and REE in acid mine drainage—implications for the behavior of transuranic metals</td>
</tr>
<tr>
<td>Evangelou V. P.</td>
<td>Influence of bicarbonate on pyrite oxidation</td>
</tr>
<tr>
<td>Webster Jenny G.</td>
<td>Trace metal adsorption onto schwertmannite (iron oxyhydroxysulfate) in acid mine drainage systems</td>
</tr>
<tr>
<td>Stanton Mark R.</td>
<td>Mineral crusts or microbial mats? Alteration of surficial mine tailings in the Leadville District, Colorado</td>
</tr>
<tr>
<td>Hammarstrom Jane M.</td>
<td>Formation of gossan and oxidation of sulfide ores as analogs of oxidation of tailings piles</td>
</tr>
<tr>
<td>Odor L.</td>
<td>Mobilization and attenuation of metals downstream of a base-metal mining site in the Maira Mountains, northeastern Hungary</td>
</tr>
<tr>
<td>Lind C. J.</td>
<td>In-situ alteration of minerals by acidic ground water resulting from mining activities</td>
</tr>
<tr>
<td>Church Stanley</td>
<td>Geochemical and lead-isotopic studies of the environmental effect of mining at Summitville, Colorado</td>
</tr>
<tr>
<td>Fricke James M. C.</td>
<td>Biotreatment of metal mine waste waters—case histories</td>
</tr>
<tr>
<td>Amacher Linda N.</td>
<td>Source chemistry and characteristics of intermittent stream waters having low pH and elevated metal concentrations.</td>
</tr>
<tr>
<td>Gray Floyd</td>
<td>Biogeochemistry of acid drainage from coal mining operations in the Wilton area</td>
</tr>
<tr>
<td>Hairbich Torsten</td>
<td>Biogeochemistry of acid drainage from coal mining operations in the Wilton area</td>
</tr>
<tr>
<td>Lanyon Ruth</td>
<td>Dispersal of arsenic by gold mining near Barberton, South Africa</td>
</tr>
<tr>
<td>Kempton J. H.</td>
<td>Moisture and salinity limits on pyrite oxidation in semi-arid climates</td>
</tr>
<tr>
<td>Lee Gregory K.</td>
<td>Geoenvironmental assessment of Montana—potential for acidic, metal-rich drainage</td>
</tr>
<tr>
<td>Miller Rebecca A.</td>
<td>Geochemistry and water quality prediction for kimberlites in the New World Mining District</td>
</tr>
<tr>
<td>Pride Douglas E.</td>
<td>Identification and characterization of mine effluent in streams of the Idaho mining district</td>
</tr>
<tr>
<td>Rusek Awo</td>
<td>The influence of mine-drainage formation on the geochemical and hydrogeological state of the environment in Estonia</td>
</tr>
<tr>
<td>Ripley William</td>
<td>An integrated environmental geoscience project in the Santa Cruz River drainage basin, southern Arizona</td>
</tr>
</tbody>
</table>

SPECIAL SESSION—Guest Speakers

Session 1. Mine Drainage Formation and Geochemistry

Session Chairs: Kathleen Smith and Jenny Webster (a.m.); Donald Runnells and Willard Chappell (p)

<table>
<thead>
<tr>
<th>Country</th>
<th>Oral Session Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>0 1-1</td>
</tr>
<tr>
<td>WALES UK</td>
<td>0 1-5</td>
</tr>
<tr>
<td>USA</td>
<td>0 1-6</td>
</tr>
<tr>
<td>N. ZEALAND</td>
<td>0 1-7</td>
</tr>
<tr>
<td>USA</td>
<td>0 1-8</td>
</tr>
<tr>
<td>USA</td>
<td>0 1-9</td>
</tr>
<tr>
<td>USA</td>
<td>0 1-10</td>
</tr>
<tr>
<td>USA</td>
<td>0 1-11</td>
</tr>
<tr>
<td>USA</td>
<td>0 1-12</td>
</tr>
<tr>
<td>USA</td>
<td>0 1-13</td>
</tr>
<tr>
<td>USA P</td>
<td>S-V</td>
</tr>
<tr>
<td>USA</td>
<td>S-V</td>
</tr>
<tr>
<td>S. AFRICA</td>
<td>P S-V</td>
</tr>
<tr>
<td>S. AFRICA</td>
<td>P S-V</td>
</tr>
<tr>
<td>USA</td>
<td>P S-V</td>
</tr>
<tr>
<td>USA P</td>
<td>S-V</td>
</tr>
<tr>
<td>USA P</td>
<td>S-V</td>
</tr>
<tr>
<td>USA P</td>
<td>S-V</td>
</tr>
</tbody>
</table>

*Presentation type (oral, poster); see program matrix for session number, date, and time. Paper presentation times (S=Saturday, W=Wednesday, F=Friday)
Session 2: Geochemistry of Fresh Water & Marine Environments

Session Chairs: Frank Manheim and Edeltrauda Helios Rybicka (a.m.); Joy Rae and Martin Fey (p.m.)

McLemore V. T. Geology and geochemistry of water and stream-sediment samples of the upper Pecos River Wilderness area, eastern New Mexico USA O 2-1
Reid Caroline Lead and zinc contamination of sediments in Zoar Vlei, Cape Peninsula, South Africa S. AFRICA O 2-2
Birch Gavin F. Towards a contaminant model for Port Jackson—Sydney's main estuary AUSTRALIA O 2-3
Klavins Mens Metal fluxes and accumulation in lakes of Latvia LATVIA O 2-4
Zober Steffen Hydrological explanation of the heavy metals concentration in the Wysogrod Island, Vistula River, Plock, Poland GERMANY O 2-5
Parsons Michael B. Hydrogeochemical controls on trace element release from the Penn Mine base metal slag dump, Calaveras County, California—linking field, laboratory, and geochemical modeling studies USA O 2-6
Manheim Frank T. Mapping chemical contaminants in estuarine and coastal marine sediments—new approaches to validating and using historical data USA O 2-7
Lambeth Robert H. Metal release and recolonization characteristics of tailings in a marine environment—a laboratory study and site demonstration USA O 2-8
Knesi Oliver A geochemical investigation of the water and sediments of Balter's Pan, North West Province S. AFRICA O 2-9
Matthai C. The application of the equilibrium partitioning method in surficial sediments near a deepwater ocean outfall off Malabar, Australia AUSTRALIA O 2-10
Sullivan Annett B. Temporal variation in the concentrations and speciation of metals in Peru Creek, Summit County, Colorado USA O 2-11
Schettler Georg Lacustrine records of heavy metal pollution—problems of dating GERMANY O 2-12
Taylor S. E. Contaminant dynamics in Port Jackson Estuary, Sydney, Australia AUSTRALIA O 2-13
Brown Kevin L. Metals in an estuarine system—sources and sinks N. ZEALAND P W-F-1
Margolina Sofia E. The determination of heavy metal fractions in estuarine sediments RUSSIA P W-F-2
Majer Vladimir Pollution of Czech freshwaters by trace elements CZECH REP. P W-F-3
Helios Rybicka E. Impact of the Pb-Zn industry on the contamination of the Przemsza River, Upper Silesia, Poland POLAND P W-F-4
Kim Kyoung-Woong Heavy metal contamination in dusts and stream sediments, Taegon area, Korea KOREA P W-F-5
Kralik Martin Unique ground water (karst) monitoring system as an important tool of drinking water protection in Austria AUSTRIA P W-F-6
Rosales-Hoz L. Distribution of trace and major elements in surface sediments from Coatzacoalcos River, Mexico MEXICO P W-F-7
Savchenko Vladimir Low-water sediment in rivers of Belarus—origin, mineralogical and geochemical composition, potential for use in environmental assessments BELARUS P W-F-8
Savchenko Vladimir Some approaches to the biogeochemical study of contaminated river ecosystems BELARUS P W-F-9
Schettler Georg Lead isotope anomalies in Maan Lake sediments—indications of extensive lead mining in the Northwestern Eifel (Germany) during the time of the Roman Empire GERMANY P W-F-10
Perkins W. T. Monitoring marine pollution and determining paleoclimate: the application of laser ablation ICP-MS studies to marine bivalve molluscs WALES UK P W-F-11
Shakhverdov V. Heavy metals as indicators of anthropogenic pollution of bottom sediments in Neva Bay RUSSIA P W-F-12
Zhamoida Vladimir A. Modern shallow-water Fe-Mn concretions as an indicator of the contamination of marine environments—a new type of environmental geochemical monitoring RUSSIA P W-F-13
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Country</th>
<th>Code</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Woodling, John D.</td>
<td>Recovery of brown trout (Salmo trutta) and brook trout (Salvelinus fontinalis) populations in the Eagle River, Colorado, USA during and following CERCLA recovery actions</td>
<td>USA</td>
<td>O</td>
<td>3-1</td>
</tr>
<tr>
<td>Farago, Margaret E.</td>
<td>Exposure to platinum from vehicle catalytic converters and possible health implications</td>
<td>ENGLAND, UK</td>
<td>O</td>
<td>3-2</td>
</tr>
<tr>
<td>Gauthier, E.</td>
<td>Relationship between Alzheimer’s disease and aluminum speciation in drinking water—a case-control study in Saguenay-Lac-Saint-Jean, Quebec (IMAGE Project)</td>
<td>CANADA</td>
<td>O</td>
<td>3-3</td>
</tr>
<tr>
<td>Schaefer, Joerg</td>
<td>Emissions of platinum-group elements (PGE) from automobile catalytic converters in soils along highways</td>
<td>GERMANY</td>
<td>O</td>
<td>3-4</td>
</tr>
<tr>
<td>Thornton, Iain</td>
<td>Risk assessment related to metals—the role of the geochemist</td>
<td>ENGLAND, UK</td>
<td>O</td>
<td>3-5</td>
</tr>
<tr>
<td>Kolker, Allan</td>
<td>Geochemistry of coals causing arsenism in Southwest China</td>
<td>USA</td>
<td>O</td>
<td>3-6</td>
</tr>
<tr>
<td>McCaffrey, Lewis P.</td>
<td>Distribution and origin of fluoride in rural drinking water supplies in the western Bushveld area of South Africa</td>
<td>S. AFRICA</td>
<td>O</td>
<td>3-7</td>
</tr>
<tr>
<td>Rae, Joy E.</td>
<td>Pesticide adsorption onto aquifer sediments</td>
<td>ENGLAND UK</td>
<td>O</td>
<td>3-8</td>
</tr>
<tr>
<td>Gulson, Brian L.</td>
<td>Mobilization of lead from maternal skeleton during pregnancy</td>
<td>AUSTRALIA</td>
<td>O</td>
<td>3-9</td>
</tr>
<tr>
<td>Hunt, A.</td>
<td>Source attribution of lead particles in pre- and post-lead paint abatement interior dusts</td>
<td>USA</td>
<td>O</td>
<td>3-10</td>
</tr>
<tr>
<td>Smith, Barry</td>
<td>Geochemical factors controlling infantile exposure to cerium and its implications to the aetiology of Endomyocardial Fibrosis in Uganda</td>
<td>ENGLAND UK</td>
<td>O</td>
<td>3-11</td>
</tr>
<tr>
<td>Kavanagh, P. J.</td>
<td>Arsenic exposure in southwest England, UK—significance for human health</td>
<td>ENGLAND UK</td>
<td>O</td>
<td>3-12</td>
</tr>
<tr>
<td>Hoogewerff, Juran</td>
<td>Use of archaeological bone in present-day baseline human exposure studies</td>
<td>NETHERLANDS</td>
<td>O</td>
<td>3-13</td>
</tr>
<tr>
<td>Li, Xiangdong</td>
<td>Concentration and chemical partitioning of heavy metals in road dusts and urban soils in Hong Kong</td>
<td>HONG KONG</td>
<td>O</td>
<td>3-14</td>
</tr>
<tr>
<td>Wang, Yong</td>
<td>Exposure of children to lead in the home environment—a comparative study in Shanghai and Birmingham</td>
<td>ENGLAND UK</td>
<td>O</td>
<td>3-15</td>
</tr>
<tr>
<td>Zhang, Fuquing</td>
<td>Lead in the environment, China</td>
<td>PR CHINA</td>
<td>O</td>
<td>3-16</td>
</tr>
<tr>
<td>Pooley, Justin</td>
<td>Soil chemical patterns possibly linked to Mseleni Joint Disease among rural inhabitants in northern KwaZulu-Natal, South Africa</td>
<td>S. AFRICA</td>
<td>O</td>
<td>3-17</td>
</tr>
<tr>
<td>Heinrichs, Gerold</td>
<td>Natural arsenic in Triassic sediments as source of drinking water contamination in Bavaria, Germany</td>
<td>GERMANY</td>
<td>O</td>
<td>3-18</td>
</tr>
<tr>
<td>Li, Shan-Fang</td>
<td>The application of regional geochemical data in environmental studies</td>
<td>PR CHINA</td>
<td>O</td>
<td>3-19</td>
</tr>
<tr>
<td>Malhazova, S. M.</td>
<td>Methods of monitoring environmental health</td>
<td>RUSSIA</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Pearce, Nicholas J.G.</td>
<td>Vehicle related emissions of heavy metals and platinum group elements in the urban environment—examples</td>
<td>WALES UK</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Hutchinson, E. J.</td>
<td>Changes in urban geochemistry in Nottingham and Birmingham between 1982 and 1997</td>
<td>ENGLAND UK</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Biemuidis, Carol</td>
<td>Evaluation of baseline soils geochemistry in support of environmental health studies in the Rocky Mountain Region</td>
<td>USA</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Cameron, Eion M.</td>
<td>Recent (1930’s) natural acidification and fish kill in a lake that was an important food source to the population of Akulivik, northern Quebec</td>
<td>CANADA</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Cunha, F. G.</td>
<td>The application of geochemical data to environmental concerns in the Minas Gerias State, Brazil</td>
<td>BRAZIL</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Martin, Loni M.</td>
<td>Allozyme variation upstream and downstream of metal contaminants in the brown trout (Salmo trutta) and caddis fly (Arctopsyche grandis) in Clear Creek, Colorado, USA</td>
<td>USA</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Zhang, Licheng</td>
<td>Environmental geochemical features in the coal mine areas in China</td>
<td>PR CHINA</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Fordyce, M.</td>
<td>Geochemistry and human selenium imbalances in China</td>
<td>ENGLAND, UK</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>De Lima, Edmison S.</td>
<td>Trace-element contamination in the environment of Recife metropolitan area, Pernambuco, Brazil</td>
<td>BRAZIL</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Kralik, Martin</td>
<td>Fine dust (PM10) composition in a major city—mineralogy, lead-isotope and PAH-composition in Vienna</td>
<td>AUSTRIA</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Bastikin, Vladimir V.</td>
<td>Biogeochemical heavy metal regionalization and human risk assessment</td>
<td>RUSSIA</td>
<td>P</td>
<td></td>
</tr>
</tbody>
</table>

