Invited review article

Geological and geochemical evolution of the Trincheira Complex, a Mesoproterozoic ophiolite in the southwestern Amazon craton, Brazil

Gilmar José Rizzotto a,⁎, Léo Afraneo Hartmann b

a Geological Survey of Brazil (CPRM), Rua 148, no. 485; 74170-110 Goiânia, Goiás, Brazil
b Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500; 91501-970 Porto Alegre, Rio Grande do Sul, Brazil

ABSTRACT

We document the first-known Mesoproterozoic ophiolite from the southwestern part of the Amazon craton, corresponding to the Trincheira Complex of Calymmian age, and propose a tectonic model that explains many previously enigmatic features of the Precambrian history of this key craton, and discuss its role in the reconstruction of the Columbia supercontinent. The complex comprises extrusive rocks (fine-grained amphibolites derived from massive and pillowled basalts), mafic-ultramafic intrusive rocks, chert, banded iron formation (BIFs), pelites, psammitic and a smaller proportion of calc-silicate rocks. This sequence was deformed, metasomatized and metamorphosed during the development of the Alto Guaporé Belt, a Mesoproterozoic accretionary orogen. The rocks were deformed by a single tectonic event, which included isoclinal folding and metamorphism of the granulite-amphibolite facies. Layered magmatic structures were preserved in areas of low strain, including amygdaloidal and cumulate structures. Metamorphism was pervasive and reached temperatures of 780–853 °C in mafic granulites and 680–720 °C in amphibolites under an overall pressure of 6.8 kbar.

The geochemical composition of the extrusive and intrusive rocks indicates that all noncumulus mafic-ultramafic rocks are tholeiitic basalts. The mafic-ultramafic rocks display moderate to strong fractionation of light rare earth elements (LREE), near-flat heavy rare earth element (HREE) patterns and moderate to strong negative high field strength element (HFSE) anomalies (especially Nb), a geochemical signature typical of subduction zones. The lowest units of mafic granulites and porphyroblastic amphibolites in the Trincheira ophiolite are similar to the modern mid-ocean ridge basalt (MORB), although they locally display small Ta, Ti and Nb negative anomalies, indicating a small subduction influence. This behavior changes to an island arc tholeiite (IAT) signature in the upper units of fine-grained amphibolites and amphibole-rich amphibolites, characterized by progressive depletion in the incompatible elements and more pronounced negative Ta and Nb anomalies, as well as common Ti and Zr negative anomalies. Tectono-magmatic variation diagrams and chondrite-normalized REE and primitive mantle normalized patterns suggest a back-arc to intra-oceanic island arc tectonic regime for the eruption of these rocks. Therefore, the Trincheira ophiolite appears to have originated in an intraoceanic supra-subduction setting composed of an arc-back-arc system. Accordingly, the Trincheira Complex is a record of oceanic crust relics obducted during the collision of the Amazon craton and the Paraguá block during the Middle Mesoproterozoic. Thus, the recognition of the Trincheira ophiolite and suture significantly changes views on the evolution of the southern margin of the Amazon craton, and how it can influence the global tectonics and the reconstruction of the continents.

© 2012 Elsevier B.V. All rights reserved.

Contents

1. Introduction .. 278
2. Geological framework and field characteristics .. 279
3. Petrography and mineral chemistry ... 281
3.1. Analytical methods ... 283

⁎ Corresponding author. Tel.: +55 62 99725559; fax: +55 62 32401417.
E-mail address: grgilmarjose@gmail.com (G.J. Rizzotto).

0024-4937/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.lithos.2012.05.027
1. Introduction

The paleogeographic continental reconstructions of the Mesoproterozoic commonly propose a link between eastern Laurentia and the western margin of the Amazon craton (Cawood et al., 2007; Dalziel, 1991; Hoffman, 1991; Keppie et al., 2001; Santos et al., 2008; Tolher et al., 2004a,b; Weil et al., 1998). The link between Amazonia and Laurentia is a key issue for the reconstruction of the Mesoproterozoic paleogeography. Over the past decade, different scenarios have been proposed for the evolution of the SW margin of the Amazon craton, primarily based on geochronological data (Bettencourt et al., 2010; Boger et al., 2005; Cordani and Teixeira, 2007; D’Agrèlla-Filho et al., 2008; Litherland et al., 1989; Sadowski and Bettencourt, 1996; Santos et al., 2000, 2008; Teixeira and Tassinari, 1984; Tolher et al., 2002, 2004a,b). All these previous investigations were conducted on a regional scale, without detailed field information or petrological, geochemical and structural data, limiting their interpretation of tectonic environments involved in the crustal growth of the southwestern Amazon craton. Several tectonic environments have been suggested and are related to the amalgamation of intra-oceanic magmatic arcs or back-arc and Wilson Cycle processes of ocean opening and closing (accretionary orogens). However, thus far, only Tolher et al. (2004a, 2006) have indicated the location of a suture zone between the adjoining Amazonia and Laurentia. In this work, we provide detailed field information and geochemical data which allow advancements in understanding the tectonic setting of the southwestern margin of the Amazon craton.

Distinguishing between accreted-terrane and terrane boundaries and sutures that separate different cratons or orogens involved in continent-continent collisions may be difficult because the distinction depends on identifying juxtaposed terranes that have significantly different magmatic and lithotectonic histories prior to collision but share a common history afterwards. Accretionary orogens may also be referred to as non-collisional, exterior orogens or zones of type-B subduction processes of ocean opening and closing (accretionary orogens). However, thus far, only Tolher et al. (2004a, 2006) have indicated the location of a suture zone between the adjoining Amazonia and Laurentia. In this work, we provide detailed field information and geochemical data which allow advancements in understanding the tectonic setting of the southwestern margin of the Amazon craton.

Thus, ophiolites are of prime importance to understanding of orogens and are essential to the definition of a suture zone. One of the difficulties in the study of ophiolite complexes in deformed regions is that they are generally emplaced early and undergo considerable deformation and alteration during subsequent orogenic events. Therefore, the identification of oceanic crust relics in ophiolites along a suture zone at which the Amazon craton collided with the Laurentia or Paraguá block to form a supercontinent has remained enigmatic for many years, despite intense study of the poorly exposed SW portion of the Amazon craton. Tolher et al. (2004a) believe that the E–W trending Nova Brasilândia belt marks the limit between the Amazon and Paraguá cratons and formed during the late Mesoproterozoic. However, the Nova Brasilândia belt has no petrotectonic association compatible with a suture zone and was interpreted as a rift-passive margin (Rizzotto, 1998). To date, there are no known ophiolites in the southwestern margin of the Amazon craton.

Most modern ophiolites have subduction zone chemical characteristics, indicating their magmatic and tectonic association with supra-subduction zone processes (Dilek et al., 1999; Ishikawa et al., 2002; Shervais, 2001; Stern and Bloomer, 1992). The well-studied Thybian ophiolites show a common geochemical progression in their magmatic evolution from initial MORB-like to IAT to boninitic. In general, these ophiolitic complexes show an internal stratigraphy and chemical composition represented by a lower suite of relatively evolved IAT lavas, a middle suite of depleted arc tholeiite rocks, and a stratigraphically higher suite of highly deformed boninitic rocks (Dilek and Furnes, 2009). The evolution in the geochemical behavior of magma from MORB-type to IAT is characterized by a progressive depletion of the incompatible elements and more pronounced negative Ta and Nb anomalies, as well as negative anomalies of Ti and Zr.

