MINISTÉRIO DAS MINAS E ENERGIA
DNPM/CPRM

CONVÊNIO GEOFÍSICA BRASIL-ALEMANHA

PROCESSAMENTO E INTERPRETAÇÃO AEROMAGNÉTICOS
RELATÓRIO DE ESTÁGIO
ABRIL DE 1972

ARNALDO BOHN VIEIRA
Geólogo e Geofísico, CPRM

ELSON GOMES CORREIA
Eng. Civil e Geólogo, CPRM

RICARDO MOACYR DE VASCONCELLOS
Eng. Minas, CPRM
APRESENTAÇÃO

I Generalidades

O Convênio Geofísica Brasil/Alemanha, assinado a 1º de junho de 1970 prevê, em seu artigo 2º, parágrafo 3º, o estágio de técnicos brasileiros na Alemanha.

Em cumprimento àquelas disposições e visando um aprimoramento em trabalhos de processamento e interpretação dos dados aerogeofísicos, os autores seguiram para Hannover a 1º de outubro de 1971.

O estágio teve duração de 180 dias, divididos em períodos de 60 e 120 dias.

No primeiro período acompanhou-se o processamento dos dados aeromagnetométricos, na PRAKLA-SEISMOS. O período seguinte foi em pregado junto ao Bundesanstalt für Bodenforschung, analisando-se as bases teóricas e aplicação dos métodos de interpretação utilizados naquele instituto. Dessa fase constou também uma visita ao laboratório de determinação de constantes físicas de rochas do B.f.B., em Einbeck.

II O método aeromagnetométrico

A aeromagnetometria é, hoje em dia, o método geofísico mais largamente empregado para a cobertura de grandes áreas. Os investimentos iniciais para a compra de aeronaves são compensados pela expansão dos perfis e amortizados pela rapidez dos levantamentos.

Os resultados desses levantamentos permitem elaborar-se, no mais breve prazo e a preço sem concorrência, um esboço geo-tectônico da área. Tais informações serão, evidentemente, tanto mais fidedignas quanto maior for a integração com outros métodos de prospecção.
Assim é que o fantástico crescimento das indústrias minerais do Canadá na década de '50 e da Austrália nos anos '60 deve-se a recobrimentos aeromagnétométricos sistemáticos. Por outro lado, 95% das jazidas de ferro da União Soviética foram descobertas através a prospecção geofísica, baseada em levantamentos aeromagnétométricos.

Isto permite inferir-se que, a exemplo dos extensos países, poderá o Brasil, ainda nesta década, experimentar seu "boom" mineral, pela racional e sistemática utilização de métodos geofísicos comprovados.

III Custo operacional

O custo operacional de um levantamento aerogeofísico varia com o método ou combinação de métodos a empregar. Tal despesa está sujeita ainda a fatores circunstanciais, como sejam: tamanho da área, distância das bases de pouso às áreas de medição, comprimento dos perfis, tipo de instrumento usado, condições atmosféricas, etc.

O preço de um reconhecimento aeromagnétométrico gira em torno de US $ 10,00/km, acrescido de US $ 2,00 quando combinado a cintilometria. Para interpretação são cobradas taxas de 10 a 15% sobre o custo/km. No Brasil, em condições normais, tem-se voado de 800 a 1.000 km de perfis/dia.

Nos levantamentos terrestres, o custo é, de modo geral, função da velocidade de execução. Esta, por sua vez, depende da extensão da área, clima, topografia, vegetação, acessibilidade e outros. Em condições médias e espaçamento de 20 m entre estações, um operador pode levantar 200 estações magnéticas/dia, perfazendo 4 km, a um custo aproximado de US $ 20,00/km.

IV Agradecimentos

Agradecemos ao Ministério das Minas e Energia, à C.P.R.M., ao
D.N.P.M. e a todos que nos auxiliaram no desempenho de nossa tarefa. Somos particularmente gratos ao Dr. Wilhelm Bosum, do B.f.B., que nos orientou e assistiu.

ARNALDO BOHN VIEIRA

ELSON GOMES CORREIA

RICARDO MONCYR DE VASCONCELOS
RESUMO

O processamento de dados aeromagnéticos é um conjunto de operações matemáticas que visa expurgar as eventuais falhas de campo, corrigí-los da variação magnética diária e dos erros de fechamento, levar todos os valores medidos dentro de uma mesma área a um plano de tím e eliminar o campo geomagnético, para a elaboração de mapas de isoaanomalias.

A interpretação dos mapas de isoaanomalias magnéticas, para pesquisa mineral, se faz segundo processo indireto. As anomalias de contornos suaves são isoladas - fase qualitativa - e comparadas com os efeitos de modelos geométricos simples e magneticamente homogêneos - fase quantitativa. As diferenças são minimizadas por meio de ajustes nos parâmetros dos modelos, ou seja; tentativa e erro, nome pelo qual é conhecido o método. A depende da forma das anomalias e utilizam-se modelos bidimensionais; placa delgada, placa espessa e cilindro horizontal ou tridimensionais; esferas e dipolos.
ÍNDICE DOS ASSUNTOS

1. INTRODUÇÃO ... 1

2. PROCESSAMENTO .. 2
 2.1. AIRL ... 2
 2.2. AIRV ... 4
 2.2.1. Número do perfil ... 4
 2.2.2. Eliminação total ou parcial de perfis 5
 2.2.3. UI .. 5
 2.2.4. VI .. 6
 2.2.5. TI .. 6
 2.2.6. TK .. 6
 2.2.7. Desmembramento de blocos 7
 2.3. AIRN ... 7
 2.4. ARTK .. 10
 2.5. VARI ... 11
 2.6. REGI ... 13
 2.7. LLP 1G/LMRB .. 13

3. INTERPRETAÇÃO ... 15
 3.1. Cálculo do efeito de modelos bidimensionais 15
 3.1.1. Placa delgada ... 20
 3.1.2. Placa espessa ... 22
 3.1.3. Cilindro horizontal infinito 23
 3.2. Interpretação qualitativa 24
 3.3. Interpretação quantitativa 26
 3.3.1. Método dos mínimos quadrados 26
 3.3.2. Utilização do programa 31
 3.3.2.1. Anomalias conjugadas 32
 3.3.2.2. Placas delgadas e cilindros 33
3.3.2.3. Placas espessas

3.4. Resultados

Bibliografia
PROCESSAMENTO E INTERPRETAÇÃO AEROMAGNÉTICOS

1. INTRODUÇÃO

A prospecção geofísica se inicia com a coleta de dados no campo, medindo parâmetros que levam ao conhecimento de propriedades físicas da crosta, como seja a intensidade do campo geomagnético.

Posto que ainda brutas, as medidas de campo requerem uma conveniente manipulação, denominada processamento ou compilação, entre os anglo-saxões.

Os dados processados são cartografados, para que, então, se possa expressá-los em termos geológicos, vale dizer interpretá-los.

O esquema do processamento e interpretação do levantamento aeromagnetométrico de Minas Gerais, conforme realizados na Alemanha pela FRAKLA e B.f.B., respectivamente, será o assunto deste trabalho.
2. PROCESSAMENTO

O processamento de dados aeromagnéticos é um conjunto de operações matemáticas que visa expurgar as eventuais falhas de campo, corrigi-los da variação magnética diária e dos erros de fechamento, levar todos os valores medidos dentro de uma mesma área a um plano da tum e eliminar o campo geomagnético, para a elaboração de mapas de isocanomalías.

Essas operações são realizadas por etapas, que correspondem aos vários programas utilizados pela PRAKIA, a saber:

2.1. AIRL
2.2. AIRV
2.3. AIRN
2.4. ARTK
2.5. VARI
2.6. REGI
2.7. LLP 1G/LMRB (cartografia)

2.1. AIRL

Esse programa transcreve os registros de campo para fita magnética, listando-os e assinalando erros ou omissões, de acordo com critérios informados à máquina. Os "BU" são simplesmente ignorados. As pranchas 1 e 2 mostram o fluxograma e a listagem de um programa (VACL) equivalente ao AIRL.

Por meio de cartões perfurados transfere-se ao computador o número do perfil, número da área, número código para cidade base e data do levantamento. Da mesma forma, são transmitidos os critérios para definição de erro e sua detecção, os quais vêm no cabeçalho da listagem, prancha 3, como se segue:
D2TI = segunda diferença máxima p/valores consecutivos de tempo
D2UI = segunda diferença máxima p/valores consecutivos de U
D2VI = segunda diferença máxima p/valores consecutivos de V
D2KI = segunda diferença máxima p/valores consecutivos de cintrômetro (3 canais
D2K2 = segunda diferença máxima p/valores consecutivos magnéticos
D2K3 = segunda diferença máxima p/valores consecutivos de altura de voo.

A segunda diferença é calculada pela fórmula:

\[V_i + V_{i-2} - 2V_{i-1} \leq \varepsilon \]

TKAZ = nº de valores magnéticos entre 2 informações de posicionamento
SCAZ = nº de valores cintilométricos entre 2 informações de posicionamento
ZEIT = tempo, em unidades de 20 segundos

Abaixo de cada item vem o máximo valor aceitável pelo programa.

Os valores discrepantes de \(\varepsilon \) são apontados com o sinal <, não sendo necessariamente errados, em se tratando de;
D2UI (em 20 segundos pode-se ter de 1100 a 1500 metros); D2VI,
(conforme a deriva); TKAZ e SCAZ. Como geralmente antes da primeira marca de posicionamento e depois da última TKAZ e SCAZ são menores que 20, tais conjuntos são quase sempre assinalados.

Os conjuntos de valores magnéticos e/ou cintilométricos entre duas marcas de posicionamento consecutivos são numerados. O primeiro bloco, ou seja, o que precede à primeira marca de posicionamento leva o número -1 (menos um). Assim, cada medida geofísica é determinada por 2 ordinais: o número do bloco e que pertence e um ordinal que define sua posição dentro desse bloco.
São listados a seguir:

- K-NR= nº do conjunto de valores magnéticos e/ou cintilométricos.
- TI= valor das marcas fiduciais.
- H,M,S= conversão de TI em horas, minutos e segundos.
- UI= along-track.
- VI= cross-track.
- NK1,NK2,NK3= nº de valores cintilométricos, por conjunto (3 canais).
- NH= nº de valores de altura de vôo.
- TX= último valor magnético do conjunto; abaixo de TX vem o nº de valores magnéticos e/ou cintilométricos no conjunto, assinalados quando ≠ 20.

Quando ocorre um erro nos valores magnéticos (e/ou cintilométricos) é feita a listagem das medidas geofísicas. O valor discrepante é evidenciado com o sinal Λ, ao lado do qual vem o número de ordem daquele dado dentro do bloco. Tais informações serão utilizadas para se fazer as correções no programa seguinte - AIRV.

Além dessas falhas mais comuns, a listagem do AIRL acusa: número do perfil errado, valores de "along-track" discrepantes da sequência normal de medição, fusão de dois blocos em um só (mais que 20 valores magnetométricos) e separação de um bloco em dois (soma dos respectivos TKAZ em torno de 20).

2.2. AIRV

O AIRV, que descreveremos abaixo, permite corrigir quase todos os erros verificados no programa anterior. As folhas de codificação respectivas são as pranchas 4 e 5.

2.2.1. Número do perfil

Ocasionadas por omissão do navegador ou desvio na
perfuração. O número certo é controlado pelo exame das guias de remessa de material ("Lieferschein").