*Presentation type (O=oral, P=poster; see program matrix for session number, date, and time; *P=poster, see program matrix for session dates) **Poster presentation times (S=Sat-Sunday, W=Wednesday, W=Wednesday, F=Friday)*
Session 4: Methods of Environmental Geochemical Monitoring, Modeling, and Mapping and Use and Determination of Geochemical Baselines

Session Chairs: Olle Selinus and Alina Kabata-Pendias (a.m.j.; förg Matschullat and Dave Smith (p.m.j)

- **Talbot, D. K.**
 - Title: A comparison of field and laboratory analytical methods of radon-potential mapping in areas with and without glacial drift coverage
 - Location: ENGLAND UK O
 - Code: 4-1

- **Chaffee, Maunce A.**
 - Title: Discriminating between natural and anthropogenic anomalies in the surficial environment in Yellowstone National Park, Idaho, Montana, and Wyoming
 - Location: USA O
 - Code: 4-2

- **Anders, E. L.**
 - Title: Temporal variability in the geochemistry of waters from abandoned coal mines. County Durham, United Kingdom
 - Location: ENGLAND UK O
 - Code: 4-3

- **Swann, Rudy**
 - Title: Unraveling the degree and the history of environmental pollution based on the evaluation of vertical geochemical profiles in overburden sediments
 - Location: SWEDEN O
 - Code: 4-5

- **Selinus, Olle**
 - Title: Integrating GIS and multivariate statistics in environmental geochemistry
 - Location: SWEDEN O
 - Code: 4-5

- **Wang, Bronwen**
 - Title: Trace Elements in the Kuskokwim River, Alaska
 - Location: USA O
 - Code: 4-6

- **Van Tienhoven, Mieke**
 - Title: Baseline survey of air pollution impacts on soil and water quality in Mqamalanga Province, South Africa
 - Location: S. AFRICA O
 - Code: 4-7

- **Hudson-Edwards, Karen A.**
 - Title: The use of Holocene floodplain sedimentary sequences for geochemical mapping
 - Location: ENGLAND UK O
 - Code: 4-8

- **Russ, Jon**
 - Title: A new paleoclimate indicator based on AMS 14C dates of biogenic whelk shell
 - Location: USA O
 - Code: 4-9

- **Posey, Harry**
 - Title: Establishing pre-disturbance water quality standards in areas of natural acid-metal contamination, upper Alamosa River, southern Colorado
 - Location: USA O
 - Code: 4-10

- **Caron, Francois**
 - Title: A large-scale laboratory experiment to determine the mass transfer of CO2 from a sandy soil to moving ground water
 - Location: CANADA O
 - Code: 4-11

- **Dodds, Heather A.**
 - Title: Classifying and mapping the sensitivity of South African highveld soils to acidification
 - Location: S. AFRICA O
 - Code: 4-12

- **Matschullat, Jörg**
 - Title: Crustose lichens—capable of monitoring the atmospheric deposition of trace elements and organohalogenes?
 - Location: GERMANY O
 - Code: 4-13

- **Zielinski, Robert A.**
 - Title: Uranium and uranium isotopes as tracers of nutrient addition—a case study in south Florida
 - Location: USA O
 - Code: 4-14

- **Reimann, C.**
 - Title: The 'Kola Ecogeochemistry' Project
 - Location: NORWAY O
 - Code: 4-15

- **Runnels, D. D.**
 - Title: Determination of natural background concentrations of dissolved components in water at mining, milling, and smelting sites
 - Location: USA O
 - Code: 4-16

- **McMartin, I.**
 - Title: Distribution of trace metals in soils near the base metal smelter at Flin Flon, Manitoba—natural and anthropogenic enrichments from a remote single point source area
 - Location: CANADA O
 - Code: 4-17

- **de Bruin, D.**
 - Title: Environmental applications of the regional geochemical mapping of soils and stream sediments in South Africa
 - Location: S. AFRICA O
 - Code: 4-18

- **Seal, II, Robert R.**
 - Title: Stable isotope characteristics of waters draining massive sulfide deposits in the eastern United States
 - Location: USA O
 - Code: 4-19

- **Smith, Barry**
 - Title: High resolution baseline mapping of hydrochemical processes and their correlation with geochemical anomalies and anthropogenic activities—Wales and Welsh borders
 - Location: ENGLAND UK O
 - Code: 4-20

- **Wawrzynski, Alecia L.**
 - Title: The utilization of high spectral resolution imagery and field spectra for the detection and monitoring of mining sites
 - Location: USA O
 - Code: 4-21

- **Magnuszewski, Artur**
 - Title: Ground truth versus a GIS model—the ground water quality of the Vuoksa River floodplain near the city of Plock, Poland
 - Location: POLAND O
 - Code: 4-22

- **Himer, A. V.**
 - Title: Testing contaminant mobility in soils and waste materials
 - Location: GERMANY O
 - Code: 4-23

- **Torvainen, Timo**
 - Title: Delineating risk areas of contaminated ground water using geochemical databases
 - Location: FINLAND O
 - Code: 4-24

- **Holmes, Charles**
 - Title: Ecological changes in Florida Bay—can we tell when it happened?
 - Location: USA O
 - Code: 4-25

Presentation time (O:oral); see program matrix for session number, date, and time. Poster presentation; see program matrix for session dates.
Birke Manfred Environmental geochemistry in the surroundings of the central waste deposit of Berlin GERMANY P W
Matschullat Jörg What is background? A statistical approach introduced with data for the Baltic Sea GERMANY P W
Lin Zhixun Investigation of the environmental impact from industry wastes deposited in an urban area of Falun, Sweden SWEDEN P W
McNeal James M. The spatial reliability of geochemical maps USA P W
Bonham-Carter G. F. Mass-balance study of the Flin Flon smelter emissions—calculations on metals in humus in the Flin Flon-Snow Lake region. CANADA P W
De Vivo Benedetto Environmental geochemical mapping in Sardinia, Italy ITALY P W
Fuge Ron Temporal and spatial variations in the chemistry of ochres derived from an abandoned metaliferous mine WALES UK P W
Havis Robert N. Leaching of contaminants from an aggregate USA P W
Jorza Jeanette K. Laboratory leaching behavior of an Arkansas River fluvial tailings deposit, Leavell, Colorado USA P W
Jordan David L. Geochemical transport modeling of mine tailings pore water USA P W
Kapinus Evgeny I. Environmental monitoring of geochemical changes in ash-dumps and silage-heaps USA P W
Komov Igor L. Environmental geochemical mapping in the Ukraine UKRAINE P W
Locke W. W. Comparison of the measured and modeled geochemical composition of a Nevada pit lake USA P W
Luukkonen A. Regression methods in bedrock groundwater composition estimation from hydrogeological parameters FINLAND P W
Mukhejee P. K. Heavy metal distribution and environmental status of Doon Valley soils, Uttar Pradesh, India INDIA P W
Niskavaara Heikki The use of two leaches in environmental geochemical mapping to assess the concentration and mobilities of elements in soils FINLAND P Y
Reimann C. A geochemical atlas of the central parts of the Barents region NORWAY P Y
Roulier Leanne M. A survey and analyses of the oxygen and carbon isotopic composition of selected shells from core tops at five locations in Florida Bay USA P Y
Shakhverdov V. Principles of landscape geochemical map composition and landscape geochemical zonality of the Aral Sea rim RUSSIA P Y
Staines Russell Small scale spatial relationships between geology, stream water chemistry and stream sediment chemistry in small upland catchments ENGLAND UK P Y
Talbot D. K. Radiometric risk mapping using existing geoscience datasets ENGLAND UK P Y
Tanner David R. Perched water zones in environments—geochemical constraints on hydrological modeling for high-level radioactive waste disposal USA P Y
Birke Manfred Geochemical mapping in the new Federal States of Germany GERMANY P Y
Wen Dongguang Possibility of geological disposal of CO2—results from geochemical modeling PR CHINA P Y

Session 5. Trace Substances, Ecosystems, and Bioavailability — aquatic/atmosphere
Session Chairs: Laurie Balistreri and David Levy (Thursday a.m.); John Gray and Gianni Cortecchi (Fri.)
<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Location</th>
<th>Code</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fannin Craig</td>
<td>A study of the rare earth elements in aqueous carbonate and clonide systems</td>
<td>ENGLAND, UK</td>
<td>O</td>
<td>5-10</td>
</tr>
<tr>
<td>Montori J. P.</td>
<td>Aluminum and iron mobility in an acid sulfate environment and consequences for the local population—the case of the Lower Casamance (Senegal)</td>
<td>FRANCE</td>
<td>O</td>
<td>5-11</td>
</tr>
<tr>
<td>Gurren J. T.</td>
<td>Distribution of metals and effects on aquatic biota in the upper Stillwater River Basin, Montana</td>
<td>USA</td>
<td>O</td>
<td>5-12</td>
</tr>
<tr>
<td>Bourg Alain C.M.</td>
<td>Migration of heavy metals away from landfills in leachate—observations at the near- and far-field scale</td>
<td>FRANCE</td>
<td>P</td>
<td>S-W-27</td>
</tr>
<tr>
<td>Bezuidenhout Nico</td>
<td>Chemical and mineralogical changes associated with leachate production at Kriel power station ash dam. Mpuimalanga, South Africa</td>
<td>S. AFRICA</td>
<td>P</td>
<td>S-W-28</td>
</tr>
<tr>
<td>Harck Terry</td>
<td>Denitrification of nitrate-rich ground water entering Verlorenvlei Lake on the west coast of South Africa</td>
<td>S. AFRICA</td>
<td>P</td>
<td>S-W-29</td>
</tr>
<tr>
<td>Gray John E.</td>
<td>Environmental geochemistry and mercury speciation of abandoned mercury mines in southwestern Alaska</td>
<td>USA</td>
<td>P</td>
<td>S-W-30</td>
</tr>
<tr>
<td>Hall G. E.M.</td>
<td>Preservation of arsenic species in natural waters</td>
<td>CANADA</td>
<td>P</td>
<td>S-W-31</td>
</tr>
<tr>
<td>Kedzorek Monika A.M.</td>
<td>Solubilization of heavy metals (Cd, Ni, Pb) during the percolation of the chelating agent EDTA through polluted soils and sediments</td>
<td>FRANCE</td>
<td>P</td>
<td>S-W-32</td>
</tr>
<tr>
<td>Magiera Tadeusz</td>
<td>The connection of some heavy metals with the magnetic phase of fly ash from two Polish thermal power plants</td>
<td>POLAND</td>
<td>P</td>
<td>S-W-33</td>
</tr>
<tr>
<td>Tagutschki Yuhoi K.</td>
<td>Ground water flow system estimated by water quality</td>
<td>JAPAN</td>
<td>P</td>
<td>S-W-34</td>
</tr>
<tr>
<td>Finch Steven T.</td>
<td>Identification of arsenic-rich ground water using geochemical signatures and geophysical log analysis. Albuquerque, New Mexico</td>
<td>USA</td>
<td>P</td>
<td>S-W-35</td>
</tr>
<tr>
<td>Yao Huan</td>
<td>Environmental and hydrogeological problems caused by overflow exploitation of geothermal ground water in coastal cities of south-eastern China—a case study in Fuzhou Basin</td>
<td>PR CHINA</td>
<td>P</td>
<td>S-W-36</td>
</tr>
<tr>
<td>Guenn Marianne</td>
<td>Application of a three dimensional coupled transport and equilibrium chemistry model to the fate and transport of contaminants in the Konigstein Uranium Mine</td>
<td>AUSTRALIA</td>
<td>P</td>
<td>S-W-37</td>
</tr>
<tr>
<td>Guenn Marianne</td>
<td>Coupling three dimensional transport with geochemistry—MT3D and PHREEQE</td>
<td>AUSTRALIA</td>
<td>P</td>
<td>S-W-38</td>
</tr>
</tbody>
</table>

Session 6. AGC-Sponsored Session — Environmental Geochemistry of Ore Deposits

Session Chair: Sherman Marsh and Eion Cameron (a.m.): Robert Garrett and Maurice Chaffee (p.m.)

