PROJETO MOLIBDÊNIO EM RORAIMA

RELATÓRIO PRELIMINAR

PARTE III - CADASTRO BIBLIOGRÁFICO

VOLUME II

José Farias de Oliveira
Abel L. Martin de Oliveira
Abraão F. F. de Melo
Marco Tadeu P. da Cunha
Miguel J. F. de Campos

COMPANHIA DE PESQUISA DE RECURSOS MINERAIS
SUPERINTENDENCIA REGIONAL DE MANAUS

1976
PROJETO MOLIBDÊNIO EM RORAIMA

Chefe do Projeto: José Farias de Oliveira

Equipe Executora:
Abel L. Martin de Oliveira
Abraão F. F. de Melo
Marco Tadeu P. da Cunha
Miguel J. F. de Campos

Participação Parcial:
Maria Léa R. de Paula
Maria das Graças F. B. Corrêa

Coordenação:
Gilberto Emilio Ramgrab
João Orestes S. Santos
PROJETO MOLIBDÊNIO EM RORAIMA

RELATÓRIO PRELIMINAR

ÍNDICE DOS VOLUMES

VOLUME I

PARTE I- TEXTO

PARTE II- RECURSOS MINERAIS DA ÁREA

PARTE IV- ANEXOS

VOLUME II

PARTE III- CADASTRAMENTO BIBLIOGRÁFICO
SUMÁRIO

PARTE III

7. CADASTRAMENTO BIBLIOGRÁFICO

7.1. RESUMOS DOS TRABALHOS 3

7.2. ÍNDICE BIBLIOGRÁFICO 133

7.3. ÍNDICES REMESSIVOS

7.3.1. - Índice temático 152

7.3.2. - Índice toponímico 247

7.4. ALISTAGEM DOS TRABALHOS NÃO CONSULTADOS 311
RELACÃO DAS SIGLAS UTILIZADAS NESTE RELATÓRIO

ABNT - Associação Brasileira de Normas Técnicas
AC - Acre
AF - África
AIME - American Institute of Mining, Metallurgical and Petroleum Engineers
AM - Amazonas
AN - América do Norte
AP - Amapá
AS - América do Sul
AU - Austrália
BA - Bahia
BO - Bolívia
BR - Brasil
CA - Canadá
CE - Ceará
CIM - Canadian Institute of Mining and Metallurgy
CO - Colômbia
CPRM - Companhia de Pesquisa de Recursos Minerais
DGM - Divisão de Geologia e Mineralogia
DNPM - Departamento Nacional da Produção Mineral
ES - Espírito Santo
EUA - Estados Unidos da América
GF - Guiana Francesa
GO - Goiás
GU - Guiana
IBGE - Instituto Brasileiro de Geografia e Estatística
INPA - Instituto Nacional de Pesquisas da Amazônia
JP - Japão
LASA - Levantamentos Aerofotogramétricos S/A
Ma - Manaus
MA - Maranhão
MG - Minas Gerais
MT - Mato Grosso
NG - Nigéria
PA - Pará
PB - Paraíba
PETROBRAS - Petróleo Brasileiro S/A
PI - Piauí
PNB - Projeto de Norma Brasileira
PR - Paraná
PROSPEC - Levantamentos, Prospecções, Aerofotogrametria S/A.
RADAM - Radar na Amazônia
RB - Rio Branco
RJ - Rio de Janeiro
RO - Rondônia
RR - Roraima
RS - Rio Grande do Sul
SC - Santa Catarina
SGM - Serviço Geológico e Mineralógico
SLAR - Side, Looking, Airborne Radar
SFVEA - Superintendência do Plano de Valorização Econômica da Amazônia
SU - Suriname
URSS - União das Repúblicas Socialistas Soviéticas
USAF - United States Air Force
USP - Universidade de São Paulo
VE - Venezuela
PARTE III - 7. CADASTRAMENTO BIBLIOGRÁFICO
7.1. - RESULTADOS DOS TRABALHOS

RESUMO

O lacólito que constitui o alicerce do Monte Roraima, consiste de hiperstênio-diabásio, com olívina, bitownita e augita. A olívina é subordinada, enquanto o hiperstênio e a augita são abundantes e com intercrescimento. Na consolidação de rochas do tipo Mg-U e Maloca do Aicarém, em certa fase, a augita tornou-se cada vez mais magnesiana. O hiperstênio começou a se cristalizar quando em certa altura a concentração do Fe₂Si₂O₇-steria atingindo um determinado valor. Parece que o hiperstênio da rocha do Monte Roraima, não é dos principais minerais que cristalizaram. Parte dos cristais de augita foram atacados na fase líquido-magnética, rica em FeO, e hiperstenizada. O excesso de água e sílica nos magmas é eliminado durante a sua evolução e consolidação. Com o desprendimento de H₂O e SiO₂ que se infiltraram através do Arenito Kaireteur e o abaixamento da concentração iônica, a temperatura e pressão baixaram ligeiramente, tornando-se o diopsídio instável em presença de excesso de metassilicato de magnésio, dando-se então a formação de hiperstênio e a transformação do diopsídio em hiperstênio. O que passou entre o diopsídio magnesiano e o hiperstênio, analogamente ocorreu entre o feldspato-plagioclásio e o mirmequito e micropegmatito.

RESUMO

A bacia do rio Branco possui um formato irregular e uma rede de drenagem assimétrica. Provavelmente teria sido formada por ocasião do levantamento dos Sistemas Parima e Pacaraima. A corrente principal recebe os nomes de Maracá, Uraricoera e finalmente rio Branco. Este tem seu curso dividido em baixo, zona encaichoeirada e alto. A bacia pode ser dividida em duas zonas: a planura ou chapada e a serrania, cujo ponto culminante é o monte Roraima. O baixo rio Branco é formado por terrenos aluvionares, terras-firmes e escassos aflora mentos de rochas arqueanas. A zona encaichoeirada compreende rochas gnaissicas e graníticas. O alto rio Branco pode ser dividido em duas subzonas distintas: uma coberta por uma mata tropical e a outra por um campo natural, onde afloram gnaisses (predominantemente), hornblenda-granitos, rochas catalácticas, espessos bancos de arenito (datado do Cretáceo ou Triássico), argilitos com grão de sílica ("maracá"), mica-diorito quartzífero, diorito, além de pórfiro a partir do baixo Mau. Encontra-se também díques de diabásio e diabásio quartzífero. A leste de Boa Vista, aparecem raros afloramentos de granítitos, gnaisses, eruptivas microcristalinas verde-negras e diabásio (dique). A norte e oeste ocorrem rochas eruptivas verde-negras, básicas, compactas. A norte dos rios Uararicoera e Tacutu aparecem arenitos, cortados por dí ques de diabásio; aluvões diamantíferos e auríferos, que são gerimpados principalmente no rio Quinô; o cordão de ser ras que separa a chapada de zona montanhosa e constituido de granitos; um desses tipos é classificado como sienito pórfiro. Nesta região está sendo explorado cristal de rocha na serra dos Cristais.

RESUMO

Descrição sucinta do roteiro efetuado pela Comissão Demarcadora de Limites, da qual era o geólogo acompanhante. Descreve a fisiografia e a geologia da região, dando ênfase ao arenito Roraimá.

RESUMO

Durante sete meses conduziram-se explorações por três dos cinco grandes tributários do sistema Amazonas, que tem suas cabeceiras na serra Parima. São eles os rios Catrimâni, Demêni e Aracá. O Catrimâni, rio de água branca, foi o primeiro a ser explorado. Apresenta uma largura de 200 metros, de sua boca até a cachoeira Piranteira. As cachoeiras Boiaçu, Tan ga, Pauishanas e Sacuri, constituíram os maiores obstáculos. Assinalou-se um pico com cerca de 800 metros de altura, na chamada serra de Tabatinga, mas correspondendo a serra Amariaki no mapa de Lobo d'Almada. O rio Catrimâni é explorado pelos balateiros sendo o igarapé Pacu o ponto mais distante alcançado pelos mesmos. O rio Xiriana oferece mais condições de navegação que o Catrimâni. Os rios Aracá e Demêni contêm uma população pouco numerosa e por muitos anos têm sido explorados pelos mestiços do rio Negro.

RESUMO

A fisiografia da região do Rio Branco é caracterizada por uma zona de peneplanície e uma serrania. Esta última é acidentada, observando-se cumes que atingem de 1.000 a 2.000 metros. O ponto culminante é o monte Roraima. A zona inferior de peneplanície é caracterizada por formações pleistocênicas, enquanto que a zona média é ocupada por gneissos arqueados e restos da Série Minas (quartzitos e itabiritos). A serrania ao N e NW é ocupada pelo Arenito Roraima (Algonquina). Observa-se afloramentos do magma basáltico da Província Magnética de Roraima, tidos como Cretáceo Inferior e intrusiones graníticas e pórfitos graníticos, da fase huroniana, por toda a bacia. Descreveu-se superficialmente o diatomito do igarapé Poraquê, onde estimou-se um volume de 50.000 m³ de material. Foram feitas análises do diatomito e algumas considerações sobre sua aplicabilidade. Além disso, vale salientar que existe cristal de rocha na serra do Cristal, ágata no rio Maú, mica em toda a bacia, salitre na serra da Mina, jade-nefrita no Parima (informações colhidas através de jornais) e diamante principalmente a ocorrência de Campo Maior, no igarapé Suapi. Fizemos um levantamento dos pedidos de pesquisas para o ouro e diamante na região e quais as exigências feitas aos concessionários para a pesquisa.

RESUMO

Descrição de depósitos de molibdenita em Taos County, N. M., sete milhas a este de Questa, e no Sulphur, um tributário do rio Vermelho, no declive ocidental da serra Sangue de Cristo. A mineralização concentra-se ao longo de veios, no lado oeste de um corpo de albita-granito circular em planta, de idade terciária, próximo a seu contato com rochas pré-cambrianas (xistos e rochas sedimentares metamorfisadas de idade incerta); a rocha é bem cristalizada na sua maioria, apresentando entretanto fases afaníticas locais. Uma série de fraturas compactas de direção este-oeste, com mergulhos, e uma sequência aproximadamente paralela ao contato, formam os dois grupos principais de fissuras da rocha granítica, não sendo reconstituídas, em qualquer dos casos, evidências de movimentos apreciáveis; bastante limitadas em extensão, ocorrem raramente fraturas nos xistos e rochas sedimentares; todas as fraturas são mineralizadas, nas concentrações comerciais do minério são limitadas às zonas a 100 pés do contato. Toda molibdenita da área é produzida pelo contato de E-W e mergulho sul. Variações bruscas no mergulho do contato e mudança na direção tiveram um importante significado na localização das fissuras. As fraturas paralelas ao contato são consideradas quebras de tensão e aquelas com direção este-oeste e mergulhos fortes, expressões de natureza mais regional. As feições estruturais destes veios de molibdenita são como aquelas comuns aos veios contendo outros sulfetos.
ILOPEZ, V.K. et alii - Geology of southeastern Venezuela.

RESUMO

O trabalho é um relato de uma expedição empreendida pelo governo venezuelano em dezembro de 1938, a cargo do serviço técnico de mineralogia e geologia daquele país. Foi dada ên phase à geomorfologia numa abordagem sucinta sobre a topografia e drenagem da área, localizada a sudeste da Venezuela. Esta esboçada uma estratigrafia cuja sequência compreende o emba samento cristalino do Pré-Cambriano, composto por gnaisses, mica-xistos e granitos, além de porfíritos ácidos vermelhos e cinzas na parte sul de Gran Sabana e serra Pacaraima; a se guir a Formação Roraima, de idade indeterminada; e finalmen te os depósitos quaternários aluviais relacionados com a reias e cascalheiras diamantíferas. Também é feita uma minu ciosa descrição das rochas, um resumo da geologia histórica e um apanhado sobre a geologia econômica, baseado nos garim pos de ouro e diamante.
OLIVEIRA, A.I. de - A Amazônia e os recursos minerais. In: **BRA SIL. DNE/DEI, Relatório Inédito, Rio de Janeiro, nº 764, 1943.**
21 p.

RESUMO

As riquezas minerais conhecidas na Amazônia brasileira, são de pequeno vulto, podendo-se destacar: 1) *curo* - em vários locais de Mato Grosso, Goiás, Pará (região do "Complexo fundamental", zona de Volta Grande do Xingu) e Amazonas (alto rio Branco); 2) *diamante* - nas cabeceiras do rio Branco, (no Tocantins) e no alto Araguaia, em Mato Grosso e Goiás; 3) *quartzo* - na serraria Cristal (alto rio Branco, Roraima) e em Porto Nacional (Goiás); 4) *mica* - nas bacias Tocantins-Araguaia e do rio Branco; 5) *núquel* - na serra da Lantiqueira, ao norte de S. José (Goiás) e no rio das Almas (Maranhão); 6) *calcário* - nos rios Tapajós, Maiés, Laecuru, Guruvá de Alenquer, nas perfurações de Barreiras (Tapajós) e em afloramentos no rio Cupari, logo acima de Aveiro; 9) *águas terma-sulfurosas* - em Monte Alegre (Itaituba, Jardim e Campinas); 10) *juta* - em Novo Horizonte, no *igarapé Trairão* (afluente do rio Fresco) e em Flor do Curo (alto Xingu); 11) *linhite* - nas formações terciárias da fronteira com a Colômbia e o Peru; 12) *diatomeia* - no alto rio Branco, e em Firmecas (jusante do lago Fareipxuna, rio do Juruá). Foram constatados ainda vários outros minerais, como esmeralda (Paz das Lajes, em Itaboraí, Goiás), sílex, jaspe, talco, baritina, argila, pirita (Planalto Central de Goiás) e salitre (Serra da Mina, alto rio Branco).

RESUMO

Um extenso manto de sedimentos de antigo fundo de mar que recobre o sistema orográfico Pacaraima-Parima, foi apontado por AVELINO INÁCIO DE OLIVEIRA e GLYCON DE PAIVA sob a denominação de Série Roraima. É uma formação arenítica de idade siluriana, cujo ponto mais alto é o monte Roraima que se ergue do altiplano a 1.750 metros de altitude. Aos gabros, quartzo e diabásios assinalados por toda parte do escudo das Guianas e no vale do Amazonas, DJALMA GUILARÁES chamou de "província magmática de Roraima". No Roraima, um "sill" de diabásio de grandes proporções, com 5% de olivina, mete-se entre camadas paralelas de rochas diversas. A meseta ou planalto guianense, região resultante de esforços tectônicos (dobras e falhas) que se está transformando em peneplanicie, caracteriza-se por uma base de terrenos "cristalófíticos" e granitos pré-cambrianos, onde assentam terrenos areníticos mais recentes. O Roraima, um bloco quadrangular a 2.772 metros de altitude, assinala um ponto de tríplice junção das fronteiras: Brasil-Venezuela-Guiana. Do cimo do monte Roraima surgem três rios: O Pakwa (britânico), o Arajá, (Venezuelano), e o Cotungo, rio brasileiro, afluentes do Tacutu.
RESUMO

As montanhas Roraima, atingindo 2.580 metros de altitude, parecem representar os restos de antigo e vasto planalto. Prevalece um clima frio e chuvoso nessa área. Atividades marcantes, de fauna e flora, são presentes. Nas savanas do rio Branco a monotonia do antigo peneplano é somente interrompida por "bossas" de granito. A serra Rumirola forma uma parede íngreme, com ravinhas cobertas por florestas, na escarpa sul e um declive gradual na escarpa norte. No pico e na região ao norte dessa serra dominam arenitos com alta percentagem de leitos entrecruzados. As montanhas Roraima constituem admiráveis tabuleiros de massas quartzíticas. Esses blocos de quartzitos jazem como capas sobre os remanescentes de um espesso "sill" de diabásio. A partir da base do Roraima, em contato com "sill" de diabásio até o cume, o arenito passa de um quartzito resistente e muito denso a uma rocha mais porosa motivando consequentemente a conservação da paisagem tabular. O "sill" de diabásio repousa sobre o jaspe verde. O monte Roraima, de cume com 62 km² de área, é considerado o representante geológico e biológico de todo sistema Roraima. Na extremidade delgada do planalto, as diáclases frequentemente cruzam a montanha de um lado a outro. O interior do planalto peneplano é monótono. O corte em anfiteatro a roste da montanha constitui uma magnífica paisagem.

RESUMO

Os mais importantes tipos de magmas basálticos são representados pelos afloramentos da base do Roroimá, do Ité-Uê, na margem esquerda do rio Quinô, do Aicarém, do rio Parimé e da serra do Tabajó. Os três primeiros jazem na área de um gigantesco derrame de magma muito ácido, que deu origem a vários tipos de pórfirios (granítico, félsico, quartzo-pórfiro, cinerítico, etc.). Constitui esse derrame, o "bedrock" sobre o qual assentam, diretamente, testemunhos de uma formação arenítica conglomerática. Os dois últimos cortam um gneiss preexistent, coberto em alguns pontos por restos de uma série sedimentar muito antiga. No Roroimá, o magma colocou-se em posição lacólica em relação ao arenito, transformando as rochas em contato com a eruptiva numa quartzo diabásio. Em Ité-Uê o magma diabásio dispõe-se de ocidente para oriente, aparecendo no meio do arenito como duas massas negras: o Ité-Uê propriamente dito e o Tumuiuma-Te. Na Maloca do Aicarém, diabásio atravessa o pórfiro-ácido, não havendo vestígios do arenito. O diabásio do rio Parimé é um simples acidente no meio do gneiss. Na serra do Tabajó, o jazimento é de considerável dimensão, e ao redor dessa massa foram encontrados muitos seixos de quartzitos e itacolomico.

RESUMO

Compõe-se o gabro norítico de Roraima de diopsidio, hipersênio e plagioclásio básico. O hipersênio deixa perceber confusamente uma estrutura lamelar e se supõe que seria originado pelo intercrescimento submicroscópico de piroxênios monoclinós. A olivina, sob forma esferoidal ou elipsoidal, está sempre inclusa nos piroxênios. O plagioclásio é zonado, com grandes variações de composição entre o centro e a crosta externa. A cristalização se deu tão lentamente neste gabro norítico que houve perfeita individualização do piroxênio ortorrombico. O hipersênio-gabro de Lã-Uê, além daquele o corrente no Quinô, teria se consolidado em presença de gran de percentagem de vapores e gases, visto que o arenito encaixante foi intensamente recristalizado e feldspatizado. Em todas as secções delgadas encontram-se diopsidio magnesiano e pígeonita, em diferentes estados de transformações. Existem tipos intermediários, entre o norito de Roraima e os diabásios ricos em micropegmatito e mirmequito, ocorrendo no rio Uraricoera, Pau Rainha, rio Parimê do Socó e rio Branco. Os basaltitos constituem-se de diopsidio, pígeonita, labradorita e magnetita, e ocorrem na serra do Murupuzinho e do Murupu, no igarapé do Pitomba, do Silu e em Pau Rainha. Um gabro de granulação média (quartzo-gabro), com os piroxênios alotor mórficos em relação ao plagioclásio, ocorre na Laloça de Aícarém. Um gigantesco maciço de gabro (gabro quartzífero), que é a serra do Tabajo, constitui-se de plagioclásio, hornblenda, hipersênio, quartzo e alguma magnetita. Parte do hipersênio é granular e parte em cristais hipidomorforos com pleo croísmo idêntico àquele nas ocorrências de Aícarém e Lã-Uê.

RESULTADO

Relato da expedição através dos rios Uraricoera, Parima e Auaris, descrevendo com minúcias as condições de navegabilidade pelo rio Uraricoera. Fornece também algumas informações sobre a geologia, fauna e flora da região e comenta sumariamente os indígenas que habitam a região. Faz um apanhado geral sobre as primeiras incursões ao oeste do Território.
RESUMO

Observações nas partes central e ocidental do Escudo da Guiana mostram de uma maneira regional quatro amplas divisões geológicas: 1) grupo do embasamento, 2) grupo vulcânico, 3) Fm. Roraima, 4) depósitos recentes que estão relacionados com importantes ocorrências minerais, de bauxita e "placer" ouro-diamantíferos, e que não são abordados no presente trabalho. O termo rochas de embasamento foi usado para reunir todas as rochas anteriores ao ciclo vulcânico regional, amplamente distribuídas nas partes norte e central do Escudo Guianense, mas exclui sedimentos fossilíferos do Paleozóico. O embasamento representa um complexo de rochas ígneas localmente metamorfasadas, bem como de origem sedimentar com todas as gradações possíveis. O grupo vulcânico cobre uma restrita parte do Escudo Guianense, notadamente as zonas central e setentrional. O membro inferior do grupo é representado por rochas vulcânicas e tufos associados, e o membro superior por tufos e folhelhos. Acima das rochas do grupo vulcânico assentam os três membros da Fm. Roraima. Esta se a sua área primitiva de deposição em cerca de 1.200.000 km² com uma espessura média em torno de 800m. O volume de sedimentos depositados foi aproximadamente 1.000.000 km³. Desta quantidade originalmente existente mais de 800.000 km³ foram erodidos e drenados para as bacias adjacentes. Esta erosão foi ativada na última parte do Terciário e está bem refletida na espetacular escarpa do monte Roraima. Na parte sudeste deste mesmo monte pode-se distinguir grosseiramente três sub divisões da Fm. Roraima: membro basal composto por conglomerados, membro médio caracterizado por frequentes intercalações de leitos de jaspe e o membro superior compreendendo espessas camadas de arenitos horizontalizados formando a escarpa mais elevada do platô. Para a idade da Fm. Roraima foi considerada como pertencente ao Cretáceo. As tendências estruturais são apontadas pelos lineamentos do Escudo Guianense e pelos dotoamentos, falhas e deslocamentos provocados pela orogênese Andina. Esses lineamentos podem ter formado os padrões iniciais que o ciclo Andino desenvolvia.