Outras vezes o computador divide um perfil e toma como número de perfil da segunda parte um dos valores de magnetismo ou de posicionamento. É fácil diagnosticar a ocorrência, pois são inventados números abstrusos, incompatíveis com o sistema em uso e a área de trabalho. Outra evidência é a não coincidência dos tempos de perfis gem e aqueles das folhas de operação.

2.2.2. Eliminação total ou parcial de perfis

Este procedimento se aplica mais aos perfis de variação diurna, dos quais só se transcreve para fita magnética o intervalo de tempo correspondente ao horário de registro aéreo. A operação não é propriamente de correção, mas de compilação mais adequada e econômica. Usa-se também eliminar partes muito perturbadas de perfis aéreos, as quais deverão ter sido repetidas.

2.2.3. UI

Só pode ser corrigido quando ocasionado por defeito de perfuração. Isso pode ser constatado graças ao fato de que, para determinado trecho do perfil, os ΔUI se apresentam quase constantes. Se, dentro desse trecho, existem dois ΔUI contíguos e anómalos, mas cuja média a ritmética é bastante próxima do valor médio do trecho, pode-se corrigir o valor de UI aberrante, usando-se aquele valor ΔUI médio. Outros erros podem surgir em virtude mesmo de defeitos no sistema de navegação, cuja correção é feita no programa AIRM.
2.2.4. VI

Não há critério para se decidir quando há, ou não, erro de VI. Caso especial é o do último VI de um perfil ser da ordem de km (o que fatalmente se refletirá no UI). Isso se dá quando o navegador desliga prematuramente o sistema de registro, antes do término do perfil. Em consequência, esses últimos dados de navegação correspondem, na realidade, ao perfil seguinte. A correcção é feita por análise dos filmes, se eles não apresentarem o mesmo defeito, por estimativa ou, simplesmente, cancelam do-se os dados.

2.2.5. TI

No sistema de navegação, um cruzamento de perfis ou FP é caracterizado por TI ou UI. O computador é programado para, lido TI₁, procurar UI₁ entre TI₁ e TI₁+1. É prevista uma exceção quando se trata do primeiro TI do perfil. Dado TI₁, o UI₁ será procurado também cronologicamente antes do TI₁. Dentro dessa lógica deve-se informar TI₁, ainda que o FP esteja cronologicamente antes dessa marca. O desconhecimento desse detalhe tem causado problemas aos programadores, obrigando-os a reexaminar os filmes.

2.2.6. TK

É possível eliminar, acrescentar ou alterar valores magnéticos.

Devido à não sincronização entre o magnetômetro e o computador de vôo, podem aparecer dados magnetoestrônicos nulos dentro de um bloco. Esses valores são ajustados por média aritmética entre as medidas contíguas ou
através uma curva traçada na vizinhança do erro.

Outro fenômeno é a interferência eletromagnética nas medidas, causada por indústrias (como a Usininas na área 9), grandes cidades ou tempestades magnéticas. O registro se torna errático e, evidentemente, não corresponde à medida do magnetismo terrestre. Para corrigir a parte afetada, traça-se no perfil analógico uma curva média (interpretativa), consoante à forma e aos valores anterior e posterior à perturbação (plancha 6). Sobre essa curva interpolada lê-se os últimos valores magnétométricos de cada bloco e ainda os dois valores extremos, cada valor com o seu respectivo TI. Esses dados são fornecidos ao computador, que faz passar parábolas entre esses pontos e interpola os valores intermediários.

2.2.7. Desmembramento de blocos

O código indicativo de fim de bloco é um ponto. Se, por falha da perfuradora, este ponto for omitido, o computador unirá esse bloco ao seguinte. Nessas condições teremos $\Delta X = 20$, assinalado automaticamente na listagem do AIRB.

2.2.8. União de blocos contíguos

Aqui dá-se exatamente o contrário do item anterior. É perfurado indevidamente um ponto no meio de um bloco. A diagnose também é simples quando no meio de um perfil tem-se: $\Delta X_{i} + \Delta X_{i+1} = 20$

2.3. AIRB

Destina-se a amarrar o levantamento topográfico aéreo a vértices de triangulação sobrevoados, cujas coordenadas UTM X
e Y são conhecidas e informadas ao computador por meio de cartões perforados. As coordenadas u e y são transformadas em X e Y e comparadas com as dos vértices. Os desvios lineares e angulares são ajustados e listados para verificação. Ver fluxograma e listagem, pranchas 7 e 8.

Cada perfil necessita de, pelo menos, 2 pontos de amarração, definidos por suas coordenadas UTM, dados esses que vêm do campo na folha de codificação do AIRN e entram no computador através de cartões perforados. Para maior simplicidade, tomemos um perfil, definido por seus pontos extremos

\[A (x_a, y_a) \quad e \quad B (x_b, y_b). \]

A distância AB é dada por:

\[L = \left((\Delta x)^2 + (\Delta y)^2 \right)^{1/2} \] \hspace{1cm} (1)

sendo a direção média de L dada por:

\[R = \arctg \left(\frac{\Delta y}{\Delta x} \right) \] \hspace{1cm} (2)

As coordenadas u e y do sistema de navegação do avião, são transformadas em UTM.

O computador calcula a distância teórica média S, entre 2 marcas fiduciais através da fórmula:

\[S = \frac{L}{\sqrt{\frac{u_a}{u_0 - u_1} + \frac{u_b}{u_n - u_{n+1}}}} \]

onde: n = número de marcas fiduciais no intervalo

\[u_a = \text{coordenada UI do PP "A"} \]

\[u_b = \text{coordenada UI do PP "B"} \]

\[u_0, u_1 = \text{UI das marcas fiduciais, entre as quais se encontra "A"} \]

\[u_n, u_{n+1} = \text{UI das marcas fiduciais, entre as quais se encontra "B"} \]
Obtida a distância teórica média S, o computador calcula o erro entre 2 marcas fiduciais consecutivas (DSI) pela subtração: $DSI_i = S_i - S$, sendo S_i o comprimento da distância i entre 2 marcas consecutivas. Também calcula o erro de direção entre a direção média do perfil, determinada através de (2), e a direção de 2 marcas consecutivas (R_i): $DRI*10 = R_i - R$, em g/10.

No cabeçalho da listagem de saida vem o número do perfil e sistema de navegação utilizado, e mais:

L = comprimento do perfil em quilômetros.
R = direção média, em décimos de grau (g/10).
S = distância média entre duas marcas fiduciais.
q_{max} = máximo desvio lateral para a direita, em m.
q_{min} = máximo desvio lateral para a esquerda, em m.

Abaixo são listados, horizontalmente; TI, XI, XII, DSI e DRI*10, onde TI é o valor da marca de tempo. A primeira e última marcas são extrapoladas e precede-as o sinal -(menos); as demais vem precedidas de + (mais). Os valores que correspondem a vértices de triangulação vem precedidos de 1 (um).

Como se vê, não se fixam limites para os desvios, como nos programas anteriores e cabe ao programador decidir-se a investigar se alguns erros de fechamento são aceitáveis ou não. Em princípio, desvios de até ± 3 metros no DSI são considerados normais. Acima desse limite deve-se verificar se as coordenadas
das dos pontos de controle foram compiladas com exatidão no campo (distração relativamente comum) ou ainda se os TI e UIe cruzamentos de perfis correspondem e estão certos (lápso eventual). Essa pesquisa é feita na listagem do AIRN e nos filmes (daí a permanência dos mesmos na FRAKLA).

Os erros provenientes de defeitos no sistema de navegação, já observados nos AIRL (grandes diferenças de ΔU) e que não puderam ser remediados no AIRV serão agora corrigidos. Se para-se o trecho anômalo e transporta-se as coordenadas dos EP até suas proximidades, usando valores confiáveis U e V (ΔU = constante) de A para C e de B para D. Dessa maneira teremos: C e D, pontos auxiliares, entre os quais, e só entre eles, será feita a distribuição de correção. De te procedimento evita que o programa faça a distribuição por todo o perfil AB, incluindo os trechos AC e DB, considerados bons.

Fig. 2

Feitas essas correções, a topografia está terminada e os perfis prontos para serem cartografados.

2.4. ARTK

Este programa é corrido simultaneamente com o AIRN e tem duas finalidades.

Em primeiro lugar, transmite ao computador as informações da folha de codificação ARTK preenchida na equipe. Tais informações são a data de realização de cada perfil, na qual, e sequentemente nela, o computador procura o perfil. Isso serve para que sejam ignorados perfis errados e utilizadas só as repetições.
A segunda finalidade é retirar o valor da variação magnética diária, M_d, dos valores medidos, M_m, fazendo:

$$M_k = M_m - M_d$$

Este é o primeiro tratamento matemático a que se submetem os dados magnetométricos.

Terminada uma área, é calculada sua variação diurna média, \bar{M}_d, e feita a correção inversa:

$$M_d = M_k + \bar{M}_d$$

2.5. **VARI**

O programa VARI ajusta a magnetometria, a partir dos cruzamentos entre os perfis de produção e de controle.

As coordenadas desses vértices são, em geral, determinadas pelo exame dos filmes e fornecidas ao computador por meio de cartões. Quando isto não tenha sido feito, o programa calcula essas coordenadas, feito o que é atribuído em peso a cada cruzamento, segundo a fórmula:

$$C_{M,K} = 1 + n_{K,K} + \Sigma_{M,K}$$

onde: $n_{K,K} = 0,25$ ou 0, conforme as coordenadas tenham sido determinadas nos filmes ou calculadas.

$$\Sigma_{M,K} = \left\{ 0,0005 \left[t_{M-K} - t_{M-2} + 2(t_{M+1-M-1}) + t_{X+2} - t_{Y-2} - 2(t_{X+1-K}) \right] \right\}$$
sendo: \(t_M, t_K \) as medidas magnéticas dos perfis de produção e controle, respectivamente.

A diferença entre as medidas dos perfis é dada por:

\[
W_{M,K} = t_M - t_K
\]

e o erro ponderado é agora avaliado segundo:

\[
E_{M,K} = G_{M,K} \cdot W_{M,K}
\]

São calculadas as retas

\[
E(M) = a + bS_M \quad (\text{perfis de produção})
\]

\[
E(K) = c + dS_K \quad (\text{perfis de controle}),
\]

cujos parâmetros \(a, b, c, d \) são determinados por mínimos quadrados e os \(S_M \) são as distâncias dos cruzamentos relativos às origens dos perfis.

As correções a aplicar serão:

\[
W'_{M} = W - (a + bS_M)
\]

\[
W'_{K} = W - (c + dS_K)
\]

O cálculo dessas correções é iterado 10 vezes, resultando os parâmetros \(A, B, C, D \), com os quais obtem os valores semi-finais \(T_M, T_K \):

\[
T_{M} = t_M - (A + bS_M)
\]
\[T_K = t_K - (C + DS_K) \]

O erro residual \(W \) é distribuído nas vizinhanças do cru-
zamento, segundo a curva de Gauss, de maneira que:

\[\frac{\Delta W_{l,K}}{2} = \frac{\Delta W_{K}}{2} \]

A listagem do VARI é apresentada na prancha 10.

2.6. REGI

Dos valores magnéticos ajustados deve agora ser retirado o campo regional, dado pela fórmula:

\[T_0 = a_{00} + a_{10} \Delta x + a_{01} \Delta y + a_{20} (\Delta x)^2 + a_{11} \Delta x \Delta y + a_{02} (\Delta y)^2 \]

em que

\[\Delta x = x - x_0 \]
\[\Delta y = y - y_0 \]

Os coeficientes \(a_{ij} \) da equação são apurados a partir de \(x_0, y_0, x_i, y_i \) e \(H_i \) (altitude), também por mínimos quadrados.