<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Location</th>
<th>Code</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loukola-Ruskeenni Kirsi</td>
<td>Natural analogue for bedrock pollution—environmental impact of Ni-Cu-Zn-rich black shales at Talviaraa, Finland</td>
<td>FINLAND</td>
<td>O</td>
<td>6-1</td>
</tr>
<tr>
<td>Berner Zsolt</td>
<td>Manifold heavy metal and As contamination by a German Zn-Pb deposit with a two thousand-year-old mining history</td>
<td>GERMANY</td>
<td>O</td>
<td>6-2</td>
</tr>
<tr>
<td>Ryutaka James J.</td>
<td>Environmental geochemistry of mercury deposits in the Coast Range mercury belt, California</td>
<td>USA</td>
<td>O</td>
<td>6-3</td>
</tr>
<tr>
<td>Steele Kenneth F.</td>
<td>Comparison of ground water chemistry from the carbonate platform region of the Ozark Mountains, USA</td>
<td>USA</td>
<td>O</td>
<td>6-4</td>
</tr>
<tr>
<td>Klassen Rodney A.</td>
<td>The effects of glacial dispersal and global processes on till geochemistry, Labrador, Canada</td>
<td>CANADA</td>
<td>O</td>
<td>6-5</td>
</tr>
<tr>
<td>Ashley Roger P.</td>
<td>Environmental geochemistry of gold deposits in the Mother Lode Belt, California</td>
<td>USA</td>
<td>O</td>
<td>6-6</td>
</tr>
<tr>
<td>Prieto Gloria R.</td>
<td>Geochemistry of heavy metals derived from gold sulfide minerals, Maremto District, Columbia</td>
<td>COLUMBIA</td>
<td>O</td>
<td>6-7</td>
</tr>
<tr>
<td>Fuge Ron</td>
<td>The behavior of Cd and Hg during weathering of sphalerite—environmental implications</td>
<td>WALES UK</td>
<td>O</td>
<td>6-8</td>
</tr>
<tr>
<td>Atkins David A.</td>
<td>Measurement and simulation of pyrite oxidation in the blasted rock of an open-pit mine</td>
<td>USA</td>
<td>O</td>
<td>6-9</td>
</tr>
<tr>
<td>Klusman Ronald W.</td>
<td>Measurement of gas exchange processes between soils and the atmosphere and applications in environmental and exploration geochemistry</td>
<td>USA</td>
<td>O</td>
<td>6-10</td>
</tr>
<tr>
<td>Gray John</td>
<td>Environmental studies of mineral deposits in Alaska</td>
<td>USA</td>
<td>O</td>
<td>6-11</td>
</tr>
<tr>
<td>Eary L.</td>
<td>Effects of evapo-concentration on water quality in mine pit lakes</td>
<td>USA</td>
<td>O</td>
<td>6-12</td>
</tr>
<tr>
<td>Glasser Water</td>
<td>Environmental impacts of lignite open-cut mining areas in eastern Germany</td>
<td>GERMANY</td>
<td>O</td>
<td>5-13</td>
</tr>
<tr>
<td>Brandovc Lynn</td>
<td>A study of the analytical variation of sampling and analysis of stream-sediments from mining and milling contaminated areas</td>
<td>USA</td>
<td>P</td>
<td>W-F-38</td>
</tr>
</tbody>
</table>
Session 7. Environmental Analytical Techniques & Applications
Session Chairs: Gwenyth Hall and James Crock

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingram</td>
<td>USA</td>
<td>Contaminant detection in soils using static SIMS</td>
</tr>
<tr>
<td>Taylor</td>
<td>USA</td>
<td>The use of sedimentation field flow fractionation-inductively coupled plasma mass spectrometry for the chemical characterization of suspended particulate matter in environmental hydrologic systems</td>
</tr>
<tr>
<td>Glanzman</td>
<td>USA</td>
<td>Multimedia environmental geochemical mapping using field portable x-ray fluorescence</td>
</tr>
<tr>
<td>Helios Rybicka</td>
<td>POLAND</td>
<td>Direct methods used for the identification of the heavy metal forms</td>
</tr>
<tr>
<td>Leinz</td>
<td>USA</td>
<td>NEOCHIM—an electrogeochemical method for environmental applications</td>
</tr>
<tr>
<td>Matschullat</td>
<td>GERMANY</td>
<td>Solid phase AAS—a new oxid technique: first results with environmental material</td>
</tr>
<tr>
<td>Krüger</td>
<td>GERMANY</td>
<td>Multistage reflectance spectroscopic analyses of central German lignite overburden dumps (first results)</td>
</tr>
<tr>
<td>Ping</td>
<td>PR CHINA</td>
<td>Determination of lead in environmental matrices by hydride generation atomic fluorescence spectrometry (HGAFS)</td>
</tr>
<tr>
<td>Viman</td>
<td>ROMANIA</td>
<td>Atomic emission spectrometry-inductively coupled plasma used in the analysis of pollutants from a non-ferrous extraction and processing facility</td>
</tr>
</tbody>
</table>

Session 8. Trace Substances, Ecosystems, and Bioavailability — terrestrial
Session Chairs: William Orem and Irina Stangeeva (a.m.): Harald Puchelt and Rama k

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuge</td>
<td>WALES UK</td>
<td>Platinum group elements in road-side dust</td>
</tr>
<tr>
<td>Van der Sluys</td>
<td>BELGIUM</td>
<td>Geochemistry of overbank sediments in Belgium and Luxembourg—a way to assess environmental pollution</td>
</tr>
<tr>
<td>Makino</td>
<td>JAPAN</td>
<td>The investigation of the reduct reactions and adsorption of chromium in soils</td>
</tr>
<tr>
<td>Asami</td>
<td>JAPAN</td>
<td>Pollution of sediments, soils, and plants by thallium</td>
</tr>
<tr>
<td>Garrett</td>
<td>CANADA</td>
<td>Some methods for estimating phytoavailable cadmium in prairie soils</td>
</tr>
<tr>
<td>Raïsanen</td>
<td>CANADA</td>
<td>The response of the interlayering of clay minerals to the mobility of Al in acidified pozzolos</td>
</tr>
<tr>
<td>Meike</td>
<td>FINLAND</td>
<td>Soil Pb, Zn, and Cd in metropolitan New Orleans—their geochemical characterization and association</td>
</tr>
<tr>
<td>Dinelli</td>
<td>USA</td>
<td>Plant-soil relationships in the serpentinite scree of Mt. Pinzera, northern Apennines, Italy</td>
</tr>
<tr>
<td>Orem</td>
<td>ITALY</td>
<td>The biogeochemistry of sulfur in the freshwater Florida Everglades—sources, cycling, and relation to mercury methylation</td>
</tr>
<tr>
<td>Harrison</td>
<td>USA</td>
<td>Acid buffering capacity and metals mobility in acid-impacted agricultural soils, San Luis Valley, Colorado</td>
</tr>
<tr>
<td>Puchelt</td>
<td>GERMANY</td>
<td>Uptake of trace elements by plants from soils contaminated by mining activities in southwest US and Mexico, and northern Mexico</td>
</tr>
<tr>
<td>Hall</td>
<td>CANADA</td>
<td>Comparability of data derived from different selective extraction schemes</td>
</tr>
</tbody>
</table>

Presentation type [O] oral, [P] poster. See program matrix for session number, date, and time. Poster presentation times (S=Sunday, W=Wednesday, M=Monday, F=Friday).
Session 9. Remediation of Mining-Related Disturbances

Session Chairs: Harry Posey and Suresh Kumar

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Affiliation</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gowil P. K.</td>
<td>INDIA</td>
<td>Effect of industrial effluents on trace element mobility in soil</td>
</tr>
<tr>
<td>Ayars Matti</td>
<td>FINLAND</td>
<td>Distribution of sulphur and heavy metals in podzolized tills in northern Finland</td>
</tr>
<tr>
<td>Bailey E. A.</td>
<td>USA</td>
<td>Mercury speciation in soils and vegetation, southwest Alaska</td>
</tr>
<tr>
<td>Bondar Galina S.</td>
<td>UKRAINE</td>
<td>Assessment of suitability of some disturbed land for herb cultivation</td>
</tr>
<tr>
<td>Carranza-Edwards Arturo</td>
<td>MEXICO</td>
<td>Textural analysis and its importance as an indicator of energy levels in environmental geochemistry</td>
</tr>
<tr>
<td>Evans, Jr. Andrew</td>
<td>USA</td>
<td>Biodegradation of “C-labeled organic acids and organo-metal complexes in soil</td>
</tr>
<tr>
<td>Nicholson Keith</td>
<td>SCOTLAND UK</td>
<td>Environmental geochemistry of boron</td>
</tr>
<tr>
<td>Nowicki Tom</td>
<td>S. AFRICA</td>
<td>Afforestation-induced enhancement of soil-solution aluminum and manganese concentrations in South African highland catchments</td>
</tr>
<tr>
<td>Gao Xiaojian</td>
<td>PR CHINA</td>
<td>Environmental geochemistry of rare earth elements in a typical landscape, Jiangxi, southern China</td>
</tr>
<tr>
<td>Gennadiyev A.</td>
<td>RUSSIA</td>
<td>Behavior of polycyclic aromatic hydrocarbons in soil ecosystems</td>
</tr>
<tr>
<td>Gonzalez Luz Miryan</td>
<td>COLUMBIA</td>
<td>Heavy metals in soils of the Sabana de Bogota, Colombia</td>
</tr>
<tr>
<td>Kasatky Valery B.</td>
<td>BELARUS</td>
<td>Heavy metals in humus and soil organic layers with different human activities</td>
</tr>
<tr>
<td>Kasimov N. S.</td>
<td>RUSSIA</td>
<td>The behavior of rocket-fuel components in soil and plants in the Kazakhstan and Altay region of Russia</td>
</tr>
<tr>
<td>Kotra Rama K.</td>
<td>USA</td>
<td>Geochemistry of mercury and trace elements in organic-rich sediments and vegetation from the everglades, south Florida</td>
</tr>
<tr>
<td>Fumoto T.</td>
<td>JAPAN</td>
<td>Sulfate adsorption model for predicting soil acidification</td>
</tr>
<tr>
<td>Rashid M. N.</td>
<td>EGYPT</td>
<td>Biogeochemistry of trace elements in plants and interactions with soil around Nasser Lake, Egypt</td>
</tr>
<tr>
<td>Rechigl Jack E.</td>
<td>USA</td>
<td>Environmental impact of phosphogypsum use in agriculture</td>
</tr>
<tr>
<td>Somjenov Yury M.</td>
<td>RUSSIA</td>
<td>Differentiation of heavy metals as a reflection of landscape-use levels</td>
</tr>
<tr>
<td>Sakurai Yasuhiro</td>
<td>JAPAN</td>
<td>Laboratory measurements of the absorption and oxidation of sulfur dioxide by the soil surface</td>
</tr>
<tr>
<td>Savchenko Vladimir</td>
<td>BELARUS</td>
<td>Trace element distribution in soils and factors affecting metal uptake by plants in the contaminated flood plain of the Svisloch River, Belarus</td>
</tr>
<tr>
<td>Sonke Jeroen</td>
<td>NETHERLANDS</td>
<td>A chemical and mineralogical reconstruction of emissions from Zn-smelters in the Kempen region (Belgium), based on peat cores</td>
</tr>
<tr>
<td>Shitangaeva Irina</td>
<td>RUSSIA</td>
<td>Some peculiarities of chemical element bioaccumulation in different environmental samples</td>
</tr>
<tr>
<td>Strzyzecz Zygmunt</td>
<td>POLAND</td>
<td>Iron deposition and magnetic susceptibility of forest soils, Katowice Province, Poland</td>
</tr>
<tr>
<td>Wang Lijun</td>
<td>PR CHINA</td>
<td>Environmental geochemistry of rare earth elements in common soils of China</td>
</tr>
</tbody>
</table>

Table 1: Presentation Schedule for Session 9

Presentation time (08:30; see program matrix for session number, date, and time. Poster session, see program matrix for session dates)

Poster presentation times (S=Sunday, W=Wednesday, W-F=Wednesday - Friday)
| Thompson | Bruce | Adsorption of metal cations on manganese oxide-coated filter sand: a novel method for water treatment | SCOTLAND UK | P | 1 |
| Nord. Jr. | Gordon | Three-dimensional nanocrystalline networks limit limestone drain remediation—a role for environmental mineralogy | USA | P | 1 |

Session 10. Natural and Man-Made Radiogenic Hazards (Session Chairs: Rich Wanta and John Glendinning)

Kagan	Leonid	Chernobyl nuclides in soils and gamma-dose rate in the air of Belarus	BELARUS	O	10-1
Giendning	John	Weathering and colloid mobility as factors influencing the migration of radioactive elements at Steenkampskraal Mine in the Northern Cape Province, South Africa	S. AFRICA	O	10-2
Smith	Barry	The distribution of natural radionuclides in ground waters and post-Cretaceous sediments from the southern Mediterranean margin	ENGLAND UK	O	10-3
Shvartsiev	Stepan	The experience and the results for the disposal of liquid radioactive waste (LRW) on the Sibera Chemical Industrial Plant	RUSSIA	O	10-4
Mazeika	Jonas	Radiogeochemical mapping in the Ignalina Nuclear Power Plant region—bottom sediments and soils	LITHUANIA	P	1
Shumyanskiy	Vladislav	The radioactive mineral encrustation on the casings in the oil producing wells in the Dnieper-Donets depression, Ukraine	UKRAINE	P	1
Golovko	Natalia	Organic substances and the migratory processes of radionuclides	UKRAINE	P	1
Kadatskaya	Olga	Chernobyl contamination as a new geographical factor in Belarus	BELARUS	P	1
Kadatsky	Valery	Re-suspension of the radionuclides in the Belarus soils distant from the Chernobyl Nuclear Power Plant	BELARUS	P	1

*Presentation type (O=oral; see program matrix for session number, date, and time; P=poster; see program matrix for session dates)

Poster presentation times (S=W=Sunday - Wednesday; W-F=Wednesday - Friday)

ABBREVIATIONS USED IN THE ABSTRACTS:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>year</td>
<td></td>
</tr>
<tr>
<td>Bq</td>
<td>Becquerel</td>
<td></td>
</tr>
<tr>
<td>dL</td>
<td>deciliter</td>
<td></td>
</tr>
<tr>
<td>dpm</td>
<td>disintegrations per minute</td>
<td></td>
</tr>
<tr>
<td>dS</td>
<td>decisemiers</td>
<td></td>
</tr>
<tr>
<td>DW</td>
<td>dry weight</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
<td></td>
</tr>
<tr>
<td>ha</td>
<td>hectare (10,000 m²)</td>
<td></td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>liter</td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>meter or molar (context-dependent)</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>molar</td>
<td></td>
</tr>
<tr>
<td>mg</td>
<td>milligram (10⁻³ gram)</td>
<td></td>
</tr>
<tr>
<td>µg</td>
<td>microgram (10⁻⁶ gram)</td>
<td></td>
</tr>
<tr>
<td>ML</td>
<td>megaliter (10⁶ liter)</td>
<td></td>
</tr>
<tr>
<td>µm</td>
<td>micrometer (10⁻⁶ meter)</td>
<td></td>
</tr>
<tr>
<td>ng</td>
<td>nanogram (10⁻⁹ gram)</td>
<td></td>
</tr>
<tr>
<td>ppm</td>
<td>permil (parts per thousand)</td>
<td></td>
</tr>
<tr>
<td>pg</td>
<td>picogram (10⁻¹² gram)</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>second</td>
<td></td>
</tr>
<tr>
<td>rsd</td>
<td>relative standard deviation</td>
<td></td>
</tr>
<tr>
<td>wk</td>
<td>week</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Abstract Title Index</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A Chemical and Mineralogical Reconstruction of Emissions from Zn Smelters in the Kempen Region (Belgium), Based on Peat Cores</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>A Comparison Of Field And Laboratory Analytical Methods Of Radon-Potential Mapping In Areas With And Without Glacial Drift Coverage</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>A Comparison of Regional Geochemical Surveys of Till and Lake Sediment, Labrador, Canada</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>A Comparison of the Geochemistry of Water Draining from Adits and Tailings Piles in the Coeur d’Alene Mining District: Information for the Geoenvironmental Component of Mineral Deposit Models</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>A Geochemical Atlas of the Central Parts of the Barents Region</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>A Geochemical Investigation of the Water and Sediments of Barber’s Pan, North West Province</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>A Large-Scale Laboratory Experiment to Determine the Mass Transfer of CO2 From a Sandy Soil to Moving Ground Water</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>A New Paleoclimate Indicator Based on AMS 14C Dates of Biogenic Wheewellite</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>A Review of Sulfate Removal Options from Mine Waters</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>A Study of the Analytical Variation of Sampling and Analysis of Stream Sediments from Mining and Milling Contaminated Areas</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>A Study of the Rare Earth Elements in Aqueous Carbonate and Chloride Systems</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>A Survey and Analyses of the d18O and d13C Composition of Selected Shells from Core Tops at Five Locations in Florida Bay</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>Acid Buffering Capacity and Metals Mobility in Acid-Impacted Agricultural Soils, San Luis Valley, Colorado</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Acid/saline Ground Waters in the Southern Yilgarn Craton, Western Australia</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Adsorption of Metal Cations on Manganese Oxide-Coated Filter Sand—A Novel Method for Water Treatment</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>Afforestation-Induced Enhancement of Soil-Solution Aluminum and Manganese Concentrations in South African Highland Catchments</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>Allozyne Variation Upstream and Downstream of Metal Contaminants in the Brown Trout (Salmo trutta) and Caddis Fly (Arctopsyche grandis) in Clear Creek, Colorado, USA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Environmental Geochemistry of Mercury Deposits in the Coast Range, Mercury Belt, California
Environmental Geochemistry of Rare Earth Elements: Typical Landscape in Jiangxi, Southern China
Environmental Geochemistry of Rare Earth Elements: Type Soil in China
Environmental Impact of Phosphogypsum Use in Agriculture