RESUMO

O Território do Rio Branco compreende pelo menos três unidades morfológicas: baixo rio Branco-planície; alto rio Branco peneplano fossilizado e região montanhosa. A região do alto rio Branco é um peneplano fossilizado por depósitos da Série Barreiras. Os afloramentos do embasamento cristalino aparecem como "monadnocks". A existência desse vasto depósito aluvial é devida a afundamento tectônico. A laterita não aflora em Boa Vista, a não ser em alguns locais, observando-se em poços de oito, quatorze e quinze metros de profundidade apenas sedimentos. Para norte e sul da cidade aparecem na superfície concreções e blocos de lateritas. A formação da laterita é explicada pela alternância das estações climáticas. O longo período seco, com grande insolação e amplitude térmica considerável, ocasiona a fragmentação superficial das rochas e migração dos sais nos sedimentos. As lateritas são concreções de hidróxido de ferro e alumina que se acumulam a diferentes profundidades, formam-se próximas a superfície e seu aparecimento é devido a dessaloagem. A existência de blocos na superfície indica a remoção de uma camada de dois-três metros de solo sendo pois, indicadores morfométricos. Sugere-se o levantamento da topografia com medidas dos blocos para se obter a espessura mínima de material carreado pela pluviação e, conhecida a área, o seu volume. A importância desse estudo é que a dessaloagem provoca cada pela pluvição é mais breve que a formação de grandes ravinhas e diminui o rendimento do solo.

RESUMO

O Território do Rio Branco abrange uma área de 230.660 km², que é ocupada por uma população de 18.116 habitantes, com uma densidade de 0,07 habitantes por km². Compõe-se de três regiões distintas: 1) baixo rio Branco, apresentando uma topografia monótona coberta por uma densa floresta do tipo hileiano; 2) alto rio Branco, apresentando uma topografia plana, quebrada em alguns locais pelo aparecimento de "inselbergs", coberta por uma vegetação de campo; 3) montanha, constituída pelas serras do Sistema Parima - Pacaraima, destacando-se o monte Caburai, ponto setentrional do Brasil, e o monte Roraima, com 2.875 metros de altitude. O correm dois tipos de solos na área dos campos: "terras firmes" e "baixadas", estas constituem pequenas manchas nas proximidades dos "miritizais". Na zona de campo temos um clima pluvioso e seco alternado, enquanto no baixo rio Branco, o clima é pluvioso durante todos os meses do ano. A drenagem do Território é formada pela bacia do rio Branco. A economia é associada na pecuária e na extração mineral, onde distingue-se a garimpagem de diamante.

RESULTADO

Descrição sumária das superfícies aplainadas dos interflúvios Surumu-Cotingo-Mau enfatizando a influência da tectônica no desenvolvimento do modelado da região.

RESUMO

Reorganização das amostras de rochas do Território de Roraima existentes no museu da Divisão de Geologia e Mineralogia, segundo a coluna estratigráfica adotada por J.R. de A. RAMOS.

RESUMO

Fez-se o reconhecimento no Território do Rio Branco, com os seguintes objetivos: 1) Verificação da radicatividade no conglomerado basal da Formação Roraima; 2) Reconhecimento geológico da porção setentrional do Território, a fim de fornecer subsídios à Carta Geológica do Brasil. A sequência estratigráfica da área é a seguinte: Complexo Cristalino (Pré-Cambriano), englobando quartzitos, granitos gnaissificados e itabíritos; Formação Suruma (Silúrico?) lavas porfiríticas e quertófiras; Formação Suani (Devoniano Inferior?), ortoquartzitos, metaconglomerados e filitos, considerada a formação diamantífera; Formação Quinó (Cretáceo Superior?), rochas básicas sob a forma de "sill"; Formação Nova Olinda (Quaternário Antigo), lavas melafílicas, provenientes de vulcanismo basáltico; Formação Boa Vista (Quaternário Moderno), areias argilosas, argilas arenosas e cascalhos. Não foram obtidos resultados no reconhecimento radionômico.
Estudo petrogenético das intrusivas básicas da Província Magmática de Roraima na Guiana Venezuela, bem como de sua correlação com outras províncias magmáticas semelhantes. Apresenta considerações sobre o mecanismo da intrusão, petrografia, composição química, diferenciação magmática, efeitos metassomáticos na Formação Roraima, e características gerais do vulcanismo mesozóico. Na Guiana Venezuelana o magma basáltico introduziu-se nas rochas do embasamento pré-cambriano e na sequência sedimentar do Neozóico Inferior. As rochas do embasamento são sedimentos dobrados, metamorfizados, os quais foram submetidos a intensos períodos de orogênese alterados com etapas de prolongada e regional peneplanização. Sobre essa extensa superfície de erosão, depositou-se uma sequência de sedimentos continentais de mais de 2.000 m de espessura, os quais foram levantados ligeiramente e falhados provavelmente durante a fase intrusiva, ao longo dos planos de estratificação, afetando desta maneira a horizontalidade original das camadas de Roraima e dando origem à formação de amplas dobras com flancos de mergulho suave. Como caráter geral constata-se que os corpos intrusivos concordantes são mais freqüentes e de maior espessura nos níveis inferiores da sequência sedimentar. A ausência da fase extrusiva da Província magmática de Roraima, sugere um mecanismo da intrusão semelhante ao da Tasmânia, no sentido de que o fracturamento não alcançou a superfície, e o magma, de muito pouca mobilidade penetrando pela zona fracturada até aos sedimentos argilosos de Roraima. Uma vez impedido o caminho para a superfície, o magma invadiu progressivamente níveis inferiores, ocupando em seu trajeto os planos de fraquezas verticais e laterais, com o consequente desenvolvimento de intrusivas concordantes e discordantes. O processo de silicificação regional sofrido pela Formação Roraima está intimamente associado com o processo de diferenciação do magma basáltico.
O Território do Rio Branco apresenta-se de modo geral como uma grande planície florestada ao sul e coberta de campos ao norte, interrompida por uma região montanhosa que estende-se numa faixa E-W, desde Normandia (rio Uaú) até a fronteira com a Venezuela. O relevo apresenta numerosas depressoes fechadas e canaluras esvasiadas. As zonas de erosão são pequenas e bruscamente substituídas por uma grande zona de acumulação. A densa hidrografia é mal organizada, com numerosos rios que descem das montanhas e com numerosas zonas pantanosas. O maciço montanhoso apresenta uma frente dissecada com escarpamento de altitude moderada que se ergue abruptamente no contato com a planície. Compõe-se de uma superfície drenada pelo rio Quinó, limitada a noroeste pelo maciço sedimentar Roraima que alcança 2.772 metros e a sudoeste por um maciço mais antigo que alcança 1.000 metros de altitude. É constituído essencialmente de rochas eruptivas. Esta zona eruptiva estende-se ao norte da planície raramente coberta por sedimentos finos e frequentemente contendo lençóis de quartzo rolado. A petrografia é homogênea em toda essa zona. Um relevo e uma estrutura original marcam o contato entre a zona vulcânica e a sedimentar do norte. Os depósitos de conglomerados esbarrados e arenitos se apresentam sobre a forma de "cuestas". O rebordo montanhoso meridional apresenta: um escarpamento não contínuo, formado por um mosaico de blocos separados uns dos outros por movimentos tectônicos. A ausência de transição entre a região plana e as vertentes montanhosas é notória. No Território do Rio Branco as comunicações são precárias. É uma região pouco povoada com uma densidade de 0,08 habitantes por km². A criação de gado e a garrapagem de diamante constituem as fontes de economia do Território. A zona montanhosa contendo conglomerados diâman tíferos é bem irrigada e possui um grande potencial em energia hidrelétrica. A planície, a região mais povoada, é onde se desenvolve a maior criação de gado. A agricultura é in significante.

RESULTADO

O depósito de molibdênio de Climax consiste em dois gran des "stockworks", rusticamente concêntricos, em forma de domo, num complexo de rochas cristalinas pré-cambrianas e intrusive pôrfiras no Ten Mile Range, Colorado Central. Todas as intrusivas pôrfiras da área da mina são mineralógica e quimicamente semelhantes aos granitos pré-cambrianos; contudo, onde estas rochas estão intensamente alteradas, a distinção torna-se difícil. Diferentes interpretações da origem das rochas resultou em diferentes conceitos da sequência geológica. Estudos recentes indicam que, exceto onde a alteração é extrema, os tipos originais de rochas podem ser identificados com razoável precisão. O padrão básico de distribuição é apresentado por rochas regionais pré-cambriana in truídas por: 1) Diques descontínuos e arqueados; 2) Um "di que anelar" interior de quartzo-K-feldspato-pórfiro; 3) O "stock" central de granito pórfiro albitizado (?). Ambos os corpos de minério são circulares, em forma de arco em plan ta, formados na maioria por processo de preenchimento de fratura. Acredita-se que fraturas anelares periódicas foram responsáveis pelo desenvolvimento de zonas intensamente par tidas que controlaram a distribuição de molibdenita; o termo mineralização "ring-fracture" é proposto para este mecanismo de "emplacement" do minério. Zonas de silicificação e mineralização de tungstênio têm uma origem semelhante. Padrões de fraturas, distribuição de sedimentos paleozóicos e assimetria da parte superior do corpo de minério e sua relação com uma falha proeminente (Mosquito) sugerem que o alto do corpo de minério foi inclinado no sentido oeste, antes da formação do corpo de minério mais baixo.

RESUMO

Transcrição da palestra realizada na Secção Regional de São Paulo da Associação dos Geógrafos Brasileiros. Focaliza a área de rochas cristalinas, destacando aí uma zona aplanada e uma zona serrana. Destaca uma fase final de aplanamento e sedimentação no Quaternário Antigo responsável pela fina cobertura da zona aplanada. Assinala uma região de lavas com pórfiros tendo 40km de largura, onde o ravinamento é intenso.

RESUMO

RESUMO

No Território do Rio Branco são distintas quatro unidades de relevo: a) planícies dos campos naturais; b) região montanhosa de vulcanismo riodacítico; c) região montanhosa de florestas; d) região setentrional do planalto arenítico. A estratigrafia da região é a seguinte: Complexo Pré-Cambriano (Série Guiara), com predominância de gnaissas com orientação GNO. Granito é encontrado na forma de "monadnock" ou pão-de- açucar. Formação Surumi (Pré-Siluriano) compreendendo rochas do vulcanismo riodacítico, incluindo lavas e ignimbritos; Formação Kaieteur (Paleozóico Inferior), constituída por arenitos e conglomerados assentados sobre riodacitos. Os arenitos são quartzíticos e os conglomerados formam leitos a várias alturas estratigráficas. A formação é formada por veios de quartzo. Formação Roraima, constituída de arcoses, siltitos e jaspilites. Um desses jaspilites é um espônicos gilito fósil com espículas tetractinídeas que estabelece um limite Carbonífero (K. BEURLEN) para a formação. Vulcanismo Roraima representado por efusivas e intrusivas básicas. São diabásios, gabbros e noritos, de idade provisória Triásico Superior. Formação Boa Vista (Meistocêno) consta de delgada sedimentação de cores claras com intercalações de camadas seixosas. Concreções lateríticas ocorrem abaixo do solo. O diamante é encontrado em aluvios recentes. Todas as ocorrências estão na área da Formação Kaieteur, cujos conglomerados, constituem sua matriz secundária. Os principais garimpos de diamante em 1956 eram: Naturnaca, igarapés Capim, Sua pi e Teapequém, com uma produção da ordem de 700 quilates mensais. O ouro ocorre nos mesmos aluvios que contém o diamante, mas é desprezado pelo garimpeiro. Lateritas alumínicas foram notadas na base da Formação Boa Vista e em muitos pontos do campo de lavas Surumi e Iraí. Concentração de ilmenita é encontrada em Caju. Calcário encontra-se em pequenas crostas em Nova Olinda e em concreções na base da Formação Boa Vista.
RESUMO

A área estudada apresenta uma rede hidrográfica tributária do Amazonas. A zona é quase de savana e o clima é definido por duas estações: úmida e seca. O relevo é caracterizado por três partes distintas: zona plana, formada pelo complexo cristalino e apresentando um capeamento sedimentar de 30 metros; o contato com o maciço montanhoso (essencialmente queratófiros e graniotos); e o próprio maciço montanhoso, apresentando "cuestas" arenosas. O maciço montanhoso compõe-se de vários blocos separados por grandes depressões, com uma frente secas, onde os primeiros contrafortes são falhados. Ocupando toda a parte meridional do maciço montanhoso nota-se um grande derrame de rochas vulcânicas. Ao sul da serra do Arai, os primeiros sedimentos que afloram mostram "cuestas" paralelas, orientadas leste-oeste. Ao norte do maciço montanhoso aparece uma série de sedimentos de idade desconhecida que culmina no monte Roraima. A variação do clima e oscilações dos níveis de base são marcados pelas formas de relevo do contato entre a planície, montanhosa e zona plana. Aparecem alguns "inzelbergs" próximos ao maciço montanhoso. A drenagem é geralmente indecisa e desorganizada, com exceção de alguns rios. A evolução geomorfológica da região média do rio Branco é a seguinte: numa primeira fase formou-se o substrato arqueano. Após, uma grande fase de sedimentação seguida de metamorfismo. Em outra fase, erupção de pórfiros quartzíferos. Durante uma fase de emersão, a erosão formou grandes aplanamentos. Após o Deveniano até o Cretáceo sucederam-se as fases de erosão e sedimentação. Em período, seguinte, seguiram-se as grandes erupções de dolerito. No terciário, provavelmente, formou-se a zona plana, iniciando-se então os fenômenos de acumulação e de erosão, com evolução pelo Quaternário. Numa última fase mais seca, atribui-se a formação da savana.
FERREIRA, E.O. - Contribuição à litologia da Série Uatumã.
Boletim do [DHM-IGI], Rio de Janeiro, 185, 1959. 31 p. il.

RESUMO

A Série Uatumã aparece nos rios Urubu, Uatumã, Jatapu, Nharnundá, Trombetas, Paru, Brepecuru, Curuá, etc., no lado norte do rio Amazonas e Ariymanã, Paraarari, Tapajós, Xingu etc., no lado sul, formando uma longa e estreita faixa grossoiramente paralela ao Grande Rio, constituindo a base do geossinclinóico amazônico. As rochas da Série Uatumã começam a aflorar logo que terminam as exposições de rochas silúrias ou Devonianas nos mencionados afluentes do Amazonas, nas zonas encachoeiradas desses rios. São rochas escargas, avermelhadas, arroxeadas, pardas e esverdeadas, muito duras e compactas, afosilíferas, descritas como arenitos metamórficos, arcóseos, jaspelito, silexitos, etc. Estas rochas estão eg reitamente ligadas a derrames de eruptivas ácidas, tais como: quartzo-pórfiros, keratófiros, quartzo-keratófiros, tor drilitos, tsingautitos, etc., consideradas como sendo respon saíveis pelo metamorfismo por elas experimentado. Existem dis cordâncias sensíveis entre elas e as rochas do complexo bas sal subjacente, bem como entre elas e as demais formações paleozóicas sobrejetantes. A Série Uatumã, devido à sua posição estratigráfica e aludidas discordâncias, assim como pelo fato dos derrames de pórfiros a ela ligadas não terem atingido as rochas silúrias sobrejetantes, é tida como cambriá ke.

RESÚMEO

O rio Branco apresenta inúmeras ilhas, algumas formando arquipélagos, que são resultado da deposição de sedimentos fluviais. A calha do rio Branco parece estar situada em um "graben". As formações geológicas encontradas são: 1) Comple xo Brasileiro: confluência do rio Branco com Negro, onde são notadas rochas similares aos granitos da região de Moura; 2) Paleozóico: é representado por camadas maciças de folhelhos aflorantes a montante no rio Apuaú; 3) Terciário: assinaladas em Tarumã-Açu e representadas por arenitos vermelhos e brancos; 4) Quaternário Recent: a formação mais comum é a laterita que capoeia os arenitos terciários. O rio Branco, desde sua confluência com o Negro até o Catrimâni, consiste inteiramente de aluviões. Estes, consistem de areias e argilas. As argilas caoliníticas constituem os mais importantes depósitos econômicos, ocorrendo em quase todas as formações.

RESUMO

Os campos de São Marcos limitam-se ao norte com a serra nia, e ao sul com os rios Lucajai e Quitsuaí, possuindo uma largura de 150 km e estendendo-se pela Guiana Inglesa. O gnaisse é a rocha regional caracterizada pelos seguintes tipos: anfibolico-biotita-gnaisse, biotita-anfibolico- gnaisse e biotita-muscovita-gnaisse. A Série Rio Branco engloba quartzito, anfibolito, xisto, itacolomito (quartzito micáceo) e itabirito. Aparece uma jazida de turmalina na margem direita do rio Uraricoera, ligada aos quartzitos micáceos. Os granitos possuem composição mineralógica uniforme, ocorrendo a nordeste e noroeste da planicie. Os diabásicos ocorrem cortando as rochas graníticas e basalto às vezes amigdoloides constituem os morrotes do Veado e Muruguzinho. O nome "Campo de Pórfiro Felsítico" desgrava uma região abrupta, constituida de um derrame ácido, com três tipos de estrutura: colunar, lamelar e "pontas agudas". Está coberto por um lenço de quartzo leitoso que parece estar relacionado ao próprio magma. No vale do Quinô são observadas rochas areníticas da Formação "Kaieteur Sandstones", cuja melhor denominação seria Arenito Roraima, por constituir o monte de mesmo nome, que é a fronteira tríplice entre Brasil, Venezuela e Guiana Inglesa. Na base dessa formação aparece um conglomerado e leitos de um folhelho vermelho, metamórfico nas camadas inferiores. O caráter arco-eano e o aspecto cinerítico dos folhelhos dá a impressão de um sincronismo entre sedimentação e a atividade eruptiva ácida. Os "placers" diamantíferos mais ricos da bacia do rio Branco, localizam-se no rio Quinô e na localidade de Iramutang.

RESUMO

O autor apresenta um novo método geoquímico para a determinação de molibdênio em rochas e solos. É exposto o procedimento junto com tabelas e gráficos. O método pode ser usado para uma ampla gama de valores de molibdênio, sem alteração nos resultados, o que sem dúvida, constitui uma alternativa para o método do tiocianato, comumente usado. Existe uma tabela que compara quantitativamente este novo método do xantato com o do tiocianato. Destes resultados o autor concluiu que o método do xantato é mais adequado que o do tiocianato para concentrações de molibdênio inferiores a cinco partes por milhão. O novo método teria sua maior aplicação na delimitação de áreas alvos, enquanto que o método do tiocianato seria mais aplicado para amostragem geoquímica regional, já que é um método mais sensível.

RESUMO

As formas de relevo são definidas pelas "cuestas" na área de sedimentar, e pelo relevo íngreme com vertentes convexas ou reti líneas, para as rochas eruptivas. Os traçados dos rios são nitidamente influenciados por linhas estruturais e fenômenos de cap tura, fornecendo à região um mosaico de forma em vales abandonados, vales suspensos e rios contornando serras com modifica ções rápidas dos cursos. A superfície de aplanamento de Vistá Geral entre as bacias dos rios Quinô e Tiporém, constitui a única superfície notável pela forma e extensão. Os níveis de erosão da região são escalonados. A planicie é formada por afloramentos rochosos, "inselbergs", algumas elevações e depressões e várias zonas alagadas. O clima com duas estações distintas, uma seca e outra úmida, é caracterizado por forte insolação diurna. Na estação úmida, o regime é torrencial, transformando os rios, em verdadeiras torrentes e a superfície da região em um lençol de água contínua.
CARVER, M.W. - The volcanic plutonic relationship in the Northern Rupununi. In: Proceedings of the Fifth Inter-
Guiana Geological Conference. Georgetown - British Guiana,
il.