A PRAKLA calculou o campo geomagnético para o ano 1971,5, a uma altitude de 1.200 m, média para Minas Gerais, referência segundo a qual são calculados os regionais para cada área e época.

O fluxograma e mapas ilustrativos são mostrados nas pran-
chbas 11 e 12.

2.7. LLP 10/LMRB (cartografia)

Estes dois programas não constituem propriamente proces...
samento de dados. Eles meramente substituem o trabalho manual de cartografia e são executados no centro de processamento, daí sua inclusão neste capítulo.

Por meio desses programas, os dados magnéticos são automaticamente cartografados, no caso, em escala 1:100.000.

Os fluxogramas e gráficos correspondentes constam nas pranchas 13, 14 e 15, 16.
3. INTERPRETAÇÃO

Dado o uso crescente da aeromagnetometria e o desenvolvimento de instrumentos de alta precisão (1/10 a 1/100 δ), quando se mede exclusivamente o valor total, T, do campo geomagnético, a interpretação das anomalias ΔT se torna cada dia mais importante e difundida. Não obstante algumas experiências mais recentes com magnetômetros a vapor de Rb ou Ce aerotransportados /1/, o emprego desses instrumentos é ainda restrito aos levantamentos em terra. Uma vez que o desvio altimétrico médio das aeronaves é 10 m, o que corresponde a uma variação vertical média de 0,38 no campo geomagnético, a precisão das medidas fica limitada pela instabilidade vertical dos aviões.

A interpretação dos mapas de isoanomalias magnéticas, para pesquisa mineral, se faz segundo processo indireto. As anomalias de contornos suaves são isoladas – fase qualitativa – e comparadas com os efeitos de modelos geométricos simples e magnéticamente homogêneos – fase quantitativa. As diferenças são minimizadas por meio de ajustamentos nos parâmetros dos modelos, ou seja; tentativa e erro, nome pelo qual é conhecido o método. A depender da forma das anomalias utilizam-se modelos bidimensionais; placa delgada, placa espessa e cilindro horizontal ou tridimensionais; esferas e dipolos.

No estágio preliminar de interpretação quantitativa trabalha-se exclusivamente com modelos bidimensionais, cujo efeito é calculado no próximo sub-capítulo.

3.1. Cálculo do efeito de modelos bidimensionais /2/

Sendo W o potencial magnético, define-se:

$$\Delta Z = - \frac{\partial W}{\partial z}$$

$$\Delta H = - \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} \right) W$$
\[\Delta T = - \frac{\partial W}{\partial I} = \Delta Z \sin I + \Delta H \cos I, \]

sendo I a inclinação magnética.

Como x, y e z são escalares, decorre que somente \(\Delta Z \) e \(\Delta H \) são potenciais. Não obstante, em áreas de até 200 x 200 km I pode ser considerada constante pelo que, dentro daqueles limites, \(\Delta T \) se torna também potencial, o que permite projeções de \(\Delta T \) para cima e para baixo do plano de medida e transformações em \(\Delta Z \) e/ou \(\Delta H \) e vice-versa.

Chamando \(T_0 \) ao campo magnético regional e T ao campo medido, define-se:

\[\Delta T = T - T_0 = \sqrt{(x^2 + y^2 + z^2)} - \sqrt{(x_0^2 + y_0^2 + z_0^2)}, \]

a anomalia relativa a T.

\[\Delta T = \sqrt{(x_0 + \Delta x)^2 + (y_0 + \Delta y)^2 + (z_0 + \Delta z)^2} - \sqrt{(x_0^2 + y_0^2 + z_0^2)} \]

onde: \(\Delta x = x - x_0 \); \(\Delta y = y - y_0 \) e \(\Delta z = z - z_0 \)

Se, simultaneamente, \(x \ll x_0 \), \(y \ll y_0 \) e \(z \ll z_0 \), pode-se desprezar \((\Delta x)^2 \), \((\Delta y)^2 \) e \((\Delta z)^2 \) no desenvolvimento dos quadrados dos binômios e:

\[T = \sqrt{(x_0^2 + y_0^2 + z_0^2)} \sqrt{1 + 2 \cdot \frac{x_0 \Delta x + y_0 \Delta y + z_0 \Delta z}{x_0^2 + y_0^2 + z_0^2}} \]

mas:

\[(1 + 2 \cdot \frac{x_0 \Delta x + y_0 \Delta y + z_0 \Delta z}{x_0^2 + y_0^2 + z_0^2})^{1/2} = 1 + \frac{x_0 \Delta x + y_0 \Delta y + z_0 \Delta z}{x_0^2 + y_0^2 + z_0^2} + \]

\[+ 2 \cdot \left(\frac{x_0 \Delta x + y_0 \Delta y + z_0 \Delta z}{x_0^2 + y_0^2 + z_0^2} \right)^2 + \ldots \]
Truncando-se o desenvolvimento de Taylor até o termo linear, vem:

\[
\Delta T = \left(x_0^2 + y_0^2 + z_0^2 \right)^{1/2} \left(1 + \frac{x_0 \Delta x + y_0 \Delta y + z_0 \Delta z}{x_0^2 + y_0^2 + z_0^2} - 1 \right) = \frac{x_0 \Delta x + y_0 \Delta y + z_0 \Delta z}{\left(x_0^2 + y_0^2 + z_0^2 \right)^{1/2}}
\]

ou ainda:

\[
\Delta T = \Delta x \frac{x_0}{\sqrt{x_0^2 + y_0^2 + z_0^2}} + \Delta y \frac{y_0}{\sqrt{x_0^2 + y_0^2 + z_0^2}} + \Delta z \frac{z_0}{\sqrt{x_0^2 + y_0^2 + z_0^2}}
\]

ou seja:

\[
\Delta T = \frac{\bar{\Delta T}}{\left| T_0 \right|} T_0
\]

onde: \(\bar{\Delta T} = (\Delta x, \Delta y, \Delta z) \) e

\(T_0 = (x_0, y_0, z_0) \)

que é a projeção do vetor anomalia \(\bar{\Delta T} \) na direção do regional \(T_0 \).
Estas simplificações se fazem necessárias, de vez que só se mede

\[
\Delta T = \left| \bar{T} \right| - \left| T_0 \right|
\]

Assumindo \(\bar{T} \ll T_0 \): \(\Delta T \approx \bar{\Delta T} \)

Fig. 3

No caso de anomalias bidimensionais (aquelas em que uma das dimensões é desprezível face às outras duas), o vetor \(\bar{\Delta T} \) jaz num plano normal à direção da anomalia. Este plano é representado por um plano de Groes.
A projeção de \(\overrightarrow{aT} \) na direção de \(\overrightarrow{T_0} \) se faz em dois passos:

a. projeção de \(\overrightarrow{aT} \) sobre \(\overrightarrow{F'} \), onde \(\overrightarrow{F'} \) é a projeção de \(\overrightarrow{T_0} \) sobre o plano normal;

b. projeção no plano meridiano de \(\overrightarrow{T_0} \)

Tais projeções se fazem em planos ortogonais entre si.

![Diagrama](image)

Fig. 4

Na figura 4 temos:

\[I = \text{inclinacão}; \]
\[I' = \text{inclinacão aparente} = \text{projeção de} \ I \ \text{no plano normal}; \]
\[\alpha = \text{ângulo entre o plano meridiano e o plano normal}; \]

a. \(\Delta T^* = \text{Re} \ (\overrightarrow{5Te} - jI') = \text{Re} \ (\overrightarrow{5Te}^* jI') \)

b. \(\Delta T = \Delta T^* \cos \gamma \)

onde \(\gamma = \overrightarrow{T_0} \overrightarrow{OF'} \), ou seja:

\[\cos \gamma = \frac{\overrightarrow{T_0} \cdot \overrightarrow{F'}}{|\overrightarrow{T_0}| \cdot |\overrightarrow{F'}|} \]

\[= (\cos I; 0; \sin I) \cdot (\cos I' \cos \alpha; \cos I' \sin \alpha, \sin I') \]

\[\cos \gamma = \cos I \cos I' \cos \alpha + \sin I \sin I' \]

\[\text{(1)} \]
Notando que: \[\tan I' = \frac{AC}{UA} = \frac{BD}{OB} \]
\[\tan I = \frac{BD}{OB} \]
\[\cos \alpha = \frac{OA}{OB} = \frac{\tan I}{\tan I'} \]
(2)

Aplicando (2) em (1), vem:
\[\cos \gamma = \frac{\sin I}{\sin I'} = \sqrt{\cos^2 \alpha \cdot \cos^2 I + \sin^2 I} \]
(3)

Para maior facilidade de escrita continuaremos a usar \(\cos \gamma \), em vez de explicitá-lo. Então:
\[\Delta T = \text{Re} (Te^{jI'}) \cos \gamma \]
(4)
\[\Delta Z = -i (Te^{jI'}) \cos \gamma \]

Seja agora um corpo bidimensional de secção \(S \):

Fig. 5

\[6T = 8H - j6 \bar{Z} = 2J \cos \gamma e^{jI'} \left(\int_{S} \frac{ds}{r} \right) \]
(5)

\(J \cos \gamma \) é a projeção de \(J \) no plano normal, lembrando que \(\bar{J} = \bar{J}_I + \bar{J}_R \), onde \(\bar{J}_I \) é a magnetização induzida, antiparalela a \(\bar{T}_0 \) e \(\bar{J}_R \) a magnetização remanescente, de direção qualquer.
3.1.1. Placa delgada

Um corpo é assemelhado a uma placa delgada se quan
do suas dimensões satisfazem as relações:

\[b \leq t_0 \]

\[t_u \gg t_0 \text{ (na prática } t_u = 10 \ t_0 \text{)} \]

Fig. 6

Nestas condições a integral de (5) se torna:

\[\bar{S} = 2Me^{\jmath I'} \cdot \frac{b}{r} \cdot e^{\jmath \beta} \], onde \(M \) é a projeção de \(J \) no plano normal; \(M = J \cos \psi \) e as equações (4) ficam:

\[\Delta T = 2bJ \cos^2 \gamma \cdot \frac{x \cos{(2I' + B)} + y \sin{(2I' + B)}}{x^2 + y^2} \quad (6) \]

\[\Delta Z = 2bJ \cos \gamma \cdot \frac{-y \sin{(I' + \beta)} + x \cos{(I' + \beta)}}{x^2 + y^2} \quad (7) \]

Façamos uma das equações acima, por exemplo \(\Delta Z \), constante:

\[\frac{\Delta Z}{c} \left(x^2 + y^2 \right) = -x \sin \gamma + y \cos \gamma \]

onde \(\gamma = I' + \beta \) \(, \) \(X = \frac{\Delta Z}{2bJ \cos \gamma} \)
Kx^2 + xsen\frac{\gamma}{K} + Ky^2 - y\frac{cos\gamma}{K} = 0

completando os quadrados:

\frac{x^2 + xsen\frac{\gamma}{K}}{4K^2} + \frac{y^2 - y\frac{cos\gamma}{K}}{4K^2} = \frac{sen^2\frac{\gamma}{K}}{4K^2} + \frac{cos^2\frac{\gamma}{K}}{4K^2}

\left(\frac{x + \frac{sen\frac{\gamma}{K}}{2K}}{2K}\right)^2 + \left(\frac{y - \frac{cos\frac{\gamma}{K}}{2K}}{2K}\right)^2 = \left(\frac{1}{2K}\right)^2

que vem a ser a equação da família de círculos de raio \(bJcos\gamma\), que passam pela origem e cujos centros se alinham na reta inclinada de \(I' + B\) em relação a \(Ox\). Este é o conhecido diagrama de Baronovski /3/, prancha 17. A prancha 18 mostra a variação de \(\Delta T\) e \(AZ\) com \(B\), considerando-se \(I' = 20^\circ\), inclinação média de Minas Gerais.