Environmental Impacts of Lignite Open-pit Mining in Eastern Germany
Environmental Monitoring of Geochemical Changes in Dumps and Silage-Heaps
Environmental Studies of Mineral Deposits in Alaska
Establishing Pre-Disturbance Water Quality Standard Areas of Natural Acid-Metal Contamination—Alamosa River, Southern Colorado
Evaluation of Baseline Soil Geochemistry in Support of Environmental Health Studies in the Rocky Mountain Region
Exposure of Children to Lead in the Home Environment: Comparative Study in Shanghai and Birmingham
Exposure to Platinum from Vehicle Catalytic Conversions: Possible Health Implications
Fine Dust (PM10) Composition in a Major City: Lead-Isotope and PAH-Composition in Vienna
Formation of Gossan and Oxidation of Sulfide Ores: Analogs of Oxidation of Tailings Piles
Geochemical and Lead-Isotope Studies of the Environmental Effect of Mining at Summitville, Colorado
Geochemical Assessment of Passive Treatment Metals: Acid Mine Waters from a Flooded Uranium Mine
Geochemical Characterization of a Fluvial Tailings Stream Along the Arkansas River, Colorado, USA
Geochemical Factors Controlling Infantile Exposure and Its Implications to the Aetiology of Endemic Fibrosis in Uganda
Geochemical Mapping in the New Federal States of Germany
Geochemical Transport Modeling of Mine Tailings Water
Geochemistry and Human Selenium Imbalances: Geochemistry and Water Quality Prediction for Ska Lapset Deposits in the New World Mining District
Geochemistry of Arsenic and Fluorine in Shallow Groundwater: Eastern Owens Lake, California
Geochemistry of Coals Causing Arsenism in South China
Geochemistry of Heavy Metals Derived from Sulfate Minerals in the Marmato District, Colombia
Geochemistry of Mercury and Trace Elements in Oligotrophic Sediments and Vegetation from the Everglades, South Florida
Geochemistry of Overbank Sediments in Belgium: A Way to Access Environmental Pollutants
Geochemical Assessment of Montana—Potentially Acidic Metal-Rich Drainage
Geochemistry and Geochemistry of Water and Stream-Sediment Samples at the Upper Pecos River, from the Pecos Wilderness to Brantley Dam, North of the Eastern New Mexico Basin.
Ground Truth Versus GIS Model—The Ground-Water Quality of the Vistula River Floodplain near the City Of Plock (Poland) .. 57
Ground-Water Flow System Estimated by Water Quality 89
Heavy Metal Contamination in Duffs and Stream Sediments in the Taegun Area, Korea ... 44
Heavy Metal Distribution and Environmental Status of Don Valley Soils, U.P. India ... 65
Heavy Metals as Indicators of Anthropogenic Pollution of Bottom Sediments in Neva Bay .. 83
Heavy Metals in Humus and Organogenous Layers with Different Human Activities ... 42
Heavy Metals in Soils of the Sabana de Bogota, Colombia 29
High Resolution Baseline Mapping of Hydrochemical Processes and Their Correlation with Geochemical Anomalies and Anthropogenic Activities: Wales and the Welsh Borders ... 85
Hydrogeochemical Controls on Trace Element Release from the Penn Mine Base Metal Dump, Calaveras County, California—Linking Field, Laboratory, and Geochemical Modeling Studies ... 69
Hydrological Explanation of the Heavy Metals Concentration in the Wyszegrod Island (Vistula River near Plock, Poland) 100
Identification and Characterization of Mine Effluent in Streams of the Colorado Mineral Belt—The Snake River, Montezuma Mining District .. 72
Identification of Arsenic-Rich Ground Water Using Geochemical Signatures and Geophysical Log Analysis, Albuquerque, New Mexico ... 24
Impact of the Pb-Zn Industry on the Contamination of the Przemsza River, Upper Silesia, Poland 36
Incidental Amendment of Mercury to Agricultural Fields by Turbid Irrigation Waters and Natural Floods in Nevada and Oregon ... 51
Inductively Coupled Plasma— Atomic Emission Spectrometry Used in Analysis of Pollutants from an Area With Non-Ferrous Extraction and Ore-Processing 94
Influence of Bicarbonate on Pyrite Oxidation 22
In-Situ Alteration of Minerals by Acidic Ground Water Resulting from Mining Activities .. 55
Integrating GIS and Multivariate Statistics in Environmental Geochemistry ... 82
Interdisciplinary Training Modules in Mining and the Environment—Case Study On The .. 100
Investigation of the Environmental Impact from Industry Wastes Deposited in an Urban Area of Falun, Sweden 55
Iron Deposition and Magnetic Susceptibility of Forest Soils in Katowie Province ... 88
Isotopic and Chemical Compositions of Rain and Snow Precipitation at Bologna, Italy ... 17
Laboratory Leaching Behavior of an Arkansas River Fluval Tailings Deposit, Leadville, Colorado .. 40
Laboratory Measurements of the Absorption and Oxidation of Sulfur Dioxide by Soil Surfaces ... 79
Lacustrine Records of Heavy Metal Pollution—Problems of Dating ... 81
Leahter and Zinc Contaminations from an Aggregate 35
Lead and Zinc Contamination of Sediments in Zear Vlei, Cape Peninsula, South Africa ... 75
Lead in the Environment, China ... 98
Lead Isotope Anomalies in Maar Lake Sediments— Indications for Extensive Lead Mining in the Northwestern Eifel Region During the Roman Empire .. 81
Lithochemical Map of the Chesapeake Bay Watershed— An Example of Usable Repackaging of Traditional Geologic Information ... 63
Low-Water Sediment in Rivers of Belarus: Origin, Mineralogical and Geochemical Composition, Potential Use for Environmental Assessment .. 79
Management System (SEMS)—Carletonville Gold Mining Area as a Pilot Study ... 100
Manifold Heavy Metal and As Contamination by a German Zn-Pb Deposit With a Two-Thousand Year Mining History ... 10
Mapping Chemical Contaminants in Estuarine and Coastal Marine Sediments: New Approaches to Validating and Using Historical Data ... 59
Measurement and Simulation of Pyrite Oxidation in the Blasted Rock of an Open-Pit Mine ... 7
Measurement of Gas Exchange Processes Between Soils and the Atmosphere and Applications in Environmental and Exploration Geochemistry ... 46
Mercury Occurrence, Transport, and Speciation in the Sacramento River Basin, California .. 21
Mercury Speciation in Soils and Vegetation, Southwest Alaska ... 8
Metal Fluxes and Accumulation in Lakes of Latvia 45
Metal Release and Recolonization Characteristics of Tailings in a Marine Environment—A Laboratory Study and Site Demonstration ... 50
Metal Removal Efficiencies of Substrates for Treating Acid Mine Drainage of the Dalsung Mine, Korea .. 17
Metals in an Estuarine System: Sources and Sinks 15
Methods of Monitoring of Environmental Health—With Special Reference to Regions in Ecological Crisis 58
Migration of Heavy Metals Away from Landfills in Leachate: Observations at the Near- and Far-Field Scale ... 13
Mineral Crusts or Microbial Mats? Alteration of Surficial Mine Tailings in the Leadville District, Colorado ... 87
Mobilization and Attenuation of Metals Downstream of a Base-Metal Mining Site in the M'ta Mountains, Northeastern Hungary ... 68
Mobilization of Lead from Maternal Skeletal during Pregnancy ... 31
Modern Shallow-Water Fe-Mn Concretions as an Indicator of the Contamination of Marine Environments: A New Type of Marine Environmental Geochemical Monitoring ... 98
Moisture and Salinity Limits on Pyrite Oxidation in Semi-Arid Climates ... 44
Monitor Marine Pollution and Determine Palaeoclimate: The Application of Laser Ablation ICP-MS Studies to Marine Bivalve Mollusks ... 71
Multimedia Environmental Geochemical Mapping Using Field Portable X-Ray Fluorescence ... 28
Multistage Reflectance Spectroscopic Analyses of Central German Lignite Overburden Dumps (First Results)........ 49
Natural Acid Drainage Associated with Shale-Hosted Ag-Pb-Zn Massive Sulfide Deposits in the Brooks Range, Northern Alaska, USA .. 44
Natural Analogue for Bedrock Pollution: Environmental Impact of Ni-Cu-Zn-Rich Black Shales at Talvisaara in Finland.................................. 56
Natural Arsenic In Triassic Sediments As Source Of Drinking Water Contamination In Bavaria, Germany 35
NEOCHIM - An Electrogeochemical Method for Environmental Applications ... 53
On Determination of Heavy Metal Fractions in Estuarine Sediments ... 59
Ore Fields, Deposits, and Zones of Deep Faults As Probable Geo-Pathogenic Biogeochemical Provinces and Belts ... 47
Organic Substances in Migratory Processes of Radionuclides ... 28
Organometal(loid) Species in Geochemical Exploration: Preliminary Qualitative Results 36
Perched Water Zones in Arid Environments: Geochemical Constraints on Hydrological Modeling for High-Level Radioactive Waste Disposal .. 91
Pesticide Adsorption onto Aquifer Sediments 73
Plant-Soil Relationships in the Serpentinite Screes of Mt. Prinzena, Northern Apennines, Italy 20
Pollution of Czech Freshwaters by Trace Elements 58
Pollution of Sediments, Soils, and Plants by Thallium 6
Possibility of Geological Disposal of CO2: Results from Geochemical Modeling .. 97
Preservation of Arsenic Species in Natural Waters 33
Principles of Landscape Geochemical Map Composition and Landscape Geochemical Zonality of Aral Sea Rim ... 83
Purifying Toxic Metal Contaminated Ground Water by Chitosan in Partially Converted Crab Shell 66
Quantification of Environmental Exposure Vectors by Geochemical Methods .. 37
Radionuclide Dating and Age Determination in Igneous Rocks: A Case Study of the Mesozoic and Cenozoic Rocks of the Trans-Siberian Platform............... 52
Radiometric Risk Mapping Using Existing Geoscience Data Sets ... 89
Reactions and Transport of Copper in Headwater Streams Receiving Acid Rock Drainage 6
Recent (1930’s) Natural Acidification and Fish Kill in a Lake That Was an Important Food Source to the Population of Akulivik, Northern Quebec 15
Recovery of Brown Trout (Salmo Trutta) and Brook Trout (Salvelinus Fontinalis) Populations in the Eagle River, Colorado, U.S.A., During and Following CERCLA Recovery Actions .. 97
Regression Methods in Bedrock Ground-Water Composition Estimation from Hydrogeological Parameters 56
Rehabilitation-Induced Vegetation Progression at a Gypsum Mine in Western Rajasthan—Analytical Approaches and Empirical Evidence 59
Relationship Between Alzheimer’s Disease and Aluminium Spectation in Drinking Water: A Case Control Study in Sault Ste. Marie, Quebec, Canada 27
Remodelling of High Fluoride Ground Waters from Arid Regions Using Heat-Treated Wood-Acid Column Experiment Study in Xinzhou, China .. 58
Resuspension Of Radionuclides In Belarus Soils Di From The Chernobyl Nuclear Power Plant 41
Risk Assessment of Ecosystem Buffering to Acid Rain in Russia ... 44
Risk Assessment Related to Metals: The Role of the Geochemist 48
Small Scale Spatial Relationships Between Geol Water Chemistry and Stream Sediment Chemistry Near Upland Catchments ... 28
Soil Chemical Patterns Possibly Linked to Measles Disease Among Rural Inhabitants in Northern Natal, South Africa 6
Soil Parameters as a Basis for the Assessment of Textile Pollution .. 33
Soil Pb. Zn., and Cd in Metropolitan New Orleans—Geochemical Characterization and Source Identification 36
Solid Phase AAS – A New Old Technique: First Results with Environmental Material 38
Solubility of Heavy Metals in Relation to Geologic Context: A Theoretical Approach 36
Solubilization Of Heavy Metals (Cd, Ni, Pb) During Percollation Of The Chelating Agent EDTA II Polluted Soils And Sediments .. 37
Some Approaches to the Biogeochemical Study of Nitrated River Ecosystems ... 36
Some Methods for Estimating Phytoavailable Cadmium in Prairie Soils ... 38
Some Peculiarities of Chemical Element Bioaccumulation in Different Environmental Samples 33
Source Attribution Of Lead Particles In Pre- And Post-Ignated Post-Lead Paint Abatement Interior Dusts And Source Chemistry and Characteristics of Intermediate Waters Having Low pH and Elevated Metal Concen- trations, Patagonia Mountains, Santa Cruz County, Arizona ... 32
Stable Isotope Characteristics of Waters Draining Sulfide Deposits in the Eastern United States Sulfate Adsorption Model for Predicting Soil Acidification And Sporadic Variations in the Chemistry Derived from an Abandoned Metalliferous Mine Temporal Variability in the Geochemistry of Water Abandoned Coal Mines, County Durham, UK Temporal Variation in the Concentrations and Speciation of Metals in Peru Creek, Summit County, Colorado Testing Contaminant Mobility in Soils and Waste Textural Analysis and its Importance As Indicator Levels in Environmental Geochemistry The “Kola Ecogeochemistry” Project The Application of Geochemical Data to Environmental Concerns in the Minas Gerais State, Brazil The Application of Regional Geochemical Data to Environmental Studies The Behavior of Cd and Hg During Weathering of Environmental Implications The Behavior of Rocket-Fuel Components in Soil in Kazakhstan and Altai Region in Russia The Biogeochemistry of Sulfur in the Freshwater Ecosystems – Sources, Cycling, and Relation to Human Health The Connection of Some Heavy Metals With A Multi-Phase in Fly Ashes from Two Polish Thermal Plants
The Development of a Biological Toxicity Based Test for Water Quality ... 21
The Distribution of Natural Radioelements in Ground Waters and Post-Cretaceous Sediments from the Southern Mediterranean Margin .. 84
The Effects of Glacial Dispersal and Glacial Process on Till Geochemistry, Labrador, Canada 45
The Experience and Results of the Disposal of Liquid Radioactive Waste (LRW) on a Siberian Chemical Industrial Plant .. 84
The Influence of Mine-Drainage Formation on the Geochemical and Hydrogeological State of Environment in Estonia ... 74
The Investigation of Redox Reactions and Adsorption of Chromium in Soils 58
The Radioactive Mineral Encrustation on the Casings in the Oil-Producing Wells in the Dnieper-Donets Depression, Ukraine ... 83
The Role of Environmental Geochemistry in the U.S. Geological Survey ... 51
The South African Environmental ... 100
The Spatial Reliability of Geochemical Maps 64
The Use of Holocene Floodplain Sedimentary Sequences for Geochemical Mapping in the Yorkshire Ouse River Basin, UK ... 38
The Use of Sedimentation Field Flow Fractionation - Inductively Coupled Plasma Mass Spectrometry for the Chemical Characterization of Suspended Particulate Matter in Environmental Hydrologic Systems 90
The Use of Two Leaches in Environmental Geochemical Mapping to Assess Concentration Levels and Mobilities of Elements in Soils .. 67
The Utilization of High Spectral Resolution Imagery and Field Spectra for the Detection and Monitoring of Mining Sites ... 96
Three-Dimensional Nanocrystalline Networks Limit Limestone Drain Remediation: A Role for Environmental Mineralogy ... 67
Towards a Contaminant Model for Port Jackson, Sydney’s Main Estuary .. 11
Trace Element Distribution in Soils and Factors Affecting Metal Uptake By Plants in the Contaminated Floodplain of the Svislach River, Belarus 80
Trace Elements in the Kuskokwim River, Alaska 95
Trace Metal Adsorption onto Schwertmannite (Iron Oxyhydroxysulfate) in Acid Mine Drainage Systems ... 96
Trace-Element Contamination in The Environment of Recife Metropolitan Area, Pernambuco, Brazil 19
Unique Ground Water (Kars) Monitoring System as an Important Tool of Drinking Water Protection in Austria ... 49
Unraveling the Degree and the History of Environmental Pollution Based on the Evaluation of Vertical Geochemical Profiles in Overbank Sediments 88
Uptake of Trace Elements by Nutrient Plants from Soils Contaminated by Mining Activities in SW-Germany and North-Central Mexico ... 73
Uranium and Uranium Isotopes as Tracers of Nutrient Addition: A Case Study in South Florida 99
Uses of Chemical Speciation for Impact Evaluation and Remediation of Mining Waste 56
Variable Geochemical Responses to Water-Rock Interactions at Two Undisturbed Zn-Pb Massive Sulfide Deposits, Bathurst Mining Camp, N B., Canada............... 53
Variations in Chemical and Bacterial Species of Acid Mine Drainage Affecting the Snow Fork Drainage Basin, Ohio—The Esco #40 Underground Mine 69
Vehicle Related Emissions of Heavy Metals and Platinum Group Elements in the Urban Environment—Examples from Birmingham, UK .. 70
Weathering and Colloid Mobility as Factors Influencing the Migration of Radioactive Elements at Steenkampskaal Mine in the Northern Cape Province, South Africa 28
Zambian Copperbelt, Central Africa 100
Reactions and Transport of Copper in Headwater Streams Receiving Acid Rock Drainage