RESUMO

Trabalho efetuado na área limitada pelos rios Rupununi, Si-
paruni, Essequibo e Burro-Burro. Apresenta informações rela-
cionadas à fisiografia, petrografia e geologia estrutural. As
seguintes unidades litoestratigráficas são descritas em or-
dem decrescente de idade: Grupo Nazaruni (Vulcânicas Ivokra-
ma e Granitos Granofíricos Annai-Iwokrama); Granitos Jovens
(biotita-granito AkRAMUKRA-Rappu); Intrusivas Básicas Jo-
vens (diabásio). As Vulcânicas Ivokrama são representadas
por: riolitos, riodacitos, dacitos e feldspato-pórfiro. Na
tassedimentos argilosos aparecem intercalados nas vulcâni-
cas. Sob a designação de Granitos Granofíricos Annai- Iwokra-
ma estão incluídos: granófiros, granitos gráficos, biotita e
hornblenda-granitos. As Intrusivas Básicas Jovens são repre-
sentadas por diques de diabásio de direção NE, que cortam in-
distintamente o Grupo Nazaruni e os Granitos Jovens. Estrutu-
ralmente, as rochas vulcânicas são olivadas geralmente segun-
do a direção ENE-WSW. Juntas fechadas e abertas também ob-
decem esta direção. Os planos de olivagem e juntas mergulham
acentuadamente. O acamamento dos raros sedimentos existentes
mostra orientação estrutural segundo a direção ENE-WSW. Ocor-
rem estruturas de fluxo e são subordinadas a deformação re-
gional. Dados oriundos de estudo mineralógicos e petrográfi-
co sugerem que as vulcânicas foram derivadas diretamente do
magma ácido do qual os granófiros e granitos do Grupo Nazar-
runi, são os representantes plutônicos. Os Granitos Jovens
não estão diretamente associados às vulcânicas ácidas, tendo
seu "emplacement" se processado bem depois da consolidação
das rochas do Grupo Nazaruni. É notadamente frequente a e
xistência de mineralização aurífera associada aos Granitos
Jovens. Nenhuma mineralização de ouro conhecida, está asso-
ciada aos Granitos Granofíricos Annai-Iwokrama.
RESUMO

Mapeamento geológico provisório da Guiana Britânica, com determinações radiométricas de idade que possibilitaram uma datação aproximada das formações pré-cambrianas, divididas em províncias Keridional e Setentrional por uma linha tectônica de latitude 4°N. As rochas da Província Setentrional parecem ser formadas em uma bacia eugeossinclinal, da qual o núcleo arqueano do Escudo Guianês forma a borda; nesta bacia os sedimentos e vulcânicas da Associação Barama-Hazaruni foram acumulados, dobrados e metamorfizados no Pré-Cambriano Inferior. O Grupo Barama é constituído das rochas mais antigas (rochas sedimentares pelíticas, principalmente quartzo, etc.). O Grupo Hazaruni, abrange as Formações Cujuni e Haimaraka (conglomerados, arenitos, rochas ígneas porfiríticas, intrusivas básicas, lutitos, etc.). Dobramentos com direções WNW-ESE, foram seguidos por metamorfismo de facies xisto-verde. A Formação Roraima jaz sobre a margem sudoeste da eugeossinclinal. Ao sul do Grupo Hazaruni, aparecem rochas epicontinentais que parecem passar lateralmente às rochas vulcânicas. Ao longo da face setentrional da Montanha Kamdu, um "rift-valley" foi formado e preenchido com sedimentos da Formação Tacutu. A Associação Bartica, localizada na área central da eugeossinclinal, consiste de biotita e hornblenda-biotita-gnaisses e muscovita-biotita-granito; parece ter havido dois períodos de deformação, sendo que o grau de metamorfismo foi enquadrado no facies epidoto-anfibolito. O Grupo Granito Jovem (granitos, granodioritos e adamalitos) teve origem antes da Formação Roraima. A Província Keridional não foi detalhada no relatório, consistindo das formações agrupadas na Associação Rupununi, Grupo Kwywini (rochas vulcânicas ácidas) e granitos e gnaisses no nordeste da Guiana. A Associação Rupununi, divide-se em: Grupo Kamdu, Grupo Mary di e Granito South Savanna. A idade mínima da Associação Barama-Hazaruni é 2.500 m.a., a idade dos Granitos Jovens está em torno de 2.000-1.900 m.a. e o Grupo das Intrusivas Básicas Jovens em cerca de 1.700 m.a.
A geologia econômica teórica apresenta como um de seus problemas, o grande desentendimento entre escolas individuais a respeito das fases de soluções que formam os depósitos de veios ou "greisens" de estanho, tungstênio ou molibdênio. Segundo alguns geólogos, este grupo de depósitos associados restritamente com granitos, são produtos de soluções gasosas, enquanto que para outros, estes mesmos depósitos são devidos a hidrotermais. O objetivo do trabalho, é a discussão sobre as feições genéticas deste grupo de depósitos. A associação quase universal destes depósitos com granitos, foi um dos mais fortes argumentos para a conquista da teoria magmática da deposição de minérios, no século passado. Foi feita uma análise estatística da posição geológica e conteúdo do mineral de 363 depósitos de minério ou campos contendo mineralizações primárias em estanho, molibdênio e tungstênio. A compilação dos dados mostra que 265 depósitos ou campos mineiros estão associados com granitos, onze com rochas ígneas mais básicas que os granitos, 31 com rochas efusivas ou várias rochas de dique. Em 36 depósitos não pode ser feita correspondência com atividades ígneas. Estes depósitos são classificados diversificadamente por determinados autores. Schneiderhohn (1941), classifica-os como veios pneumatólicos e impregnações; Lindgren (1933), como depósitos hipotermais; Ahlfeld (1958), como pneumatólicos e catatermais, e alguns geólogos soviéticos caracterizam os de estanho, como formações cassiterita-quartzo ou cassiterita-quartzo-sulfeto (S. S. Smirnov et alii 1948). O termo "depósitos transicionais" foi usado por Cissarz (1928). Fede-se discutir sobre o possível estado das soluções que formam estes tipos de depósitos, utilizando-se diferentes pontos de vista, tais como: A termperatura de origem dos minerais, o provável estágio da solução residual, a posição geológica destes depósitos na sequência de atividades e o estudo experimental de transportes dos componentes em soluções de diferentes estados de agregação.

RESUMO

A Formação Roraima após muitos anos de estudo é hoje considerada do proterozoico inferior, sendo portanto bem mais antiga do que até então se supôs. Foram encontradas na Guiana, nesta mesma unidade, estruturas com o formato de espículas cuja origem orgânica é ainda não totalmente aceita, muito embora o trabalho apresente fotomicrografias às quais mostram figuras que se assemelham a vestígios de microorganismo celulares lembrando algum remanescente de Foraminífera e Radiolaria. Estas estruturas ocorrem em leitos de "Chert" e jaspe e foram tidas no Brasil como fósseis espongiários.
RESUMO

Relatório descritivo do trabalho que visou o conhecimento da dispersão secundária do molibdênio, numa área de clima tropical. O objetivo das investigações, particularmente, inclui o estudo da distribuição de molibdênio em solos lateríticos, natures e imaturas, ambos mineralizados, e rochas estéreis, assim como os vários componentes da drenagem. Baseada por conhecimentos atuais, foi feita uma experiência para entender o mecanismo da dispersão secundária e os efeitos das variações dos fatores ambientais, permitindo o desenvolvimento de técnicas de prospecção gequímica mais apropriadas para Sierra Leone e regiões de climas semelhantes. Erosão e condições de formação de solo variam profundamente. Embora um grande número de problemas ainda persistam, várias conclusões foram tiradas, assim como: o conteúdo de molibdênio em solos residuais sobre rochas estéreis, raramente excede cinco ppm; relativamente alto conteúdo de molibdênio de solos residuais e sedimentos de corrente, em geral nas proximidades da mineralização, reflete a presença de uma larga dispersão primária na rocha matriz; anomalias de grande extensão lateral estão presentes nos horizontes lateríticos de latosolos natures sobre camadas de mineralização; dispersão secundária de molibdênio da mineralização é dominante e em solução; o molibdênio dispersado tende a ser concentrado no horizonte de acumulação de sesquisídios; o conteúdo de molibdênio de águas drenando terras estéreis é geralmente menor que 0,07 ppb, podendo chegar a 0,11 ppb; correntes que drenam a mineralização, o teor raramente excede 0,13 ppb, em áreas estéreis o teor de molibdênio dos sedimentos é semelhante aqueles correspondentes aos solos; em rios que cortam rochas mineralizadas, concentrações anômalas podem ser detectadas nos sedimentos do rio e em águas, por mais de uma milha corrente abaixo.
Na parte centro-norte do Escudo Guianês na Venezuela, o basamento é formado pelas rochas do Complexo Imataca, compreendendo quartzo-feldspato-gnaisses, anfibolitos e anfibólico-piroxênio-gnaisses e migmatitos. O grau de metamorfismo alcança de o fácies elmanína-anfibolito até o granulito, com granitos restritos às áreas de metamorfismo de baixo grau. Mais ao sul, assentando sobre os gnaisses estão os estratos da Associação-Carichapo, consistindo de anfibolitos derivados de lavas máficas e intercalados com rochas sedimentares, incluindo estratos maniganésíferos. A Série Pastora, compõe-se de "wackes", folhelhos e lavas máficas todas no fácies dos xistos verdes, e assenta discordantemente sobre a Formação Carichapo. Do lado norte do Complexo Imataca estão quartzitos, conglomerações e anfibolitos da Associação Real Corona-El Torno. Dobrais gnaissicos e domos equidimensionais também fazem parte do complexo Imataca. Algumas das dobrás são reversas mas não constituem padrão regional. O complexo é cortado pelas falhas El Pao e Ciudad Piar-Guri, associadas a princípio com aproximadamente três quilômetros de milónitos e gnaisses cataclásticos e posteriormente restringe-se a algumas centenas de metros. O relacionamento estrutural e as determinações isotópicas evidenciam que as Rochas do Complexo Imataca juntamente com as da Formação Carichapo foram dobradas a mais de 2.000 m.a. e os estratos da Série Pastora foram recristalizados acerca de 1.300 m.a. A maioria das diferenças litológicas e falhamentos estão evidenciadas por dados magnéticos e gravimétricos.
RESUMO

Trabalho realizado na parte sudeste do estado Bolivar (Venezuela). Apresenta considerações sobre estratigrafia, fisiografia, metamorfose e tectônica. As rochas da Série Pastora se acumularam num geossinclinal cujo eixo longitudinal se estende na direção sudeste de La Pastora até a Guiana, atravessando o rio Guyuni. Esta geossinclinal atualmente está em grande parte destruída devido a intrusão de um imenso batholito granítico e à erosão posterior. O "emplacement" desta massa granítica ocorreu por sua vez, dobramentos das rochas da mencionada geossinclinal. A Série Pastora jaz discordantemente sobre rochas metamórficas de origem sedimentar denominadas Formação Rio Yama, que antecedem ou talvez representem a fase inicial da geossinclinal. A Formação Rio Yama descansa discordantemente sobre rochas do embasamento e ambas foram intrusadas por um batholito granítico conhecido como batholito de Usupamo, o qual possivelmente invadiu até as rochas de Pastora, ainda que tal fato até agora não tenha sido comprovado no campo. Tanto a Formação Rio Yama como a Série Pastora se encontram dobradas e com eixo dos dobramentos geralmente paralelos ao eixo da geossinclinal. A Série Pastora foi subdividida em três unidades, as quais, em ordem decrescente de idade são: Formação Yurari (grauvacas congolomeráticas, conglomerados, grauvacas e lamitos), Formação El Callao (lavas espíliticas com almo fadas) e Formação Caballape (grauvacas e lamitos). Após a sedimentação da Formação Caballape se iniciou a fase de dobramentos com suas típicas intrusões plutônicas básicas, a qual culminou com o desenvolvimento do Batholito Granítico de Usupamo, que acentuou o dobramento da geossinclinal. Com o "emplacement" do batholito granítico terminou o ciclo da Série Pastora e iniciou um longo período de peneplanificação, produzindo-se uma superfície de erosão sobre a qual se depositaram os sedimentos correspondentes à Formação Caraima.
O presente trabalho apresenta um estudo do relacionamento entre diferentes tipos de depósitos minerais, suas variações ambientais e seu posicionamento na escala de tempo geológico. Descreve os problemas que envolvem a obtenção de amostras representativas de depósitos minerais, os fatores considerados nas suas análises e os resultados obtidos de amostras de mais de 200 depósitos minerais em diversas localidades, excetuando a China, URSS e as regiões polares. Dividiu-se o mapa-mundi em 347 retângulos de 5° de latitude por 300 milhas náuticas. Em algumas regiões foram coletadas duas amostras. Conclui-se que com o passar do tempo há um aumento da diferenciação dos tipos morfológicos; que determinadas combinações de grupos litológicos e ambientais são significativamente mais característicos de alguns períodos geológicos que de outros; e que a maioria dos depósitos metalíferos apresenta maior abundância em períodos geológicos definidos. Algumas sugestões específicas são feitas para explicar estas variações. A principal dedução está em que os fatores determinantes do controle dos depósitos minerais refletem sequências irreversíveis e que o aumento em número e complexidade dos fatores envolventes demonstra uma evolução mundial e por isso é apresentada uma sequência evolutiva para os depósitos minerais. O controle das concentrações metalíferas é determinado por diversos parâmetros, entre os quais se incluem sistemas físico-químico, estrutural, ambiental e genético, mas cada um tem suas limitações. Alguns tipos de depósitos mantêm certas características em determinadas épocas geológicas e estas características são dadas por mudanças progressivas no ambiente e consideradas como uma sequência evolutiva produzindo tipos de depósitos que não se repetem em tempos geológicos posteriores. É importante também salientar a tendência de certos minerais de baixa densidade a se formarem próximo à superfície, onde a pressão é menor; estas tendências estão relacionadas a evolução e crescimento dos continentes e a espessura do sial. Foi observado que do Arqueano Superior até o Recente há um aumento constante no número de depósitos associados a rochas vulcânicas.
Em estudo provisório, a Guiana Britânica pode ser dividida geologicamente em: Embasamento Arqueano (mais que 2.600 m.a.), Formação Roraima (Proterozóico Inferior) e Grupo Corentyne (Cretáceo ao Recente). O Embasamento é separado em duas províncias distintas pela falha limite Kanuku; na Província Setentrional, a principal sequência é dividida em: Formação Iwokrama, constituída de rochas vulcânicas ácidas e Formação Muruwa, composta de sedimentos geralmente grosseiros, separados por uma provável discordância dos Grupos Mazaruni e Barama, que apresentam sedimentos e vulcânicas de geossinclinai, com baixo grau de metamorfismo. A Formação Haimaraka originou-se, pelo menos em parte, ao mesmo tempo que a Formação Muruwa, sendo antigamente referidas ao Grupo Nazaruni. Na Província Meridional predomina rochas graníticas e gnaisses com enclaves formados por metassedimentos e rochas itabíriticas do Grupo Karudi e pelas metavulcânicas do Grupo Kuyuwini. As intrusões graníticas nos Grupos Barama e Mazaruni variam de granodiorito a tonalito ou quartzo-diorito e podem ser complexas; são geralmente auríferas. A Associação Berbica e outros gnaisses da área parecem ser relacionados a um ou mais períodos de intrusões graníticas. A Formação Roraima consiste de arenitos grosseiros e conglomerados com menor quantidade de jaspes vermelhos; "sills" de diabásio formam o Grupo Intrusivo Básico Joven; alguns desses sills não são correlacionados com os diques diabásicos que cortam o Embasamento e a Formação Roraima. Os sedimentos de idade cretácea à recente são incluídos no Grupo Corentyne; o principal membro é a Formação Berbice (sedimentos finamente granulados e uma série arenítica interdigital); um profundo "rift-valley" ao norte da Montanha Kanuku contém sedimentos com espessura excedendo 3.000m e pode localmente atingir 4.500m; tais dados foram baseados em levantamentos georressionais preliminares. Alguns horizontes incluem pôlém do Jurássico e Cretáceo Inferior.

RESUMO

O uso de métodos geoquímicos em testes de campo na determinação de traços de molibdênio é demonstrado no presente trabalho. Com equipamentos bastante simplificados, não portando ácidos concentrados perigosos e a vantagem de se realizar 40 a 60 testes diários com apenas um operador. Neste processo a amostra é fundida com pirossulfato de potássio ($K_2S_2O_7$) e o resíduo dissolvido em ácido clorídrico diluído 16N. Cloreto de estanho ($SnCl_2$) é usado como agente reductor, e a adição de tiocianato de amônia (NH_4SCN) faz surgir uma coloração laranja brilhante que com a adição de acetato de amila se concentra na parte orgânica da solução. A coloração varia em intensidade de acordo com a quantidade de molibdênio presente na amostra, e é comparada com uma escala colorimétrica padrão.
A área da Amazônia compreende os Estados do Pará, Amazonas e Acre, e Territórios Federais de Amapá, Roraima e Rondônia, totalizando 3.581.180 km², equivalentes a 42% da superfície do Brasil, sem contar todo o norte do Mato Grosso, o extremo setentrional de Goiás e oeste maranhense, tipicamente amazônicos. A mais vasta floresta tropical reveste quase toda a Amazônia e foi criteriosamente dividida em três partes fundamentais: mata de terra firme, mata de várzea e mata de igapó, sendo que as várzeas contrariamente ao que geralmente afirmam, correspondem à minoria da área total, ou seja no máximo 3%. O clima é do tipo equatorial úmido, sendo elevada a média de temperatura (acima de 25°C) com amplitude térmica inferior a 2°C; as precipitações são altas (acima de 1.500mm annuais), havendo lugares onde chove mais, como na costa do Amapá, em Belém, alto Rio Negro e Solinões, e locais com menos chuvas como nos campos do Rio Branco e parte do Baixo Amazonas; nem as chuvas, nem a temperatura impedem a atividade humana. Em termos demográficos a população corresponde a 3,7% da massa brasileira; a maior concentração situa-se na região Dracantina-Salgado, seguida do Baixo e Médio Amazonas sendo que um imenso vazio toma conta do restante, com menos de 1,0 hab/km²; as áreas de extrativismo mineral não se caracterizam por adensamento demográfico de grande significado, mas economicamente é de real importância, pois o diamante, curcú, cassiterita e manganês, são os produtos básicos desta atividade, localizando-se as jazidas respectivamente em Roraima, Pará, Rondônia e Amapá. A Amazônia de pouso se beneficia das riquezas minerais em exploração, pois o isolamento de certas áreas, como no caso de Roraima, intensifica o contrabando; a cassiterita é exportada em bruto para a Companhia Estanífera e o manganês para o exterior. O prof. Otávio Barbosa, chamou a atenção da necessidade de pesquisas no território de Roraima, pelas possibilidades da região quanto a recursos minerais. As zonas realmente habitadas, são as áreas agropastoris onde se situam os principais núcleos urbanos e onde converge a produção da Amazônia: Região Manaus-Santarém e Região de Belém.

RESULTADO

Morfologicamente existem no Rio Branco três unidades fisiográficas; a região montanhosa, constituída pelas serras do Sistema Parima; a região do peneplano fóssil, representada por uma topografia monótona que às vezes, é interrompida pelo aparecimento de "inselberges", ou de maciços montanhosos de pequena extensão; a região de planície sedimentar, com cobertura vegetal formada por densa floresta do tipo hileano. Na área dos campos, o solo é dividido em solos das terras firmes e das baixadas. São distinguidos ainda em pequenas áreas no alto rio Branco, outros solos, argilosos e terras roxas. As lateritas na cidade de Boa Vista constituem crostas de blocos e concreções. O clima, no alto rio Branco caracteriza-se por uma estação pluviosa, com chuvas torrenciais, e uma estação seca que dura seis a sete meses, enquanto o baixo rio Branco é pluvioso durante todos os meses. A bacia do rio Branco constitui a áremagem do Território, tendo seu regime hidrográfico definido pelas cheias, épocas de "inverno", e pela estiagem, época de "verão". A população do Território é bastante reduzida, equivalendo a uma densidade de 0,07 habitantes por km². No baixo rio Branco, os principais aglomerados populacionais são os municípios de Caracaraí, Catrimâni e Santa Maria. A colonização no Território, realiza-se em duas colônias, a Fernando Costa (ou do Lucaia) e a Bras de Aguiar (ou do Cantar), as quais estão produzindo alguns gêneros de primeira necessidade. Boa Vista, capital do Território é o centro populacional mais importante. A economia riobranquense apoia-se na produção extrativa mineral, principalmente o diamante, e na pecuária. Na área de campo se desenvolve a criação de gado sobretudo bovino. A produção agrícola é irrisória, pois ora se desenvolve o domínio do "extrativismo vegetal". O transporte no Território implica um grande problema, uma vez que são inexistentes as vias de transporte terrestre.