The recognition of ancient tectonic environments based on only their geochemical characteristics is restricted by chemical similarity and alteration. The uncertainty about the tectonic setting where such ophiolites formed is due to the common occurrence of MORB-like lavas, in addition to those more indicative of a suprasubduction zone setting (IAT). Likewise, several examples in the literature show us that the geochemical characteristics of Archean mafic-ultramafic volcanic rocks provide important information for understanding the evolution of the initial mantle-crust system (Arndt et al., 1997; Jochum et al., 1991; Polat et al., 1998; Puchtel et al., 1998; Sun, 1987). Similarly, the geochemical characteristics of modern volcanic rocks of different tectonic environment are distinct in terms of the behavior of HFSE, LFSE and REE (Pearce and Cann, 1973; Sun and McDonough, 1989).
In the case of the oceanic crust, studies of modern island arc basalts suggest that subduction of the oceanic lithosphere, with or without associated sediment, can continuously modify the chemical, isotopic and mineralogical composition of the overlying mantle wedge. The release of fluids and hydrous silicate melts from the down-going altered oceanic crust can result in the enrichment of incompatible elements in the mantle wedge above the subduction zone. In this context, back-arc basin basalts are MORB-like, with a subtle subducted slab flux component made evident by elevated large ion lithophile element (LILE) abundances. These abundances exhibit the typical spiked pattern of subduction-related arc basalts on multi-element plots, but the pattern is more subdued than that of arc basalts (Hawkins et al., 1994; Jenner et al., 1987). More recently, this geochemical duality (MORB to IAT) has been ascribed to the progressive depletion and metasomatism of a common melt source over the course of ophiolite formation (Dilek and Furnes, 2009). In other words, all magmatic components (i.e., MORB, IAT, and boninite) may have formed in the same oceanic environment, which witnessed the eruption of MORB-like lavas followed by IAT and boninites.

Our proposal of the existence of an ancient ocean crust in the southwestern Amazon craton represented by the Trincheira Complex is supported by field data, mineral chemistry and whole-rock geochemistry (mainly REE and trace elements). Thus, we follow the original methodology that established the ophiolite concept, based largely on field, petrological, and geochemical studies.

In this study, we present field data, mineral chemistry and whole-rock geochemistry to test this hypothesis. We emphasize trace elements and REE content to characterize the geotectonic environment and the evolution of magmatism that generated the Trincheira Complex. The result of this study is the recognition of ophiolites and their dismembered fragments and the concurrent identification of chemically distinct island-arc/back-arc volcanic and plutonic complexes. Preserved oceanic lithosphere commonly occurs along major tectonic sutures. The presence of oceanic lithosphere in the Alto Guaporé Belt and the evaluation of its origin establish constraints for tectonic reconstructions of the southwestern Amazon craton and provide some key issues related to reconstruction of the pre-Rodinia supercontinent.

2. Geological framework and field characteristics

The studied area is located on the boundary between the Sunsás and Rondônia–Juruena Provinces (Santos et al., 2008), southwestern Amazon craton (Fig. 1). Rizzotto et al. (2002) used geological and geochronological data to characterize a regional tectono-magmatic event with ages in the range of 1350 to 1320 Ma. Rizzotto and Dehler (2007) later called the resulting orogen the Alto Guaporé Mobile Belt (AGB) and interpreted it as having been derived from an accretional–collisional orogeny under conditions of medium to high metamorphic grade. The belt has the same temporal delimitation as the San Ignacio Orogeny in eastern Bolivia (Litherland et al., 1986) and the Rondonian (Teixeira and Tassinari, 1984) and Candeias (Santos et al., 2002) orogenies. This study reports new data that indicate that the Alto Guaporé Belt contains juvenile magmatism at 1468–1447 Ma that was reworked at 1350–1320 Ma (Rizzotto et al. unpublished data).

The Alto Guaporé Belt (WNW–ESE trend) is a large geotectonic feature extending from the southeastern portion of Rondônia to the southwestern portion of Mato Grosso, integrating an area of 1900 km², 95 km long by 20 km wide. The southern part of the complex is covered by the Cenozoic sediments of the Guaporé basin. Interpretation of the aeromagnetic data suggests a continuity of the Alto Guaporé Belt to the west–northwest along at least 400 km below the Phanerozoic cover, but geological observations suggest that it may extend up to 1000 km, reaching the Andean Cordillera. Its northern boundaries are the Nova Brasiliândia Terrane, Uopianes Basin, and Rondônia–Juruena Province. To the south, the boundaries are hidden below the Phanerozoic sedimentary rocks of the Guaporé basin (Fig. 2).

The Alto Guaporé Belt is primarily represented by the Trincheira Complex of mafic–ultramafic rocks initially described by Romanini (2000) and the Rio Galera Complex of dioritic–tonalitic rocks, in addition to various bodies of mafic–felsic intrusives (granitoids and gabbros) (Fig. 3). Typically of the oceanic domain the Trincheira Complex is composed of several disrupted, highly dismembered imbricate thrust slices forming an incomplete ophiolite sequence (Fig. 4).

The disrupted complex has an apparent stratigraphic sequence of layered mafic–ultramafic cumulates, intrusive mafic–ultramafic and extrusive mafic rocks with interbedded sedimentary clastic and chemical sequences. The deformation is heterogeneous, as indicated by highly deformed zones adjacent to areas with poorly developed foliation or a partly preserved primary texture. Although the original stratigraphy is not recovered here because of its structural complexity, superimposed metamorphism and sparsity of outcrops, the complex is divided into three units: a) Lower Unit: layered mafic–ultramafic (granulite-facies metamorphism): mafic granulites that has as protolith olivine orthopyroxenite, bronzite, and websterite; b) Intermediate Unit: intrusive mafic (amphibolite-facies metamorphism): banded amphibolites which has as protolith norite, gabbro, and anorthosite, gabbroanorthosite and rare plagiogranite; and c) Upper Unit: extrusive mafic rocks (amphibolite-facies metamorphism): fine-grained amphibolites (massive and pillowed basalt) with intercalations of chemical and sedimentary sequences consisting of metachert (BIFs), calc-silicate rocks and aluminous schist/quartzite. The close spatial relationship between the mafic intrusives of the intermediate unit and the extrusive rocks with comparable deformation and metamorphism suggests that they are co-genetic. Granulite-facies metamorphism ranges from the basal portions of the complex to amphibolite-facies in the upper zone of the complex with retrogression to middle amphibolite facies in an anastomosing network of mylonitic shear zones (Fig. 5a).

Mafic–ultramafic cumulates of the lower unit in the southern part of the complex have mostly anhedral granulite-facies parageneses of olivine–orthopyroxenite, bronzite and websterite protoliths. These are interlayered with rare plagiogranites and show transposed igneous banding into vertical structures. Narrow mylonitic shear bands cut granulitic rocks and turn them into amphibolites or tremolitites, actinolitites, serpentinites and actinolite-talc schists in variable proportions, derived from the deformation of the ultramafic components. Locally, these cumulate rocks are intruded by coarse-grained granitic dikes and dioritic–tonalitic rocks. The textures of the mafic–ultramafic granulites (Vernon, 1970) are fine-grained granoblastic aggregates with polygonal grain boundaries and common triple junctions. The characteristic mineral assemblage of metamorphosed mafic rocks is orthopyroxene + clinopyroxene ± plagioclase ± olivine throughout the entire granulate zone, with minor Ti-biotite, brown hornblende and ilmenite.