AMACHER, M.C., KOTUBY-AMACHER, J., and BROWN, R.W. 1
1USDA Forest Service, 860 North 1200 East, Logan, UT 84321, USA
2Utah State University, Logan, UT, USA

Acid rock drainage (ARD) from Fisher Mountain near Cooke City, Montana has severely contaminated Fisher Creek, a headwater stream of the Clark’s Fork of the Yellowstone River. The pH of Fisher Creek increases from 3.0 at the Glengarry Mine adit to near neutral about 4500 m downstream. Tributaries in the upper part of the watershed dilute ARD from the Glengarry Mine, but because they flow through acidic igneous rock, they have low alkalinity levels and do not increase stream pH. Tributaries in the lower part of the watershed flow through more calcareous rock and add sufficient alkalinity to increase the pH of Fisher Creek to near neutral levels. Ferrihydrite precipitates in the upper part of the stream but particulate ferrihydrite and ferrihydrite-coated sediment fines are transported downstream during periods of high flow resulting in high iron oxide content of sediments along a 4500 m length of stream. Hydrologic mass balance calculations indicate that downstream decreases in Cu concentrations in the upper part of Fisher Creek result from dilution by tributaries. Further downstream as tributaries add some alkalinity and the pH increases to near neutral levels, decreases in Cu concentrations in Fisher Creek are the result of adsorption by ferrihydrite in streambed sediments. These decreases were predicted using the diffuse-layer adsorption model, a surface-complexation model included in the equilibrium chemical speciation computer program MINTEQA2. The Cu content of the ferrihydrite fraction of Fisher Creek sediment increased as pH increased over the stream reach where Cu adsorption was predicted to occur.

Temporal Variability in the Geochemistry of Waters from Abandoned Coal Mines, County Durham, UK

ANDER, E.L.1, THORNTON, L., FARAGO, M.E.1, and RICHARDS, D.G.2
1Environmental Geochemistry Research Group, Centre for Environmental Technology, Imperial College of Science, Technology & Medicine, Prince Consort Road, London, SW7 2BP, UK
2RTZ Technical Services Ltd., PO Box 50, Castlemead, Lower Castle Street, Bristol, BS99 7YR, UK

The County Durham coalfield, NE England, has a long history of subsurface mining of Carboniferous coal. The recent closure of all remaining deep mines in this coalfield has raised the possibility that ground-water withdrawal from mine workings may be discontinued. Research into the hydrogeology of the coal measures by other workers has established that much of the rebounded ground water drains into the river Wear, a regionally important course, directly or via tributaries. The occurrence dissolved pyrite oxidation products in flooded mine workings has been widely studied by many other researchers. When such ground water enters surface water, coprecipitation of ochres and some reduction in the waters in the river Wear catchment may be expected. This study aims to assess the potential occurrence and dispersion of elements, some of which may be toxic tributary waters of the river Wear. Uncontrolled spoil heap drainage from previously abandoned coal mines in the west of County Durham have provided eight discharge points and three downstream traverses. Samples undertaken at these sites on several occasions, in hydrological conditions, and was followed by analyses of water, suspended sediment and streambed sediments. The results have shown that there is much chemical between deep mine and spoil heap issues. Terrestrial chemical variations of up to several orders of magnitude were observed at one site: pH 4, Fe 8110-69,400 mg L⁻¹, Mn 1600-20,300 mg L⁻¹, 820-74,400 mg L⁻¹ were observed at some sites. These differences have been attributed to hydrological behavior of mine spoil heaps and to seasonal effects.

Pollution of Sediments, Soils, and PlantThallium

ASAMI, Teruo, MIZUI, Chizuru, NOGAMI, Naoko, a Masatsugu
School of Agriculture, Ibaraki Univ., Ami, Ibaraki 300

Thallium (TI) is a highly toxic element. Pollution thought to be restricted to places such as nonferrous mines, smelters, and factories using TI. However, the discovery of high-temperature superconductors in the system Ti-Ca-Ba-Cu-O, TI has attracted great attention as a potential pollutant on a large scale. Therefore, we established a method to determine Ti in sediments, soils, and plants, and its concentration in TI and other harmful metals in and soils of Japan. Effects of TI on some crops studied.

Method of TI determination: The determination of sediment and soil by ICP-AES, involving extractor extraction of soil or sediment with HClO₃ followed by separation of extracted TI into 5 ml isopropanol from HCl solution including the organic phase is determined by direct-current AAS. The geometric mean range of 18 Japanese local soils was 0.31-0.10 ppm, the TI content of W, soxhlet ICP-AES, 556 ppm.

Temporal Variability in the Geochemistry of Waters from Abandoned Coal Mines, County Durham, UK

ANDER, E.L.1, THORNTON, L., FARAGO, M.E.1, and RICHARDS, D.G.2
1Environmental Geochemistry Research Group, Centre for Environmental Technology, Imperial College of Science, Technology & Medicine, Prince Consort Road, London, SW7 2BP, UK
2RTZ Technical Services Ltd., PO Box 50, Castlemead, Lower Castle Street, Bristol, BS99 7YR, UK

The County Durham coalfield, NE England, has a long history of subsurface mining of Carboniferous coal. The recent closure of all remaining deep mines in this coalfield has raised the possibility that ground-water withdrawal from mine workings may be discontinued. Research into the hydrogeology of the coal measures by other workers has established that much of the rebounded ground water drains into the river Wear, a regionally important course, directly or via tributaries. The occurrence dissolved pyrite oxidation products in flooded mine workings has been widely studied by many other researchers. When such ground water enters surface water, coprecipitation of ochres and some reduction in the waters in the river Wear catchment may be expected. This study aims to assess the potential occurrence and dispersion of elements, some of which may be toxic tributary waters of the river Wear. Uncontrolled spoil heap drainage from previously abandoned coal mines in the west of County Durham have provided eight discharge points and three downstream traverses. Samples undertaken at these sites on several occasions, in hydrological conditions, and was followed by analyses of water, suspended sediment and streambed sediments. The results have shown that there is much chemical between deep mine and spoil heap issues. Terrestrial chemical variations of up to several orders of magnitude were observed at one site: pH 4, Fe 8110-69,400 mg L⁻¹, Mn 1600-20,300 mg L⁻¹, 820-74,400 mg L⁻¹ were observed at some sites. These differences have been attributed to hydrological behavior of mine spoil heaps and to seasonal effects.

Pollution of Sediments, Soils, and Plant

ASAMI, Teruo, MIZUI, Chizuru, NOGAMI, Naoko, a Masatsugu
School of Agriculture, Ibaraki Univ., Ami, Ibaraki 300

Thallium (TI) is a highly toxic element. Pollution thought to be restricted to places such as non-ferrous mines, smelters, and factories using TI. However, discovery of high-temperature superconductors in the system Ti-Ca-Ba-Cu-O, TI has attracted great attention as a potential pollutant on a large scale. Therefore, we established a method to determine Ti in sediments, soils, and plants, and its concentration in TI and other harmful metals in and soils of Japan. Effects of TI on some crops studied.

Method of TI determination: The determination of sediment and soil by ICP-AES, involving extractor extraction of soil or sediment with HClO₃ followed by separation of extracted TI into 5 ml isopropanol from HCl solution including the organic phase is determined by direct-current AAS. The geometric mean range of 18 Japanese local soils was 0.31-0.10 ppm, the TI content of W, soxhlet ICP-AES, 556 ppm.
Anexo 8
4th ISEG
FRIDAY OCTOBER 10, 1997
CLOSING GENERAL SESSION
"Conference Summary and a Look to the Future"