A mesma conclusão se chega para \(\Delta T\), somente que o raio será \(bJcos^2\gamma\) e a inclinação \(\gamma = 2I' + B\).

Comparando-se (6) e (7) vê-se que:

\[\Delta T (I') = \cos \gamma \Delta Z (I' + \Omega)\]

onde: \(\Omega\) é a defasagem entre \(\Delta T\) e \(AZ\), que passaremos a calcular:

\[
\begin{cases}
- \text{sen} (I' + B + \Omega) = \cos (2I' + B) \\
\cos (I' + B + \Omega) = \text{sen} (2I' + B)
\end{cases}
\]
onde ambas equações fornecem \((\mathbf{I} + \Omega) = \left(\frac{\pi}{2} - 2\mathbf{I}' \right) \), ou seja
\[
\Omega = \mathbf{I}' - \frac{\pi}{2}, \text{ donde: } \Delta T (I') = \cos \gamma \Delta Z \left(2\mathbf{I}' - \frac{\pi}{2} \right) \quad (3)
\]

3.1.2. Placa espessa

O corpo será assemelhado a uma placa espessa se \(b > t_0 \) e \(t_\gamma > t_0 \), quando a solução da integral em (5) dá:

\[
\Delta T = -2J \cos \gamma \tan \beta \left(1 + 2\mathbf{s} \right), \ln \frac{r_2 e^{\mathbf{j} \frac{\pi}{2}}}{r_1 e^{\mathbf{j} \frac{\pi}{2}}}
\]

Fig. 8

\[
\Delta T = -2J \cos \gamma \tan \beta \left[\cos (\mathbf{S} + 2\mathbf{I}' - 2\mathbf{S}) \ln \frac{r_2}{r_1} - \sin (\mathbf{S} + 2\mathbf{I}' - 2\mathbf{S})(\mathbf{r}_2 - \mathbf{r}_1) \right] \quad (9)
\]

\[
\Delta Z = -2J \cos \gamma \tan \beta \left[\sin (\mathbf{S} + 2\mathbf{I}' - 2\mathbf{S}) \ln \frac{r_2}{r_1} + \cos (\mathbf{S} + 2\mathbf{I}' - 2\mathbf{S})(\mathbf{r}_2 - \mathbf{r}_1) \right] \quad (10)
\]

Note-se que aqui \(\mathbf{S} \) é o ângulo entre as paredes da placa.

É imediato que a relação (8) também vale para a placa espessa, cuja utilização permite calcular \(\Delta T \) com ábacos, ilustrados nas pranchas 20 a 23.

Utilizando-se o âbaco nº 2 constrói-se os seguintes cujas relações \(p_1/p_2 \) (cos2/sen2) variam de 1:10 até 10:1. Posto que os gráficos foram construídos com o Norte para a esquerda e só para o 3\(\text{e} \) quadrante, algumas corrigições devem ser introduzidas conforme a prancha 24. O problema das escalas é resolvido por meio de reduções ou ampliações fotográficas.
A prancha 25 ilustra a variação de ΔT e ΔZ com z.

Fazendo ΔZ constante, tem-se:

$$K = \text{sen} \theta \ln \frac{r_2}{r_1} + \cos \theta (\gamma_2 - \gamma_1)$$

onde: $\theta = \beta + 1' - 28$

$$\gamma = \gamma_2 - \gamma_1$$

$$K = \frac{\Delta Z}{2\gamma \cos \gamma \text{sen} \beta}$$

Para $\theta = n\pi \ (n=0,1,2,3,\ldots)$, $\gamma_2 - \gamma_1 = K$; equação das famílias de círculos cujos centros se alinham ao eixo Oy e têm como corda 2a, espessura da placa.

Para $\theta = \frac{\pi}{2} + 2n\pi \ (n=0,1,2,\ldots)$

$$\ln \frac{r_2}{r_1} = K, \text{ ou:}$$

$$\frac{(x-a)^2 + y^2}{(x+a)^2 + y^2} = e^{2K} = C$$

que são as famílias de círculos centradas em $(x+a,t_0)$ e $(x-a,t_0)$ e raio = e^K.

Fig. 9

3.1.3. Cilindro horizontal infinito

O efeito do corpo será comparado ao de um cilindro quando $d \leq t_0$ (na prática $t_0 = 10 \ d$). Para o cilindro a integral de (5) torna-se:
\[
\overline{\Delta T} = 2J \cos \gamma \frac{\pi R^2}{r^2} e^{j(1' - 2\gamma)}
\]

\[
\Delta T = 2J \cos^2 \gamma \cdot \pi R^2 \cdot \frac{\sen(2\gamma - 2I' + \pi/2)}{r^2}
\]

(11)

\[
\Delta Z = 2J \cos \gamma \cdot \pi R^2 \cdot \frac{\sen(2\gamma - I')}{r^2}
\]

(12)

As equações (11) e (12) são do tipo:

\[
F = K \cdot \frac{\sen 2\gamma}{r^2}
\]

que dá o trevo de 4 folhas, cujos eixos de simetria são bissetores dos eixos das folhas. (Ver prancha 26.)

Fazendo-se \(\frac{\Delta Z}{K} = 0 \), resulta \(\gamma = \frac{I'}{2} \) e

\[
\frac{\Delta T}{K} = 0, \text{ resulta } \gamma = I' - \frac{T}{4}.
\]

A prancha 27 ilustra \(\Delta T \) e \(\Delta Z \) referentes ao cilíndro horizontal.

3.2. Interpretação qualitativa

De posse dos mapas de anomalias e dos gráficos dos efeitos dos modelos, a interpretação qualitativa consiste em:

Destacar as anomalias, bi ou tridimensionais, separando por meio de cores os máximos (vermelho) e mínimos (azul) relativos, prancha 28.

Sobre um vegetal, delinear os alinhamentos e folhas mag
eticamente reconhecíveis e áreas de anomalias com mesma ordem de grandeza (valor pico a pico) – prancha 29.

Traçar perfis ortogonalmente às anomalias bidimensionais (alongadas). Estes perfis devem evitar os pontos extremos das anomalias, valores estes de expressão local e não representativos – pranchas 28 e 29.

Conforme o regional da anomalia e o efeito esperado a partir do valor médio de J para a área, traçás nova linha zero – pranchas 30 e 31. Ortogonalmente a antiga linha zero, e relativos à nova, são lidos os novos valores e redesenhadas as anomalias – pranchas 32 a 35.

Essas anomalias são comparadas visualmente com os gráficos dos efeitos dos modelos, determinando-se assim a qual modelo a anomalia será assemelhada.

O fator que determina a escolha do modelo é a altura do perfil relativa ao topo do corpo, \(t_0 \). Em trabalhos de reconhecimento, quando não se puder estimar a profundidade do topo do corpo relativa à superfície do solo, considera-se \(t_0 \) igual à própria altura de vôo. À medida que \(t_0 \) aumenta, passa-se da placa espessa para a delgada e destas para o cilindro. As fórmulas dos efeitos desses corpos mostram que o número de informações obtidas é maior na placa espessa e menor no cilindro. Consequentemente, quanto mais baixo se voar, mais informações se tem.

Em contrapartida, \(t_0 \) influi também no espaçamento dos perfis. Para que uma anomalia seja fielmente registrada, deve ser satisfeita a relação:

\[
\frac{t_0}{2} \leq \frac{D}{2} \quad (\text{fig. 11})
\]

onde \(D \) é a distância entre os extremos da anomalia.

Evidentemente, quanto menor for \(t_0 \), menor deverá ser o espaçamento dos perfis.
paçamento, \(e \), entre os perfis, o que eleva o custo operacional. Como termo de compromisso, toma-se:

\[e \leq 5 t_0 \]

3.3. Interpretação quantitativa

As anomalias isoladas segundo 3.2. são digitalizadas, requerendo-se cerca de 20 amostras por anomalia. Estas amostras são transcritas em cartão perfurado, como se verá adiante.

3.3.1. Método dos mínimos quadrados \(^{14}\)

Sejam \(\Delta F'_1 \) a função medida e \(f_1(x_1 \ldots x_n) \) a função teórica (modelo), onde os \(x_i \) são as incógnitas (3 para o cilindro, 4 para o dique delgado, e 5 para o dique espesso). Para cada ponto vale a relação:

\[f_k(x_i) - \Delta F_k = v_k \tag{13} \]

onde \(v_k \) é o desvio.

Fig. 12

Para a aplicação do método de Gauss (mínimos quadrados), impõe-se que \(f_k \) seja linear, pelo que se toma a parte linear do desenvolvimento de Taylor dessa função. Para ilustração, consideraremos 3 incógnitas, caso do cilindro.

\[f_k(x_1, x_2, x_3) = f_k(x_{10}, x_{20}, x_{30}) + \left(\frac{\partial f}{\partial x_1} \right) dx_1 + \]

\[+ \frac{\partial f}{\partial x_2} dx_2 + \frac{\partial f}{\partial x_3} dx_3 \]

onde os \(x_i \) são aproximações obtidas de diagramas ou cál...
culados a partir de modelos.

A equação (13) se torna:

\[
f_k(x_{10}, x_{20}, x_{30}) - \Delta \Gamma_k - d = \left(\frac{\partial f}{\partial x_1} \right) dx_1 + \left(\frac{\partial f}{\partial x_2} \right) dx_2 + \left(\frac{\partial f}{\partial x_3} \right) dx_3 = v_k
\]

Para que \(\Sigma v_k^2 \) seja mínimo devem ser satisfeitas as relações:

\[
\frac{\partial \Sigma v_k^2}{\partial x} = 2 \Sigma (ax + by + cz - d) \quad a = 0
\]

\[
\frac{\partial \Sigma v_k^2}{\partial y} = 2 \Sigma (ax + by + cz - d) \quad b = 0
\]

\[
\frac{\partial \Sigma v_k^2}{\partial z} = 2 \Sigma (ax + by + cz - d) \quad c = 0
\]

que geram as equações normais:

\[
(aa) \ x + (ab) \ y + (ac) \ z = (ad)
\]

\[
(ab) \ x + (bb) \ y + (bc) \ z = (bd) \quad (14)
\]

\[
(ac) \ x + (bc) \ y + (cc) \ z = (cd)
\]

A solução do sistema (14) fornece:
x(=dx₁), y(=dx₂) e z(=dx₃), correções tais que:

\[x_i = x_i^{(0)} + \delta x_i \]

O processo é reiterado, até que as correções cheguem à mesma ordem de grandeza dos erros de observação ou interpretação.

Aplicação da teoria dos erros ao sistema de equações normais

O desvio padrão de \(x, y, z \), no sistema (14) deve ser calculado pela lei de propagação dos erros, a partir dos desvios padrão das quantidades observadas, contidas nas expressões \((ad), (bd)\) e \((cd)\).