Norite, gabbro-norite, gabbro, anorthosite and gabbro-anorthosite intercalated in the lower sequence display cumulate textures commonly cut by high-angle, mm- to cm-scale mylonitic shear zones that have diffuse to sharp boundaries with the surrounding, slightly deformed or undeformed gabbros. These are usually present as layered bodies with primary compositional banding transposed into vertical structures by tectonic superposition and transformed into banded amphibolites. Additional observations include millimeter–to centimeter-thick alternate felsic layers composed of plagioclase and rare amphibole and mafic bands of amphibolite cumulates (originally pyroxene), and intermediate layers rich in plagioclase ± amphibole ± ilmenite ± titanite ± epidote ± quartz (Fig. 5b).

Amphibolites become predominant upward in the plutonic sequence, where multiple and mutually intrusive relations between granoblastic amphibolites (deformed small bodies of pyroxenites) and leucocratic metababbros are common. The mylonitic foliation has a high dip (>60°) to the SSW and a mineral lineation down-dip (>50°).
Metamorphic banding and closed-isoclinal and asymmetric folds are generally associated with tectonic foliation (Fig. 5c). The adjacent amphibolites and metasedimentary rocks are structurally conformable.

The amphibolites occur in the southeastern sector of the mafic-ultramafic complex. They are usually mylonitic, banded and folded, and fine-grained; rarely isotropic; commonly tectonically interlayered with dioritic-tonalitic gneiss, banded metagabbro, metagabbros, leucometagabbros and metapyroxenites. The units show a strong to vertical tectonic transposition. In zones of high strain, the amphibolites are fine-grained, with regular and uniform banding in the centimeter–millimeter scale displayed as a heterogeneous segregation of felsic bands of plagioclase and quartz alternating with mafic bands composed of amphibole. These lenses of amphibolites occur in sub-vertical positions as a result of compressive deformation. Isoclinal folds are frequent, as well as thin quartz veins that define pegmatitic and intragranular folds. In some locations, isoclinal folding and thickening of the hinge zone can be observed (Fig. 5c). In a few places, centimetric to metric pegmatoidal veins composed of K-feldspar, quartz and amphibole are observed, which were likely generated by the late segregation of hydrothermal fluids.

The upper unit is distributed in the northwestern sector and represented predominantly by fine-grained, gray amphibolites, which locally present partially preserved igneous textures and structures and can be characterized as metabasalts. These show a pervasive sub-horizontal jointing with centimeter spacing, representing sub-aerial volcanism (Fig. 5d). Millimeter- to centimeter-sized cavities are filled with an aggregate of epidote, garnet and quartz and may correspond to deformed amygdules (Fig. 5e) in relict pillow lavas. Likewise, bands of fine-grained, white material composed of quartz + plagioclase + epidote ± carbonate ± sulfide (interpillow material) bordering the better-preserved cores of the metabasalts resemble pillow structures (Fig. 5f). However, the high strain makes this identification questionable. Restricted bands with high sulfidation are common in fine-grained amphibolites affected by late, low-grade metamorphism (retrometamorphism), which transformed the rock into an assembly composed of actinolite + epidote + albite + quartz + pyrite ± chalcopyrite.

Pods of mafic-ultramafic rocks occur as bodies of several tens of meters contained in fine-grained amphibolites and suggesting intrusions in the form of sills. They occur as subrounded with preserved cores and sheared edges, usually distributed along the direction of the regional metamorphic foliation. They are mostly massive, coarse-grained, have a dark green to black color and outcrop as metric subangular boulders and a few bodies that are hundreds of meters in length (Fig. 6a). The pods occur along the zones with least deformation where the flow of metamorphic fluids is concentrated in low-pressure areas, often in the hinges of folds in pyroxenite and melagabbro protoliths. They often exhibit granoblastic aggregates of amphibole as well as porphyroblasts (up to 8 cm) surrounded by irregularly shaped grains of plagioclase (Fig. 6b). They are classified as porphyroblastic amphibolite with partially preserved igneous texture and structure. Nevertheless, they show a heterogeneous pattern in the behavior of the flow direction of metamorphism, with variation in the foliation trend depending on the rheology of the rock (Fig. 6c). Therefore, some outcrops contain megapods surrounded by shear bands in which the original rock has been partly transformed into ultramafic schist (actinolite schist, talc schist, and tremolite) (Fig. 6d). Metamorphic foliation rarely develops in the central parts of larger bodies, indicating a greater strength in relation to the same strain.

The fine-grained amphibolites are overlain by supracrustal rocks consisting of metacherts, calc-silicate rocks, banded iron formations (Fig. 7a), mylonitic gneiss, pelitic schists and aluminous quartzite. The clastic and chemical supracrustal rocks occur as lenses with elongated and sigmoidal forms and dimensions ranging from a few meters to kilometers in length. They are composed of biotite–muscovite–quartz schist, garnet–sillimanite–biotite schist, sillimanite–staurolite–biotite–quartz schist, sillimanite–garnet gneiss (Fig. 7b), hematite–magnetite quartzite, metamarls, and scarce kyanite quartzite. Generally, schists show pervasive pegmatitic folds constituted primarily of quartz and feldspar and lenses of quartz boudin, which are often generated by metamorphic segregation (Fig. 7c). Polycrystalline aggregates of quartz form less altered cores which were preserved from deformation along the sigmoidal foliation (Fig. 7d). Associated with the schists is a striking presence of metric veins (more rarely decametric) of white quartz with
sporadic centimeter muscovite plates, which form small ridges aligned along the regional foliation.

Farther to the southeast, two more bodies of ultramafic rocks may be part of the ophiolitic sequence; they are referred to as Morro sem Boné and Morro do Leme. They consist of strongly serpentinitized ultramafic rocks that are exposed discontinuously as two bodies layered within the metavolcanic–sedimentary sequence. The Morro sem Boné is a unique body elongated in a NE–SW trend and is approximately 5.5 km long and 1.0 km wide. It is intrusive into pelitic–psamitic supracrustal rocks. Its upper portion is predominantly composed of serpentinites, which exhibit strong sub-horizontal fracturing and intercalations of laterite and siliceous silcrete layers. The serpentinite grades at a lower topography into dunite, which is strongly fractured and transformed into a network of aggregates of serpentine, magnesite, silica and microcrystalline garnierite. Lenses of pyroxenite are intercalated with the dunite. Narrow lenses of amphibolites and actinolite schist were generated by shearing the pyroxenites.

In general, the rocks have a brittle–ductile foliation of an approximately N20E direction, subconcordant with the general direction of the massif. In the serpentinite, the original rock has been completely transformed because iron–magnesium minerals were leached and replaced by microcrystalline silica and iron oxides. In some places, the rock is porous and has low density, depending on its degree of alteration. A mesh-like texture was formed by the aggregate of fibrous serpentine surrounding the olivine. In drill cores, granite intrusions were observed in the layered dunes.

3. Petrography and mineral chemistry

The mineralogical characteristics and interpreted protoliths of the different types of mafic–ultramafic rocks are presented in Table 1. These rocks show metamorphic assemblages with penetrative foliation. The primary igneous mineralogy and texture are preserved in some rocks. Based on the mineral assemblages of the metamorphosed mafic–ultramafic rocks, two metamorphic zones are distinguished: a granulite zone (orthopyroxene + clinopyroxene + plagioclase + olivine) and a large amphibolite zone (hornblende + plagioclase + clinopyroxene + ilmenite + titanite ± epidote) resultant from retrogressive metamorphism of the granulite by continuous deformation during uplift and
exhumation. Igneous and metamorphic minerals are not easily distin-
guished on textural grounds in granulite-facies metamorphic rocks in
the region.