<table>
<thead>
<tr>
<th>Time</th>
<th>Name</th>
<th>Position/Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:00 noon</td>
<td>David Garnett</td>
<td>President, Association of Exploration Geochemists</td>
</tr>
<tr>
<td></td>
<td>Geoffrey Plumlee</td>
<td>Mineral Resources Program Chief Scientist, U.S. Geological Survey</td>
</tr>
<tr>
<td></td>
<td>Ron Fuge</td>
<td>President, Society for Environmental Geochemistry and Health</td>
</tr>
<tr>
<td></td>
<td>Martin Fey</td>
<td>5th International Symposium on Environmental Geochemistry</td>
</tr>
<tr>
<td></td>
<td>Arthur Darnley</td>
<td>Geological Survey of Canada, IUGS Global Geochemical Baselines</td>
</tr>
</tbody>
</table>
Anexo 9
<table>
<thead>
<tr>
<th>Name</th>
<th>Address Details</th>
<th>City, State, Country</th>
<th>Postal Code</th>
<th>Email Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adriano</td>
<td>Savannah River Ecology Laboratory</td>
<td>Aiken, SC, USA</td>
<td>29802</td>
<td>Adriano@siue.edu</td>
</tr>
<tr>
<td>Agger</td>
<td>U.S. Geological Survey, DFC, Box 25046, MS 973</td>
<td>Denver, CO, USA</td>
<td>80225</td>
<td>CAGER@ungs.gov</td>
</tr>
<tr>
<td>Anracher</td>
<td>USDA Forest Service, USDA FS 860 N 1200 E</td>
<td>Logan, UT, USA</td>
<td>84321</td>
<td></td>
</tr>
<tr>
<td>Anderson</td>
<td>Royal School of Mines, Imperial College</td>
<td>Bethesda, CO, USA</td>
<td>20813</td>
<td></td>
</tr>
<tr>
<td>Arias</td>
<td>P.O Box 207</td>
<td>San Jose, COSTA RICA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asami</td>
<td>School of Agriculture, Ibaraki University</td>
<td>Ami machi, Ibaraki ken, JAPAN</td>
<td>300 03</td>
<td></td>
</tr>
<tr>
<td>Ashley</td>
<td>U.S. Geological Survey, 345 Middlefield Road, MS 345</td>
<td>Menlo Park, CA, USA</td>
<td>94025</td>
<td></td>
</tr>
<tr>
<td>Astorga</td>
<td>SEIENA MINAE, P.O. Box 529</td>
<td>San Jose, COSTA RICA</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>Atkins</td>
<td>PTI Environmental Services, 4940 Pearl East Circle</td>
<td>Boulder, CO, USA</td>
<td>80301</td>
<td></td>
</tr>
<tr>
<td>Ayyan</td>
<td>Geological Survey Of Finland, PO Box 77</td>
<td>Rovaniemi, FINLAND</td>
<td>96101</td>
<td>mattia@aylas.org</td>
</tr>
<tr>
<td>Balestier</td>
<td>U.S. Geological Survey, 4200 University Drive</td>
<td>Anchorage, AK, USA</td>
<td>99508</td>
<td></td>
</tr>
<tr>
<td>Balestier</td>
<td>balisti@ocean.washington.edu</td>
<td>Box 357940, Seattle, WA, USA</td>
<td>98195-7940</td>
<td>balisti@ocean.washington</td>
</tr>
<tr>
<td>Bally</td>
<td>Environmental Geology Group</td>
<td>Geology and Geophysics Department, University of Sydney, Sydney, NSW, AUSTRALIA</td>
<td>2006</td>
<td></td>
</tr>
<tr>
<td>Barke</td>
<td>Branch Office, Federal Inst. Geosci. & Natural Resources</td>
<td>Berlin, GERMANY</td>
<td>13593</td>
<td>manfred.barke@bgi.de</td>
</tr>
<tr>
<td>Black</td>
<td>Office of Surface Mining, 1951 Constitution Ave, NW</td>
<td>Washington, DC, USA</td>
<td>200301</td>
<td>black@osmre.gov</td>
</tr>
<tr>
<td>Black</td>
<td>Office of Surface Mining, 9 Windsor Place</td>
<td>Cardiff, WALES, UNITED KINGDOM</td>
<td>CF1 3BX</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>New Mexico Bureau of Mines, 801 Leroy Pl</td>
<td>Socorro, NM, USA</td>
<td>87801</td>
<td></td>
</tr>
<tr>
<td>Gray</td>
<td>John</td>
<td>U.S. Geological Survey</td>
<td>MS 973</td>
<td>Denver Federal Center</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>------------------------</td>
<td>--------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Gray</td>
<td>Floyd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guerin</td>
<td>Marianne</td>
<td>MARIANNE@ANSTO.GOV.AU</td>
<td>ANSTO</td>
<td>PMB 1</td>
</tr>
<tr>
<td>Gulson</td>
<td>Brian</td>
<td>Division of Exploration</td>
<td>Geological Survey</td>
<td>Macquarie School of Environment</td>
</tr>
<tr>
<td>Gunderson</td>
<td>Linda</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guerin</td>
<td>Joe</td>
<td>Montana Department of Environmental Quality</td>
<td>U.S. Geological Survey</td>
<td>913 National Center</td>
</tr>
<tr>
<td>Hall</td>
<td>David</td>
<td>U.S. Geological Survey</td>
<td>12201 Sunrise Valley Drive</td>
<td>MS 954</td>
</tr>
<tr>
<td>Hall</td>
<td>Wendy</td>
<td>Geological Survey of Canada</td>
<td>601 Booth St, Room 702</td>
<td>Ottawa</td>
</tr>
<tr>
<td>Halley</td>
<td>Robert</td>
<td>USGS Center for Coastal Geology</td>
<td>600 Fourth Street, South</td>
<td>St. Petersburg</td>
</tr>
<tr>
<td>Hammarstrom</td>
<td>Jane</td>
<td>U.S. Geological Survey</td>
<td>913 National Center</td>
<td>12201 Sunrise Valley Drive</td>
</tr>
<tr>
<td>Hanning</td>
<td>Maura</td>
<td>NMED</td>
<td>p.o. BOX 26110</td>
<td>Santa Fe</td>
</tr>
<tr>
<td>Hauff</td>
<td>Phoebe</td>
<td>Spectral International Inc</td>
<td>P.P. Box 1027</td>
<td>Avadada</td>
</tr>
<tr>
<td>Heinrichs</td>
<td>Gerald</td>
<td>GSF-Forschungszentrum fur Umwelt und Gesundheit</td>
<td>Institut fur Geologie</td>
<td>Ingolstatter Landstr. 1</td>
</tr>
<tr>
<td>Helen-Hybricka</td>
<td>Edeltrauda</td>
<td>University of Mining and Metallurgy</td>
<td>Al Mickiewicza 30</td>
<td>30-59 Krakow</td>
</tr>
<tr>
<td>Helbel</td>
<td>Dennis</td>
<td>U.S. Geological Survey</td>
<td>P.O. Box 25046</td>
<td>MS 415</td>
</tr>
<tr>
<td>Hemmer</td>
<td>Alfred</td>
<td>Institut fur Umweltanalytik</td>
<td>UniversitatsstraBe 3-5</td>
<td>UniversitatsstraBe 3-5</td>
</tr>
<tr>
<td>Holmes</td>
<td>Chuck</td>
<td>U.S. Geological Survey</td>
<td>Center for Coastal and Marine Geology</td>
<td>600 Fourth St South</td>
</tr>
<tr>
<td>Huan</td>
<td>Yan</td>
<td>Fuzhou University</td>
<td>Department of Environment and Resource Engineering</td>
<td>Fuzhou</td>
</tr>
<tr>
<td>Hudston-Edwards</td>
<td>Karen</td>
<td>School of Geography</td>
<td>University of Leeds</td>
<td>Leeds</td>
</tr>
<tr>
<td>Name</td>
<td>Institution/Department</td>
<td>Address/Location</td>
<td>City</td>
<td>State</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>-------------------------------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Hunt</td>
<td>Andrew</td>
<td>Dept. Pathology</td>
<td>SUNY HSC</td>
<td>750 E Adams St</td>
</tr>
<tr>
<td>Hutchinson</td>
<td>Emma</td>
<td>Environmental Geochemistry Research Group</td>
<td>Centre for Environmental Technology</td>
<td>Imperial College</td>
</tr>
<tr>
<td>Ingram</td>
<td>John</td>
<td>Idaho National Engineering & Environmental Lab</td>
<td>P.O. Box 1625</td>
<td>Idaho Falls</td>
</tr>
<tr>
<td>James</td>
<td>Heather</td>
<td>Department of Geological Sciences</td>
<td>Queen's University</td>
<td>Kingston</td>
</tr>
<tr>
<td>Johnston</td>
<td>Maureen</td>
<td>Site 4</td>
<td>Box 19 RR1</td>
<td>Calhoun</td>
</tr>
<tr>
<td>Jordan</td>
<td>David</td>
<td>Daniel B. Stephens and Associates, Inc</td>
<td>6202 Academy NE, Suite 100</td>
<td>Albuquerque</td>
</tr>
<tr>
<td>Krakatau</td>
<td>Mendi</td>
<td>Aina Institute of Soil Science and Plant Cultivation</td>
<td>Inst of Soil Science & Plant Cultivation</td>
<td>IJUNG</td>
</tr>
<tr>
<td>Krepp</td>
<td>Betty</td>
<td>655 Washington St</td>
<td>Cumberland</td>
<td>MD</td>
</tr>
<tr>
<td>Krotovski</td>
<td>Nikolay</td>
<td>M. V. Lomonosov Institute of Technology</td>
<td>Faculty of Geology</td>
<td>Moscow State University</td>
</tr>
<tr>
<td>Kavanaugh</td>
<td>Peter</td>
<td>Environmental Geochemistry Research</td>
<td>Royal School of Mines</td>
<td>Centre for Environmental Technology</td>
</tr>
<tr>
<td>Keith</td>
<td>Paul</td>
<td>Shepherd Miller, Inc</td>
<td>2460 W 26th Avenue, Suite 430C</td>
<td>Denver</td>
</tr>
<tr>
<td>Kellman</td>
<td>Jim</td>
<td>U.S. Geological Survey</td>
<td>P.O. Box 2044</td>
<td>M S 973</td>
</tr>
<tr>
<td>Kim</td>
<td>Kyung Wooong</td>
<td>Dept. of Environmental Science and Engineering</td>
<td>Pohang University</td>
<td>Kwangju Institute of Science and Technology</td>
</tr>
<tr>
<td>Kim**</td>
<td>Ann</td>
<td>Dept. of Environmental Science and Engineering</td>
<td>Paichai University</td>
<td>626 Cochran Mill Rd</td>
</tr>
<tr>
<td>Kim</td>
<td>Chris</td>
<td>Department of Geology</td>
<td>Stanford University</td>
<td>Stanford</td>
</tr>
<tr>
<td>King</td>
<td>Harley</td>
<td>USGS</td>
<td>DFC, Box 25046</td>
<td>MS 973</td>
</tr>
<tr>
<td>Kusman</td>
<td>Rod</td>
<td>Colorado School of Mines</td>
<td>University of Cape Town</td>
<td>Dept of Geology</td>
</tr>
<tr>
<td>Knesl</td>
<td>Oliver</td>
<td>Department of Geological Sciences</td>
<td>University of Cape Town</td>
<td>RONDEBOSCH</td>
</tr>
<tr>
<td>Kolker</td>
<td>Allan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kovai</td>
<td>Pavel</td>
<td>Institute of Geochemistry</td>
<td>PO Box 4019</td>
<td>Inurusk 33</td>
</tr>
</tbody>
</table>