45
Análise do quadro físico, humano e econômico da organização dos espaços, com a finalidade de fornecer informações atualizadas da realidade geográfica do Brasil, tanto como um todo quanto no detalhe das diferentes áreas de seu território; contém dados a respeito do relevo; recursos minerais; clima; solo; considerações sobre a vegetação; hidrografia; e aspectos humanos (população, agricultura, energia, indústria, etc.). Em termos de Amazônia, apresenta o relevo como planícies e baixos planaltos, constituindo um grande anfiteatro balizado pela Cordilheira Andina, fora do nosso território; o clima é apresentado como o mais pluvioso do país, recebendo a denominação de quente e úmido, com maiores precipitações no litoral do Amapá, na foz do rio Amazonas e no setor ocidental da região e menores índices numa espécie de corredor com direção NW-SE, que vai desde Roraima até o sul do Maranhão; à vegetação foi atribuído o nome particular de "Floresta Úmida Amazônica", a qual é uma das maiores áreas florestais contínuas do mundo, sendo dividida segundo suas características em: floresta de terra firme, floresta de várzea e floresta de igapó. É caracterizada por uma rarefação demográfica (0,72 hab/km²), sendo predominantemente rural (60%) com centros urbanos pouco densos (exceção à Belém e Manaus); tendo evoluído durante longos anos para uma economia agropastoril, a Amazônia foi essencialmente extrativista (vegetal principalmente), pois a extração mineral pouco tem contribuído para seu desenvolvimento, porquanto grande parte da produção, especialmente o ouro e o diamante (garimpos no médio Tapajós, Roraima, etc.) é contrabandeada; no Território de Rondônia localiza-se a importante zona de exploração de cassiterite, e no Amapá, a extração do manganês na serra do Navio, contribui com 70% do valor das exportações da região.
RESUMO

A mineralização de molibdenita ocorre na zona de contato de intrusivas aplito-pórfiras, um dos três tipos ricos em sílica; esta rocha intrudiu-se numa secção vulcânica do Terciário Médio constituída de andesitos, sobrepostos por latitos e riolitos. Vênulas de quartzo-molibdenita; molibdenita banhada, com menores quantidades de zinco, chumbo e sulfetos de cobre; molibdenita de alto teor ao longo de zonas cizalhadas; pontuações de molibdenita ao longo de juntas e fracturas superficiais, são os tipos de mineralização na área. Alteração hidrotermal ocorre como propilitização nas vulcânicas e sericitização e caulínização nos pórfiros, assim como um tipo de halo de alteração nas bordas dos veios e zonas de cizalhamento, resultando em forte biotitização nas vulcânicas e caulínização nas rochas aplíticas. Próximo à superfície, a molibdenita foi bem oxidada, formando ferromolibdenita e molibdênio contendo hidróxido férrico. Um ambiente de baixo pH foi criado com a oxidação da abundante pirita dentro de veios e zonas cizalhadas, bem como nas vulcânicas. Sob esta condição o íon ácido molibdato fixou-se em ferromolibdenita, ou em molécula de akaganeíta nos veios, zonas cizalhadas ou nos solos. Molibdenita, pirita e menores quantidades de outros sulfetos de metais-bases, foram posteriores à extrusão vulcânica, e também mais tardios que a atividade ígnea da intrusiva pórfira, exceto para uns poucos diques andesíticos que intrudiram o pórfiro e cortam minerais de sulfetos.
Resumo

Trabalho apresentando os resultados para localizar depósitos econômicos de minerais de berílio e radioativos. Embora as pesquisas não tenham obtido sucesso, minerais radioativos foram encontrados nesta área, onde o condicionamento geológico se assemelha a outras regiões que aparecem tais minerais economicamente exploráveis. Foi relacionada a semelhança dos processos de intemperismo e erosão existentes na Guiana com os que originaram importantes concentrações destes minerais em outras localidades. Sugere-se a pesquisa em áreas "metassedimentares" em rochas gnáissicas e a verificação de possíveis mineralizações metalíferas de média e alta temperatura, associada com intrusões graníticas em áreas de gnais ses cristalinos. Os próprios resultados de prospecção no Grupo South Savannas confirmam pequena extensão lateral e uma tendência a se concentrarem ao longo dos cursos d'água. Destas, nas que mostraram algum interesse, o urânio se apresentava associado ao ouro. Devido a semelhança dos arenitos e conglomerados da Fm. Roraima com sedimentos do Platô do Colo rado esperava-se melhores resultados, mas como neste último a mineralização de urânio está associada com ígneas ácidas intrusivas e uma vez que não há granitos intrusivos na Fm. Roraima, não é de se esperar a ocorrência de depósitos de urânio. No Grupo Barara foram analisadas quatro espécies de pegmatitos aflorantes e concluiu-se que os minerais encontrados não tem exploração comercial. Os métodos de prospecção pelo uso de cintilômetros aerotransportados apresentam algumas dificuldades devido ao intenso intemperismo tropical e à espessa cobertura vegetal. Na Guiana, o clima úmido, e o elevado nível freático favorecem processos de lixiviação e migração dos elementos, formando sulfatos e carbonatos que são absorvidos com hidróxido de ferro, alumíneo e manganes por argilas, lateritas e bauxitas, contribuindo apenas limitada mente para a localização no campo, de depósitos radioativos. A prospecção geoquímica para estabelecer halos urâniferos circundantes é de grande validade não pode ser desprezada. Valiosos também são os métodos para determinação de concentrações de urânio no solo e sedimentos, usando-se papel colorí métrico, cuja sensibilidade é até 1ppm.
RESUMO

Datações K-Ar em minerais (plagioclásio e piroxênio) a partir de amostras do diabásio Roraima da Guiana e Venezuela, indicaram que a intrusão ocorreu acerca de 1.500 m.a. atrás. Os resultados em plagioclásio apresentaram valores em torno de 1.490 a 1.590 m.a., enquanto o piroxênio apresentou resultados de 1.550 a 2.070 m.a. A diferença de aproximadamente 500 m.a. nestes dados pode sugerir que houve mais de uma fase de intrusão tal como foi indicado pelos estudos paleomagnéticos realizados por Hargraves. Em virtude da inexistência de relações entre as datações e os grupos paleomagnéticos, não foi possível determinar conclusivamente se houve dois ou mais períodos de intrusão diabásica. As datações em plagioclásio mostram variações de até 5%, contudo quando consideradas juntas com novas medições, as variações excedem 25%, essencialmente as que foram encontradas no piroxênio. Esta grande variação de idade pode ser interpretada como uma perda de variável de argônio radiogênico, de ambos minerais. Não há evidências de campo ou petrográficas para admitir-se de formação ou metamorfismo dos diabásios Roraima. Contudo, Snelling e McConnell (1966) dataram rochas encontradas acerca de 150 km a SE dos afloramentos de diabásio Roraima, e as relacionaram a um evento metamórfico de 1.300 a 1.460 m. a. Este evento pode ser parcialmente responsável pela perda de argônio observada nos diabásios. A questão de idade ou idades de intrusão dos diabásios só poderá ser resolvida em muitos detalhes por medidas de rocha total Rb-Sr.
Na metade do Terciário, um magma silíceo-alcálico penetrou nas rochas pré-cambrianas, formando o "stock" de Climax. Ele foi introduzido em quatro erupções separadas, dando origem a quatro depósitos hidrotermais que se superpõem alternadamente. A composição química e mineralógica dessas quatro fases do "stock" é essencialmente a mesma: quartzo, ortoclássio, albita e biotita. Em ordem decrescente de idade, as três primeiras têm valor econômico, sendo a quarta desprovida de mineralização rentável. Quase todo o molibdênio de Climax ocorre em veios de quartzo-molibdenita. Esta apresenta-se na forma de placas hexagonais embutidas no quartzo. Outros minerais que coexistem são: pirita, topázio, sericita, fluorita, montmorilonita, caulinita, rodocrosita, calcopírita, esfalerita e huebnerita. A evidência de intervalos entre estas fases é dada por certos diques que teriam sido introduzidos entre os períodos de mineralização e se apresentam mineralizados em um depósito, porém são estreitos em outro. A injeção de cada fase resultou em um arqueamento para leste nas estruturas geológicas anteriores à mineralização. Os fluidos mineralizantes aproveitaram-se das fraturas formadas pela intrusão nas encaixantes e formaram o "stock-work". Parte de um corpo mineralizado foi cortado pela falha do Mosquito e situa-se sob uma espessa cobertura paleozóica na capa do bloco falhado. Na lapa, erosão subaeréa e glaciação removeram uma grande parte de um corpo e encobriram o topo de um segundo.

RESUMO

Apresenta-se uma divisão provisória do Pré-Cambriano da plataforma brasileira, a ser adotada até que outra venha a ser internacionalmente aceita. Ele se apóia em várias centenas de determinações geocronológicas, processadas em diversos laboratórios do mundo, assim como em modernos mapamentos e em análises geotécnicas efetuadas pelos geólogos sulamericanos encarregados da elaboração da Carta Tectônica do Continente. Os valores geocronológicos até agora obtidos para a plataforma brasileira acusam dois bem destacados máximos, correspondentes aos intervalos 500 m.a.-600 m.a. e 1.800 m.a. - 2.000 m.a. Tais máximos assinalam fenômenos tecto-magnáticos respectivamente denominados Brasiliano e Transamazônico. Nas Guianas um terceiro fenômeno dessa natureza teve lugar acerca de 2.500 m.a. (Guriano), tendo afetado o geossinclino Paramaco. Propõe-se que estes eventos sejam adotados como limites mais novos, respectivamente, do Pré-Cambriano Superior, Médio e Inferior, com valores convencionais limites de 570 m.a. - 1.800 m.a. e 2.600 m.a. De tal modo, essa subdivisão muito se aproxima da proposta por V. AGRIDOV e TUGARINOV. O Pré-Cambriano Superior assim definido comporta, a nosso ver, pelo menos três subdivisões, que correspondem aos ciclos tecto-magnéticos Brasiliano (500 m.a. - 900 m.a.) Urucuiano-Xinbras (900 m.a. - 1.300 m.a.) e Espinhaco (1.300 m.a. - 1.800 m.a.).
RESUMO

Vêm de longo tempo o interesse do DNPM pela Amazônia, promovendo investigações geológicas e prospecções de seus recursos minerais ainda insuficientemente conhecidos. Antes da criação do 5º Distrito Norte, em maio de 1967, o DNPM já vinha executando projetos básicos e específicos, em cumprimento ao Plano Leste Decenal. Até a data desta publicação, o DNPM já realizou a cobertura aero-fotográfica de 1.177.792 km² da região amazônica, havendo publicado 79 boletins, onze notas preliminares, três monografias e sete avulsos. Nos anos de 1966, 1967 e 1º semestre de 1968 o DNPM protocolou diversos pedidos de pesquisa, assim distribuídos: no Território de Rondônia foram registrados 2.106 pedidos de pesquisas para cassiterita, além de ouro, tantalita-columbita e outros, perfazendo um total de 2.525 pedidos. No Pará, região do Médio Tapajós, existem 159 pedidos de pesquisas para ouro e 78 para cassiterita. Ainda nesse estado foram registrados 150 pedidos de pesquisa para ferro (Marabá), 145 para bauxita (Alenquer), além de ponderável número de pesquisas para manganês, tantalita, diamante, etc. No Estado do Amapá, existem 144 pedidos de pesquisa para cassiterita (municípios de Novo Aripuanã e Lábrea) e 37 para manganês (Canumã e Borba) e alguns outros para calcário, bauxita, ouro, platina, diamante e cobre. No Território de Roraima foram estudados 59 pedidos de pesquisa para diamante e 50 para ouro, e fora outros pedidos para cristal de rocha, mica, cassiterita, columbita e tantalita. Estas ocorrências situam-se principalmente, no município de Boa Vista. Finalmente, no Território do Amapá, estão sendo examinados 36 pedidos de pesquisa para cassiterita, 44 para columbita, 39 para ouro, 49 para tantalita, 18 para diamante e oito para ferro.
RESUMO

A fisiografia nos arredores de Iramutang é a característica da Formação Kaieteur, uma topografia bem acidentada, alternando-se com baixadas, cobertas com sedimentos recentes. Nas proximidades de Iramutang, ocorre um folhelho, com acamamento proeminente, cortado por veios de quartzo centimétricos, acompanhando ou cortando a direção geral da estratificação. Na base do afloramento, ocorre um siltito homogêneo, de cor creme clara. No caminho para Uruçá, na cachoeira do rio Paiuá, aflora quartzo (?) com ligeiras ondulações, indicando movimentos de basculamento, apresentando um sistema de fraturas ortogonais N15° E - 80° NW e N70° W - 19° NW. Aparentemente intrusiva, nessa sequência de rochas quartzíticas, foi localizada uma rocha ígnea, micro-cristalina, melanocrática. A sua ocorrência, em área de ouro aluvional, é um interessante indício para futuros estudos da fonte primária desse minério. No rio Ailân, a aproximadamente 5 km acima de Iramutang, ocorre uma faixa de rochas cristalinas que acompanham o curso do referido rio. A decomposição de tais rochas proporciona um solo acentuadamente argiloso, rico em matéria orgânica e coberto por densa flora. Essas rochas afloram em forma de grandes matações, formando corredeiras no baixo curso do rio. Em direção ao norte, essas rochas contam com folhelhos bem acanados, de cor amarela e fraturas ortogonais. No igarapé Cipó, afluen te do rio Laiú, foram encontradas brechas de falha, com grãos angulares de rochas sedimentares, que levam a supor que o referido igarapé corre sobre uma falha. Foram ainda registrados grandes blocos de jaspilito, homogêneo, com fratura concoidal e marcas de espinículas. Na área, a rocha regional é um arenito ortoquartzítico com camadas de "claystone" avermelhadas.
Este trabalho apresenta um estudo do controle estrutural, estratigráfico e litológico da mineralização na Associação Bartica-Mazaruni. Ele investiga as formações constituintes, seus inter-relacionamentos, e suas associações com outras unidades. As rochas da Associação Barana-Mazaruni, são estima das como as mais antigas que afloram na Guiana ao norte do paralelo quatro, são compostas predominantemente por grava cas, lutitos, conglomerados e rochas ígneas de granulação fina, metamorfisadas ao fácies dos xistos verdes e localmen te a um grau mais intenso de metamorfose. A maior parte das rochas apresenta os eixos de dobradura com direção entre NW-SE e WSW-ENE. Também se observou dobraduras cruzadas sobre eixos com direção NE-SW e acredita-se que estas forças exerceram algum controle sobre a mineralização. A maioria dos depósitos auríferos da Guiana encontra-se na Associação Barana-Ma zaruni quase espacialmente relacionados ao contato das intrusivas do Grupo Granito Jovem. Verificou-se também um estreito relacionamento entre a mineralização aurífera e alguns minerais económicos como a galena, esfalerita, calopirita e mo libdenita. Dados obtidos através de operações de sondagens em áreas mineralizadas indicam que existe um controle estratigráfico e estrutural na mineralização desta Associação. Em muitos depósitos de ouro as rochas sedimentares têm sido mineralizadas preferencialmente associadas às rochas vulcânicas. Os jazimentos minerais têm sido quase sempre acompanhados por carbonatação, piritização, turmalinização, arsenopir itização ou, como têm sido observados em muitas ocorrências pela formação de minerais de cromo. Prospeção geoquímica para cromo e arsênio como indicadores tem obtido sucesso na de limitação das zonas mineralizadas. Em vista do estreito rela cionamento entre os corpos graníticos e antifólicos com micm Mixmatitos de contato por toda a região uma sequência de eventos é indicada. Também é proposta uma nova coluna estrati gráfica e sugerido um método de prospecção para os depósitos minerais da Associação Barana-Mazaruni.
O trabalho apresenta uma nova coluna estratigráfica que leva em conta conceitos adquiridos em países vizinhos ao Suriname e que torna aquela apresentada em 1969 obsoleta (O'Horne, 1969). Em conexão com esta nova tabela pode-se tirar estas notas: 1) O magma basáltico introduziu-se no embasamento e na Formação Roraima em dois períodos, qual seja, 1690 ± 100 m.a. e 221 ± 10 m. a. Os díques diabásicos que ocorrem na margem sul do escudo das Guianas, na Bacia Amazônica, foram datados no Jurássico Superior-Cretáceo Inferior e possivelmente representam o mesmo período do magnetismo basáltico como a "suite" mais jovem das Guianas. 2) No que concerne à idade dos granitos das Guianas os autores achem que não teria significado uma divisão em granito 2 e granito 3, já que essa subdivisão foi baseada em evidências de campo de uma área restrita da Guiana (NE), não podendo ser extrapolada para outras partes do país (apesar disto os tais granitos 2 e 3 foram extrapolados para o Brasil). 3) Embora a Série Rosebel tenha sido considerada no Suriname como mais jovem que a Série Armina, existem evidências morfológicas e estratigráficas que a Série Armina jaz sobre a Série Rosebel.

RESUMO

Nesta comunicação, é sumariado o conhecimento atual sobre a geologia do Território Federal de Roraima, e relacionadas as ocorrências minerais existentes na área do Projeto Roraima. As seguintes unidades estratigráficas são descritas com base em pesquisas bibliográficas, trabalho de campo e correlação com unidades estratigráficas do Escudo da Guiana, à florante nos países vizinhos: O COMPLEXO CRISTALINO, que inclui gnaisses e granito predominantemente, com quartzitos, quartzitos itabiriticos, muscovita-xistos, granada-xistos e anfibolitos subordinados; FORMAÇÃO SURUMU (Pré-Cambriano), constituída por ignimbritos e lavas de composição riodacítica, que afloram numa faixa de direção WNW-ENE, atravessando o território desde a fronteira com a Venezuela, a oeste, até a Guiana, a leste; FORMAÇÃO RORAIMA (Pré-Cambriano), constituída por arenitos e conglomerados com felhelhos, siltitos e jaspilites subordinados, com 2.400 m de espessura, que o cupa a porção norte do território; VULCANISMO RORAIMA, incluindo "sills" e álques de diabásio, que cortam a Formação Roraima, e cujas datações no lado guianense tem revelado idades de 1.700 m.a.; FORMAÇÃO TACUTU (Cretáceo Inferior) com posta predominantemente de arenitos e folhelhos, que afloram às margens dos rios Tacutu-e Itaú, preenchendo uma estrutura do tipo "graben", cujos limites em território brasileiro, não são ainda conhecidos; FORMAÇÃO ROA VISTA (Terciário), incluindo areias e argilas inconsolidadas que ocupam as regiões dos campos gerais e os DEPÓSITOS QUATERNÁRIOS, incluindo areias e cascalhos dos depósitos atualos dos rios Franco, Tacutu, Surumu e Uraricoera, principalmente. Os recursos minerais ocorrentes na área do Projeto Roraima incluem diamante (rios Itaú, Suapi, Quinó, Cotingo, serra do Tepequém e Surubai), ouro (garimpos do Tepequém, Suapi, Quinó, Tina Sêca, Serra Verde, Uruca e Cabeceira do rio Tacutu), tantalita (localidades do igarapé Erão e Pouso Alto, às margens do rio Uraricoera) e diatomito (Cabeceira do igarapé Fóra quê). São feitas considerações sobre futuras possibilidades minerais do território, que incluem bauxita, cassiterita, ilmenita e minerais radioativos.

RESULTADO

A região do baixo Maiú, compreendida entre Volta Redonda e Cascavel, é uma área montanhosa, com escassa cobertura vegetal, com matos apenas nas margens do rio Maiú e seus igarapés afluentes. Os conglomérados da Formação Kaieteur, aflorantes na região do Lutum, constituem esplêndida sequência estratigráfica, com espessura superior a 200 m, sendo sobrejacentes as rochas queratófiras do Vulcanismo Suruma, dividas à jusante da cachoeira do "Apertar da Mora". Esse conglomérado aflora no leito do rio Maiú e elevações limítrofes, apresentando-se uniforme, com seixos de granulometria regular e constituindo-se quase essencialmente de quartzo. A sudoeste de Lutum existe uma depressão estrutural, limitada a leste pela serra do Lutum. Esta serra é constituída de apófises verticais e inclinadas de queratófiros, subjacentes a sedimentos da Formação Kaieteur. A oeste é limitada por elevações constituídas de queratófiros. A região apresenta um ondulamento suave, sendo coberta por cascalheiras. A garimpagem é feita no leito do rio e nos terracos fluviais.

RESUMO

A região estudada localiza-se, aproximadamente, entre os paralelos de 4°34'21" a 4°42'26" de latitude norte e os meridianos de 60°21'46" a 60°33'40" de longitude oeste. As rochas aflorantes na área, são vulcânicas ácidas (Surumú), arenitos, conglomerados, sedimentos finos da Formação Kaieteur e um "sill" de diabásio relacionado ao vulcanismo Roraima. As vulcânicas Surumú ocorrem numa extensa faixa ao longo do rio Cotingo, desde a Fazenda Stº Antônio do Pão, às imediações do garimpo de Vila Fires. O contato com as rochas subjacentes não foi observado, porém, seu capeamento é feito pelas sedimentares da Formação Kaieteur. Tal vulcanismo é representado por ignimbritos e lavas, apresentando cores e texturas variadas. Os ignimbritos da área mostram-se com uma direção N50°-70°W e mergulhos em torno de 20° para NE. As lavas ocorrem em nível topograficamente mais elevado que eles. A Formação Kaieteur, na área, é constituída por uma sucessão de arenitos, conglomerados, siltitos e folhelhos, os quais assentam em discordância sobre as vulcânicas Surumú, formando extensos "hingbacks" mergulhando para o norte. As camadas sedimentares, da Formação Kaieteur, têm em geral, atitude N35°-40°W com mergulhos para NE. Um espesso "sill" de diabásio, que corta as sedimentares Kaieteur, representa o vulcanismo Roraima na área. Trata-se de rocha fangérmica de coloração cinza e pontuações brancas, constituída de plagioclásico e máficos, exclusivamente.