Mafic granulites have relict igneous textures consisting of elongated
and curved, wedge-shaped and plane twinning crystals (<2 mm) of
plagioclase. The crystals are surrounded by a granoblastic, polygonal
and isogranular matrix (<1 mm) consisting of plagioclase, diopside
and orthopyroxene. Relict igneous porphyroclasts (orthopyroxene +
plagioclase) (Fig. 8a) are usually deformed, elongate crystals partially
replaced by metamorphic minerals. In contrast with the metamorphic
pyroxene, the igneous pyroxene has ubiquitous exsolution lamellae,
while metamorphic orthopyroxene recrystallizes in granoblastic polygo-
nal aggregates. The contacts are polygonal, with angles of 120°. The
orthopyroxene is partially transformed along the rims into tschermakitic
hornblende. In shear micro-zones, magnesio-hornblende forms inter-
growths with cummingtonite, carbonate and rare quartz.

Magnesio-hornblende in fine-grained amphibolites occurs as prismatic
aggregates; together with epidote, they define the penetrative
foliation of the rock. Amygdules elongated by deformation are filled
with prismatic crystals of epidote and a fine granoblastic aggregate
of quartz ± albite ± ilmenite ± sulfides (Fig. 8b). The preserved igneous
features are represented in amygdaloidal zones (Fig. 8c), suggesting a
basaltic protolith (pillowed basalt).

Amphibole-rich amphibolites are spatially associated with fine-
grained amphibolites. The mineral assemblage is shown in Table 1
and Fig. 8d. Prismatic crystals and acicular actinolite surround the
porphyroclasts of magnesio-hornblende in some areas. The presence
of ghost crystals as porphyroclasts of pyroxene partially replaced by
magnesio-hornblende is also common. The sigmoidal penetrative
foliation is defined by the elongated prisms of amphibole and rare
chlorite (Fig. 8e). Relict igneous texture (ophitic texture) is observed
locally and granoblastic aggregates of plagioclase + quartz occur be-
tween the interstitial spaces of the amphibole.

Porphyroblastic amphibolites are less abundant than amphibole
rich-amphibolites. The porphyroblastic aggregates of magnesio-
hornblende with subrounded to elongated inclusions and fillets of
quartz along the planes of cleavage suggest the replacement of igne-
ous pyroxene by amphibole (Fig. 8f). Plagioclase and quartz aggre-
gates in a mosaic of 120° occur between amphibole porphyroblasts.

Metaltramic rocks are represented by orthopyroxene cumu-
lates (Fig. 8g), which exhibit an acdumulate texture represented by
their imbrication in a triple junction at angles of 120° of large crystals
of orthopyroxene. Rare post-cumulus crystals of plagioclase, magnesio-
and cummingtonite make up approximately 1%.

The metagabbros are coarse-grained and have the best-preserved
primary igneous features among the rocks (Fig. 8h). Metagabbro
bodies often escape pervasive internal deformation and this, in turn,
prevents the access of water, hampers recrystallization and hinders
hydratation of the igneous minerals. Ophitic and intergranular tex-
tures are present. However, plagioclase simplectites + hornblende
develop at the edges of the pyroxene. Throughout shear micro-
zones the primary minerals (plagioclase) are transformed to albite +
epidote + quartz and the pyroxene is partially transformed into
amphibole. The metamorphic changes are most evident at the edges
of the clinopyroxenes, where there is simplectitic intergrowth of magnesio-hornblende + plagioclase. Crystals of orthopyroxene are pseudometamorphosed to cummingtonite and magnesio-hornblende.

3.1. Analytical methods

Mineral analyses of mafic-ultramafic rocks were performed on polished thin sections of orthopyroxene, clinopyroxene, amphibole and plagioclase using a JEOL JXA-8530F EPMA five-spectrometer electron microprobe at the University of Western Australia. Online Table 1 presents representative compositions of these minerals. The analytical conditions were an accelerating voltage of 15 kV and a beam current of 20 nA. The elements analyzed and their standards were as follows: Na (jadeite), Mg (periclase), Al (corundum), Si (wollastonite), K (orthoclase), Ca (wollastonite), Ti (rutile), Cr (Cr metal), Mn (Mn metal) and Fe (Fe metal). All analytical X-ray lines were K alpha; counting times were 20 s for both peaks and backgrounds.

3.2. Results

3.2.1. Amphibole

The mafic granulites contain brown and greenish-brown amphiboles. According to Leake’s (1978) classification, brown amphibole is ferro-tschermakite hornblende and greenish-brown amphibole is tschermakite (Fig. 9a), with magnesium number (Mg#) between 0.47 and 0.72 and high TiO2 and Al2O3 contents. Their AlIV/AlVI ratios are <3.3, suggesting a secondary (metamorphic) origin. Although amphibole crystals are generally unzoned, they rarely show a lamellar intergrowth between tschermakite and cummingtonite. Green amphibole (magnesio-hornblende) occurs in close microshear zones that cut granoblastic mafic granulites. These amphiboles are similar to those of the adjacent amphibolites. The porphyroblastic amphibolite, fine-grained amphibolites and amphibole rich-amphibolite contain greenish-brown and green amphiboles, which vary from tschermakitic hornblende to magnesio-hornblende (Fig. 9a). Its Mg# value varies between 0.46 and 0.60, with TiO2 and Al2O3 contents between 0.22 and 0.91 wt.% and between 5.5 and 16.4 wt.%, respectively.

3.2.2. Orthopyroxene

Metamorphic orthopyroxene and Ca-clinopyroxene coexist in the mafic granulites of the Trincheira Complex. To distinguish between the igneous orthopyroxene and metamorphic orthopyroxene, we utilized a graphic that uses the ratio Fe2O3 + MgO versus Al2O3 (Bhattacharyya, 1971) (Fig. 9b), which is from unambiguously metamorphic orthopyroxene.

Orthopyroxene in mafic granulites has an enstatite to ferrosilite composition (Fig. 9c). The compositions of pyroxene are listed in
the Online Table 1. The Mg# ranges between 0.48 and 0.61, with Cr$_2$O$_3$ and TiO$_2$ contents varying between 0 and 0.03 and 0 and 0.08 wt.%, respectively. Al$_2$O$_3$ decreases from the core (1.92 wt.%) to the overgrowth rim (1.08 wt.%).

3.2.3. Clinopyroxene

Clinopyroxene in the mafic granulites (En$_{25-35}$, Wo$_{45-47}$, Fs$_{18-30}$) is diopside; in one analysis, it is hedenbergite (Fig. 9d). It has an Mg# between 0.85 and 1.90 and Cr$_2$O$_3$ and NiO contents between 0 and 0.09 wt.% and 0 and 0.019 wt.%, respectively. Al$_2$O$_3$ and TiO$_2$ contents range from 0.62 to 2.35 wt.% and 0.01 to 0.26 wt.%, respectively (Online Table 1).

3.2.4. Plagioclase

Plagioclase in both mafic granulites and amphibolites is almost unzoned. Although twinning is completely destroyed in most cases,
it is still discernible in some crystals. In the mafic granulites, the plagioclase is labradorite (An61–67). In one sample, the plagioclase is bytownite (An75), while in the amphibolites it varies from andesine to labradorite (An36–65) (Fig. 9e). In amphibole-rich amphibolites, the plagioclase medium grains in the matrix are zoned, with core compositions of An80 decreasing to An50 toward the rims. Plagioclase is often transformed to epidote in the amphibole-rich amphibolites and fine-grained amphibolites.