Note: Some addresses are not fully visible due to the nature of the image.
<table>
<thead>
<tr>
<th>Last Name</th>
<th>First Name</th>
<th>Affiliation</th>
<th>Address</th>
<th>City</th>
<th>State</th>
<th>Zip</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kovalevski</td>
<td>Alexander</td>
<td>640047 Ulam-Ude, 47</td>
<td>Sakhyanova Street 6a</td>
<td>Ulan-Ude</td>
<td>RUSSIA</td>
<td>670047</td>
<td>bukun.alex@usa.net.ru</td>
</tr>
<tr>
<td>Kvalik</td>
<td>Martin</td>
<td>Federal Environmental Agency</td>
<td>Spittauer Lnd 5</td>
<td>Vienna</td>
<td>AUSTRIA</td>
<td>A-1090</td>
<td></td>
</tr>
<tr>
<td>Kneschke</td>
<td>Susan</td>
<td>U.S. Geological Survey</td>
<td>Box 25046, MS 973</td>
<td>Denver</td>
<td>CO</td>
<td>USA</td>
<td>80225</td>
</tr>
<tr>
<td>Knuefer</td>
<td>Gero</td>
<td>GeoForschungZentrum</td>
<td>Potsdam PB 1 5</td>
<td>Potsdam</td>
<td>GERMANY</td>
<td>14473</td>
<td>gero@gfz-potsdam.de</td>
</tr>
<tr>
<td>Kuppa</td>
<td>Patricia</td>
<td>U.S. Geological Survey</td>
<td>Box 25046, MS 973</td>
<td>Denver</td>
<td>CO</td>
<td>USA</td>
<td>80225</td>
</tr>
<tr>
<td>Kumar</td>
<td>Suresh</td>
<td>Division of Resources Survey & Monitoring</td>
<td>CAZRI</td>
<td>Jodhpur</td>
<td>INDIA</td>
<td>342003</td>
<td>cazarj@izt.res.in</td>
</tr>
<tr>
<td>Lambeth</td>
<td>Bob</td>
<td>Titan Environmental Corp.</td>
<td>123 E. Indiana Ave, Ste 103</td>
<td>Spokane</td>
<td>WA</td>
<td>USA</td>
<td>99207</td>
</tr>
<tr>
<td>Lamoth</td>
<td>Paul</td>
<td>U.S. Geological Survey</td>
<td>Box 25046, MS 973</td>
<td>Denver</td>
<td>CO</td>
<td>USA</td>
<td>80225</td>
</tr>
<tr>
<td>LeBlanc</td>
<td>Patrick</td>
<td>U.S. Geological Survey</td>
<td>911 National Center</td>
<td>Reston</td>
<td>VA</td>
<td>USA</td>
<td>22092</td>
</tr>
<tr>
<td>Lee</td>
<td>Jin-Soo</td>
<td>Dept. of Mineral & Petroleum Engineering</td>
<td>Seoul National University</td>
<td>Seoul</td>
<td>KOREA</td>
<td>151-742</td>
<td></td>
</tr>
<tr>
<td>Lentz</td>
<td>Reinhart</td>
<td>U.S. Geological Survey</td>
<td>Mineral Resources Surveys Program</td>
<td>Box 25046, MS 973</td>
<td>Denver</td>
<td>CO</td>
<td>USA</td>
</tr>
<tr>
<td>Levine</td>
<td>Dov</td>
<td>Israel Geological Survey</td>
<td>30 Mal KHC</td>
<td>Ysrael</td>
<td>JERUSALEM</td>
<td>ISRAEL</td>
<td>95501</td>
</tr>
<tr>
<td>Levy</td>
<td>David</td>
<td>Shepherd Miller, Inc.</td>
<td>3001 Aultman Way, Suite 100</td>
<td>Ft Collins</td>
<td>CO</td>
<td>USA</td>
<td>80525</td>
</tr>
<tr>
<td>Lewin</td>
<td>Mark</td>
<td>801 14th St</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Golden</td>
</tr>
<tr>
<td>Leysen</td>
<td>Matthew</td>
<td>Geology Dept.</td>
<td>Ottawa-Carleton Geoscience Centre</td>
<td>Ottawa</td>
<td>ON</td>
<td>CANADA</td>
<td>K1N 6N5</td>
</tr>
<tr>
<td>Li</td>
<td>Shan-lang</td>
<td>Chinese Academy of Geoscience</td>
<td>Chinese Academy of Geological Exploration</td>
<td>64 Fune Daje, Xisi</td>
<td>Beijing</td>
<td>P.R. CHINA</td>
<td>100812</td>
</tr>
<tr>
<td>Li</td>
<td>Xiangdong</td>
<td>The Hong Kong Polytechnic University</td>
<td>Dept. of Civil & Structural Engineering</td>
<td>Kowloon</td>
<td>Hong Kong</td>
<td>P.R. CHINA</td>
<td></td>
</tr>
<tr>
<td>Lind</td>
<td>Carol</td>
<td>U.S. Geological Survey</td>
<td>U.S. Geological Survey</td>
<td>345 Middletown Road, MS 427</td>
<td>Menlo Park</td>
<td>CA</td>
<td>USA</td>
</tr>
<tr>
<td>Little</td>
<td>George</td>
<td>New Mexico Environment Dept.</td>
<td>1302 E. 32nd St</td>
<td>Silver City</td>
<td>NM</td>
<td>USA</td>
<td>88061</td>
</tr>
<tr>
<td>Name</td>
<td>School/Institution</td>
<td>City/State/Country</td>
<td>Email Address</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lund</td>
<td>Environmental Geochemistry Research Group</td>
<td>London, UNITED KINGDOM</td>
<td>dlund@colostate.edu</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luukkonen</td>
<td>VTT Communities & Infrastructure</td>
<td>VTT, FINLAND</td>
<td>aluukkonen@vtt.fi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machado</td>
<td>Geological Survey of Brazil</td>
<td>Rio de Janeiro, BRAZIL</td>
<td>gmachado@felsos.ca</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnuszewski</td>
<td>Wydz. Geol. i Studiów Region</td>
<td>Warsaw University, Warszawa, POLAND</td>
<td>nmagnuszewski@felsos.ca</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mayer</td>
<td>Czech Geological Survey</td>
<td>Praha 1, CZECH REPUBLIC</td>
<td>vmayer@felsos.ca</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Makhazova</td>
<td>Faculty of Geography</td>
<td>Moscow State, RUSSIA</td>
<td>kmakhazova@felsos.ca</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mandjes</td>
<td>U.S. Geological Survey</td>
<td>Woods Hole, MA, USA</td>
<td>jmmandjes@felsos.ca</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marsh</td>
<td>MS 973, Denver Federal Center</td>
<td>Denver, CO, USA</td>
<td>jmmarsh@felsos.ca</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Martins</td>
<td>Instituto Geológico de Mineiro</td>
<td>Alfragide, PORTUGAL</td>
<td>jmartins@felsos.ca</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machuflal</td>
<td>Inst. for Environmental Geochemistry</td>
<td>Heidelberg, GERMANY</td>
<td>jmachuflal@felsos.ca</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matthew</td>
<td>Environmental Geology Group</td>
<td>Sydney, NSW, AUSTRALIA</td>
<td>jmatthew@felsos.ca</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>McCarron</td>
<td>U.S. Geological Survey</td>
<td>Fairfax, VA, USA</td>
<td>jmccarron@felsos.ca</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>McCambridge</td>
<td>601 Booth St</td>
<td>Ottawa, ON, CANADA</td>
<td>jmccambridge@felsos.ca</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>McConcha</td>
<td>Centre for Coastal Management</td>
<td>P.O. Box 5125, East Lismore, NSW, AUSTRALIA</td>
<td>jmconcha@felsos.ca</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>McGowan</td>
<td>New Mexico Bureau of Mines</td>
<td>5710 Russell Avd, Mission, KS, USA</td>
<td>jmcgowan@felsos.ca</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>McLemore</td>
<td>Geological Survey of Canada</td>
<td>501 Doing Street, Reston, VA, USA</td>
<td>jmcllemore@felsos.ca</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>McNeel</td>
<td>Geological Survey of Canada</td>
<td>910 National Center, Reston, VA, USA</td>
<td>jmmcneel@felsos.ca</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meinke</td>
<td>Inst. Bioenvironmental Toxicology</td>
<td>COP 7325 Palmetto St, New Orleans, LA, USA</td>
<td>jmmeinke@felsos.ca</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Title</td>
<td>Address</td>
<td>City</td>
<td>State</td>
<td>Country</td>
<td>Zip</td>
<td>Email</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------</td>
<td>--</td>
<td>------------</td>
<td>-------</td>
<td>----------</td>
<td>------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Miller</td>
<td>Rebecca</td>
<td>Brown & Caldwell, 933 E. Keim Drive</td>
<td>Phoenix</td>
<td>AZ</td>
<td>USA</td>
<td>85014</td>
<td>ramiller@browncaid.com</td>
</tr>
<tr>
<td>Monkor</td>
<td>Jean Pierre</td>
<td>Centre ORSTOM</td>
<td>Cedex</td>
<td>Bondy</td>
<td>FRANCE</td>
<td>93143</td>
<td>monkor@bondy.orstom.fr</td>
</tr>
<tr>
<td>Moodie</td>
<td>Sue</td>
<td>1267 Publishers St.</td>
<td>Peterborough</td>
<td>ON</td>
<td>CANADA</td>
<td>K9H 7A4</td>
<td>moodie@bondy.orstom.fr</td>
</tr>
<tr>
<td>More</td>
<td>Susan</td>
<td>1150 St. Francis Drive</td>
<td>Santa Fe</td>
<td>NM</td>
<td>USA</td>
<td>87540</td>
<td></td>
</tr>
<tr>
<td>Moshe</td>
<td>Shirav</td>
<td>Geological Survey of Israel</td>
<td>Jerusalem</td>
<td></td>
<td>ISRAEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Munroe</td>
<td>Erik</td>
<td>920 Annette St.</td>
<td>Socorro</td>
<td>NM</td>
<td>USA</td>
<td></td>
<td>munroe@browncaid.com</td>
</tr>
<tr>
<td>Nicholson</td>
<td>Keith</td>
<td>The Robert Gordon University School of Applied Sciences</td>
<td>Aberdeen</td>
<td>SCOTL</td>
<td>UNITED KINGDOM</td>
<td>AB25 1HG</td>
<td>nicholson@rgu.ac.uk</td>
</tr>
<tr>
<td>Nicholson</td>
<td>Suzanne</td>
<td>U.S. Geological Survey</td>
<td>Reston</td>
<td>VA</td>
<td>USA</td>
<td>20192</td>
<td></td>
</tr>
<tr>
<td>Niskavaara</td>
<td>Heikki</td>
<td>Geological Survey of Finland</td>
<td>Rovaniemi</td>
<td>FINLAND</td>
<td>SF-96101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nord</td>
<td>Gordon, Jr</td>
<td>U.S. Geological Survey</td>
<td>Reston</td>
<td>VA</td>
<td>USA</td>
<td>20192</td>
<td></td>
</tr>
<tr>
<td>Nowicki</td>
<td>Tom</td>
<td>Department of Geological Sciences</td>
<td>RONDEBOSCH</td>
<td>Cape Town</td>
<td>SOUTH AFRICA</td>
<td>7700</td>
<td></td>
</tr>
<tr>
<td>Undertgren</td>
<td>John</td>
<td>Dept. of Geol. & Env. Sci</td>
<td>Stanford</td>
<td>CA</td>
<td>USA</td>
<td>94305</td>
<td>undertgren@pangea.stanford.edu</td>
</tr>
<tr>
<td>Parnar</td>
<td>Cynthia</td>
<td>Stanford University</td>
<td>Stanford</td>
<td>CA</td>
<td>USA</td>
<td>94305</td>
<td>parnar@pangea.stanford.edu</td>
</tr>
<tr>
<td>Parsons</td>
<td>Michael</td>
<td>Dept. of Geological and Environmental Sciences</td>
<td>Stanford</td>
<td>CA</td>
<td>USA</td>
<td>94305</td>
<td>parsons@pangea.stanford.edu</td>
</tr>
<tr>
<td>Paulina</td>
<td>Tarja</td>
<td>Geological Survey of Finland</td>
<td>Espoo</td>
<td>FINLAND</td>
<td>FIN-02150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pearson</td>
<td>Nick</td>
<td>Institute of Geography & Earth Sciences</td>
<td>University of Wales</td>
<td>Wales</td>
<td>UNITED KINGDOM</td>
<td>SY23 3DB</td>
<td></td>
</tr>
<tr>
<td>Pearson</td>
<td>Ron</td>
<td>U.S. Bureau of Reclamation</td>
<td>Bidg. 67, D-8321</td>
<td>Denver</td>
<td>CO</td>
<td>USA</td>
<td>80225</td>
</tr>
<tr>
<td>Plant</td>
<td>Jane</td>
<td>British Geological Survey</td>
<td>Kingsley Dunham Centre</td>
<td>Keyworth, Notting</td>
<td>ENG</td>
<td>UNITED KINGDOM</td>
<td>NG12 5GG</td>
</tr>
<tr>
<td>Pneuger</td>
<td>Walter</td>
<td>Aachen University of Technology</td>
<td>Susterfeldstrasse 22</td>
<td>Aachen</td>
<td>GERMANY</td>
<td>D-52056</td>
<td>pueger@math.aachen.de</td>
</tr>
<tr>
<td>Pnuley</td>
<td>Justin</td>
<td>Department of Geological Sciences</td>
<td>University of Cape Town</td>
<td>RONDEBOSCH</td>
<td>Cape Town</td>
<td>SOUTH AFRICA</td>
<td>7700</td>
</tr>
<tr>
<td>Pnuey</td>
<td>Harry</td>
<td>Division of Minerals & Geology</td>
<td>State of Colorado</td>
<td>State of Colorado</td>
<td>1313 Sherman St. Rm 215</td>
<td>Denver</td>
<td>CO</td>
</tr>
<tr>
<td>Power</td>
<td>Marty</td>
<td>U.S. Geological Survey</td>
<td>Reston</td>
<td>VA</td>
<td>USA</td>
<td>20192</td>
<td>power@usgs.gov</td>
</tr>
<tr>
<td>Name</td>
<td>Affiliation</td>
<td>Address</td>
<td>City</td>
<td>State</td>
<td>Country</td>
<td>Phone</td>
<td>Email</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>------------------------------</td>
<td>-------------</td>
<td>----------</td>
<td>-----------</td>
<td>-------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Pride</td>
<td>Douglas</td>
<td>The Ohio State University</td>
<td>Columbus</td>
<td>OH</td>
<td>USA</td>
<td>43210-1308</td>
<td>doug@leon.mpsohio.state.edu</td>
</tr>
<tr>
<td>Phelo</td>
<td>Giona</td>
<td>The Ohio State University</td>
<td>Columbus</td>
<td>OH</td>
<td>USA</td>
<td>43210-1308</td>
<td></td>
</tr>
<tr>
<td>Pruchett</td>
<td>Harald</td>
<td>University of Karlsruhe,</td>
<td>Karlsruhe</td>
<td>GERMANY</td>
<td></td>
<td>76187</td>
<td></td>
</tr>
<tr>
<td>Rael</td>
<td>Joy E</td>
<td>Postgraduate Research Inst. for Sedimentology</td>
<td>University of Reading</td>
<td>P.O. Box 227</td>
<td>Whiteknights Park</td>
<td>Berkshire</td>
<td>UNITED KINGDOM</td>
</tr>
<tr>
<td>Rasmussen</td>
<td>Marja Lisa</td>
<td>Geological Survey of Finland</td>
<td>Kuopio</td>
<td>FINLAND</td>
<td></td>
<td>FIN-70211</td>
<td></td>
</tr>
<tr>
<td>Rasmussen</td>
<td>Marjina James</td>
<td>Chemistry Department</td>
<td>Aswan</td>
<td>EGYPT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Redd</td>
<td>Caroline</td>
<td>Department of Geological</td>
<td>Cape Town</td>