RESUMO

Relatório da descoberta de uma interessante mineralização em molibdenita, a partir da amostragem geoquímica de solo numa área em que a intrusiva pórfira não aflora. Três tipos de rochas estão expostas na área e nas suas proximidades: hornfels, "sills" irregulares e diques de microdiorito e um grande dique de diorito pórfiro Belmont. Descoramento e bicoloração limonítica não caracterizam a área de interesse que é contornada por um conteúdo de 10 ppm de Mo (o "background" da área é menor que 2 ppm). Geralmente o baixo nível dos valores anômalos foram obtidos do pó em fração de 35 mesh das amostras de solo. A comparação entre os resultados de amostras de solo e rocha, indica que houve molibdênio lixiviado; suspeita-se que esta lixiviação é devida à mudança da estabilidade do molibdênio, causada por significativas quantidades de cálcio. O molibdênio aparentemente foi fixado em alguma extensão, em áreas onde são formadas concentrações de óxidos de ferro. Conclui-se então que um baixo nível anômalo de molibdênio pode ser interessante, e que é preciso maior número de conhecimentos sobre os fatores que afetam a mobilidade do molibdênio na zona de intemperismo para melhores resultados na prospecção.
Determinações de idade através de Rb:Sr e K:Ar executadas em amostras de rochas do Grupo Kenuku (granulito, enderbitognaisses e migmatitos), sugerem que esta unidade litoestratigráfica foi afetada por vários eventos tectonotermais ("placement" do riebeckita-granito de Makarapan - 2.595 m. a., "placement" do Granito Lassara - 2.375 m.a., Evento Tectono-termal Xoco-Xoco - 2.100 m.a., "placement" do Granito South Savannas - 1.845 m.a. e Evento Nickerie - 1.200 m.a.).

Numerosas determinações geocronológicas efetuadas por Friem, Boelrijk, Hebeda e Vershure (1968) através de Rb:Sr, revelaram idades de 1.300 - 1.900 m.a., indicando assim que a Formação Iwokrama e as Vulcânicas Dalbana - Katapi relacionam-se ao Ciclo Orogênico Transamazônico. Ao sul do North Savannah Rift Valley, aparecem diabásiost intrudidos na Associação Rupununi. Esta intrusão processou-se espasmodicamente desde o Pré-Cambriano até o Jurássico, tendo sido mais intensa durante o Permo-Triássico. A Formação Vulcânica Apoeta foi extrudida durante o Cretáceo Inferior. São apresentadas e descritas algumas unidades litoestratigráficas ocorrentes na Guiana, ao sul do paralelo 4°N, bem como foram estas beleças entre elas novas relações de idades.

RESUMO

A Plataforma Amazônica constitui-se no conjunto de dois núcleos cratônicos importantes: o das Guianas e o do Brasil, separados entre si por importante eixo de fraqueza tectônica, quase leste-este, constituído pela grande depressão amazônica. Sua distribuição e forma geográfica são comparáveis à de um grande elipsóide, cujo eixo maior, de direção noroeste-sudeste, tem 2.600 km de comprimento e o eixo menor 2.150 km. Uma outra nítida faixa linear de fraqueza tectônica, de caráter intracontinental, separa a Plataforma Amazônica do núcleo cratônico do Brasil Oriental. A direção geral deste eixo de fraqueza tectônica é nordeste-sudoeste, passando pelo Estado de Góias. Foram distinguidas três fases tectônicas: a do Embasamento Cristalino (Pré-Cambriano), a da Cobertura Sedimentar Dobra da ou da Fase Geológica Intermediária (desenvolvida do Précambriano Superior ao Silúrico) e da Cobertura Sedimentar Não Dobra da, do Devoniano ao Terciário.
Observações geológicas em San Manuel-Kalamazoo propiciaram a oportunidade para um estudo do zoneamento vertical e horizontal associado aos depósitos de cobre em pórfiros. Granitos, monzonitos pórfiros e dacitos pórfiros estão encaixados em zonas de associações potássicas, filíticas, argilosas e propilítizadas apresentando um arranjo coaxial no sentido da zona potássica através das zonas filíticas, argilosas e propilítizadas. As zonas alteradas em profundidade compreendem externamente associação clorita-sericitas epidoto-magnetita e na parte interna quartzo, feldspato-K, sericitas, clorita. As zonas mineralizadas estão conformes com as zonas de alteração, recobrindo as zonas filíticas e potássicas. A ocorrência de sulfetos varia em direção ao alto e para a periferia, sendo disseminações no núcleo e microvénulas, vénulas e finalmente veios, indicam um progressivo aumento de controle estrutural. Os depósitos pórfiros estão aqui definidos como depósitos de sulfetos a cobre ou molióbdeno, consistindo de disseminações e stockwork cujas encaixantes são alteradas por soluções hidrotermais em padrões concêntricos. Os depósitos geralmente são extensos, mas as correlações pequenas também têm sido observadas. Depósitos homogêneos e equidimensionais estão relacionados a stocks complexos de composição intermediária incluindo associações pórfiras e contêm quantidades significativas de pirita, calcopirita, molibdenita, quartzo e sericita associados com outras alterações, ganga e outros minerais incluindo metaísicos em quantidades menores: chumbo, zinco, ouro e prata. A mineralização e alteração sugerem uma temperatura mesothermal pois-magnética. Esses depósitos geralmente são associados com "pipes" de brechas, usualmente com larga zona brechada e circundada por ocorrências minerais que sugerem mineralização de baixa temperatura.

RESUMO

Apresenta considerações sobre os principais jazimentos de ouro, sulfetos e seus associados, existentes na Venezuela, Guiana, Suriname e Guiana Francesa (Escudo da Guiana), abrangendo: distribuição, significado econômico, condicionamento litológico -estrutural e tipo de ocorrência. O Escudo Guianês estende-se através das Guianas, desde a Venezuela, Guiana, Suriname, Guiana Francesa, porção este do Escudo do Estado do Amapá, até ao sul dos rios Negro e Amazonas. A mineralização primária de ouro e sulfetos conhecida neste Escudo, foi influenciada pela tectônica de "framework" pré-cambriana. Sua distribuição na região é controlada por fatores estruturais tais como dobramentos, zonas de cizalhamento, fraturas de tensão e feição tectônica marginal de granitos jovens. Possivelmente também existe um controle lito- tógico na mineralização com respeito aos horizontes turfaços e carbonáceos, xistos verdes e grauvacas. O ouro está comummente associado com pirita e menor quantidade de pirrotita, arsenopirita e calcopirita; também ocorre associado com molibdenita, esfalerita e scheelita. O ouro aparece isoladamente ou associado intimamente com sulfetos em pequenas fraturas, em veios de quartzo e vênulas quartzo-calcíticas, ou disseminado em rocha regional. Há uma semelhança geral no padrão hidrotermal de alteração. Silicificação é muito frequentemente enquanto a sericitização é restrita; clorita e biotita ocorrem frequentemente com os sulfetos; turmalina e albita são pouco comuns. O caulim é dos minerais argilosos, o mais comum. A extensão do Escudo da Guiana, os fatores estruturais e litológicos favoráveis e a ampla extensão da mineralização, tornam a área favorável a exploração através de técnicas modernas.
O riebeckita-granito de Makarapan Mountain, foi datado por métodos radiométricos, revelando uma idade de 2.595 ± 125 m. a. Este granito tem sido considerado intrusivo na Formação Ivokrama (unidade pertinente à Associação Barama Mazaruni), motivo pelo qual esta idade foi aceita como mínima para esta formação. Entretanto, baseado em recente trabalho de fotogeologia, campo e petrografia, foi processada uma reinterpretação da área, tendo sido sugerido que este granito é mais antigo que a Formação Ivokrama, bem como foi correlacionado ao grupo Kanuku (gneisses de alto grau, migmatitos e enderbitos). O riebeckita-granito de Makarapan Mountain é um maciço de 5 milhas de diâmetro e 2.500 pés de altura, que eleva-se na topografia plana circundante. A mais simples explanação é que Makarapan, Urumé e Wurumi Mountain são "monadnocks" (parcialmente coberto por sedimentos recentes), devendo seu relevo a maior resistência à erosão do riebeckite-granito em comparação com as rochas graníticas circunjacentes. A existência de "monadnocks" de comparável tamanho e atitude, é comum na porção meridional da Guiana. Alternativamente, foi sugerido que o Makarapan Mountain represente um "minihorst". Sua situação ao norte do North Savanas "rift valley" numa região de profundos falhamentos, torna esta hipótese bastante apleusável. Contudo, não há evidências suficientes para uma afirmação conclusiva se o Makarapan Mountain é uma montanha residual ou um "minihorst".
Trabalho recentemente executado no Escudo da Guiana. Baseado em evidências geológicas e geocronológicas, sugere uma subdivisão do Pré-Cambriano do Escudo da Guiana em três grupos: Arqueano (idade superior a 2.500 m.a.); Proterozóico Inferior (mais jovem que 2.500 m.a. e mais antigo que os granitos datados em torno de 2.000 - 1.800 m.a.); Sequência Proterozóica (mais jovem que estes granitos porém mais antiga que as intrusivas básicas datadas em torno de 1.700 m.a.). A mesma apresenta uma descrição sucinta das formações características destes grupos. Possíveis correlações são discutidas e apresentadas em mapa e numa série de tabelas estratigráficas. O Proterozóico Inferior é representado principalmente por depósitos metassedimentares e metavulcânicos dobrados e metamorfizados, e granitos de 2.000 - 1.800 m.a. de idade. São feitas comparações entre o Pré-Cambriano do Escudo da Guiana e da África Ocidental, baseadas nas similaridades apresentadas com relação à litologia, geologia e mineralização (manganes).
Análises isocrônicas de rocha total através de Rb-Sr foram efetuadas em amostras do embasamento granítóide-vulcânico do Escudo de Suriname, revelando idade da ordem de 1532±53 m.a. Este limite de idade foi frequentemente relacionado às rochas da porção oriental da América do Sul e refere-se ao Ciclo Orogenico Transamazônico. Através de datações (Rb-Sr), foi evidenciado que as rochas vulcânicas e sedimentos psâmicos são mais jovens que o granito intrusivo que aparece na porção ocidental de Suriname. Hiperstênio-pigeonita-diabásio aparece intrudido no embasamento granítóide-vulcânico e ao brepõe-se à Formação Roraima. Datações de rocha total (K-Ar) e "separação" de biotita (K-Ar e Rb-Sr) foram efetuadas nestas rochas tendo o resultado demonstrado que o intervalo de tempo decorrido entre a formação do embasamento vulcânico-granítóide e o hiperstênio-pigeonita-diabásio, foi relativamente curto. Aparentemente a sequência de fatos relacionados às vulcânicas e sedimentos psâmicos, no oeste de Suriname foi a seguinte: formação do embasamento vulcânico-granítóide, deposição da Formação Roraima, intrusão de hiperstênio-pigeonita-diabásio, o que aconteceu num intervalo de tempo relativamente curto, ao redor de 1.830 m.a. As idades obtidas pelo método de datação de micas (especialmente biotita) através de Rb-Sr e K-Ar, refletem a influência do Episódio Metamórfico Nickerie (1.200100 m.a.). Este evento tectônico, afetou sensivelmente a área situada a oeste da longitude de 55°20' e ao norte da latitude 3°20'N. Um outro período de magmatismo basáltico datado através de K-Ar em 220 m.a. (Fermo-Triássico), foi responsável por grande número de intrusões de pigeonita-olivina-diabásio.
AMARAL, G. et alii - "Determinações geocronológicas e conside-
derações sobre a estratigrafia do Pré-Cambriano na porção
setentrional do Território de Roraima. In: CONGRESSO
BRASILEIRO DE GEOLOGIA, 24, Brasília, DF, 1970. Resumo
das... Brasília, Soc. Bras. Geol., (Boletim Especial, 1)
p. 77.

RESUMO

Foram feitas 18 determinações de rochas de diversas unidades
do Território de Roraima. Um magmatismo básico afeta in
diferentemente as três unidades principais (Complexo Basal,
Grupo Surumu e Grupo Roraima), e seu estudo confirmou a idade
de de 1.850 m.a. já obtidas por estudos prévios. Cito deter-
minações de idade do Grupo Surumu, forneceram idades de
1.100 ± 90 m.a., o que indica ser esse grupo mais jovem que
o grupo Roraima, contrariando a coluna estratigráfica adota-
da. Um dique que corta o Grupo Surumu forneceu idade de
127 ± 19 m.a., similar (145 ± 9 m.a.) a obtida para um dique
que corta o Complexo Basal. Estas determinações confirmam a
existência de duas fases de magmatismo afetando as rochas
do Território. As rochas do Complexo Basal forneceram idades
entre 1.570 a 1.880 m.a., sendo que um piroxênio- anfibolito
da serra da Cigana forneceu uma idade de 4.400 ± 9 m.a.

RESUMO

O reconhecimento geológico estende-se por 132 km do rio Lucajai e 140 km do seu afluent Apiaú. Na área do reconhecimento aflora uma sequência de rochas granito - gnáissicas com características migmáticas, pertencentes ao Escudo Guianaense, cortadas por diques de diabásios não metamorificados. São descritas, as seguintes unidades litológicas: Migmatitos, representados por rochas de estrutura gnáissica com hendeamento irregular, ocorrentes em toda a área. Afloramentos de gnaioses com estrutura "augen" estão bem expostas na localidade de Barraca do Nestor, no rio Lucajai. Afloramentos de granito fino, cortado por veios pegmatóides aparecem no Apiaú. Anfibolitos, representados por rochas diabásicas metamorfasadas ao fácies anfibolito ocorrem em forma de diques. Piroxênio-hornblendito: rocha a base de hornblenda verde e piroxênio (augita ou diopsídio), encaixada na seqüência migmática. Diabásios - diques que cortam a sequência cristalofílica; Terciário - representado por arenitos pouco consolidados; Recente - areias e cascalhos ocorrentes nas margens e calhas dos rios percorridos.
RESULTADO

Como resultados obtidos no estudo das ocorrências de diatomito e de "terra salitrosa", localizadas entre os rios Surumuí e Tacutu, constatou-se que só o diatomito, situa-se nas nascentes do Igarapé Furaquê, e ocorre numa camada contínua, com 800 metros aproximadamente de extensão e uma espessura média de 0,5 metro. É um sedimento branco fino, constituído essencialmente por espículas (?) silíceas e carapaças de diatomáceas. Análises microscópicas desse sedimento mostrou que se tratam de diatomáceas de água doce, que viviam em lagos profundos. O volume deste depósito foi estimado do "a vista" em 40.000 m³. A "terra salitrosa" resulta da precipitação de excrementos de morcegos que habitavam uma imensa gruta no flanco sul da serra da Mina.
RESUMO

Um complexo de rochas graníticas e metamórficas aflora na região banhada pelos rios Anauá e Parauana. A estratigrafia estabelecida para a área é a seguinte: Conjunto Cnáissico representado por biotita-gnaisses, biotita-hornbenda- gnaisses, com biotita-xistos subordinados. Quartzitos ferruginosos que ocorrem à montante do poço Uirimba foram também incluídos nessa unidade; Grupo Anauá - representado por biotita-hornblenda-xistos, amphibolitos, hornblenda-biotita-plagioclásio-gnaisses e silimanita-gnaisses. Essas rochas estão expostas exclusivamente no alto curso do rio Anauá. Amphibolitos - representados por alguns pequenos afloramentos de rochas verdes associadas ao Conjunto Cnáissico bem como xenólitos dentro da unidade Granodiorito; Granodiorito - é a unidade mais extensamente representada, correspondendo a um granodiorito a microclínio com abundantes xenólitos. Granito Cachoeira Primeira - Granito com textura porfirítica, muito homogêneo. Diorito - Corpo de diorito intrusivo na unidade de Granodiorito; Diabásio - Diques de pequena extensão com direção norte-sul; Quaternário - representado por sedimentos sub-recentes e recentes depositados no baixo curso dos rios Anauá e Parauana. Na área percorrida nem uma ocorrencia mineral foi observada. Mencionou-se ocorrências de ouro e cassiterita. Áreas ortoquartzíticas, brancas, com possível aproveitamento para a indústria de vidro, foram verificadas na localidade de Morro Branco.

RESUMO

RESUMO

Através de análises quantitativas (Mo, W, Sn, Ti, Zr) e cotorrimétricas (Nb e Ta), foi examinada a distribuição destes elementos, em rochas e minerais nas múltiplas fases de intrusões. O comportamento do Sn, Ta e Nb é determinado não só por suas semelhanças cristalográficas com Ti e Fe, mas também, e especialmente, por suas tendências a formar fluoreto complexos estáveis, os quais causam o acúmulo destes elementos em resíduo. Molibdênio e wolframio solidificam-se cedo no estágio de cristalização (Mo em K-feldspato, e W em plagioclásio); não são acumulados no produto final. Os ácidos complexos apresentam diferenças em mobilidade, provavelmente predeterminando o fracionamento de Be, Mo, W, Sn, Nb, Ta e álcalis raras, com a formação de minérios de várias composições em estágios diferentes. Os fluoreto complexos de nióbio, são mais móveis do que os de tântalo, os quais conduzem à separação destes dois elementos nas multifases das intrusões graníticas e ao acúmulo de tântalo no produto de diferenciação mais ácido. A origem dos minérios potenciais de Sn, Ta e Nb são intrusões graníticas hipabissais tipo titâniortoclasio, pobre em Sn e Ta que cristalizam-se numa sequência de atividade tectônica de um magma rico em flúor.

RESUMO

A direta associação genética dos depósitos de estanho, tungstênio e molibdênio com granitos, foi confirmada por muitos autores através de informações detalhadas (Ferguson Bateman 1912, Jones 1925, S.S. Smirnov e outros 1947, etc.). Análises estatísticas dos dados de literatura (Stemprok 1960) sobre a posição dos depósitos de Sn-W-Mo estabelecem que estes depósitos estão estreitamente ligados às rochas ígneas ácidas ou intermediárias intrusivas. As seguintes posições de depósitos foram relacionadas: 1) Depósitos de Sn-W-Mo limitados à porção superior de corpos graníticos, especialmente nos de algumas elevações; 2) ocorrem em zona de endocontato e/ou exocontato; 3) maior parte dos depósitos é epigenética; 4) depósitos de Sn-W-Mo ocorrem na maioria das vezes em áreas que sofreram deformação tectônica local. A mais importante explanação das principais características dos depósitos de Sn-W-Mo foi apresentada por Exxon's (1933, 1937). Exxon's admitiu que a zona mais externa do magmático resfria primeiro, e sob esta zona há grande acumulação de voláteis. Após a deformação tectônica dessa zona mais externa causada pela grande pressão de vapor, os voláteis constituíntes da solidificação do magma são expulsos através das fissuras, formando deste modo depósitos minerais. Alguns autores supõem que os sitios de acumulação de minerais são representados pelos chamados "primary greisen" ou pegmatitos, os quais mostram o lugar de concentração dos voláteis. Por exemplo, a columbita "primária" nos granitos Nigerianos muito possivelmente representa o produto de uma ação deutérica de albitização metassomática (Severev 1962) e não o mineral que cristalizou primeiro. Uma explicação alternativa supõe que as soluções pós-magmáticas são conduzidas através de fissuras para a porção mais externa dos corpos graníticos (parcialmente para a zona de exocontato), formando em lugar favoráveis, depósitos minerais. Mineralização associada à deformação tectônica é em contrada no interior do corpo ou na sua imediação.
A molibdenita é o principal mineral-minério de molibdênio e quase toda produção do metal provém deste mineral (MoS₂). O padrão de ocorrência da molibdenita é simples e é associado com intrusivas ácidas em cinco tipos de depósitos: corpos pegmatíticos; contato metassomático; substituição disseminada; veios de fissura geralmente com quartzo ou ganga feldspática; e "pipes" de quartzo, pórphiro, granito ou feldspato. Os limites de temperatura para a formação destes depósitos são geralmente de 250°C (mesotermal mais alto) a 500°C (hipotermal mais baixo). A molibdenita ocorre comumente em associação de cassiterita-wolframita-molibdenita-bismuto, que mostra preferência pela porção marginal das intrusivas, dentro ou nas rochas adjacentes ao contato ígneo. Os depósitos australianos ocorrem principalmente em "pipes", tendo a associação mineral wolframita-molibdenita-bismuto, a ganga é aquela característica deste tipo de depósito. Há três classes de "pipes": de quartzo, de granito e de granada, sendo este último menos comum. Algumas características importantes são descritas neste trabalho, como por exemplo: os "pipes" são comumente verticais ou inclinados; eles ocorrem no granito, restritos ao contato ígneo com a rocha encaixante, e nunca a mais de 440 m do contato; a mineralização ocorre principalmente em "shoots" dispostos irregularmente; assim como outras características marcantes. São des critos detalhadamente os depósitos de Queensland, New South Wales, Kingsgate, Bathurst, Victoria e Tasmânia.
Este trabalho refere-se a um programa de exploração mineral de modo a avaliar a utilidade de uma amostragem geoquímica regional nas rochas plutônicas ácidas do Cretáceo, no cinturão Selwyn, em Yukon, Canadá. A datação potássio-argônio estabeleceu uma idade entre 74 a 110 m.a. para estas intrusivas alojadas em rochas sedimentares e metamórficas de idades estimadas desde o Pré-Cambriano até o Carbonífero (Mississipiano). O objetivo deste programa foi definir áreas nas quais seria mais vantajoso concentrar esforços na pesquisa de determinados tipos de depósitos relacionados a quelas rochas ácidas. Foi proposta uma curva de distribuição normal para rochas desprovidas de qualquer concentração de elementos em depósitos minerais e uma curva de distribuição lognormal ou mesmo bimodal para intrusivas associadas a depósitos minerais. Dados estatísticos, tabelas e gráficos são também referidos neste trabalho.
O embasamento pré-cambriano no Suriname é constituído na sua maioria por rochas ácidas datadas em 1.810 ± 40 m.a. Este magmatismo pertence ao ciclo orogênico Transamazônico, conforme resultados obtidos em processos de Rb-Sr em 32 amostras. No oeste do Suriname todas as biotitas aproximadamente mostraram uma variação na quantidade de Sr e Ar, o que seria uma prova de um evento tectonotermal posterior ao ciclo Transamazônico, designado como episódio metamórfico Hickerie, datado em 1.200 ± 100 m.a. Este metamorfismo também teria influenciado nas regiões sul e este da Guiana, onde também houve um semelhante rejuvenescimento na idade das micas, que seria uma continuação da mesma província dentro da Guiana. Zonas de falhamentos transcorrentes provavelmente foram desvoltadas durante tal período, tal como o de Barron, na Guiana, que tem ligação com a zona milonitizada de Backuys Mountain no oeste do Suriname, e caracterizada por forte anomalia magnética. É feita referência sobre a influência do episódio Hickerie no Cráton brasileiro tal como a ocorrência de um cinturão metamórfico de idade entre 1.100 a 1.400 m.a., na borda este-sudeste do cráton de São Francisco. No Distrito mineiro de São João Del Rey foi denominado orogenia Barbacena (1.150 m.a.) um episódio envolvendo magmatismo de caráter quartzo-diorítico.