3.3. P–T estimates

The temperatures and pressure during the metamorphism of the Trincheira mafic-ultramafic Complex have been estimated using the hornblende-plagioclase thermometer of Holland and Blundy (1994) and the aluminum-in-hornblende geobarometer (in the absence of garnet) of Schmidt (1992), respectively. The temperatures were calculated for plagioclase–amphibole pairs that show clear contacts at their boundaries from samples of both granulites and amphibolites. For the specific pressure of 6.8 kbar, temperatures of 820–853 °C and 680–720 °C were estimated for mafic granulites and amphibolites, respectively. Also, we used clinopyroxene–orthopyroxene (two-pyroxene geothermometer) in the mafic granulites to establish a solvus temperature, based on the miscibility gap and the distribution of Ca and Na between both pyroxenes and Fe–Mg exchange reaction between the mineral phases of the geothermometer, according to the empirical calibrations of Wood and Banno (1973). Phase chemistry calculations on granulites show ambient P–T conditions to have been in the range 780–820 °C (clinopyroxene–orthopyroxene equilibria), a temperature value close to those calculated by hornblende-plagioclase thermometer of Holland and Blundy (1994).

The above P–T estimates in both geothermometers are in agreement with an overall metamorphic overprint under granulate (c. 780–853 °C and 6.8 kbar) and amphibolite (c. 680–720 °C and 6.4 kbar) facies conditions. The peak metamorphic conditions (i.e., 850 °C and 6.8 kbar) correspond to a burial depth of c. 20–30 km.

4. Whole-rock chemistry

4.1. Analytical methods

The samples were pulverized using an agate mill at a 150-mesh fraction in the laboratory of Geological Survey of Brazil-CPRM, and the analyses were performed at Acme Analytical Laboratories Ltd. (Vancouver, Canada). The samples were mixed with lithium borate and lithium tetraborate and fused at 1000 °C in an induction furnace. The molten beads were rapidly digested in a solution of 5% HNO3 containing an internal standard and mixed continuously until complete dissolution. The loss on ignition (LOI) was determined by measuring the weight lost during heating at 1000 °C over a three-hour period.

Major elements and several minor elements were determined by emission spectrometry (ICP), while the trace elements and REE were determined by mass spectrometry (inductively coupled plasma mass spectrometry–ICP-MS). Additionally, a fraction of 0.5 g was removed for digestion in aqua regia (heated to 95 °C) and analyzed for base metals and precious metals by mass spectrometry (ICP-MS). The accuracy and precision of the geochemical data are presented in the Online Appendix.

Selected elements were normalized to primitive mantle (pm) (Hofmann, 1988) and chondrite (cn) (Sun and McDonough, 1989). Nb (Nb/Nb*), Zr (Zr/Zr*), Ti (Ti/Ti*) and Eu (Eu/Eu*) ratios were calculated with respect to the neighboring immobile elements, following the method developed by Taylor and McLennan (1985). The samples were recalculated to a 100% anhydrous basis for intercomparisons. Mg numbers (Mg#) were calculated with a molecular ratio of 100 Mg/(Mg + Fe2+) 0.15, assuming that FeO/(Fe2O3) = 0.15.

4.2. Results

The data of major elements, trace elements, REE and inter-element ratios of the most significant mafic-ultramafic rocks of Trincheira Complex are presented in Table 2 and Online Table 2. Based on the characteristics of the field, petrographic study and the abundance of major elements (e.g., SiO2 and MgO), the metavolcano-plutonic rocks can be divided into five main groups: (1) fine-grained amphibolite, (2) amphibole-rich amphibolite, (3) porphyroblastic amphibolite, (4) mafic granulite, and (5) mafic-ultramafic cumulate.

Before considering a petrogenetic interpretation, an investigation was conducted to evaluate the geochemical mobility of elements by hydrothermal alteration, amphibolite to granulate facies metamorphism, polyphase deformation and the metasomatism eventually suffered by the mafic-ultramafic rocks of the sequence.

Many petrochemical studies have demonstrated that Zr is one of the least mobile elements in the geochemical system (Pearce and Peate, 1995; Pearce et al., 1992; Winchester and Floyd, 1977). This element has been used as an independent index of geochemical variation for studies of both the geochemical behavior of modern volcanic rocks (Murton et al., 1992) and Archean rocks (Polat et al., 2002). Therefore, we adopted a similar procedure in this study to evaluate the effects of the changes in the mafic-ultramafic rocks.

The mobility of K, Rb, Na, Ba, Sr, Ca, P and Fe has been demonstrated in studies of metamorphosed volcanic rocks (Arndt, 1994; Brunsmann et al., 2000; Frei et al., 2002). In contrast, REE, HFSEs, Al, Cr and Ni have lower mobility (Jochum et al., 1991; Ludden et al., 1982). However, the mobility of the elements of each case must be tested. An effective method was proposed by Cann (1970), in which an immobile element is plotted on the horizontal axis of a diagram of bivariate variation and the element to be evaluated is plotted on its vertical axis. This was used as a criterion to evaluate the effects of alteration and the magnitude of correlation of Zr in binary diagrams (Fig. 10). Elements with a
correlation coefficient (R) < 0.75 were regarded as mobile (Polat et al., 2004) and will not be used for petrogenetic interpretation. Therefore, we have assessed the effect of alteration on these elements in all sample mafic–ultramafic rocks. The abundance of the elements Si, K, Na, Sr and Ba show moderate variations (e.g., K2O = 0.13–1.2 wt.%; Na2O = 0.33–3.8 wt.%; Sr = 71–301 ppm and Ba = 20–420 ppm), which do not correlate well with Zr abundances (Fig. 10), and show weak correlations with MgO contents (Appendix B — Fig. 1). Accordingly, these elements were screened out and not used for petrogenetic interpretation.

On the diagrams of Zr vs. Ti, Nb, Y and REE, most samples display systematic correlation consistent with a relatively low mobility of these elements in the Trincheira mafic–ultramafic rocks (Fig. 10). Similarly, despite its weak dispersion, there is a good correlation for these elements on MgO variation diagrams (Appendix B — Fig. 1).
In addition, the evidence suggesting low mobility of Ti, Nb, Zr, Th and REE (except Ce) includes the following: (1) Th–Nb–La–Gd inter-element relationships do not correlate with loss on ignition (LOI) (Appendix B — Fig. 2); (2) the samples have consistent and coherent primitive mantle-normalized trace element patterns (Fig. 11). Thus, these elements are widely considered to be immobile and have not been significantly affected by post-magmatic alteration, and variations in their abundances can be attributed to olivine and/or pyroxene fractionation.

There is no evidence for any crustal contamination, according to initial Sr–Nd composition, by significantly older rocks in the Trincheira Complex (Rizzotto et al. unpublished data). Likewise, the absence of xenocrystic zircons in the Trincheira mafic–ultramafic rocks is also consistent with the absence of the continental crust in their geodynamic setting. The granitoids and felsic dykes in the region are younger than the Trincheira mafic–ultramafic rocks.

Most of mafic–ultramafic rocks plot in the basaltic field on a Zr/Ti–Nb/Y diagram, and only three samples are basaltic andesite (Fig. 12a). In variation diagrams with Zr (Fig. 10), mafic–ultramafic rocks show coalinear trends for the HFSE, REE and transition metals, indicating their comparable composition. The mafic–ultramafic rocks were divided into five main groups (mafic–ultramafic cumulates are not shown), depending on the chemical characteristics of trace elements when normalized to chondrite and primitive mantle, according to Hofmann (1988) and Sun and McDonough (1989), respectively (Fig. 11, Table 2).

4.2.1. Fine-grained amphibolites

Fine-grained amphibolites are characterized by variable contents of SiO2 and MgO; high FeO and Al2O3; moderate TiO2 and CaO; and Mg# ranging from 34 to 52. Al2O3/TiO2 ratios are sub-chondritic, whereas Ti/Zr and Zr/Y range from sub-chondritic to super-chondritic (Table 2 and Online Table 2). Additionally, the fine-grained amphibolites show: (1) weak depletion to slightly fractionated LREE patterns (La/Sm = 0.62–1.15); near-flat REE patterns (La/Yb = 0.74–1.40); (2) flat to weak enrichment HREE pattern (Gd/Yb = 1.1–1.4) with moderate negative Nb, Ti, Zr anomalies; and no negative Eu anomalies (Fig. 11a–b, Table 2).