Transformemos (14), expressando \(x, y, z \), como funções de \((ad), (bd)\) e \((cd)\):

\[x = \varphi_{xx}(ad) + \varphi_{xy}(bd) + \varphi_{xz}(cd) \]
\[y = \varphi_{yx}(ad) + \varphi_{yy}(bd) + \varphi_{yz}(cd) \]
\[z = \varphi_{zx}(ad) + \varphi_{zy}(bd) + \varphi_{zz}(cd) \]

Os \(\varphi_{ik} \) de (15) são calculados segundo:

Multiplica-se a 1ª fila de (14) por \(\varphi_{xx} \), a 2ª por \(\varphi_{xy} \) e a 3ª por \(\varphi_{xz} \), somando as colunas obtidas:

\[\varphi_{xx}(aa)x + \varphi_{xx}(ab)y + \varphi_{xx}(ac)z = \varphi_{xx}(ad) \]
\[\varphi_{xy}(ab)x + \varphi_{xy}(bb)y + \varphi_{xy}(ac)z = \varphi_{xy}(bd) \]
\[\varphi_{xz}(ac)x + \varphi_{xz}(bc)y + \varphi_{xz}(cc)z = \varphi_{xz}(cd) \]
\[(\varepsilon_{xx}[aa] + \varepsilon_{xy}[ab] + \varepsilon_{xz}[ac])x +
+ (\varepsilon_{xx}[ab] + \varepsilon_{xy}[bb] + \varepsilon_{xz}[bc])y +
+ (\varepsilon_{xx}[ac] + \varepsilon_{xy}[bc] + \varepsilon_{xz}[cc])z = x \quad (\text{conforme primeira}
\text{linha de (15), do que resulta imediato:})
\]

\[\begin{align*}
[aa] & \ \varepsilon_{xx} + [ab] \varepsilon_{xy} + [ac] \varepsilon_{xz} = 1 \\
[ab] & \ \varepsilon_{xx} + [bb] \varepsilon_{xy} + [bc] \varepsilon_{xz} = 0 \\
[ac] & \ \varepsilon_{xx} + [bc] \varepsilon_{xy} + [cc] \varepsilon_{xz} = 0
\end{align*}\]

(17)

A solução do sistema (17) fornece: \(\varepsilon_{xx}, \varepsilon_{xy}, \varepsilon_{xz}\).

Da mesma forma, multiplicando-se a 1ª fila de (14) por \(\varepsilon_{xy}\), a 2ª por \(\varepsilon_{yy}\) e a 3ª por \(\varepsilon_{yz}\) e resolvendo o sistema chega-se a \(\varepsilon_{yy}\), \(\varepsilon_{xy}\) e \(\varepsilon_{yz}\). Finalmente, multiplicando-se a 1ª fila de (14) por \(\varepsilon_{xx}\), a 2ª por \(\varepsilon_{yy}\) e a 3ª por \(\varepsilon_{zz}\), obtém-se \(\varepsilon_{xx}, \varepsilon_{yy}\) e \(\varepsilon_{zz}\).

A seguir separa-se os \(c_i\) nas expressões de \(|ad|, |bd|\) e \(|cd|\), que são linearmente dependentes em relação às quantidades observadas \(\Delta F_i\).

De (15) segue-se:

\[x = (a_1 \varepsilon_{xx} + b_1 \varepsilon_{xy} + c_1 \varepsilon_{xz})d_1 +
+ (a_2 \varepsilon_{xx} + b_2 \varepsilon_{xy} + c_2 \varepsilon_{xz})d_2 + \ldots \]

\[y = (a_1 \varepsilon_{yx} + b_1 \varepsilon_{yy} + c_1 \varepsilon_{yz})d_1 +
+ (a_2 \varepsilon_{yx} + b_2 \varepsilon_{yy} + c_2 \varepsilon_{yz})d_2 + \ldots \]

(18)
\[z = (a_1 \theta_{zx} + b_1 \theta_{zy} + c_1 \theta_{zz})d_1 + \\
+ (a_2 \theta_{zx} + b_2 \theta_{zy} + c_2 \theta_{zz})d_2 + \ldots \\
\]
ou, simplificando a notação:

\[x = \alpha_1 d_1 + \alpha_2 d_2 + \ldots = [\alpha d] \]

\[y = \beta_1 d_1 + \beta_2 d_2 + \ldots = [\beta d] \]

\[z = \gamma_1 d_1 + \gamma_2 d_2 + \ldots = [\gamma d] \]

No sistema (19) x, y, z são funções de \(d_1, d_2 \), ou seja, das quantidades observadas, pelo que se pode agora aplicar a lei da propagação dos erros. Admitindo que as observações tenham o mesmo peso e mesmo desvio padrão, m, os desvios padrão correspondentes a x, y, z, seguem-se de (19):

\[m_x^2 = \alpha_1^2 m^2 + \alpha_2^2 m^2 + \ldots = (\alpha \alpha) m^2 \]

\[m_y^2 = \beta_1^2 m^2 + \beta_2^2 m^2 + \ldots = (\beta \beta) m^2 \]

\[m_z^2 = \gamma_1^2 m^2 + \gamma_2^2 m^2 + \ldots = (\gamma \gamma) m^2 \]

Para calcular \([\alpha \alpha] \) procede-se:

de (17) e (19):

\[\alpha_i = a_1 \theta_{xx} + b_1 \theta_{xy} + c_1 \theta_{xz} \]

multiplicando (17) por \(\alpha_i \) e somando:

\[(\alpha \alpha) = (a \alpha) \theta_{xx} + (b \alpha) \theta_{xy} + (c \alpha) \theta_{xz} \]

multiplicando (21) por \(a_i \) e somando:

\[(a \alpha) = (aa) \theta_{xx} + (ab) \theta_{xy} + (ac) \theta_{xz} \]
de acordo com a 1ª linha de (17):

\[(a \alpha) = 1\]
\[(b \alpha) = 0\]
\[(c \alpha) = 0\]

de (23) segue-se:

\[(a \alpha) = \sigma_{xx}\]
\[e\quad daí:\]

\[(b \beta) = \sigma_{yy}\]
\[(c \gamma) = \sigma_{zz}\]

Aplicando (25) e (26) em (20):

\[m_x = m(\sigma_{xx})^{1/2}\]
\[m_y = m(\sigma_{yy})^{1/2}\]
\[m_z = m(\sigma_{zz})^{1/2}\]

onde \(m\) é calculado segundo a expressão:

\[m = \left(\frac{(yy)}{n - u}\right)^{1/2}\]

onde: \(n = \) nº de observações e \(u = \) nº de incógnitas.

3.3.2. Utilização do programa

A utilização do programa do B.f.B. obedece algumas
restrições, segundo os casos:

3.3.2.1. Anomalias conjugadas

Dado o porte do computador disponível (IBM - 1410) não se processam mais que 4 anomalias conjugadas.

A fim de minimizar o tempo de processamento, são combinados somente modelos do mesmo tipo, por exemplo: 4 cilindros, 4 placas delgadas ou 4 placas espessas.

A propósito, vale mencionar o problemada condução do vôo, intimamente ligado à resolução de anomalias conjugadas.

Fig. 13

Para que anomalias individuais sejam destacáveis, deve-se ter:

\[d = 2t_0 \] (fig. 13)

Se: \[d = t_0 \], as anomalias se confundem representando um corpo único.

Quando a topografia o permite, o vôo pode ser conduzido paralelo ao solo (altura constante) ou ao nível do mar (altitude constante).

O vôo a altura constante mantém fixo o poder de resolução, mas a armarção altimétrica dos pontos de cruzamento de perfis é sujeita a grandes erros, além de ser impraticável sobre topografia acidentada.

Por outro lado, a perfilagem a altitude constante implica em variar o poder de resolução, o que é um inconveniente para mapeamento geológico, não
rado nos estágios de detalhe. Aqui, a amarração assimétrica dos cruzamentos é mais acurada, pelo que esta modalidade tem sido preferida.

3.3.2.2. Placas delgadas e cilindros

Como entrada são informados os seguintes dados:

1º Cartão — identificação, parâmetros
NUM = nº do perfil
N = nº de amostras
ITZC = código seletivo de ΔT (0) ou ΔZ (1)
(formato 3I10)
F = inclinação magnética, em graus
α = ângulo entre o perfil e o norte magnético, em graus $0^\circ \leq \alpha \leq 90^\circ$
(formato 2E5.0)
G = intervalo de amostragem, em m.
DF = quadrado do menor valor pico a pico a processo ser — fator de suavização da curva
(formato 2E10.3)

2º Cartão — sinal da anomalia
C = anomalia positiva
I = anomalia negativa
(formato 9I5)

3º, 4º Cartões — dados
valores amostrados em δ
(formato 8F6.0)

O valor δ é projetado na direção do perfil resultando δ_{c}, que aparece no cabeçalho do lixão — gem (anexo 5B).
O programa compara, automaticamente, a anomalia dada com modelos de cilindro horizontal, placa infinita e placa finita, fazendo as aproximações possíveis, e determina os desvios para cada modelo. De acordo com os menores desvios é indicado o melhor modelo.

Conforme o modelo são indicados os seguintes dados:

Cilindro: U, T e \(r^2 J \)

Fig. 14

Valores da curva calculada, na mesma ordem de amostragem da anomalia, com os respectivos desvios

Ocasionalmente, o cilindro calculado tem de ser desprezado, por apresentar-se acima do plano de perfil \(T > 0 \). Nestes casos opta-se pelo disco delgado finito, de vez que o efeito do cilindro aproxima-se do efeito de um disco delgado finito cuja profundidade da face superior \(T \) seja muito que o comprimento \(L \).
Placa delgada infinita: \(U, T, J, b, S \) valores da curva calculada e erros.

![Diagrama da Placa Delgada Infinita](image)

Placa delgada finita: \(U_1, U_2, T_1, T_2, J, b \), valores da curva calculada e erros.

![Diagrama da Placa Delgada Finita](image)
3.3.2.3. **Placas espressas**

Para este modelo o ajustamento entre as curvas teórica e medida nem sempre converge, pelo que se tornam necessários valores iniciais, a título de primeira aproximação. Tais valores se obtêm através a comparação da curva medida com ábacos (páginas 19 a 23) ou com métodos geométricos expeditos, como o das meias alturas.

A curva da fórmula

\[\Delta F = K \left(p_1 y + p_2 \ln \frac{r_2}{r_1} \right) \]

é simétrica quando \(p_1 = 0 \) ou \(p_2 = 0 \).

Fazendo \(p_2 = 0 \) resulta:

\[\Delta F = y \]

curva simétrica em relação a \(C_{y} \).

Sejam \(x_{1/2} \) e \(x_{1/4} \) as abscissas relativas a \(\Delta F/2 \) e \(\Delta F/4 \).

Com centro em \(O \), raio \(Ox_{1/2} \) e centro \(O' \), raio \(0'x_{1/4} \) traçam-se os círculos secantes em \(A \) e \(A' \).

Observando que:

\(\phi \left(= x \right) = \frac{\Delta F}{2} \)

\(\phi \left(= 2x \right) = \Delta F \).

\(\overline{A}A' \) determina a face superior da placa.
No caso de ΔT, $\Theta = 90^\circ$, mas $\bar{Q} = 21^\circ + 2^\circ + 2^\circ$
Fazendo $\gamma = 0$ e $\bar{l}' = -20^\circ$, $\Theta = 50^\circ$

Aproximando $\gamma = \bar{M}$ rumo do perfil vai-se aos ábacos (pranchas 19 a 23) para a obtenção da curva teórica ΔT_{m}.