RESUMO

Trabalho executado na porção sudeste de New Brunswick (Canadá), constando da interpretação e comparação de 20 amostras de sondagem analisadas simultaneamente por oito laboratórios diferentes. Os elementos em questão eram molibdênio, tungstênio e bismuto e para as análises foram usados métodos químicos clássicos, colorimetria, absorção atômica e Raio-X fluorescente.
A geologia da Central Coast Mountain, British Columbia, é representada predominantemente por rochas granitóides, e em menor escala, por rochas sedimentares metamorfizadas regionalmente e material vulcânico. O gnaiss e central é composto por uma associação complexa de gnaisses de alto grau de metamorfismo, rochas plutônicas, xistos e migmatitos, e rochas metassedimentares de idade incerta, por quartzo-gnaisses e mármore. A estrutura da região é complexa e não totalmente entendida. Quatro tipos de depósitos são conhecidos: 1) Depósitos de veios, que consistem de veios de quartzo-pirita, contendo alto mas irregular teor de ouro e baixo conteúdo de cobre; 2) Depósito de escarnito ocorrendo em rochas calcárias da unidade metassedimentar com abundantes sulfetos como calcopirita, pirita e pirrotita, sendo que a molibdenita é importante em depósitos individuais; 3) depósitos de sulfeto maciço, localizados em xistos de alto grau do cinturão de metassedimentos; 4) depósitos pegmatíticos, contêm sulfetos que estão concentrados próximo à margem da massa pegmatítica tais como pirita, pirrotita, molibdenita, etc., tendo sido produzidas pequenas quantidades de ouro, prata e cobre. Os dados da amostragem geoquímica foram analisados para o Mo, Cu, Zn e agrupados de acordo com a litologia do leito das bacias de drenagem, e a distribuição e afinidades dos metais-braço foram estudadas usando a frequência cumulativa e métodos estatísticos relativamente simples. Correlações positivas entre os conteúdos médios de Cu e Zn de amostras de sedimentos e o peso específico de rochas plutônicas, são interpretados principalmente como resultados de variações no conteúdo em minerais máficos das rochas plutônicas. Levantamento de reconhecimento em sedimento de corrente é usado em ambos: Prospecção de depósitos de sulfetos maciços e em estudos metalogenéticos.

RESUMO

Trabalho resultante do mapeamento geológico na escala de 1:100.000 estimado numa área de 2.000 km², e situada na porção norte do T.F. de Roraima. Apresenta considerações sobre: fisiografia, estratigrafia, geologia estrutural e econômica da região. As considerações estratigráficas abrangem dados sobre a coluna geológica e descrição pormenorizada das unidades litológicas (nome, litologia, distribuição, relação de contato, aspectos mesoscópicos e microscópicos). Em ordem decrescente de idade, as seguintes unidades litológicas são descritas: Embasamento Cristalino Indiviso (biotita-granitos, granito-granitises); Metadiabássicos (juntamente com os metabasaltos representam as Intrusivas Básicas Epimetamórficas); Granito Saracura (leucogranito). O vulcanismo Roraima compreende os diabásios não metamórficos (Intrusivas Básicas). Todas as unidades mencionadas têm sido relacionadas ao Pré-Cambriano com base em datações radiométricas estabelecidas nos países vizinhos (Guiana e Suriname, principalmente). No extremo sul da área ocorre espessa cobertura de sedimentos incondizados (areias e argilos), referidos como cobertura pleistocênica. As calhas dos vales fluviais são revestidas e margiadas por depósitos aluviais inconsolidados recentes. A área demonstra intensa e complexa tectônica, evidenciada pelas transformações nas feições originais dos vulcanitos Suruma e na morfologia dos "monadnocks" graníticos alongados coincidentemente às direções de esforços. O elemento tectônico mais notável constitui o sistema de falha E-W, com deflexão para NW-SE a leste da área. Os principais efeitos causados por esse tectonismo nas rochas da área são representados por olivagem, brechação e silicificação. Do ponto de vista econômico, o aspecto mais importante da área é a existência de ocorrências de molibdênio e minerais de cobre, embora também restritas ocorrências de hematita e fluorita tenham sido detectadas.

RESUMO

As propriedades físico-químicas e a posição dos elementos na estrutura da fusão silicatada, determinam seu comportamento. O acúmulo de elementos na diferenciação magmática, toma lugar em estreito acordo com sua posição no sistema periódico e pode ser descrito em termos de coeficiente, o qual objetivamente reflete as características de distribuição dos elementos na diferenciação magmática e tem um sentido físico-químico definido. Os principais elementos do mineral nos depósitos de molibdênio, halets, e elementos petrogenéticos, podem ser arranjados em ordem crescente de tendência (da esquerda para a direita) para acúmulo na diferenciação felsica, com base em seus coeficientes de acúmulo e energia característica: Cu-Mo-W-Be e U; I e Br-Cl-F; Mg-Fe-Ca-Na-K. O cobre é um elemento característico de rochas felsicas ($k_{av} = 1,72$), enquanto Mo ($k_{av} = 0,62$), W ($k_{av} = 0,33$) e U e Be ($k_{av} = 0,10$) são característicos de rochas felsicas. Durante a diferenciação magmática, o conteúdo de cobre cresce do mafico para o felsico, mas o conteúdo de molibdênio, tungstênio, urânio e berílio cresce; o acréscimo sendo grande, menor é o valor do coeficiente de acumulação do elemento. A tendência ao acúmulo na diferenciação felsica é mais fraca para o molibdênio do que seus associados W, U e Be.
TAUSON, L.V. & KOSLOV, V.D. - Distribution functions and ratios of trace-element concentrations as estimators of the ore-bearing potential of granites... 1971 p. 37-44, il. [Local e fonte não identificados].

RESULTADO

O potencial de mineralização dos magmas graníticos está estreitamente relacionado à concentração de elementos emanados como resultado de suas migrações junto com os compostos voláteis do magma e as suas concentrações nas projeções dinâmicas de corpos intrusivos e nas fusões residuais de câmaras magnéticas. A natureza da distribuição de elementos traços nas intrusões graníticas serve para distinguir tipos diferentes geoquimicamente e também para identificar a existência de mineralização em potencial. Na identificação geoquímica dos tipos de granito e nas intrusões mineralizadoras em particular é usada a razão de concentração de determinados elementos, principalmente Rb/Ar. Para granitos com alto teor de flúor a razão de 1.000 Li/K e alternativamente as razões F/Li e Li/Zn podem ser empregadas. Com bases nessas dados podemos dividir as rochas graníticas em cinco categorias principais: 1) plagiocorritos, que tem origem na diferenciação final de magma gabroico; 2) granitos ultrametamórficos, formados por fusão parcial de rochas altamente metamorfasadas; 3) granitos poligenéticos que resultam da fusão completa de diferentes rochas metamórficas na crosta terrestre; subdividem-se em normais e subalcalinos; 4) leucocorritos plagiocólicos relacionados geneticamente às últimas diferenciações ácidas de largas câmaras magnéticas de granitos poligenéticos normais ou diferenciações ácidas de câmaras magnéticas abissais de basalto alcalino com alto conteúdo de potássio e voláteis; 5) leucocorritos aphaníticos cuja origem é atribuída às diferenciações termais de ampás câmaras de magmas graníticos subalcalinos ou diferenciações ácidas a partir de magmas basálticos alcalinos com baixo teor em voláteis. Os dados obtidos mostram que a distribuição dos elementos, níveis de concentração, variação e razão de concentração podem ser empregados para avaliar diferenças nos processos de cristalização, dispersão e concentração de elementos em granitos de diferentes tipos geoquímicos.
A relação geoquímica entre o rênio e o molibdênio, a qual foi reconhecida como o único e o mais importante critério na prospecção do rênio, não tem sido aceita universalmente, senão esta correspondência refutada pela formação de minerais individuais, dos quais somente o sulfeto complexo de rênio "Chezkganite" Cu (Re, Mo) S₄− é presentemente conhecido. O molibdênio ocorre numa quantidade subordinada. A molibdenita é o único mineral portador de rênio em todos os depósitos deste grupo, tendo um coeficiente de ocorrência não ultrapassando a 0,5 e um conteúdo médio de 50-60 g/t. Estes depósitos são associados com intrusões graníticas e com a evolução geoquímica da zona de baixa profundidade da crosta. O relacionamento no grupo sulfetos de ferro, não é confirmado como critério para análises correlativas, ocorrendo principalmente em sulfetos de ferro e cobre (média de 0,3 e 0,6 g/t respectivamente), estando estes depósitos associados com a evolução geoquímica das zonas mais profundas da crosta e do manto superior. O conteúdo médio de rênio na molibdenita de depósitos de grupo transicional silicato-sulfetos, varia de um mínimo de 8 g/t nos mais pobres em cobre, até 882 g/t nas queles mais ricos em cobre. Para a calcopirita, estes valores variam no intervalo desde não detectado a 1,8 g/t, e possivelmente mais. Nos processos exógenos, a relação geoquímica de rênio para cobre e urânio é forte; em minérios de cobre varia de 0,5-0,7. Enquanto, sob condições endógenas, o elemento em questão segue o principal componente dos minérios (como acessórios), nos processos exógenos, são criadas condições para a formação de minerais de rênio. Além de concentrações de rênio em formações de cobre, foi encontrado em minérios de urânio-molibdênio e ferro-manganês, em matriz orgânica e em diferentes "biothermas". No estágio atual de conhecimento, o rênio é obtido a partir de concentrados de molibdenita de depósitos endógenos (principalmente de cobre-molibdênio), concentração de cobre dos Arenitos Medistian e potencialmente dos depósitos de urânio-molibdênio em caustobiólitos.
A mina Climax contribuiu aproximadamente com a metade do total de molibdênio produzido no mundo, nos anos passados. Devido a demanda, houve o desenvolvimento de outras minas de tipo Climax, e como resultado, verificamos que depósitos produtores tipo "stockworks" abrangeram 71% da produção do mundo livre em 1969. Os depósitos de "stockworks", contém de 0,2 a 0,5 por cento de molibdênio, próximo ao contato de rochas intrusivas silicosas ou em toda ela; minérios deste tipo de mineralização produzem só molibdênio com exceção do depósito de Climax que recupera pirita, estanho e tungstênio; localizam-se estes minérios em simples ou múltiplas intrusões, diques e "pipes" brechados. Composicionalmente, a fase ígnea varia de granodiorito à granito, onde a textura pode ser porfítica, aplítica ou inequigranular. Alteração hidrotermal é principalmente marcada por K-feldspatização, silicificação, havendo sericitização, argilização e propilização. A molibdênita ocorre em vêmulas associada com quartzo e menores quantidade de outros sulfetos, óxido e ganga; em veias de fissura; em fractures finas que contém pontuações de molibdênita; em preenchimento de brecha e mais raramente em grãos disseminados. A intrusão e a mineralização ocorrem comumente na epízona da crosta em temperaturas menores do que 400°C. Parageneticamente, o molibdênio ocorre no estágio precoce de mineralização, em minérios que estão comumente próximo ao centro da atividade ígnea. A história geológica das províncias produtoras exibe grande diferença sedimentar, ígnea e tectônica; as províncias de "stockworks" ocidentais ocorrem em ambiente de eugeossinclinais, enquanto a parte ocidental do cinturão de Idaho e o área meridional de Rocky Mountain são antigos meioeossinclinais. Adicionalmente, eventos plutônicos associados com estes depósitos têm diferentes idades e refletem em parte, a evolução geológica da cordilheira ocidental. Em correspondência, os depósitos meridionais de Rocky Mountain foram formados a 23-30 m.e., por volta do limite Paleoceno-Neoceno e são correlacionáveis com a fase de atividades ígneas do Terciário Médio, nesta área e adjacentes.
RESUMO

A ocorrência de molibdênio de Eagle Mountain é conhecida desde 1948. Baseados em estudos químicos, recentemente foram efetuados na área, trabalhos de sondagens a diamante, nas zonas que apresentam condições geológicas favoráveis à mineralização. Na região aparecem vulcânicas metamorfisadas, intruídas por biotita-granitos. Um granito pôrivo intrusivo, atravessa as demais rochas na direção NNE. Uma zona de fraturamento também de direção NNE secciona o pôrivo e as vulcânicas metamorfizadas, e é portadora de mineralização molibdenítica. Principalmente, como disseminação e em pequenos veios de quartzo. Todas as unidades estão truncadas por falhamentos transversais pelas quais houve intrusão de diabáscio. A molibdenita no granito pôrivo, ocorre em forma de manchas ao longo de veios de quartzo e como pontuações em superfícies de fraturas. Tanto nos pôrivos fraturados como nas metavulcânicas, associa-se estreitamente com mineralização piiritífera, porém os valores de cobre são baixos. Sondagens efetuadas em Dicken's Hill reunindo as experiências obtidas em Eagle Mountain, tem conduzido à conclusões promissoras. Nos arredores de Baboon Creek, existe a ocorrência de scheelita, associada à biotita-granito. A scheelita ocorre disseminada e em veios de quartzo auríferos.

RESUMO

O escudo da Guiana abrange a região compreendida entre os rios Orinoco e Amazonas ao norte e sul, a planície colombiana e venezuelana e o Oceano Atlântico a oeste e este, respectivamente. Sua interpretação paleotectônica se baseia na intercalação de parâmetros petrológicos, geoquímicos, estruturais, metamórficos, geocronológicos e paleomagnéticos; são definidos e separados nos países integrantes do Escudo, os cinturões gramílico, anfibolítico e xisto verde com uma subféra dente último, seguidas nas áreas platofmínicas por cratonização, sedimentação, molassóide, evento vulcânico ácido intermediário e intrusão plutônica alcalina consanguinea não contemporânea; grande discordância regional, extensa reativação vertical e cratonização: acumulação de capas roxas, vulcanismo toleítico fissural ("sill" de 1.700-1.600 m.a.) plutonismo, extensa reativação vertical de geocfraturas (1.200-350 m.a.) e novos períodos de vulcanismo básico (400 e 200 m.a.). São analisadas as diversas remobilizações graníticas e os eventos tectônomeronais Guirinense (3.000-3.400 m.a.), Arochis (2.750-2.650 m.a.) e remobilização (2.500-2.310 m.a.), Guayanensis (2.000-1.800 m.a.), Parchuazensis (1.600-1.500 m.a.) e Crinoquensis-Mãude-Rickerie (1.300-850 m.a.). Os basaltos pré-cambrianos são comparados com os das cristas oceânicas Atlânticas e Circumpacificas para identificar a possível existência de uma corrente oceanica fossil em terras nos pré-cambrianos. Estabelece uma correlação entre os Escudos Guayana e da África Ocidental, mediante comparação dos diversos parâmetros (tectônicos, litológicos, geoquímicos e geocronológicos).
Trabalho sumariado relativo a "Operation El Dorado" (1966 a 1971). É apresentado um novo mapa tectônico-geológico na escala 1:500.000, abrangendo uma área de 74.900 km², da Guiana correspondente à porção situada ao sul do paralelo 4°N. Este mapa é baseado principalmente no levantamento fotogeológico efetuado na região pelo Institute of Geological Sciences de Londres. É esboçada brevemente a geologia da região, apresentando uma coluna litoestratigráfica preliminar, baseada tanto em evidências de campo, como em datações radiométricas. As seguintes unidades litoestratigráficas são descritas: Kamuku Complex; Kwitaro Group; Granitic Rocks; Kuyuwini Group; Burro-Burro Group; Basic Ultrabasic Intrusive Rocks; K'muduku Cataclasites and North Savannah Rift Valley. As seguintes características apresentadas pelas rochas da porção meridional da Guiana sugerem que elas são típicas de um cinturão orogênico "Hercynotype": a assembleia mineral do Kamuku Complex e Kwitaro Group é caracterizada por metamorfismo de baixa pressão-alta temperatura; existência frequente de granitos e migmatitos; poucas rochas magnéticas básicas e ultrabásicas; ampla extensão do cinturão e termo-tectônismo nas últimas centenas de milhões de anos.

RESUMO

Esboço do Mapa Metalogenético da Guiana, representando um primeiro estudo analítico de base, e que permite a localização rápida no espaço e no tempo das mineralizações mais importantes na parte venezuelana do Escudo Guianense. O mapa foi elaborado na escala de 1:100.000, indica os depósitos grandes, médios e pequenos, bem como suas características metalogenéticas conhecidas. São assinalados também, dados referentes às ocorrências de substâncias não metálicas, como o diamante, dolomita, dumortierita, etc. Para sua elaboração foram utilizados: Mapa Geológico da Guiana; Mapa de Recursos Minerais da Guiana; Mapa Mineiro da Guiana, mapas de amostragem de minerais pesados, mapas de amostragem geoquímica, mapas aeromagnéticos e trabalhos de campo especiais. Foi dedicada especial atenção a: rochas intrusivas (composição e idade), relações mútuas entre as rochas intrusivas e encaixantes, rochas encaixantes, composição litológica e aspectos estruturais mais importantes. Apresenta também um quadro de distribuição geocronológica das mineralizações existentes nas diversas províncias metalogenéticas da área.

RESUMO

Trabalho de caráter geral no qual são apresentados quatro tipos de geologia pré-cambriana (sequência rochosa arqueana; sequência rochosa do Pré-Cambriano Médio; Evento Catastrófico; zona de "rift" do Pré-Cambriano Superior), que aparecem na América do Norte, e talvez também existam no Escudo das Guianas. Cada tipo de Geologia pré-cambriana mencionado, é descrito em termos de constituição litológica e mineralizações existentes. Do ponto de vista geológico-econômico, a sequência rochosa arqueana é portadora dos seguintes depósitos minerais: a) depósitos sedimentares de magnetita-hematita em formação ferrífera b) depósitos auríferos de veios; teluretos de ouro c) depósitos piríticos ou pirrotíticos encerrados em estratos de cobre-zinco, com quantidades variáveis de chumbo, prata e ouro d) sulfetos niquelíferos maciços ou disseminados em mantos ultramáficos. As rochas do Pré-Cambriano são portadoras dos seguintes depósitos minerais: a) minas ferríferas sedimentares b) veios de prata-cobalto e prata-uraníta com manto diabásicos c) conglomerados piríticos ricos em quartzo com uraníta d) siltito dolomítico com calcocita-bornita-calcopirita disseminadas. Ao evento catastrófico relacionam-se concentrações fabulosamente ricas de sulfetos de níquel-cobre. A zona de "rift" do Pré-Cambriano Superior são relacionados depósitos de cobre nativo e de calcocita.