4.2.2. Amphibole rich-amphibolites

Amphibole rich-amphibolites have higher contents of MgO and FeO, but low Zr and Ni and moderate to variable SiO2. CaO and TiO2 contents compared to modern average mid-ocean ridge basalt (MORB) (see Hofmann, 1988). Their Mg# range from 37 to 62 and their Al2O3/TiO2 ratios are slightly sub-chondritic, whereas the Zr/Y ratios are sub-chondritic to slightly super-chondritic and Ti/Zr ranges from sub-chondritic to super-chondritic (Table 2 and Online Table 2). On chondrite and primitive mantle-normalized diagrams they have: (1) weak to moderate fractionation LREE patterns (La/Sm = 0.85–1.27; La/Yb = 0.86–2.17); slight fractionation HREE patterns (Gd/Yb = 1.02–1.67); moderate to large negative Nb, Ti, Zr anomalies; and very weak or absent negative Eu anomalies (Fig. 11c–d, Table 2).

4.2.3. Porphyroblastic amphibolites

Porphyroblastic amphibolites have Zr/Y (1.9–3.0) ratios comparable to modern tholeiitic basaltic (Zr/Y = 1.3–3.1) (Barrett and Maclean, 1994). They have Mg# ranging from 52 to 62 and small variations of SiO2, TiO2, FeO, Al2O3, MgO, Zr and REE contents (Fig. 8 and Table 2). The Al2O3/TiO2 ratios are slightly sub-chondritic, whereas the Zr/Y ratios are sub-chondritic to slightly super-chondritic. The Ti/Zr ratios range from sub-chondritic to super-chondritic.

On the chondrite and primitive mantle-normalized diagrams, they have: (1) near-flat total REE patterns, slight depletion LREE patterns (La/Sm = 0.50–1.0); near-flat HREE patterns (Gd/Yb = 0.93–1.4);
expressed as Fe\(^{2+}\). Mg\(^#\)=100 Mg/(Mg+Fe\(^{2+}\)) assuming Fe\(^{2+}\)/FeO=0.15. LDL = lower than detection limit. There is a large variation in Ni, and moderate variations in Co, V, Zr, Y and Al\(_2\)O\(_3\) and TiO\(_2\) contents, while their Mg\(^#\) range from 49 to 60. On chondrite and primitive mantle-normalized diagrams they have: whereas the Ti/Zr ratios are sub-chondritic to super-chondritic. In addition, the Gr"="0.96–1.12) anomalies (Fig. 11e–f and Table 2). The Al\(_2\)O\(_3\)/TiO\(_2\) ratios are sub-chondritic, whereas the Ti/Zr ratios are sub-chondritic to super-chondritic. In addition, the Zr/Y ratios are super-chondritic (Table 2 and Online Table 2). On chondrite and primitive mantle-normalized diagrams they have: (1) slightly depleted LREE patterns (La/Sr\(_{\text{cn}}\)=0.67–0.98); flat to slightly fractionated HREE patterns; large negative Nb, Ti, and Zr anomalies; and no Eu (Eu/Eu*=0.96–1.12) anomalies (Fig. 11e–f and Table 2).

4.2.4. Mafic granulites

Mafic granulites are chemically very similar to porphyroblastic amphibolites. They are compositionally uniform in SiO\(_2\), FeO\(_{Total}\), CaO, MgO, Al\(_2\)O\(_3\) and TiO\(_2\) contents, while their Mg\(^#\) range from 49 to 60. There is a large variation in Ni, and moderate variations in Co, V, Zr, Y and REE concentrations (Table 2). The Al\(_2\)O\(_3\)/TiO\(_2\) ratios are sub-chondritic, whereas the Ti/Zr ratios are sub-chondritic to super-chondritic. In addition, the Zr/Y ratios are super-chondritic (Table 2 and Online Table 2). On chondrite and primitive mantle-normalized diagrams they have: (1) slightly depleted LREE patterns (La/Sr\(_{\text{cn}}\)=0.67–0.98); flat to slightly fractionated HREE patterns; large negative Nb, Ti, and Zr anomalies; and no Eu anomalies (Fig. 11g–h and Table 2).

| Table 2 |
|------------------|------------------|------------------|------------------|------------------|------------------|
| Representative major (wt.%) and trace element (ppm) concentrations and significant element ratios for mafic-ultramafic rocks. Major elements oxides in wt.%. FeO\(_{Total}\), Mg\(_O\), Al\(_2\)O\(_3\) and TiO\(_2\) contents, while their Mg\(^#\) range from 49 to 60. There is a large variation in Ni, and moderate variations in Co, V, Zr, Y and REE concentrations (Table 2). The Al\(_2\)O\(_3\)/TiO\(_2\) ratios are sub-chondritic, whereas the Ti/Zr ratios are sub-chondritic to super-chondritic. In addition, the Zr/Y ratios are super-chondritic (Table 2 and Online Table 2). On chondrite and primitive mantle-normalized diagrams they have: (1) slightly depleted LREE patterns (La/Sr\(_{\text{cn}}\)=0.67–0.98); flat to slightly fractionated HREE patterns; large negative Nb, Ti, and Zr anomalies; and no Eu anomalies (Fig. 11g–h and Table 2). |

4.2.5. Mafic–ultramafic cumulates

The mafic–ultramafic cumulates were divided into two groups: (a) those with pyroxene-rich cumulates and (b) those with plagioclase-rich cumulates. The first show variable SiO\(_2\), FeO\(_{Total}\) and CaO; high MgO (16.3–19.2 wt.%); and low Al\(_2\)O\(_3\) and TiO\(_2\) contents. Their Mg\(^#\) range from 76 to 80. Additionally, the first group has high Ni (423–546 ppm) and Cr (1608–3770 ppm) and moderate Co, V, Zr, Y and REE contents (Table 2 and Online Table 2). The Al\(_2\)O\(_3\)/TiO\(_2\) ratios were sub-chondritic, whereas the Ti/Zr ratios were sub-chondritic to super-chondritic. In addition, the Zr/Y ratios were super-chondritic (Table 2 and Online Table 2). On chondrite and primitive mantle-normalized diagrams they have: (1) slightly depleted LREE patterns (La/Sr\(_{\text{cn}}\)=0.67–0.98); flat to slightly fractionated HREE patterns; large negative Nb, Ti, and Zr anomalies; and no Eu anomalies (Fig. 11g–h and Table 2).
(13–16) and Ti/Zr (40–82) ratios are sub-chondritic, whereas the Zr/Y (1.5–2.6) ratios are sub-chondritic to super-chondritic. In addition, they display the following trace element characteristics in chondrite and primitive mantle-normalized diagrams: (1) LREE enriched patterns; moderately fractionated HREE patterns; large negative Nb, Ti, and Zr anomalies; and variably negative Eu anomalies (Table 2).

In comparison to pyroxene rich-cumulates, plagioclase rich-cumulates have similar SiO₂ but lower Fe₂O₃, MgO and TiO₂ and
higher CaO and Al₂O₃ contents. Their Mg-numbers are slightly lower, ranging from 68 to 79. They display lower and variable Ni and Cr; low Co, V, and Zr; and variable Y contents (Table 2 and Online Table 2). The plagioclase-rich cumulates also have Al₂O₃/TiO₂ and Ti/Zr ratios that are super-chondritic, while the Zr/Y ratios are sub-chondritic.