Calcula-se J pela relação:

$$J = \frac{\Delta T_{m}}{\Delta T_{b}}$$

onde ΔT_{m} é a curva medida.

Quando a curva medida estiver um pouco distorcida, deve-se simetrizar-la, /3/ em consequência do que a face superior da placa terá um engarrafão.

No caso de $p_{m} = 0$, vem:
\[\Delta F \propto \ln \frac{r_2}{r_1}, \text{ curva simétrica em relação à origem.} \]

A face superior da placa fica determinada pelo círculo cujo diâmetro é igual à distância horizontal entre os extremos da curva.

Fig. 20

Por outra parte, para a placa espessa deve ser satisfeita a relação:

\[b > t_0 \]

Como \(b = 2a \cos \beta \), segue-se

\[2a > t_0 \]

Fazendo \(2a = t_0 \)

\[N = \arccotang \frac{a}{t_0} = \frac{1}{2} = 26^{\circ}30' \text{ pelo que } \mu a \]

ve ser maior que \(27^\circ \).

Há métodos de interpretação direta para curvas de tipo logarítmico, /9/, que no entanto necessitam computação eletrônica.
Outros métodos de interpretação direta podem ser aplicados a placas delgadas, que no caso são desnecessários /10/ /11/.

Os parâmetros aproximados obtidos, são transmitidos ao computador por meio de cartões, segundo a ordem:

1º Cartão
NUM = nº do perfil
N = nº de incógnitas
N1 = nº de amostras
ITA = nº de iterações (em geral 6)
 (formato 5E4)
F = inclinação magnética
α = rumo magnético do perfil
 (formato 2F5.0)
G = intervalo de amostragem
 (formato 5E10.3)

2º Cartão
U = abcissa do centro da face superior, considerada horizontal
T = profundidade da face superior
J = intensidade da magnetização
A = meia espessura da face superior
B = mergulho do corpo, em graus
 (formato 5E10.3)

3º, 4º Cartões – dados
Na listagem de saída constam U, T, J, A, B, valores da curva calculada e os respectivos erros (prancha 36).

Os dados qualitativos, que sejam, abcissas, profundidades e mergulhos são transmitidos no verso.
tal (prancha 29). A largura dos corpos é aproximada ao comprimento da anomalia, delineando-se assim um esboço geológico.

3.4. Resultados

Nas pranchas 32 e 35 compararam-se as curvas reais, afinal das à nova linha zero, com as curvas calculadas pelo programa.

As curvas calculadas para as anomalias assemelhadas a placas delgadas (períodos 106 - 01 a 106 - 03) apresentam boa aproximação. O modelo mais adequado, em todos os casos, foi a placa delgada finita — mesmo no perfil 106 - 03 — o qual apresenta duas anomalias conjugadas.

Os parâmetros calculados e seus respectivos erros são resumidos na tabela a seguir:

<table>
<thead>
<tr>
<th>PERÍFRUL</th>
<th>U1 m</th>
<th>ERROS m</th>
<th>%</th>
<th>U2 m</th>
<th>ERROS m</th>
<th>%</th>
<th>T1 m</th>
<th>ERROS m</th>
<th>%</th>
<th>T2 m</th>
<th>ERROS m</th>
<th>%</th>
<th>J-b</th>
<th>ERROS m</th>
<th>%</th>
<th>J-b</th>
<th>ERROS m</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>106-01</td>
<td>6000</td>
<td>200</td>
<td>3,3</td>
<td>6500</td>
<td>550</td>
<td>9,3</td>
<td>2500</td>
<td>270</td>
<td>10,8</td>
<td>8300</td>
<td>1600</td>
<td>19,3</td>
<td>40</td>
<td>5</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-02</td>
<td>8700</td>
<td>130</td>
<td>1,5</td>
<td>4150</td>
<td>350</td>
<td>8,7</td>
<td>2200</td>
<td>90</td>
<td>4,1</td>
<td>9500</td>
<td>1300</td>
<td>13,7</td>
<td>121</td>
<td>8</td>
<td>5,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-03</td>
<td>5200</td>
<td>110</td>
<td>2,1</td>
<td>1850</td>
<td>160</td>
<td>8,7</td>
<td>930</td>
<td>160</td>
<td>17,2</td>
<td>1330</td>
<td>260</td>
<td>19,6</td>
<td>48</td>
<td>7</td>
<td>14,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106-03</td>
<td>8900</td>
<td>85</td>
<td>1,0</td>
<td>18000</td>
<td>1140</td>
<td>6,3</td>
<td>1230</td>
<td>70</td>
<td>5,7</td>
<td>9770</td>
<td>1810</td>
<td>19,6</td>
<td>157</td>
<td>5</td>
<td>3,1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Como se vê, os maiores desvios de posicionamento incidem no cálculo da profundidade das extremidades das placas. Outro parâmetro sujeito a maiores erros é J-b, que atingiu 20% no perfil 106 - 01.

Tais resultados podem ser considerados muito bons, concordando bem com os limites de precisão da geofísica (20 a 30%).
Das anomalias 106 - 04 e 103 - 05, assemelhadas a placa espessa, a primeira teve divergência no cálculo, o que indica que os parâmetros iniciais não foram suficientemente precisos.

A causa da imprecisão poderá ser atribuída à má coincidência entre a curva real e aquela retirada dos ábacos – ver prancha 34 – talvez ainda porque o valor de J devera ser maior que o empregado (180). Um J maior justificaria o acentuado mínimo da curva real. Todavia, dado o grande número de perfis a interpretar, os perfis cujos cálculos discrepam são deixados para posterior fase dos trabalhos.

Em vista disso, apresentamos o perfil 103 - 05 na prancha 35. Os cálculos convergiram para uma curva de formato similar ao da curva real, não obstante estar desfasada.

Os parâmetros calculados e os erros correspondentes são exibidos a seguir:

<table>
<thead>
<tr>
<th>PERFIL</th>
<th>U</th>
<th>m</th>
<th>ERROS</th>
<th>T</th>
<th>m</th>
<th>ERROS</th>
<th>J</th>
<th>m</th>
<th>ERROS</th>
<th>A</th>
<th>m</th>
<th>ERROS</th>
<th>D</th>
<th>m</th>
<th>ERROS</th>
</tr>
</thead>
<tbody>
<tr>
<td>103-05</td>
<td>29400</td>
<td>1200</td>
<td>4,1</td>
<td>730</td>
<td>1360</td>
<td>19,4</td>
<td>99</td>
<td>18</td>
<td>18,2</td>
<td>10600</td>
<td>1500</td>
<td>13,8</td>
<td>2,2</td>
<td>0,09</td>
<td>4,1</td>
</tr>
</tbody>
</table>

Os erros apresentados permitem dizer que aqui também a aproximação é muito boa.
BIBLIOGRAFIA

/1/ Royer, G., 1967 - Two Year's Survey with Cesium Vapour Magnetometer, Geophysical Prospecting, vol XV, no 2

/2/ Bosum, W., 1966 - Diagrams for the Computation of Magnetic Field Components, for their Transformation into one another and their upward continuation (two dimensional case), Zeitschrift für Geophysik, Heft 1.

/3/ Baranov, V. - Charts for calculation and interpretation of magnetic anomalies, Compagnie Générale de Geophysique - Paris

/4/ Bosum, W., 1971 - An automatic procedure to interpret magnetic anomalies with the least-squares method - Department of the Secretary of State, Translation Bureau, Foreign Languages Division - Canada

/5/ Egyed, L., 1948 - Determination of an infinite inclined dyke from the results of Gravity and Magnetic surveys, Geophysics, vol XIII, no 3

/6/ Jung, K., 1940 - Zur Bestimmung von Störungsmassen aus Anomalien der Schwereintensität, Beiträge zur Angewandten Geophysik, 8

/7/ Jung, K., 1953 - Some remarks on the interpretation of gravitational and magnetic anomalies, Geophysical Prospecting, vol I, no 1

/9/ Powell, D. W., 1967 - Fitting observed profiles to a magnetized dyke or fault step model, Geophysical Prospecting, vol XV, no 2

/10/ Jung, K., 1948 - Direkte Methoden zur Bestimmung plattenförmiger Störungskörper aus ihren Erdmagnetischen Anomalien, Geofisica Pura e Applicata, vol II, no 2

Aerogeophysics

Input and Checking of Data
1. Program of routine processing

The program MAGL checks the geophysical and positioning data which are automatically recorded aboard the aircraft on 5-channel punched tape in the Ettal-code for format and threshold errors.

The program processes each profile P_i corresponding to the required positioning procedure "D".

β: Doppler navigation and positioning
1. Film positioning by visual navigation
2. θ-Rho-ANA positioning by offshore radio navigation

The threshold limits are:

<table>
<thead>
<tr>
<th>Threshold</th>
<th>S_u</th>
<th>S_v</th>
</tr>
</thead>
<tbody>
<tr>
<td>procedure 1</td>
<td>$(u_{i+1}-u_i) \times \delta u$</td>
<td>$(v_{i+1}-v_i) \times \delta v$</td>
</tr>
</tbody>
</table>

δu_i = max. value of the 2 distances $(u, v, \theta$: octal)
Data format of positioning procedure "0":

Ω: Doppler

+47800+47800+47800+47800+47800+47800...

1: Film

+47800-47800+47800+47800+47800...

2: ANA

+47800+47800+47800+47800+47800...

Listing of profile processing sequence

Sample of error listing

+3920 0 0 100 15 20

0101+47886+47886+47886+47886+47886+47886
+47886+47886+47886+47886+47886+47886
+47886+47886+47886+47886+47886+47886
+47886+47886+47886+47886+47886+47886

+5(1) = +2 ET SM

The corrections of error data will be put into the data tape by means of punched cards with program MAGV

PRANCHA-2
<table>
<thead>
<tr>
<th>DZ1</th>
<th>DZ2</th>
<th>DZ3</th>
<th>DZ4</th>
<th>DZ5</th>
<th>DZ6</th>
<th>K-Nr</th>
<th>T</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>2226</td>
<td>12</td>
<td>20</td>
<td>0</td>
<td>7910</td>
<td>VI</td>
<td>0.71</td>
<td>2.04</td>
</tr>
<tr>
<td>1</td>
<td>2231</td>
<td>12</td>
<td>20</td>
<td>20</td>
<td>2371</td>
<td>VI</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>2</td>
<td>2232</td>
<td>12</td>
<td>20</td>
<td>40</td>
<td>7031</td>
<td>VI</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>3</td>
<td>2233</td>
<td>12</td>
<td>21</td>
<td>0</td>
<td>7749</td>
<td>VI</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>4</td>
<td>2234</td>
<td>12</td>
<td>21</td>
<td>20</td>
<td>7149</td>
<td>VI</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>5</td>
<td>2235</td>
<td>12</td>
<td>21</td>
<td>40</td>
<td>7204</td>
<td>VI</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>6</td>
<td>2236</td>
<td>12</td>
<td>22</td>
<td>0</td>
<td>7057</td>
<td>VI</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>7</td>
<td>2237</td>
<td>12</td>
<td>22</td>
<td>20</td>
<td>6811</td>
<td>VI</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>8</td>
<td>2238</td>
<td>12</td>
<td>22</td>
<td>40</td>
<td>6826</td>
<td>VI</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>9</td>
<td>2239</td>
<td>12</td>
<td>23</td>
<td>0</td>
<td>6676</td>
<td>VI</td>
<td>0.01</td>
<td>0.02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>K-Nr</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>T7</th>
<th>T8</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>2424</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
</tr>
<tr>
<td>11</td>
<td>2428</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
</tr>
<tr>
<td>12</td>
<td>2432</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
</tr>
<tr>
<td>13</td>
<td>2436</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
</tr>
<tr>
<td>14</td>
<td>2440</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>K-Nr</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>T7</th>
<th>T8</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>2444</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
</tr>
<tr>
<td>16</td>
<td>2448</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
</tr>
<tr>
<td>17</td>
<td>2452</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>K-Nr</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>T7</th>
<th>T8</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>2456</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
</tr>
<tr>
<td>19</td>
<td>2460</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
</tr>
<tr>
<td>20</td>
<td>2464</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
<td>2414</td>
</tr>
</tbody>
</table>