RESUNHO

Trabalho relativo ao primeiro ano de execução do novo projeto Roraima, o qual foi dirigido a investigar o ambiente de deposição da Formação Roraima, na Guiana. Foram reconhecidas as seguintes unidades litoestratigráficas: unidade 1 (conglomerados imaturos); unidade 2 (ortoquartzitos com algum arcóseo); unidade 3 (ortoquartzitos); unidade 4 (conglomerados com seixos de quartzo). Os conglomerados imaturos foram depositados por rios anastomóticos e um delta próximo (ou seja, próximo a fonte). O conglomerado com seixos de quartzo marca uma transgressão de delta.

RESULTADO

Trabalho realizado com a finalidade de localizar jazimentos de metais básicos, ouro e manganês, no Escudo da Guiana e, executado no Estado Bolívar, em quatro áreas distintas (Botanamo-Vuelvan Caras; Mandingal-Cerro Pelón; Potosí e San Cristóbal). Os critérios básicos para a seleção dessas áreas, foram suas características geológicas e o conhecimento de ocorrências de minerais associados com metais básicos. Em Botanamo-Vuelvan Caras executou-se reconhecimento geológico, prospecção geoquímica e geofísica. Os métodos usados foram: polarização induzida, eletromagnéticos e análises de solos. Foram localizados numerosos veios de quartzo mineralizados indicando possivelmente um importante distrito aurífero. Outras zonas foram definidas por anomalias geoquímicas e geofísicas, porém necessitam de estudos mais detalhados para a conclusão definitiva quanto a sua importância e magnitude. Trabalho semelhante foi desenvolvido em Mandingal-Cerro Pelón. O quadro geoquímico indicou Mandingal, como possível portador de mineralização de alta temperatura, tal como ouro, tungstênio, estanho e possivelmente molibdênio, e Cerro Pelón como provável depósito de cobre. Em Potosí, foi efetuado prospecção geoquímica preliminar para metais básicos, principalmente chumbo, zinco e cobre, a través de amostragens de solos. O quadro geológico da área é representado por rochas intrusivas básicas metamorfas e metassedimentares com intrusões ígneas ácidas. Nas zonas de intrusivas metamorfas, foram definidas anomalias não muito altas de cobre e zinco. Em San Cristóbal foi executada a prospecção geológica-geoquímica, para manganês e metais básicos. Os resultados obtidos eliminaram as possibilidades da existência na área, de jazimentos econômicos de manganês, cobre, chumbo e zinco.

RESULTADO

Síntese da conferência proferida pelo Dr. R.B. McCONNELL. Apresenta um esboço geral das teorias modernas sobre tectônica global, bem como seleciona os vários episódios orogénicos processados na África e seus correspondentes no Escudo da Guiana. Abrange comentários sobre o Sistema de "Rift" da África Oriental. A geologia pré-cambriana da África Ocidental é comparada à do Escudo da Guiana pela notável similaridade. Na África, as seguintes culminações de atividades tectonônicas ou orogenia são consideradas: Arqueano Superior (2.700 - 2.300 m.a.); Ubendiano (Proterozóico Inferior - aproximadamente 2.000 m.a.); Kibarano (Proterozóico Médio - aproximadamente 1.000 m.a.); Pan-Africano (Proterozóico Superior a Panerózico Inferior - 700-500 m.a.). Na parte setentrional do Escudo da Guiana, sedimentos e rochas vulcânicas, hoje reconhecidos na Guiana Venezuelana como Associação Pastora-Carichapo, na Guiana como Barama-Uzarsuni, e na Guiana Francesa e Suriname como Paramaca, Bonidoro e Orapu, foram dobrados, metamorfizados e granitizados há cerca de 2.000 m.a., no gran de Ciclo Orogênico Transamazônico, o qual é reconhecido na Guiana Francesa, Guiana e Suriname sob nomes locais. Este episódio parece corresponder estritamente ao Episódio Bumna no da África Ocidental e ao Ubendiano da África Oriental e Meridional. O episódio Kibarano da África teve menor importância no Escudo da Guiana, porém provavelmente está representado pela zona milonítica de K'umuku na Guiana, fixada em 1.200 m.a. por Snelling, e pelo Episódio Orogênico Nickerie em Suriname, ao qual Friem e outros atribuem igual idade. O Episódio Proterozóico Superior a Panerózico Inferior foi reconhecido no Brasil porém não no Escudo da Guiana, cuja gran de estabilidade a partir do final do Ciclo Transamazônico se manifesta na assombrosa acumulação tabular da Formação Roraima, em sua maior parte imperturbada desde sua sedimentação continental, deltática ou em águas rasas há mais de 1.700 m. a. atrás.

RESUMO

Trabalho que se propõe a redefinir a Formação Roraima com o nome de Grupo Roraima, e reconhecer ao mesmo, quatro formações. A unidade basal (Fm. Uairén) que recobre uma superfície alterada de erosão, e consiste de conglomerados e arenitos de origem fluvial. Recobrindo esta primeira unidade aparece a Fm. Cuquênán: 50-100 m de folhelho. Esta por sua vez é sobreposta a Fm. Uaimapué, que é representada por uma sequência de "chart", siltitos e arcóseos vermelho na qual os membros apresentam estruturas características de origem fluvial e de delta pequeno. A unidade superior, Formação Matauí, foi definida para efeito de mapeamento e aflora em forma de proeminentes mesas (Tepuis). Os dados sobre transporte, indicam que os sedimentos da Fm. Uairén proviram do S e E, enquanto os da Fm. Uaimapué originaram-se do S e W. Na Fm. Matauí o transporte processou-se desde o N; sem dúvida no pico Roraima a direção foi de S e W. Qualquer programa de exploração de minerais de "placeres" deverá levar em conta as interpretações de direções de correntes e de energia hidrodinâmica, na localização de possíveis fontes. Diamante e curc, são atualmente conhecidos na Fm. Uairén.
Constata-se que a região de Roraima constitui uma eugeos sinclinal, condicionada estruturalmente em um escudo, logo depois da fase inicial do estado ofiolítico. Nesta fase iniciaram-se os dobramentos que produziram sinclinais pouco profundas de vinte ou mais quilômetros de comprimento e anticlinais pronunciados - um anticlinório "pré-nappe" do tipo alpino. Todas anticlinais em Roraima, foram erodidas e atualmente afloram janelas das formações subjacentes. Falhamentos se apresentam principalmente no escudo, sendo notavelmente raros no interior da geossinclinal, à exceção de falhamento por "squeeze", muito menores nos declives das anticlinais e sinclinais. O padrão estrutural de Roraima se superpõe ao de Pastora e Imataca aproximadamente em forma perpendicular. A Formação Roraima apresenta cerca de 5.000m de espessura, e foi subdividida em onze membros definidos. São apresentados argumentos em favor de sua idade protérozoica inferior, ambiente marinho e história sedimentar rítmica contínua.
VÁSQUES, J.C. – Prospección Geoquímica en la Guayana Venezue-
lana. In: MEMORIA DE LA NOVENA CONFERENCIA GEOLOGICA IN-
TER-GUAYANAS – MAYO 7-14, 1972. Puerto Ordaz, Venezuela,

RESUMO

Trabalho de prospecção geoquímica desenvolvido no escudo pré-cambriano da Guiana Venezuelana, visando o descobrimento de novos jazimentos minerais, principalmente de ouro, tungstênio, cobre, chumbo e zinco. Foram coletadas sistemática-
mente amostras de solo residual e sedimentos ativos de cor-
rente, em áreas geologicamente favoráveis à acumulação de
minerais básicos. As regiões prospectadas situam-se na Pro-
víncia de Pastora e são representadas litologicamente por
uma sequência de rochas vulcânicas ácidas a básicas, e sedi-
mentares, que sofreram metamorfismo de baixo grau. Mais de
80% da área é coberto por espesso manto de intemperismo e
densa vegetação, típica de regiões tropicais. As análises
semiquantitativa, foram processadas geralmente por métodos
colorimétricos. Algumas amostras foram analisadas quantita-
tivamente por espectrofotometria de absorção atômica. Os re-
sultados obtidos mostram que o tungstênio está associado a
veios de quartzo aurífero. A maioria das amostras de sedi-
mentos ativos de correntes apresentou ouro fino e uma con-
centração de chumbo muito pequena. O cobre foi detectado em
todas as amostras analisadas e apresentou com o zinco extra-
ms relação de ocorrência. Não foram determinadas anomalias
de grande importância, entretanto, os resultados permitem
diferenciar solos originados por diferentes tipos de ro-
chas. Todos os valores geoquímicos foram representados em
mapas de 1:30.000.

RESUMO

Trabalho correspondente ao mapeamento fotogeológico de uma área de 12.000 km² em Santa Elena de Uairen (Sudeste da Venezuela), realizado mediante interpretação de fotos aéreas branco e preto pancromáticas, e imagens de radar, ambas na escala de 1:250.000. As rochas pertencem quase em sua totalidade à Formação Roraima. Apresenta considerações sobre geologia, estratigrafia e estrutural das diferentes unidades mapeadas. A seguinte coluna litoestratigráfica foi proposta para a área: Complexo-Igne-Metamórfico do Embasamento Intrusivas básicas de gabro e diabásio; Formação Roraima e Aluvion. É proposta a elevação da Formação Roraima á categoria de grupo, com duas formações: uma inferior, Canaima (lutitos e jaspilitos de metamorfismo termal; arenitos con glomeráticos; sequência de arenitos com estratificação cruzada; rochas predominantemente lutíticas; arenitos e lutitos; arenitos lutíticos e "sills" de diabásio); e outra superior, Guaiquinima (arenitos rosados recristalizados).
Brenda situa-se numa região montanhosa no interior da Colômbia Britânica, cercada de pequenos lagos. As rochas encaixantes consistem de tufo estratificado, brechas, argilitos e calcários do Grupo Nicola, do Triássico Superior, o qual é cortado por um quartz-diorito denominado "stock" de Brenda. Outras unidades variando de quartz-diorito para quartzo-monzonito também cortam o Grupo Nicola, as quais são do Jurássico. Quatro unidades compõem o quartz-diorito, ou seja, quatro tipos de fraturas baseadas no material de preenchimento, ou seja: quartz-feldspato potássico-calcopírita e molibdenita, biotita-calcopírita, quartz-molibdenita-pirita, epidoto-magnetita-molibdenita. O "stock" de Brenda apresenta zoneamento e o depósito ocorre aproximadamente a 500 m a leste do contato entre as encaixantes e o quartz-diorito, com dimensões de 560 m de comprimento, 450 m de largura e 300 m de profundidade, sendo alongado na direção nordeste. O teor está diretamente relacionado com a intensidade de fraturamento e decresce do centro para as bordas do corpo, chegando o halo de pirita além do ponto de "cut-off" econômico. A zona mineralizada apresenta-se alterada e consiste de faixas argilosas dobradas com até 10 m de largura, caracterizadas pela presença de argila e sericita e uma fraca e irregular alteração propilítica, caracterizada pela cloritização dos máficos.
Apanhado geral a respeito da economia mineral do molibdênio. Embora haja muito descoberto, o molibdênio só teve aplicação neste século; ocorre principalmente sob a forma de molibdenita (MoS₂), sendo extraído diretamente do minério ou como subproduto no refinio do coberço bruto. Mais de 90% é empregado em ligas com ferro, como passo intermediário até alcançar os aços molibdênio e ligas com outros metais; o restante é empregado nas indústrias aeronáuticas, elétricas e eletrônicas; químicas; de metalização, do vidro, etc. No Brasil não são conhecidas reservas promissoras, não havendo produção de molibdênio; algumas ocorrências são conhecidas, como as do Ceará, Bahia, Rio de Janeiro, Paraná, Paraíba, Espírito Santo, Santa Catarina, Rio Grande do Sul, Minas Gerais, Roraima e Distrito Scehelífero do Nordeste. As de Santa Catarina, Minas Gerais e do Distrito Scehelífero, devem ser olhadas com carinho, por quanto poderão dar bons resultados. Além destas considerações, o trabalho apresenta dados sobre a produção, comércio exterior e consumo interno aparente; evolução dos preços; fatores conjunturais e também o molibdênio no mercado internacional, aparecendo os EUA como portador da maior reserva (60% do total mundial), seguido pela UniSS e Chile. Quanto à produção no mundo ocidental, os EUA lideram produzindo 51,5 mil toneladas das 74,5 mil produzidas. Em 1971, vindo a seguir o Canadá (17,2 mil toneladas) e o Chile (5,9 mil toneladas). Neste mesmo ano o consumo aparente do molibdênio foi de 57,6 mil toneladas, tendo os EUA consumido 22,7 mil toneladas e o restante do mundo ocidental 34,9 mil toneladas; houve um decréscimo no consumo nos anos de 1970/71, mas é previsto um aumento mundial dada a expansão nas utilidades deste elemento. No Brasil, só está prevista a utilização de 1.153 toneladas em 1975 e 1.360 toneladas em 1.980, na forma de liga de ferro-molibdênio. Os dados são bem ilustrados em tabelas e gráficos que acompanham o trabalho.
Os resultados na composição da apatita em rochas ígneas restringem-se às análises espectrográficas semiquantitativas, envolvendo o uso de raios-X com o microscópio eletrônico, facilitando o estudo de minerais acessórios e também para acompanhar a evolução de sua química nos processos endógenos como um todo. O depósito de nólitênio de Shakhtama está relacionado ao "emplacement" de um complexo subvolcânico de idade jurássica superior, o qual é representado por inúmeros diques de lamprófiro, diorito pódio, granito pódio, granito pódio (em sequência decrescente de idade), e dois grandes "stocks" de granito pódio. A principal característica deste depósito, comum à maioria dos depósitos subvolcânicos hidrotermais de associação Cu-Fe, é a presença de brechas que precederam o "emplacement" das intrusões subvolcânicas. A encaixante do maciço Shakhtama é um hornblenda-biotita-granitóide de idade triássica média. O trabalho faz ainda uma análise a respeito dos componentes de cloro, fluor, manganês, sílica, ferro, sódio, bário, enxofre e estrôncio na apatita, sob forma de tabelas e gráficos.

RESUMO

RESUMO

O conhecimento geológico do Território Federal de Roraima, restringe-se ao longo de sua fronteira com a Guiana e rios principais (Eranco, Uraricoera, Tacutu, Ñucajaí e Parima) e também de aproximadamente 60.000 km², canto nordeste, de uma área coberta por campos cerrados. O Foretô Roraima visou o mapeamento de uma área localizada a norte do paralelo 1º N e a leste do meridiano 53º WGr, cobrindo 52% do território, dividindo-se em três fases: 1ª - Reconhecimento através dos cursos d'água; 2ª - Levantamento sistemático na área de campo; 3ª - Mapeamento básico na escala 1:250.000. Foi feita uma interpretação de toda área, utilizando-se faixas de S/LAR, na escala original de 1:400.000 aproveitando todos os dados geológicos obtidos até o momento, assim como a verificação dos pontos chaves com apoio de helicóptero. Gasto-se um tempo de dez dias para a fotointerpretação, 30 horas de voo e dez dias para complementação de mapas; houve então possibilidade de obter-se um levantamento expedido na escala de 1:1.000.000, constando de um mapa geológico onde foram também lançados os limites dos principais grupos de vegetação. O "Graben" Cretáceo do Tacutu, a estrutura e contactos das formações Roraima e Surumu, os principais traços tectônicos regionais e os limites das coberturas cenozóicas, foram bem definidos. Na área do "Complexo Metamórfico" esboçou-se a separação de três associações de metamorfitos, as quais foram denominadas: Anauá-Kuyuwini (gaisses, etc.). Alguns corpos graníticos intrusivos nos vulcanitos Surumu e na Associação Marecá foram reconhecidos. Foi estabelecida uma coluna estratigráfica experimental, que em ordem decrescente de idade corresponde: Fré-Cambriano - Complexo Basal (Associação Anauá-Kuyuwini, Associação Marecá e Associação Rupununi), Formação Surumu (vulcanitos ácidos e granófiros), granitos tipo Saracura e Formação Roraima (arenitos, conglomerados, siltitos, etc.); Cretáceo - Formação Tacutu/Ahotepi (arenitos, associados e derrames basálticos); Terciário (Plioc.) - Tabuleiros do Rio Negro (Fms. Barreiras, Alter do Chão, etc.); Quaternário - coberturas aluviais e colúvio-aluviais parcialmente laterizadas.
RESUMO

Numa tentativa de agrupar massas equivalentes para detetar Sn, W, Mo e Cu dentro de um complexo ígneo de New England, e estabelecer ligações diagnósticas entre esta mineralização com feições selecionadas do tipo granitoíde principal, foram analisadas geoquimicamente, mineralogicamente e petrologicamente, 121 amostras de rochas plutônicas da área em questão. Mineralizações de Sn, Mo e Cu foram detectadas em 53 das amostras, indicando que o método de análise usado neste estudo, poderia vir a ser uma valiosa técnica de prospecção para mineralização em granitoídes. O Sn e o Mo ocorrem em leucogranitoíde de alto conteúdo em sílica, como fiões e veios, com acompanhamento de W; ocorrem também disseminados em mesogranitoídes de baixo teor em sílica. Mineralização de cobre ocorre principalmente numa fase tardia, geralmente associada ao moliênio. A moliênica apresenta-se em láminas ou "livros", ocasionalmente junto a quartzo, e a calspirita como cristais e grãos quebrados, também geralmente acompanhada com quartzo; a cassiterita mostra-se em discretos cristais bipiramidais. Estudos até a presente data (do trabalho ora desenvolvido), indicam que a moliênica ocorre igualmente em leucogranitoídes e mesogranitoídes. Concentrações econômicas parecem restritas a contatos sedimentares ou leucogranitoídes, onde a diferença nas condições físico-químicas seria grande. Não há correlação entre a mineralização e concentração do elemento, por isto, uma geoquímica puramente aproximada é inadequada. O conteúdo ferromagnésio dos granitoídes parece ser a feição petrológica mais importante.
A área estudada situa-se na bacia do rio Parimé, região nordeste do território, ocupando uma área de 8 km². Nesta área a geologia é caracterizada pela ocorrência de um complexo Pré-Cambriano, constituído por rochas vulcânicas rio dacíticas e corpos graníticos, alinhados no sentido E-W, coincidindo com a direção dos falhamentos maiores da área. O clima reinante na área investigada é do tipo tropical e a topografia é caracterizada por um peneplainícia dissecada, na qual se destacam serres de composição granítica. Via de regra, o solo, pouco profundo, raramente atinge dois metros de espessura e o horizonte B nem sempre está presente. As amostras de rocha, solo e sedimento de corrente recolhidas na área estudada, foram analisadas espectrograficamente para molibdênio, estanho, bismuto, ferro, e manganês, e por colôrimetria, para cobre, zinco, tungstênio e metais pesados. As amostras de sedimento de corrente revelaram, quase sempre, valores baixos, fato que pode ser atribuído ao baixo "background" dos elementos analisados, ou a intensa lixiviação, ou ainda, a ambos os fatores; dos elementos analisados, o molibdênio, o bismuto e o cobre salientaram-se em amostras de rocha e solo, e geralmente mostraram relação direta e binária entre seus valores. O teor de ferro foi constante em todas as amostras analisadas, eliminando a possibilidade de ocorrer anomalias não significativas, associadas a centrações anômalas de óxido de ferro; o molibdênio e o cobre apresentaram teores mais elevados em amostras representativas do horizonte B, e o bismuto nas do horizonte A; foi evidenciado um sensível relacionamento das concentrações anômalas de molibdênio, cobre e bismuto com as estruturas de falhamento e contatos geológicos.
RESUMO

Trabalho de prospecção geoquímica abrangendo uma superfície de 200 km², localizada na parte nordeste do Território Federal de Roraima. Apresenta os resultados obtidos, definindo os métodos e estabelecendo padrões para futuros levantamentos geoquímicos de âmbito regional. Está contido nele os seguintes assuntos: Geologia Regional; Geologia da área do Projeto; Tectônica; considerações sobre a fisiografia; ocorrências minerais; amostragem e técnicas analíticas; tratamento estatístico dos dados, além de algumas recomendações para o desenvolvimento de uma prospecção mais detalhada nas zonas anômalas de molibdénio, a fim de constatar a presença ou não de teores econômicos na área prospectada. Foram feitas amostragens de rocha, solo, sedimento ativo de corrente e concentrado de bateia, os quais foram analisados para molibdénio, estanho, bismuto, ferro e manganês por método espectrográfico e zinco, tungstênio, cobre e metais pesados empregando-se métodos colorimétricos. Os resultados mostraram que as amostras de sedimentos de corrente apresentavam valores baixos, sendo que em amostras de rocha e solo o molibdénio, bismuto e cobre salientaram-se, mostrando relação direta entre seus valores; foi comprovado que o molibdénio e o cobre, no horizonte B do solo, tinham maiores valores enquanto que o bismuto apresentou no horizonte A. O relacionamento das concentrações anômalas de molibdénio, cobre e bismuto com as estruturas de falhamentos e contatos geológicos foi observado. Os teores de molibdénio em sedimentos de corrente e em rochas estéreis na área prospectada não ultrapassaram 5 ppm, enquanto que nas rochas graníticas da serra do Mel atingiram até 20 ppm.
RESUMO

Trabalho relativo à segunda fase do Projeto Roraima (1971 a 1972). Foi efetuado o mapeamento sistemático na escala 1:250.000, de uma área de 43.000Km² do T.F. de Roraima, correspondendo à porção situada a leste do meridiano 61º 30' W de Gr. e ao norte do paralelo 2º 00' N. Apresenta minuciosas considerações sobre geomorfologia, estratigrafia, geologia estrutural e econômica da região. As considerações estratigráficas abrangem dados sobre coluna estratigráfica, bem como as criação minuciosa das unidades (nome, litologia, distribuição e relações de contato; aspectos de campo e petrografia; idade e correlação). As seguintes unidades litoestratigráficas, em ordem decrescente de idade, são descritas: Associação Rupununi; Associação Maracá; Granito 1; Formação Surumi; Granito 2; Sequência Básica Metamorfisada; Granito 3; Formação Roraima; Vulcanismo Roraima; Formação Vulcânica Apoteri; Formação Tacutu; Quaternário Aluvionar. Do ponto de vista geológico-econômico, foram anotadas e descritas minuciosamente ocorrências de moliédenta, zircão, diatomito, tantalita, cobre, lateritas aluminosas e ferro. Depósitos aluvionares de diamante e ouro são restritos às áreas de exposições da Formação Roraima, as quais foram descritas detalhadamente.