On chondrite and primitive mantle-normalized diagrams, they have: (1) near-flat LREE patterns; slightly fractionated HREE patterns; pronounced negative Nb, Ti, and Zr anomalies; and moderately positive Eu anomalies (Table 2 and Online Table 2).

5. Geodynamic setting and petrogenesis

This study documents an association of mafic–ultramafic rocks that were deformed, metasomatized and metamorphosed during the development of an accretionary orogen. Its extrusive rocks are predominantly massive basalts [now fine-grained amphibolites]. Together with porphyroblastic amphibolites, mafic granulites, ultramafic rocks, chert, BIFs, pelites, psammitic and smaller proportion calc-silicate rocks, this association represents an ophiolitic sequence. While the rocks do not outcrop continuously due to the thick weathered material and the development of lateritic crusts in the tropical weather conditions that are characteristic of the hot and humid Amazon region, a continuous phase of deformation, including isoclinal folding and metamorphism of the granulite-amphibolite facies have been recognized. However, amygdaloidal, cumulate and layered magmatic structures have been preserved in areas of low strain in the rocks that comprise the Trincheira Complex. The presence of these primary structures provides a unique opportunity to study the characteristics of hydrothermal alteration, magma...
genesis and geodynamic processes. In this way, magmatism in the back-arc basins appears to result from the same basic processes responsible for the production of mid-ocean ridge basalt (MORB), or rifting of the oceanic crust leads to the passive uplift and partial melting of the upper mantle. Therefore, in many compositional aspects, back-arc basin basalts (BABB) are similar to MORBs (Taylor and Martinez, 2003). In detail, however, the evolution of back-arc basins is closely related to the processes of plate subduction, and the magmatism of back-arc basins is chemically and physically more variable than the magmatism generated at mid-ocean ridges. Specifically, the center of the spreading back-arc basin is positioned relatively close to active volcanic arcs and trench, and thus they are inevitably influenced by “components” derived from the subducted slab. It is believed that the water derived from the dehydration of the subducted slab should be the main carrier of such components, and many studies have shown that the role and methods of transport by water and fusion differ systematically, mainly in back-arc basins and on mid-ocean ridges (Pearce and Stern, 2006).

The mafic–ultramafic rocks of Trincheira Complex represent mid-ocean ridge basalts (MORB) and island arc tholeiites. In general, the HPSE concentrations in the volcano-plutonic rocks of the Trincheira Complex are lower than those of modern N-MORBs (Table 2), indicating that the Mesoproterozoic mantle that originated the rocks of Trincheira Complex was more depleted in these elements when compared to modern N-MORB upper mantle. In addition, the mafic–ultramafic rocks have low Ni contents, which suggests that they are not derived from primary magmas that have undergone the fractionation of olivine.

The chemical characteristics presented above indicate that fine-grained amphibolites and amphibole-rich amphibolites, on the one

![Fig. 12. (a) Distribution of mafic–ultramafic rocks of the Trincheira Complex, which occupy predominantly the field of basalts. Diagram modified from Pearce, 1996; (b) Th/Yb versus Ta/Yb and (c) Nb/Yb plots to show the distribution of the mafic–ultramafic rocks of the Trincheira Complex compared with oceanic island basalts (OIB), basalts derived from depleted sources (MORB), enriched source (E-MORB), uncontaminated intracontinental plate basalts and basalts derived from active continental margins; (d–e) distribution of samples of mafic granulites and porphyroblastic amphibolites (dotted area) in the field delimited by back-arc basin basalts of Pearce and Peat (1995); (f) distribution of samples of porphyroblastic amphibolites and mafic granulites in the field of BABB; and fine-grained amphibolites and amphibole-rich amphibolites in arc environment defined by Pearce and Stern (2006).]
hand, and porphyroblastic amphibolites and mafic granulites, on the other, show specific characteristics of trace elements and REE, suggesting different sources and petrogenetic origins for these spatially and temporally associated groups of rocks. However, as a whole, the chemical differences when comparing the concentrations of REE and trace elements are subtle. Both groups show collinear trends of trace elements, HFSE, REE and transition metals in Zr variation diagrams showing broadly similar compositions (Fig. 10 and Table 2). However, when observed in detail, there are small differences between the groups formed by fine-grained amphibolites and amphibole-rich amphibolites. These trace element patterns show weak enrichment in LREE, enrichment in LILE (e.g., Rb, Ba, Sr and K) and a strong depletion of HFSE (e.g., negative Nb, Ti and Zr anomalies) consistent with a subduction zone geochemical signature (Saunders et al., 1991; Hawkesworth and Hooper, 1993; Pearce and Peate, 1995).

Additionally, the strong signature of the arc is evidenced by the enrichment of Pb and LILE relative to HFSE, which would involve a substantial amount of the subduction components having been present in the mantle source during the generation of fine-grained amphibolites and amphibole-rich amphibolites.

The igneous activity in island-archs and back-arc basins is similar in some respects, although arc crustal growth is dominantly thickening due to the accumulation of lava and intrusion by magmatic underplating, while the crustal growth in the back-arc basin is caused by seafloor spreading (Hawkins et al., 1994). Flows of the intra-oceanic arc are characterized by high Ba/La and low Ce/Pb, combined with low (La/Yb)Nd and moderate K/Rb ratios.

When studying suites of subduction-related basalts, Pearce (1982) found bivariate diagrams based on trace elements ratios to be useful in separating subduction-related from mantle components in the petrogenesis of the magmas. Fig. 12b is such a diagram, showing the variations of Th/Yb versus those of Ta/Yb. Compared to mid-ocean-ridge basalts (MORB) and uncontaminated intra-plate basalts, the majority of the Trincheira Complex data plot within the field defined by oceanic island-arc basalts, where fine-grained amphibolites and amphibole-rich amphibolites show higher Th/Yb ratios in relation to mafic granulites and porphyroblastic amphibolites, presumably reflecting the influence of subduction-zone fluids enriched in Th in their petrogenesis. In addition, the MORB affinity for mafic granulites and porphyroblastic amphibolites and the island arc-related character of the fine-grained amphibolites and amphibole-rich amphibolites are well demonstrated on a Nb/Yb-Th/Yb diagram (Fig. 12c). The MORB and OIB domains form a diagonal mantle array on this discriminant diagram, whereas magmas that have a subduction component are displaced to higher Th/Yb values.

In the remaining two discriminant diagrams (HSFSEs), mafic granulites and porphyroblastic amphibolites show weak depletion in LREE and variable degrees of depletion of HFSE (Nb, Ti, and Zr), as shown in the diagrams of conservative elements in subduction systems (Pearce and Peate, 1995) (Fig. 12d and e) and similarly to modern back-arc basin basalts (BABB). Likewise, the diagrams show the influence of components derived from the subducted slab as enrichments in Rb, Ba and Sr, but lower quantities to fine-grained amphibolites and amphibole-rich amphibolites. The elements with low ionic potential are most readily mobilized by a fluid phase, and their enrichment in island-arc basalts has been attributed to the metasomatism of their mantle source region by hydrous fluids derived from the subducted oceanic crust.

On Fig. 12f most samples of mafic granulites and porphyroblastic amphibolites of the Trincheira Complex are plotted in the BABB field, while the fine-grained amphibolites and amphibole-rich amphibolites are distributed in the field delimited by the rocks’ arc setting, some of which are transitional to BABB.