Note: The table contains measurements and values for different elements or parameters, with columns for different identifiers (K-Nr) and values for T and L. The values range from 0 to 2460, with some values indicating specific conditions or states.
<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>PRANCHA - 5</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Auftragnehver

<table>
<thead>
<tr>
<th>Lassen am/</th>
<th>22.10.71</th>
<th>W. HOFER</th>
<th>12.10.71</th>
</tr>
</thead>
</table>

Angabe

<table>
<thead>
<tr>
<th>von: 22.10.71</th>
<th>12.10.71</th>
<th>12.10.71</th>
</tr>
</thead>
</table>

**Abgelacht am/	19.10.71	12.10.71

Steuerkarten für D SY 1

Auftragnehver

<table>
<thead>
<tr>
<th>Lassen am/</th>
<th>22.10.71</th>
<th>W. HOFER</th>
<th>12.10.71</th>
</tr>
</thead>
</table>

Angabe

<table>
<thead>
<tr>
<th>von: 22.10.71</th>
<th>12.10.71</th>
<th>12.10.71</th>
</tr>
</thead>
</table>

**Abgelacht am/	19.10.71	12.10.71
Aerogeophysics

Data Processing on Profiles

2. Program of routine processing

Based on survey area parameters and profile parameters, the program MAGN applies the following corrections and calculations to the geophysical and positioning data:

- Removal of artificial magnetic anomalies;
- Removal of single peak values;
- Reduction of diurnal magnetic variation, optionally smoothing of data;
- Transformation of recorded positioning data into geodetic coordinates.

Survey area parameters (punched cards):

- \(o \), \(y \): Origin of local survey system.
- \(a \): Distance factor for magnetometer reading.
- \(b \): Threshold for single peak values.
- \(c \): Distance from aircraft to line.
- \(d \): Distance factor for magnetometer data.
- \(e \): Constant reduction amount for magnetometer data.
- \(f \): Parameters for magnetic anomaly correction in Doppler navigation.
- \(g \), \(h \): Wave length in electromagnetic 2-way navigation.
- \(i \), \(j \): Coefficients of huminities in electromagnetic 2-way navigation.
- \(k \), \(l \): Coefficients of sensors in electromagnetic 2-way navigation.

Profile parameters, reference data (punched cards):

- \(G \), \(x \), \(y \): Number of values applied for data smoothing.
- \(S \): Maximal number of fiducials.
- \(P \): Profile number.
- Flight data, sky/observer.
- Time: Initial time of profile survey.
- Field data: Phase corrections in electromagnetic 2-way navigation.
- Fiducial number i.
- Distance to fiducial number i.
- Distance to next fiducial.
- Fix point coordinates.
- Corrected geophysical data or artificial magnetic anomalies.

Profile parameters, reference data (punched cards):

- Geographic coordinates (punched cards):
- Start point.
- End point.
- Distance between start and end point.
- Magnetic correction factor.
- Magnetic declination.
- Magnetic inclination.
- Relative distance of profile coordinates to next fix point.
- Corrected geophysical data or artificial magnetic anomalies.

Profile parameters, reference data (punched cards):

- Geographic coordinates (punched cards):
- Start point.
- End point.
- Distance between start and end point.
- Magnetic correction factor.
- Magnetic declination.
- Magnetic inclination.
- Relative distance of profile coordinates to next fix point.
- Corrected geophysical data or artificial magnetic anomalies.
MAGN (DSY)

CD 3100/3300

METHODE

ANGEBOT

LUXEMBURG

PROPHIL

68144

MESSEN

1

MAIP

500000

NEW

1

300000

1

10

40000

1

0.000015

18.5

0

3

1

PROPHILPARAMETER

<table>
<thead>
<tr>
<th>H</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>7</td>
<td>27</td>
<td>3020</td>
<td>25.08.68/NA 9.40</td>
</tr>
<tr>
<td>2</td>
<td>245</td>
<td>22</td>
<td>465000</td>
<td>372000</td>
</tr>
<tr>
<td>8</td>
<td>19</td>
<td>497005</td>
<td>302125</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>505945</td>
<td>302200</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>507945</td>
<td>302200</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>47138</td>
<td>47138</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>47138</td>
<td>47138</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>47137</td>
<td>47137</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>47136</td>
<td>47136</td>
<td></td>
</tr>
</tbody>
</table>

PARABEIS

PROFIL = 260

ORTNOKSSTREIFEN

WST = 22.06.68/300.5, LOKER = 11.07.68/26.

TEUER = 22.06.68/300.5, IM 13.17 HUR MIT WENSCHNEN NAVIGATION.

GLEITUNG DER MAFETOMETERFLOTE = 1, SONDERTREFFER = 0

** MITTEL KURSRPERIOD, VARIATION IN GAMMA**

<table>
<thead>
<tr>
<th>B1</th>
<th>B2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

MITTL. PROFILRICHTUNG IN GRAD

<table>
<thead>
<tr>
<th>B1</th>
<th>B2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

MITTL. ORTUNGSDIFFERENZ IN M

<table>
<thead>
<tr>
<th>B1</th>
<th>B2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

MAX. POSITIVE ORTUNGSDIFFERENZ IN M

<table>
<thead>
<tr>
<th>B1</th>
<th>B2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

MAX. INFERATIVE ORTUNGSDIFFERENZ IN M

<table>
<thead>
<tr>
<th>B1</th>
<th>B2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

PROFILLENGE IN KM

<table>
<thead>
<tr>
<th>B1</th>
<th>B2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

ORTNOKSSTREIFEN

<table>
<thead>
<tr>
<th>B1</th>
<th>B2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

STRECKEN-

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
</tr>
</thead>
</table>

WINKELFEHLER

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
</tr>
</thead>
</table>

PHANCHAB

Med. 002
Aerogeophysics

Linear Correlation of Data from Main and Control Profiles

3. Program of routine processing

The program VARI determines, by a least squares method, linear correlation functions for the geophysical data of main profiles M and control profiles K from data discrepancies at profile intersections, remaining after removal of short periodic variation. Residual discrepancies ΔW remaining after the functions have been applied are considered to be due to noise or navigation errors and are compensated in the vicinity of the intersections.

\[V_{R,H} = V_{H} + V_{K} \]

data discrepancy

\[n_{0,H} = 1 + n_{H} = n_{H,K} \]

weight of intersection

\[n_{0,H} = 0.25 \text{ for calculated intersections} \]

\[n_{0,K} = 1.0, 0.0 \text{ for observed intersections} \]

\[\frac{1}{2} \alpha \left(x_{R}, H \right) + \frac{1}{2} \alpha \left(x_{R}, K \right) \]

adjacent in the vicinity

of the intersection by a Gaussian curve

PRANCHA.9
VARI (DSY)

CD 3100/3300

Sample listing from AVARI

SCHNITTPUNKTENTWICKLUNG

<table>
<thead>
<tr>
<th>PROFIL</th>
<th>X</th>
<th>Y</th>
<th>T(k,x)</th>
<th>GEWICHT</th>
<th>T(k)</th>
<th>S(k)</th>
<th>S(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5022</td>
<td></td>
<td></td>
<td>±13.75</td>
<td>1.21964</td>
<td>7727</td>
<td>8013.129</td>
<td>57.535</td>
</tr>
<tr>
<td>761</td>
<td></td>
<td></td>
<td>±12.30</td>
<td>1.21949</td>
<td>7727</td>
<td>8013.129</td>
<td>57.535</td>
</tr>
<tr>
<td>772</td>
<td>772166</td>
<td>502256</td>
<td>±12.00</td>
<td>1.21999</td>
<td>7727</td>
<td>8013.129</td>
<td>57.535</td>
</tr>
<tr>
<td>703</td>
<td>772166</td>
<td>502231</td>
<td>±13.963</td>
<td>1.21974</td>
<td>7727</td>
<td>8013.129</td>
<td>57.535</td>
</tr>
<tr>
<td>796</td>
<td>772166</td>
<td>502218</td>
<td>±13.734</td>
<td>1.21979</td>
<td>7727</td>
<td>8013.129</td>
<td>57.535</td>
</tr>
<tr>
<td>866</td>
<td>772166</td>
<td>502222</td>
<td>±7.168</td>
<td>1.21961</td>
<td>7727</td>
<td>8013.129</td>
<td>57.535</td>
</tr>
<tr>
<td>816</td>
<td>772166</td>
<td>502231</td>
<td>±7.192</td>
<td>1.21969</td>
<td>7727</td>
<td>8013.129</td>
<td>57.535</td>
</tr>
<tr>
<td>827</td>
<td>772166</td>
<td>502226</td>
<td>±6.658</td>
<td>0.99994</td>
<td>7727</td>
<td>8013.129</td>
<td>57.535</td>
</tr>
<tr>
<td>838</td>
<td>772166</td>
<td>502226</td>
<td>±5.576</td>
<td>0.99991</td>
<td>7727</td>
<td>8013.129</td>
<td>57.535</td>
</tr>
<tr>
<td>889</td>
<td>772166</td>
<td>502228</td>
<td>±3.971</td>
<td>0.99997</td>
<td>7727</td>
<td>8013.129</td>
<td>57.535</td>
</tr>
<tr>
<td>820</td>
<td>772166</td>
<td>502230</td>
<td>±1.275</td>
<td>0.99998</td>
<td>7727</td>
<td>8013.129</td>
<td>57.535</td>
</tr>
<tr>
<td>851</td>
<td>772166</td>
<td>502231</td>
<td>±0.709</td>
<td>0.99999</td>
<td>7727</td>
<td>8013.129</td>
<td>57.535</td>
</tr>
<tr>
<td>892</td>
<td>772166</td>
<td>502231</td>
<td>±2.105</td>
<td>0.99999</td>
<td>7727</td>
<td>8013.129</td>
<td>57.535</td>
</tr>
</tbody>
</table>