<td>SOUTH AFRICA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reine</td>
<td>Karen</td>
<td>U.S. Geological Survey</td>
<td>Charlottesville</td>
<td>VA</td>
<td>USA</td>
<td>22903</td>
<td>karon@ngs.gov</td>
</tr>
<tr>
<td>Ritter</td>
<td>Ian</td>
<td>USGS</td>
<td>Denver</td>
<td>CO</td>
<td>USA</td>
<td>80225</td>
<td></td>
</tr>
<tr>
<td>Rosado</td>
<td>Ida</td>
<td>Instituto de Ciencias del</td>
<td>Mexico</td>
<td>MEXICO</td>
<td></td>
<td>04510 D.F</td>
<td></td>
</tr>
<tr>
<td>Ross</td>
<td>Arthur</td>
<td>Dept. of Geosciences</td>
<td>Philadelphia</td>
<td>PA</td>
<td>USA</td>
<td>16802</td>
<td>rross@psu.edu</td>
</tr>
<tr>
<td>Rumholt</td>
<td>Donald D</td>
<td>Shepherd Miller, Inc</td>
<td>Ft. Collins</td>
<td>CO</td>
<td>USA</td>
<td>80525</td>
<td>drumholt@shepherd.com</td>
</tr>
<tr>
<td>Russ</td>
<td>Jon</td>
<td>Newberry College</td>
<td>Newberry</td>
<td>SC</td>
<td>USA</td>
<td>79108</td>
<td></td>
</tr>
<tr>
<td>Ryutka</td>
<td>James</td>
<td>U.S. Geological Survey</td>
<td>Menlo Park</td>
<td>CA</td>
<td>USA</td>
<td>94025</td>
<td></td>
</tr>
<tr>
<td>Samson</td>
<td>Sherry</td>
<td>University of Wyoming</td>
<td>Laramie</td>
<td>WY</td>
<td>USA</td>
<td>82071-3006</td>
<td></td>
</tr>
<tr>
<td>Sanzalone</td>
<td>Rick</td>
<td>Stanford University</td>
<td>Stanford</td>
<td>CA</td>
<td>USA</td>
<td>94305-2115</td>
<td></td>
</tr>
<tr>
<td>Savage</td>
<td>Kaye</td>
<td>Dept. of Geological and</td>
<td>Stanford</td>
<td>CA</td>
<td>USA</td>
<td>94305-2115</td>
<td></td>
</tr>
<tr>
<td>Schermann</td>
<td>Omar</td>
<td>University of Wyoming</td>
<td>Laramie</td>
<td>WY</td>
<td>USA</td>
<td>82071-3006</td>
<td></td>
</tr>
<tr>
<td>Last Name</td>
<td>First Name</td>
<td>Institution</td>
<td>Address 1</td>
<td>Address 2</td>
<td>City</td>
<td>State</td>
<td>Zip</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
<td>-----------</td>
<td>------</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>Schmitt</td>
<td>Coleen</td>
<td>U.S. Geological Survey</td>
<td>2229 S Devinney St</td>
<td>Reston</td>
<td>VA</td>
<td>USA</td>
<td>20192</td>
</tr>
<tr>
<td>Schuman</td>
<td>George</td>
<td>State of New Mexico</td>
<td>P.O. Box 26110</td>
<td>Santa Fe</td>
<td>NM</td>
<td>USA</td>
<td>87502</td>
</tr>
<tr>
<td>Seall</td>
<td>Robert</td>
<td>U.S. Geological Survey</td>
<td>12201 Sunrise Valley Drive</td>
<td>Reston</td>
<td>VA</td>
<td>USA</td>
<td>22092</td>
</tr>
<tr>
<td>Selinus</td>
<td>Olof</td>
<td>Geological Survey of Sweden</td>
<td>P.O. Box 670</td>
<td>Uppsala</td>
<td>SWEDEN</td>
<td>S-75128</td>
<td></td>
</tr>
<tr>
<td>Severson</td>
<td>Ronald C. (Chair)</td>
<td>British Geological Survey</td>
<td>MS 973</td>
<td>Denver Federal Center</td>
<td>P.O. Box 25046</td>
<td>Denver</td>
<td>CO</td>
</tr>
<tr>
<td>Shilangeeva</td>
<td>Inna</td>
<td>Inst. of Earth Crust</td>
<td>Universitetsgata 7</td>
<td>St. Petersburg</td>
<td>RUSSIA</td>
<td>199034</td>
<td></td>
</tr>
<tr>
<td>Sikman</td>
<td>Jeong</td>
<td>KIGAM</td>
<td>30 Kayung Dong Yusung Ku Taeyeon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smith</td>
<td>Barry</td>
<td>British Geological Survey</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smith</td>
<td>David</td>
<td>U.S. Geological Survey</td>
<td>DFC, Box 25046</td>
<td>Denver Federal Center</td>
<td>P.O. Box 25046</td>
<td>Denver</td>
<td>CO</td>
</tr>
<tr>
<td>Smith</td>
<td>Kathy</td>
<td>U.S. Geological Survey</td>
<td>MS 973</td>
<td>Denver Federal Center</td>
<td>P.O. Box 25046</td>
<td>Denver</td>
<td>CO</td>
</tr>
<tr>
<td>Smith</td>
<td>Steve</td>
<td>U.S. Geological Survey</td>
<td>MS 973</td>
<td>Denver Federal Center</td>
<td>P.O. Box 25046</td>
<td>Denver</td>
<td>CO</td>
</tr>
<tr>
<td>Smith</td>
<td>David</td>
<td>U.S. Geological Survey</td>
<td>PO Box 25046</td>
<td>Denver Federal Center</td>
<td>P.O. Box 25046</td>
<td>Denver</td>
<td>CO</td>
</tr>
<tr>
<td>Soile</td>
<td>Tracy</td>
<td>1640 Kirkwood Dr, Apt 5-2</td>
<td>FL Collin</td>
<td></td>
<td>CO</td>
<td>USA</td>
<td>80256</td>
</tr>
<tr>
<td>Sonke</td>
<td>Jeroen</td>
<td>Moone Pdoeel 303</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staines</td>
<td>Russell</td>
<td>University of Aberdeen</td>
<td>Department of Plant & Soil Science</td>
<td>Meston Building</td>
<td>Aberdeen</td>
<td>SCOTLA</td>
<td>1924 2UU</td>
</tr>
<tr>
<td>Stanton</td>
<td>Mark</td>
<td>U.S. Geological Survey</td>
<td>P.O. Box 25046, MS 916</td>
<td>Denver</td>
<td>CO</td>
<td>USA</td>
<td>80225</td>
</tr>
<tr>
<td>Steele</td>
<td>Kenneth</td>
<td>AWRC</td>
<td>University of Arkansas</td>
<td>Fayetteville</td>
<td>AR</td>
<td>USA</td>
<td>72701</td>
</tr>
<tr>
<td>Stockley</td>
<td>C</td>
<td>Division of Exploration Geoscience</td>
<td>P.O. Box 136</td>
<td>North Ryde</td>
<td>NSW</td>
<td>AUSTRALIA</td>
<td>2113</td>
</tr>
<tr>
<td>Name</td>
<td>Affiliation 1</td>
<td>Affiliation 2</td>
<td>Street 1</td>
<td>Street 2</td>
<td>City</td>
<td>State</td>
<td>Country</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------------------------</td>
<td>-------------------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>Sullivan</td>
<td>Annette</td>
<td>Department of Geology and Geophysics</td>
<td>University of Wyoming</td>
<td>P.O Box 3006</td>
<td>Laramie</td>
<td>WY</td>
<td>USA</td>
</tr>
<tr>
<td>Swazyre</td>
<td>Gregg</td>
<td>MS 964</td>
<td>Denver Federal Center</td>
<td>P.O Box 25046</td>
<td>Denver</td>
<td>CO</td>
<td>USA</td>
</tr>
<tr>
<td>Swennen</td>
<td>Rody</td>
<td>Fysico-chemische geologie</td>
<td>Celestijnenlaan 200C</td>
<td>Heverlee</td>
<td>BELGIUM</td>
<td>B-3001</td>
<td>80225</td>
</tr>
<tr>
<td>Takatsuki</td>
<td>Yuzoaku</td>
<td>Geological Survey of Japan</td>
<td>1-1-3 Higashi</td>
<td>Tsukuba</td>
<td>Ibaraki</td>
<td>JAPAN</td>
<td>305</td>
</tr>
<tr>
<td>Talbot</td>
<td>David</td>
<td>British Geological Survey</td>
<td>Kingsley Dunham Centre</td>
<td>Keyworth</td>
<td>Nottingham</td>
<td>ENG</td>
<td>UNITED KINGDOM</td>
</tr>
<tr>
<td>Tanvannen</td>
<td>Timo</td>
<td>Geological Survey of Finland</td>
<td>Geological Survey of Finland</td>
<td>P.O Box 96</td>
<td>Espoo</td>
<td>FINLAND</td>
<td>FIN-02150</td>
</tr>
<tr>
<td>Taylor</td>
<td>Stuart</td>
<td>Environmental Geology Group</td>
<td>Dept. of Geology and Geophysics</td>
<td>University of Sydney</td>
<td>Sydney</td>
<td>NSW</td>
<td>AUSTRALIA</td>
</tr>
<tr>
<td>Taylor</td>
<td>Howard</td>
<td>U.S.G.S. Water Resources Division</td>
<td>3215 Marine St.</td>
<td>Boulder</td>
<td>CO</td>
<td>USA</td>
<td>80303</td>
</tr>
<tr>
<td>Thornton</td>
<td>Ian</td>
<td>Royal School of Mines</td>
<td>Environmental Geochemistry Research Group</td>
<td>Centre for Environmental Technology</td>
<td>Imperial College</td>
<td>London</td>
<td>UNITED KINGDOM</td>
</tr>
<tr>
<td>Tomonyuki</td>
<td>Meikko</td>
<td>National Inst. of Agro-Environmental Science</td>
<td>National Inst. of Agro-Environmental Science</td>
<td>Kannonna</td>
<td>Tsukuba</td>
<td>JAPAN</td>
<td>3-1-1</td>
</tr>
<tr>
<td>Vandewere</td>
<td>Martin</td>
<td>Belgian Geological Survey</td>
<td>Janenstraat 13</td>
<td>Brussels</td>
<td>BELGIUM</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>Van Der Sklars</td>
<td>Jan</td>
<td>Department of Geological Sciences</td>
<td>University of Cape Town</td>
<td>Private Bag X11227</td>
<td>Nelspruit</td>
<td>SOUTH AFRICA</td>
<td>1200</td>
</tr>
<tr>
<td>Van Der Velden</td>
<td>Meike</td>
<td>ACZ Laboratories, Inc.</td>
<td>30400 Downhill Drive</td>
<td>Steamboat Spring</td>
<td>CO</td>
<td>USA</td>
<td>80487-9400</td>
</tr>
<tr>
<td>Vaughan</td>
<td>Bruce</td>
<td>USGS</td>
<td>Box 25046, MS 973</td>
<td>Denver</td>
<td>CO</td>
<td>USA</td>
<td>80225</td>
</tr>
<tr>
<td>Vroman</td>
<td>Vassile</td>
<td>Baia Mare University</td>
<td>str. Dr. Victor Babes Nr 62A/</td>
<td>4800 Baia Mare</td>
<td>Jud. Maramures</td>
<td>ROMANIA</td>
<td>99506</td>
</tr>
<tr>
<td>Wang</td>
<td>Bronwen</td>
<td>U.S. Geological Survey</td>
<td>4200 University Dr</td>
<td>Anchorage</td>
<td>AK</td>
<td>USA</td>
<td>99506</td>
</tr>
<tr>
<td>Wang</td>
<td>Yanan</td>
<td>Faculty of Environmental Science & Geotechnique</td>
<td>China University of Geosciences (Wuhan)</td>
<td>Wuhan</td>
<td>P.R. CHINA</td>
<td>430074</td>
<td></td>
</tr>
<tr>
<td>Worthy</td>
<td>Richard</td>
<td>U.S. Geological Survey</td>
<td>P.O Box 25046, MS 973</td>
<td>Denver</td>
<td>CO</td>
<td>USA</td>
<td>80225</td>
</tr>
<tr>
<td>Name</td>
<td>Affiliation</td>
<td>Institution</td>
<td>Location</td>
<td>City</td>
<td>State/Country</td>
<td>USA/UK</td>
<td>Email</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------------</td>
<td>--</td>
<td>--------------</td>
<td>-------------</td>
<td>---------------</td>
<td>----------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Wawrzyniuk</td>
<td>Alexia</td>
<td>Department of Geology & Geophysics</td>
<td>University of Wyoming</td>
<td>P.O. Box 3006</td>
<td>Laramie, WY</td>
<td>USA</td>
<td>82071</td>
</tr>
<tr>
<td>Weaver</td>
<td>Jean</td>
<td>U.S. Geological Survey</td>
<td>MS 913 National Center</td>
<td>Reston, VA</td>
<td>USA</td>
<td>20192</td>
<td>jweaver@usgs.gov</td>
</tr>
<tr>
<td>Webster</td>
<td>Jenny</td>
<td>ESR</td>
<td>17 Kelly Street</td>
<td>Mt. Eden, NZ</td>
<td>NZ</td>
<td>43280</td>
<td>jweaver@usgs.gov</td>
</tr>
<tr>
<td>Weiland</td>
<td>Erick</td>
<td>5531 East Kelso Street</td>
<td>Tucson, AZ</td>
<td>USA</td>
<td>85712</td>
<td></td>
<td>7478151430@compuverse.com</td>
</tr>
<tr>
<td>White</td>
<td>Richard</td>
<td>University of Wales</td>
<td>Institute of Geography and Earth Sciences</td>
<td>Aberystwyth, Ceredigion</td>
<td>UNITED KINGDOM</td>
<td>SY23 3QD</td>
<td>raw@aber.ac.uk</td>
</tr>
<tr>
<td>Williams</td>
<td>David</td>
<td>409A Kottman Hall</td>
<td>Columbus, OH</td>
<td>USA</td>
<td>USA</td>
<td>43210</td>
<td>dawson@aber.ac.uk</td>
</tr>
<tr>
<td>Williams</td>
<td>Lorraine</td>
<td>British Geological Survey</td>
<td>Keyworth, Nottingham</td>
<td>UK</td>
<td>UK</td>
<td>NG12 5GG</td>
<td>dawson@aber.ac.uk</td>
</tr>
<tr>
<td>Willis</td>
<td>James</td>
<td>Dept. of Geological Sciences</td>
<td>University of Cape Town</td>
<td>Rondebosch, SOUTH AFRICA</td>
<td>USA</td>
<td>80225</td>
<td>dawson@aber.ac.uk</td>
</tr>
<tr>
<td>Wirt</td>
<td>Laurene</td>
<td>OFC Box 25048</td>
<td>Denver, CO</td>
<td>USA</td>
<td>USA</td>
<td>80225</td>
<td>dawson@aber.ac.uk</td>
</tr>
<tr>
<td>Wooding</td>
<td>John</td>
<td>Colorado Division of Wildlife</td>
<td>6060 Broadway</td>
<td>Denver, CO</td>
<td>USA</td>
<td>80216</td>
<td>dawson@aber.ac.uk</td>
</tr>
<tr>
<td>Woodruff</td>
<td>Laurei</td>
<td>U.S. Geological Survey</td>
<td>2280 Woodale Dr</td>
<td>Mounds View, MN</td>
<td>USA</td>
<td>55112</td>
<td>dawson@aber.ac.uk</td>
</tr>
<tr>
<td>Xue</td>
<td>Xie</td>
<td>Institute of Geophysics & Geochem Exploir</td>
<td>Langfang</td>
<td>Hebei, P.R. CHINA</td>
<td>P.R. CHINA</td>
<td>102849</td>
<td>dawson@aber.ac.uk</td>
</tr>
<tr>
<td>Yasuhira</td>
<td>Sakurai</td>
<td>National Inst. of Agro-Environmental Science</td>
<td>Kannandai</td>
<td>Tsukuba, Ibaraki, JAPAN</td>
<td>JAPAN</td>
<td>55112</td>
<td>dawson@aber.ac.uk</td>
</tr>
<tr>
<td>Zhang</td>
<td>Chaosheng</td>
<td>Geological Survey of Sweden</td>
<td>P.O. Box 670</td>
<td>Uppsala, SWEDEN</td>
<td>SWEDEN</td>
<td>575128</td>
<td>dawson@aber.ac.uk</td>
</tr>
<tr>
<td>Zhang</td>
<td>Li-cheng</td>
<td>Institute of Geography of Sciences</td>
<td>Building 817</td>
<td>Beijing, REP OF CHINA</td>
<td>REP OF CHINA</td>
<td>100101</td>
<td>dawson@aber.ac.uk</td>
</tr>
<tr>
<td>Zhang</td>
<td>Yanqiong</td>
<td>Illinois State Geological Survey</td>
<td>615 E. Peabody Dr</td>
<td>Champaign, IL</td>
<td>USA</td>
<td>61820</td>
<td>dawson@aber.ac.uk</td>
</tr>
<tr>
<td>Zelinski</td>
<td>Robert</td>
<td>U.S. Geological Survey</td>
<td>Box 25046, MS 973</td>
<td>Denver Federal Center, Denver, CO</td>
<td>USA</td>
<td>80225</td>
<td>dawson@aber.ac.uk</td>
</tr>
<tr>
<td>Zettl</td>
<td>Kerstin</td>
<td>University of Cape Town</td>
<td>U.S. Geological Survey</td>
<td>Denver, CO</td>
<td>USA</td>
<td>80225</td>
<td>dawson@aber.ac.uk</td>
</tr>
</tbody>
</table>