5.1. Trincheira Complex: implications for Columbia supercontinent

Ophiolites represent fragments of upper mantle and oceanic crust that were incorporated into mountain belts during subduction-accrretion events. They are generally found along suture zones in both collisional-type and accretionary-type orogenic belts that mark major boundaries between amalgamated plates or accreted terranes (Lister and Forster, 2009). Thus, subduction-related lithosphere and ophiolites develop during the closure of ocean basins. Some of the main processes of ophiolite genesis and emplacement overlap in time with major orogenic events that led to the construction of supercontinents. Likewise, the formation of supercontinents is commonly explained by the coalescence of numerous continental fragments (cratons, microcontinents) along sutures formed by the closure of ocean basins between them (Urrug, 1992). Examples of Phanerozoic orogenic events include the Famatian and Caledonian (Baltica–Laurentia collision) orogenies in the early Paleozoic, which collectively formed the Gondwana and Laurasia supercontinents, and the Appalachian–Hercynian and Altai–Uralian orogens later in the Paleozoic, which built the Pangea supercontinent (Moore et al., 2000). These Phanerozoic ophiolites commonly show MORB to IAT geochemical affinities. Similar tectonic processes probably occurred in the Proterozoic through which supercontinents were formed by the amalgamation of pre-existing continental masses, with the concomitant disappearance of the intervening oceans.

Many alternative configurations have been proposed for the Paleo- to Mesoproterozoic Columbia supercontinent, although its configuration is based on the available paleomagnetic data that are normally affected by large uncertainties, especially regarding paleolongitudes (Bispo-Santos et al., 2008; D’Agrella-Filho et al., 2012; Hou et al., 2008; Johansson, 2009; Kusky et al., 2007; Meert, 2002; Pesonen et al., 2003; Rogers and Santosh, 2002; Zhao et al., 2002, 2004, 2006). The possibility that this phase of Earth history involved assembly of a supercontinent was suggested by the abundance of organic activity between about 1.8 Ga and 1.6 Ga (Rogers and Santosh, 2004). According to previous work there is evidence to show that, following its assembly at circa 1.3 Ga, the Columbia supercontinent underwent long-lived (1.8–1.2 Ga) accretion along some of its continental margins. In our view, the configuration of Columbia implies subduction-related outgrowth along the southwestern margin of the Amazon craton around 1.47 to 1.35 Ga.

The age and the character of the Paleo- to Mesoproterozoic belts of SW Amazon craton permit correlation with the Svecofennian domain and the Transcendianian igneous belt within Baltica and also with the Mid-continent region of Laurentia. These similarities led several authors to propose a possible link between the north-northeastern Amazon craton and southwestern Baltic (e.g., Cordani et al., 2009; Geraldes et al., 2001; Johansson, 2009; Sadowski and Bettencourt, 1996; Zhao et al., 2002, 2004, 2006). Both cratons show subduction-related accretionary belts, which are inferred throughout the Mesoproterozoic at the margins of such contiguous crustal nccc. In contrast, paleomagnetic data presented by Bispo-Santos et al. (2008) and Pesonen et al. (2003) indicate that these cratons were not linked. New paleomagnetic data from D’Agrella-Filho et al. (2012) provides a test for the longevity of the previously proposed Columbia paleogeography and led the authors to suggest that the break-up of Columbia must have taken place before 1420 Ma. But the paleogeography of the Amazon craton closer to Baltica in the Mesoproterozoic is also allowed by the paleomagnetic data.

In this work, the recognition of the Trincheira ophiolite and suture significantly changes views on the evolution of the southern margin of the Amazon craton, and how it can influence the global tectonics and the reconstruction of the continents. It also modifies current ideas about Amazonia’s role in plate reconstructions of the Columbia supercontinent.

The relation of Amazonia, Laurentia and Baltica is a key issue for the continental reconstruction of the Mesoproterozoic. The eastern margin of Laurentia was a site of continued continental-margin orogeny with subduction-related outgrowth. This outgrowth is well shown by the Yavapai, Labradorian and Mazatlal provinces of southwestern United States, which developed from ~1.8–1.5 Ga. The western part of the Amazon craton also underwent marginal growth from
Columbia supercontinent. Thus, the discovery of the Mesoproterozoic Trincheira ophiolite supplies important evidence for the existence of an oceanic basin on the southern margin of the Amazon craton, and demonstrates that the Amazon craton had its growth, first by accretion of oceanic crust and later by collision with Paraguá Block on its southwestern margin. Additionally, petrographic studies in the Trincheira Complex are consistent with a belt that grew along a northward dipping subduction zone through accretion of oceanic island arc and back-arc. Therefore, growth of the southwestern Amazon craton was through subduction-related magmatism during continued accretion of juvenile material in Mesoproterozoic times. This implies that in the Columbia supercontinent, at ~1.5–1.3 Ga, the southern margin of the proto-Amazon craton was not connected to any other continent, but was bordered by an active supra-subduction zone. This scenario can be related to the reconstruction of Paleo-Mesoproterozoic supercontinent Columbia proposed by Zhao et al. (2004). In contrast, the Trincheira Complex is composed of several protolith olivine–orthopyroxenite, bronzitite, and websterite; b) Intermediate Unit: intrusive mafic rocks (amphibolite-facies metamorphism): banded amphibolites that has as protolith norite, gabbronorite, gabbrro, anorthosite, gabbronanorhite and rare plagiogranite; and c) Upper Unit: extrusive mafic rocks (amphibolite-facies metamorphism): fine-grained amphibolites (basaltic massive and pillow) with intercalations of sedimentary sequence consisting of metachert (BIFs), calc-silicate rocks and aluminous chert/quartzite. Metamorphism is pervasive. It attained temperatures of 820–853 °C and 680–720 °C for mafic granulites and amphibolites, respectively, and a pressure of 6.8 kbar. The presence of layers of chert, BIFs and amygduoidal basalt is consistent with an oceanic setting for the eruption of volcanic rocks and associated intrusions. Therefore, the analysis of the new geological and geochemical data presented here indicates that the mafic–ultramafic rocks of the Trincheira Complex have a hybrid mixture of MORB-like and arc-like element signatures and are part of a supra-subduction system formed by an intra-oceanic island arc and back-arc basin. Its fine-grained amphibolites and amphibolite rich-amphibolites have a closer similarity to arc tholeiites, while the mafic granulites and porphyroblastic amphibolites are chemically compatible with the modern BABB. The participation of a subduction component is implicit in the high Rb, Sr, Ba and K contents in proportion to immobile elements (HFSE), such as Nb and Ta. The water derived from the dehydration of the subducted slab is the main carrier of such components. In summary, the behavior of trace elements suggests that the mantle source of lavas and intrusive of Trincheira Complex was affected by subduction components. This relict oceanic crust may represent a fragment of oceanic lithosphere that obducted during what remained of the collision of the Paraguá block with the western border of the Amazon craton during the Middle Mesoproterozoic period, between 1470 and 1350 Ma. This tectonic model explains many previously enigmatic features of the Precambrian history of this key craton, and discusses its role in the reconstruction of the Columbia supercontinent.

6. Conclusions

The Trincheira mafic–ultramafic Complex is composed of several disrupted, highly dismembered imbricate thrust slices forming an incomplete ophiolitic sequence. The sequence includes layered mafic–ultramafic cumulates and intrusive mafic–ultramafic and extrusive mafic rocks with an interbedded sedimentary clast-chemical sequence. The deformation is heterogeneous, as indicated by highly deformed zones adjacent to areas with poorly developed foliation or a partially preserved primary texture. Based on the characteristics of the field, petrographic, geophysical and geochemical, was suggested a division of the complex into three units: a) Lower Unit: layered mafic–ultramafic rocks (granulite-facies metamorphism): mafic granulites which has as