VARIATIONSAUSGLEICH

<table>
<thead>
<tr>
<th>PROFIL</th>
<th>X</th>
<th>Y</th>
<th>KORR(k)</th>
<th>KORR</th>
<th>T(k)</th>
<th>A(k,x)</th>
<th>B(k,x)</th>
<th>KORR(k)</th>
<th>RESTWIDERSPR</th>
</tr>
</thead>
<tbody>
<tr>
<td>5022</td>
<td></td>
<td></td>
<td>±6.26</td>
<td>7716.16</td>
<td>±42.26</td>
<td>±0.00056</td>
<td>±13.42</td>
<td>±0.0103</td>
<td>±0.0562</td>
</tr>
<tr>
<td>761</td>
<td>±13.75</td>
<td>5022</td>
<td>±2.36</td>
<td>7726.23</td>
<td>±42.26</td>
<td>±0.00056</td>
<td>±13.42</td>
<td>±0.0103</td>
<td>±0.0562</td>
</tr>
<tr>
<td>772</td>
<td>±11.70</td>
<td>5022</td>
<td>±2.26</td>
<td>7726.23</td>
<td>±42.26</td>
<td>±0.00667</td>
<td>±13.42</td>
<td>±0.0103</td>
<td>±0.0562</td>
</tr>
<tr>
<td>703</td>
<td>±10.46</td>
<td>5022</td>
<td>±1.56</td>
<td>7726.23</td>
<td>±42.26</td>
<td>±0.00667</td>
<td>±13.42</td>
<td>±0.0103</td>
<td>±0.0562</td>
</tr>
<tr>
<td>796</td>
<td>±7.375</td>
<td>5022</td>
<td>±1.56</td>
<td>7726.23</td>
<td>±42.26</td>
<td>±0.00667</td>
<td>±13.42</td>
<td>±0.0103</td>
<td>±0.0562</td>
</tr>
<tr>
<td>866</td>
<td>±10.05</td>
<td>5022</td>
<td>±1.56</td>
<td>7726.23</td>
<td>±42.26</td>
<td>±0.00667</td>
<td>±13.42</td>
<td>±0.0103</td>
<td>±0.0562</td>
</tr>
<tr>
<td>816</td>
<td>±10.05</td>
<td>5022</td>
<td>±1.56</td>
<td>7726.23</td>
<td>±42.26</td>
<td>±0.00667</td>
<td>±13.42</td>
<td>±0.0103</td>
<td>±0.0562</td>
</tr>
<tr>
<td>827</td>
<td>±10.05</td>
<td>5022</td>
<td>±1.56</td>
<td>7726.23</td>
<td>±42.26</td>
<td>±0.00667</td>
<td>±13.42</td>
<td>±0.0103</td>
<td>±0.0562</td>
</tr>
<tr>
<td>838</td>
<td>±10.05</td>
<td>5022</td>
<td>±1.56</td>
<td>7726.23</td>
<td>±42.26</td>
<td>±0.00667</td>
<td>±13.42</td>
<td>±0.0103</td>
<td>±0.0562</td>
</tr>
<tr>
<td>889</td>
<td>±10.05</td>
<td>5022</td>
<td>±1.56</td>
<td>7726.23</td>
<td>±42.26</td>
<td>±0.00667</td>
<td>±13.42</td>
<td>±0.0103</td>
<td>±0.0562</td>
</tr>
<tr>
<td>820</td>
<td>±10.05</td>
<td>5022</td>
<td>±1.56</td>
<td>7726.23</td>
<td>±42.26</td>
<td>±0.00667</td>
<td>±13.42</td>
<td>±0.0103</td>
<td>±0.0562</td>
</tr>
<tr>
<td>851</td>
<td>±10.05</td>
<td>5022</td>
<td>±1.56</td>
<td>7726.23</td>
<td>±42.26</td>
<td>±0.00667</td>
<td>±13.42</td>
<td>±0.0103</td>
<td>±0.0562</td>
</tr>
<tr>
<td>892</td>
<td>±10.05</td>
<td>5022</td>
<td>±1.56</td>
<td>7726.23</td>
<td>±42.26</td>
<td>±0.00667</td>
<td>±13.42</td>
<td>±0.0103</td>
<td>±0.0562</td>
</tr>
<tr>
<td>851</td>
<td>±10.05</td>
<td>5022</td>
<td>±1.56</td>
<td>7726.23</td>
<td>±42.26</td>
<td>±0.00667</td>
<td>±13.42</td>
<td>±0.0103</td>
<td>±0.0562</td>
</tr>
<tr>
<td>892</td>
<td>±10.05</td>
<td>5022</td>
<td>±1.56</td>
<td>7726.23</td>
<td>±42.26</td>
<td>±0.00667</td>
<td>±13.42</td>
<td>±0.0103</td>
<td>±0.0562</td>
</tr>
<tr>
<td>851</td>
<td>±10.05</td>
<td>5022</td>
<td>±1.56</td>
<td>7726.23</td>
<td>±42.26</td>
<td>±0.00667</td>
<td>±13.42</td>
<td>±0.0103</td>
<td>±0.0562</td>
</tr>
<tr>
<td>892</td>
<td>±10.05</td>
<td>5022</td>
<td>±1.56</td>
<td>7726.23</td>
<td>±42.26</td>
<td>±0.00667</td>
<td>±13.42</td>
<td>±0.0103</td>
<td>±0.0562</td>
</tr>
<tr>
<td>851</td>
<td>±10.05</td>
<td>5022</td>
<td>±1.56</td>
<td>7726.23</td>
<td>±42.26</td>
<td>±0.00667</td>
<td>±13.42</td>
<td>±0.0103</td>
<td>±0.0562</td>
</tr>
</tbody>
</table>

PRANCHA - IO
Aerogeophysics

Regional Field

4. program of routine processing

The program determines and reduces the following best fitting regional fields from arbitrarily distributed field data:

linear:
\[I_R = a_{00} + a_{10} \Delta x + a_{01} \Delta y \]

quadratic:
\[I_R = a_{00} + a_{10} \Delta x + a_{01} \Delta y + a_{20} \Delta x^2 + a_{11} \Delta x \Delta y + a_{02} \Delta y^2 \]

with the origin \(x_0, y_0 \) and \(\Delta x = x - x_0, \Delta y = y - y_0 \)

The reduction of the regional field is needed for any type of geological interpretation.

PARAMETER

- **P** number of main profiles
- **Q** number of control profiles

\[\begin{align*}
\{x_0, y_0\} & \text{ coordinates of the origin of the regional field} \\
R & \text{ The regional field defined by the following parameters has to be removed} \\
\left(\begin{array}{c}
a_{00} \\
a_{10} \\
a_{01} \\
a_{20} \\
a_{11} \\
a_{02}
\end{array}\right) & \text{ coefficients of the regional field}
\end{align*} \]

DATA

The data format must be on tape in terms of \(x_i, y_i, H_i \).
REGI (DSY)
CD 3100/3500

Sections of magnetic maps

Isodynamic lines

Isogams (regional field reduced)

720 740

8020

720 740

PRANCHA-12
Aerogeophysics

Automatic Plotting of Flight Position with Map Grid
Separate control tapes for map grids are also produced by NE-803 programs VKE 1A and VKE 2A

The program LLP 1 G sorts surface coordinates of a flight traverse, provided on magnetic tape, from different map sheets and prepares punched paper tapes for the CORADOMAT plotter for automatic plotting of flight lines, map layout and coordinate grid.

INPUT DATA (PUNCHED CARDS)

1. PARAMETER

 - map layout: yes/no (0/1)
 - surface grid: yes/no
 - geographic grid: yes/no
 - block format: 24/64
 - factor for fiducials to be numbered

 Ellipsoid
 1: Bessel
 2: Clarke 1866
 3: Clarke 1880
 4: Everest
 5: Hayford (international)
 6: Krassowsky
 7: Name optional
 major semi-axis, flattening

 Projection
 1: Gauss-Krueger
 2: UTM

 Central Meridian
 1: input
 2: derived

 southern latitudes negative: yes/no

 number of scale
 grid selector for x, y
 grid selector for latitude
 grid selector for longitude

2. MAP SHEETS

 number of map sheets

 SW-point: geographic latitude/longitude
 SE-point: geographic latitude/longitude
 NE-point: geographic latitude/longitude
 NW-point: geographic latitude/longitude

 sheet 1
 sheet 2
ERFAHRUNGSLISTE LLP1G

AUFTRAG: 67027
Datum: 08.03.88/81
Anf.: 08.03.88/81

TEILMESSGEHÖLT: 5

ELLIPSID: HAYFORD

ABBILDUNG: UTM KARTE/MASSSTAB 1/200000

<table>
<thead>
<tr>
<th>Koordinaten der Karteneckpunkte</th>
<th>Grad Min Sek</th>
<th>METER</th>
<th>METER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punkt 1</td>
<td>10 0 0 000</td>
<td>780887.437</td>
<td>20605795.437</td>
</tr>
<tr>
<td>Punkt 2</td>
<td>10 0 000</td>
<td>7807099.016</td>
<td>20710572.008</td>
</tr>
<tr>
<td>Punkt 3</td>
<td>10 0 000</td>
<td>800847.610</td>
<td>2071768.891</td>
</tr>
<tr>
<td>Punkt 4</td>
<td>10 0 000</td>
<td>800950.524</td>
<td>20605671.308</td>
</tr>
</tbody>
</table>

PRANCHA: 14

Note: The image contains a diagram with measurements and coordinates, which are used in the context of surveying and geodesy.
Aerogeophysics

Computation of the Relief of a Homogeneously Magnetized Semispace

(Harmonic Analysis and Synthesis)

The program LMRB calculates distances of a homogeneously magnetized semispace from the survey level (e.g., relief of the magnetic basement) using magnetic data provided on an orthogonal grid.

Method: A. Hahn (1965), Program: E.G. Kind

Parameter:

- \(z_o \) Elevation of survey level above mean sea level
- \(z_Q \) Depth of interpretation level beneath mean sea level
- PPA Grid width
- \(\lambda \) Section width
- \(J_0 \) Magnetization = \(x \cdot F_0 \)
- \(N_{\text{Min}} \) lowest frequency applied for relief computation
- \(N_{\text{Max}} \) highest frequency applied for relief computation

The two-dimensional Fourier analysis of the data derives the amplitudes and phases of all possible partial waves, the summation of which represents the original field.

From the frequency spectrum the determination of mean depths of dominating magnetic sources is possible. Using inclination and declination of the magnetic earth field, the partial waves are transformed as being produced by vertical magnetized sources (reduction to the pole).

These partial waves are continued downward to the chosen mean interpretation depth, thereby enhancing the amplitudes depending on the frequency of the waves.

The magnetization of the semispace of interest is derived from geological data. Applying this magnetization, the amplitudes of the partial waves are converted to distances from the mean depth and added to form the relief.

PRANCHA - 15
CORREÇÕES AOS ÁBACOS PARA PLACA ESPESSA (PRANCHAS 19 A 23)

CÍRCULO DE θ

135º
NESTES QUADRANTES: TROCAR OS SINAIS DOS ÁBACOS

315º

180º
NESTES QUADRANTES: INVERTER OS ÁBACOS (USAR AS COSTAS DO PAPEL

0º

120º
LEGENDA

ANOMALIAS DE 200 - 500 m
ANOMALIAS DE 50 - 200 m
ALINHAMENTO DE MÁXIMOS
ALINHAMENTO DE MÍNIMOS

PROFUNDIDADE: FACE SUPERIOR - 1000 m
FACE INFERIOR - 3000 m
DIREÇÃO E MERGULHO: SW - NE - 30° S

ESCALA

0 5 10 km

3.000

1.000

30°
2 PLACAS DELGADAS

ESC. 1:100,000
PLACA ESPÉSSA

CURVA TIRADA DO ABACO
CURVA REAL

CORPO, SEGUNDO A CURVA DO ABACO: $\theta = -20^\circ$
$\beta = 40^\circ$

Mergulho: 46º
Escala Horizontal: 1:100,000