RESUMO

Muitos depósitos de cobre-pórfiros descobertos produzem pouco ou quase nada de molibdênio, enquanto outros contribuem com razoáveis quantidades deste metal, todavia conclui-se que embora eles tenham importantes semelhanças (cobre, molibdênio e ouro), parecem ter também significativas diferenças. Neste trabalho é feito um esforço no sentido de estabelecer diferenças entre os elementos citados, neste tipo de depósitos. Uma afirmação preliminar, que requer maior avaliação, é sobre a divisão em duas classes de depósitos: cobre-molibdênio e cobre-ouro. Se confirmada, a variação composicional observada poderia ser causada por diferentes compostos primários entre sistemas mineralizantes, os quais estão geneticamente associados às rochas intrusivas e a sua fase hidrotermal juvenil, ou poderia ser causada por diferentes reações químicas de sistemas semelhantes para feições tectônicas distintas (por exemplo, o nível do "emplacement" ou a permeabilidade da rocha encaixante). Considerações a este respeito, ainda são prematuras por enquanto. A importância óbvia de algumas observações, entretanto, seria a possibilidade dos depósitos de cobre-molibdênio e cobre-ouro representarem sistemas mineralizantes de composição fundamentalmente diferente, assim as variações petroológicas em áreas de seqüência tectônica diferentes, seriam análogas. A distribuição aparente das províncias de metais da América Ocidental foi atribuída à variação na profundidade de geração do magma. As idades da maioria dos depósitos tanto de Cu- Mo como Cu-Au do tipo cobre-pórfiro, não ultrapassam 80 m.a. ocorrem do entretanto algumas com até 200 m.a.
RESUMO

As rochas mais antigas da região pertencem à Associação Rio Branco, compreendendo principalmente granitos autóctones e enderbitos, granulitos ácidos, migmatitos, gnaisses, metasedimentos e metabasitos. Dois episódios tectonotermais (Imataca e Transamazônico) metamorfisaram regionalmente estas rochas, variando desde as facies anfibolito médio até granulito de baixo grau e vários estilos tectônicos são evidenciados na imagem de radar. Algumas das rochas plutônicas foram retrabalhadas, sendo que foram formadas inicialmente no episódio Imataca, enquanto outras foram derivadas de sedimentos vulcânicos depositados no intervalo entre os episódios Imataca e Transamazônico. O fechamento do Ciclo Orogenético Transamazônico deu-se com a extrusão de tufos e lavas riolíticas e intrusões de plutons graníticos (Formação Surumã e Intrusivas Subvolcânicas Surumã respectivamente). A Formação Roraima foi depositada sobre o escudo cratonizado entre 1.800 m.a. e 1.950 m.a. atrás e o Grupo Intrusivo Roraima, consistindo predominantemente em diabásios toleíticos, foi injetado em duas pulsões (1.750 m.a. e 1.650 a 1.550 m.a.) ambas pertencentes ao Episódio Roraima. Durante o Episódio K'muduk, datado em 1.200±100 m.a., intensa cataclase e milonitização atuaram nas rochas mais antigas. Após ou sincrônico com os falhamentos do tipo "rift", basaltos da Formação Vulcânica - Apotere fora, localmente extruídos no Jurássico e recobertos por sedimentos dretíticos continentais da Formação Tacutu, de idade jurássica superior a cretácea inferior. Após longo período de erosão e lateritização anterior ao Eoceno, uma cobertura de sedimentos foi depositada numa área ocupada pela Savana Rio Branco. Os sedimentos e lateritas são referidos à Formação Boa Vista. Ao longo dos rios, foram retrabalhados, resultando na Formação dos Rios, de idade holocênica. O presente trabalho apresenta uma coluna Geocronológica Provisória para o Território de Roraima.
RESUMO

Procurou-se posicionar geocronologicamente a Formação Roraima tendo por base os resultados de processos experimentais, detalhadamente, sob a forma de diagramas e tabelas. Os resultados obtidos para datações envolvendo Rb-Sr foram mais coesos que aqueles para as datações de K-Ar, sem se saber contudo quais as razões. Para as rochas do cráton (granítoides e outras vulcânicas áci das) obteve-se 1.810 ± 40 m.a., para as rochas piroclásticas acíd das intercaladas nos sedimentos da Formação Roraima obteve-se 1.599 ± 18 m.a., e para os diques de diabásio que cortam a formação, uma idade de 1.544 ± 50 m.a. Portanto admitiu-se que a sedimentação deu-se em um período compreendido entre 1.800 a 1.600 m.a. Isto porque o magmatismo básico seria 50 m.a. mais novo que a conclusão da etapa sedimentar. Foi refutada, também, a possibilidade da Formação Roraima ser representante de um estágio de sedimentação pós-orogênica (do tipo molassa) no ciclo Transamazônico. Tal afirmação baseou-se no fato de que 200 m. a. se passaram desde a consolidação do cráton até a sedimentação da Formação Roraima.

RESUMO

O escudo das Guianas tornou-se estável, orogênicamente, há 1.700 m.a., quando depoimentos vulcânicos e molassa de Roraima foram concluídas em depressões de áreas dobradas durante a era Arcaica. As rochas metamórficas, metamáticas e cristalinas arcaicas, têm um alinhamento aproximadamente E-W, diferindo do principal alinhamento estrutural N-S do escudo brasileiro. Entre 2.000 m.a. e 1.800m.a. decorreu período em que houve o desenvolvimento da superfície de erosão Pré-Roraima, fase esta que foi seguida pela deposição da Formação Roraima. Foi discutida a importância das falhas transcorrentes na constituição tectônica do escudo das Guianas; o problema da origem da bacia Amazônica; e a provável relação genética entre as falhas transcorrentes e as zonas de fratura da cadeia meio-atlântica. Sugere também, o autor, estabelecer uma pesquisa geológica e geofísica nas áreas capeadas pela Formação Roraima, entre as bacias do Orinoco e Amazônicas, cujo principal objetivo é examinar o conteúdo de diaman te, ouro e urânio no conglomerado basal desta formação. Além disso faz uma comparação do escudo das Guianas, com a Sierra Leone (oeste da África).
RESUMO

O trabalho sumaria os resultados de um projeto de mapeamento fotogeológico, iniciado em 1966, cobrindo parte da Guiana situada abaixo do paralelo 4°00 latitude norte. É apresentada uma tabela geocronoológica provisória cuja discussão é a base do texto, e que relaciona o episódio orogenético, a idade, o evento e a unidade litoestratigráfica correspondente. Estas unidades, juntamente com o tipo de metamorfismo regional associado, estão representadas no mapa da área, que inclui os granulitos Kamulu, os granulitos e migmatitos indiferenciados Kamulu, "augen-gnaisse" Kusaá, "granito-gnaisse" Corentyne, Grupo Kwitaro, Grupos Kuywini e Burro-burro, granitos indiferenciados e o Grupo Rewa. O metamorfismo é do tipo abukuma de baixa pressão, o qual envolveu o Grupo Kwitaro. Também constam duas tabelas sendo que uma compara as diversas formações do Grupo Kwitaro, e a outra faz uma correlação estratigráfica dos Grupos Rewa e Corentyne. É feita ainda no presente trabalho, uma abordagem a respeito das características do cinturão orogenético transamazônico no sul da Guiana.
RESUMO

Estudo integrado de fotointerpretação com as informações reunidas nas duas fases do Projeto Roraima, abrangendo uma área de 52% do total do Território Federal de Roraima, localizada a norte do paralelo 1°N e a leste do meridiano 63°WGr; o que apresenta três fases, sendo a primeira, o reconhecimento através dos principais cursos d'água; a segunda, o levantamento sistemático na área de campos; e a terceira, mapeamento básico na escala 1:250.000. O trabalho apresenta assuntos tais como: aspectos geográficos; fotointerpretação; estratigrafia; aspectos estruturais e tectônicos; e considerações sobre a potencialidade econômica. Neste trabalho também foi lançada uma coluna estratigráfica experimental para a área do Projeto. Em termos de sugestão, é recomendada a procura, em primeiro plano, de grandes concentrações dos minerais já reconhecidos na região, como o ouro, o diamante, o molibdênio, a tântalita-columbita, a cassiterita, etc., e de sulfetos metálicos em segundo plano.
O autor procura relacionar a ocorrência de diamante da Formação Roraima, na Venezuela e Guiana, com a Formação Rosebel, no Suriname, tendo em vista estudos de direções de paleocorrentes. Relaciona também estes diamantes com os kimberlitos diamantíferos do oeste da África com base na hipótese de uma ligação entre a África e a América do Sul. Os kimberlitos mais antigos são datados em 2.300 m.a. e a Formação Rosebel não foi ainda definitivamente datada, sabendo-se apenas que a mesma foi deformada pela orogenia transamazônica de idade 1.800 m.a., portanto ela tem uma idade mais avançada ainda. Desta forma, para que a Formação Rosebel possa ter uma relação com os kimberlitos é preciso que a mesma tenha menos que 2.300 m.a.
O trabalho trata da descrição de um dique cataclasado em Iron Hill, Custer County, Colorado. Ocorrem nessa área predominantemente rochas riolíticas e andesíticas de origem vulcânica e idade oligocêncica. No interior do dique foi constatada a presença de terras-raras com apatita, molibdenita e magnetita. O dique tem uma extensão de 120 m de comprimento e uma direção NW por E. Supõe-se ter havido três estágios de mineralização, o primeiro estágio inclui fragmentos tranquente síticos e consiste principalmente de magnetita e aproximadamente 2,6% de apatita, a qual contém 4% de terras-raras. Contém também nesse estágio actinolita e diopsídio com alguma alteração para "corrensita" e calcita. O segundo estágio contém pirita, ankerita e siderita, que preenchem cavidades do primeiro estágio. O terceiro estágio consiste de minerais do segundo, além de molibdenita no contato das paredes da rocha encaixante. A molibdenita se encontra alterada em powelita. O presente trabalho considera estes três estágios como indicadores de intrusão e mineralização múltiplas. O dique pode ser apenas uma manifestação superficial de rochas mais mineralizadas a profundidade, especialmente depósitos porfiríticos de molibdênio ou cobre.
HALL, W.E. et alii - Fluid inclusion and light stable isoto
de study of the Climax molybdenum deposits, Economic Geo

RESUMO

O depósito de Climax é constituído por três corpos minera
lizados em molibdenita e extensa mineralização posterior não
aproevitável, representada pela associação quartzo-pirita-seri
cita. Com a finalidade de obter informações adicionais a
respeito das condições de formação dos depósitos minerais e
da natureza dos fluidos mineralizantes, foram realizados es
tudos detalhados sobre as variações da razão isotópica de o
xigênio, hidrogênio e carbono no minério e minerais da rocha
hospedeira (host-rock), bem como estudo de inclusões fluidas
em amostras coletadas em diversos pontos da mina. Os estudos
de isótopos, inclusões fluidas e geologia, indicam que os
corpos de minério de Climax foram formados por um sistema hi
drotermal originado pela mistura de "água pesada", possivel
mente magmática e água meteorítica (leve). A sequência parage
nética em Climax é extremamente complexa em virtude de terem
ocorrido na área múltiplas intrusões e estando cada uma de
las associada à mineralização, porém, a seguinte sequência é
sugerida: 1) Intrusão do maciço sudoeste do "stock" Climax;
2) Formação do corpo mineralizado em molibdenita de Ceresco,
e de zonas de alteração no maciço sudoeste. O tamanho e a
forma original do corpo mineralizado, bem como a natureza
das zonas de alteração, são desconhecidas, devido ao intenso
processo erosivo; 3) intrusão do maciço central do "stock "
Climax; 4) Intensa alteração nos feldspatos alcalinos na
porção superior do maciço central; formação do corpo superi
or mineralizado em molibdenita; mineralização de tungstênio
no corpo superior; intrusão de aplito pórfiro do "stock " Cli
max e de numerosos díques radiais de pórfiros; alteração de
feldspato alcalino e formação do corpo inferior mineralizado
em molibdenita; desenvolvimento de tungstênio na porção su
perior e periférica do corpo inferior, sobrepondo-se à mine
ralização molibdenítica. Formação de intensa zona de altera
ção silicosa, e zona de alteração de sericita-pirita; 7) In
trusão de grânito porfirítico e posteriormente de díques de
riolito pórfiro. Desenvolvimento de fraca mineralização in
cluindo quartzo, pirita, sericita, fluorita, topázio, rodo
crosita, calcopiritas, esfalerita, galena, hübnerita e nolib
denita.
Síntese da geologia pré-cambriana da Amazônia, tecendo idéias sobre a evolução tectônica e metalógênia da região, utilizando métodos convencionais e modernos; a divisão em três províncias, segundo a distribuição das unidades geológicas, foi efetuada da seguinte maneira: A Amazônia Oriental ocupando parte dos escudos das Guianas e Brasil Central, abrangendo as partes mais internas dos escudos das Guianas e Brasil; e a Amazônia Ocidental. A Amazônia Oriental é caracterizada por três grupos litológicos com mais de 2.000 m.a: Complexo Cristalino (gnaisses, migmatitos, anfibolitos e granitos anatécicos principalmente); seqüências metassedimentares e intrusivas graníticas. A potencialidade mineral mais caracterizada engloba o ferro, manganês, cromo, minerais de pegmatito e minerais associados à faixas de serpentinitos. Na Amazônia Central, os tipos litológicos mais importantes são os granitos, rochas vulcânicas ácidas e intermediárias e rochas sedimentares clásticas, sendo o Complexo Cristalino melhor desenvolvido na porção norte da província no Território de Roraima, dividindo-se em duas partes denominadas Macaúba e Amazô-Uaráoca e sua idade ultrapassa 2.000 m.a, atingindo até 2.500 m.a; estanho, cromo e diamante são os principais recursos minerais, ocorrendo ainda concentrações de manganês sedimentar e de metais não ferrosos. Na Amazônia Ocidental as rochas vulcânicas são raras e as sedimentares formadas durante um evento anterior (evento Paraense) foram dobradas e metamorfizadas por um novo evento tectônico (evento Madeirense); é caracterizada por intrusões graníticas circunscritas, geralmente mineralizadas em estanho, que é o mais importante recurso mineral da região. O desenvolvimento tectônico da Plataforma Amazônica no Panorama está relacionado à evolução dos geossinclíneos andinos e grande parte, senão a maior, da riqueza mineral da Amazônia está associada à evolução geológica fanerózoica. Podem ser citados: os depósitos aluvionares de estanho, cromo e diamante; as lateritas ferriferas, magnesiferas, aluminosas e niquelíferas; os depósitos de linhita, salgema e possivelmente petróleo da bacia sedimentar do Amazonas.
Estudo do vulcanismo ácido e rochas graníticas e granodioríticas a ele associado, referidos à Formação Iriri, do Grupo Uatumã. O vulcanismo é representado por: a) riolitos (textura porfirítica com fenocristais de quartzo, feldspato alcalino e plagioclásio); b) riodacito e dacitos (textura porfirítica, matriz muito fina quartzo-feldespática e fenocristais de feldspato alcalino e plagioclásio); c) ignimbritos mostrando estrutura de fluxo; d) piroclásticas (tufos vítreos, tufos de cristal, cineritos e brachas de composição ácida e mineralogia variada). Intrusões graníticas e granodioríticas apresentam cúpulas graisenizadas e "stockworks" mineralizados em cassiterita, topázio, tantalita e fluorita. Em algumas folhas, as vulcânicas estão sobrepostas ao Grupo Beneficiente e associam-se ao granito Maloquinha, dividido em: a) granitos grosseiros, compostos por quartzo, ortoclásio abundante e plagioclásio sódico subordinado à es cassa biotita; b) granito pórfírico, com matriz de quartzo, ortoclásio e plagioclásio e fenocristais de quartzo e ortoclásio. Em outras folhas, essas vulcânicas enconoram-se sobrepostas discordantemente pela Formação Prosperança, contemplando o Grupo Beneficiente e estão assentadas sobre o Complexo Xingu; os granitos Teles Pires estão associados a elas e assim definidos: a) granitos normais; b) microgranitos, a apresentando textura hipidomórfica, isogranular, constituidos por quartzo e feldspato alcalino; c) granófiros, com fenocristais de quartzo, ortoclásio e plagioclásio numa matriz holocrystalina, isogranular. Datações pelo método Rb/Sr, forneceram idades de 1693±21 m.a., 1542±36 m.a. e 1487±38 m.a. para riolitos, 1384±53 m.a. para o granito tipo Velho Guimarães, 1540±72 m.a., 1532±43 m.a. para o Teles Pires e 1687±22 m.a. para o tipo Maloquinha.

RESUMO

Intensa atividade magnática manifestou-se após o ciclo Transamazônico sobre o Cráton Guaporé numa área superior a 150.000 km². Apresentação das vulcânicas predominantemente ácidas (Formação Iriri) é dada por riolitos, riodacitos e quartzo-pórfiro, ocorrendo contudo andesitos subordinados (Formação Sobreiro). Formando frequentemente maciços de forma circular, os granitos alesquíticos e granodíricitos subvulcânicos, associam-se à estas rochas vulcânicas. Utilizando as datações existentes de rochas, desde o Xingu até Rondônia, as idades apresentam-se no intervalo 1750-950 m.a., em três fases: 1.700 m.a. 1.500 m.a. e 1.100 m.a. parecendo indicar uma migração dos focos magmáticos de NE para SW. Talvez a formação destas rochas tenha ocorrido em período de intenso fraturamento, em fases de reativação da plataforma.
RESUMO

Trabalho relativo ao Projeto Roraima (1968 a 1973). Foi efetuado o mapeamento geológico sistemático na escala 1:250.000, englobando uma área de 107.000 Km², no T.F. de Roraima, correspondente à porção situada a leste do meridiano 62° 00' W de Gr e ao norte do paralelo 1° 00' N. Apresenta considerações pormenorizadas sobre fisiografia, estratigrafia, geologia estrutural e econômica da região. As considerações estratigráficas abrangem dados sobre a coluna litoestratigráfica bem como descrição pormenorizada das unidades (nome, litologia, histórico, distribuição e relações de contato e pecto de campo e petrográfica, idade e correlação). As seguintes unidades litoestratigráficas, em ordem decrescente de idade, são descritas: Associação Rupumini, Associação Maracá, Associação Anauá, Granito 1, Formação Surumã, Granito 2, Sequência Básica Metamorfisada, Granito 3, Formação Roraima, Sequência Intrusiva Roraima; Cataclasitos K'umaka, Intrusivas Básicas não Metamorfisadas, Formação Apoteri, Formação Tacutu, Quaternário Indiferenciado, Quaternário Aluvial. Do ponto de vista geológico-econômico, além dos depósitos já anteriormente conhecidos (diamante, ouro, diatomita, talcita e lateritas aluminosas), foram localizadas ocorrências de molibdênio, cobre e ferro, tendo sido apresentadas recomendações de métodos e áreas selecionadas para futuros de maior detalhe. As ocorrências de molibdênio são em número de quatro (Serra do Banco, Fazenda Moreninha, Serra do Mel e Guariba) e parecem bastante promissoras, pois apresentam um conjunto de características comuns que possibilitam estabelecer o condicionamento da mineralização, permitindo selecionar sitios para futuras prospecções. A molibdenita associa-se a rochas graníticas da Associação Maracá, ocorrendo sempre como disseminações ou na forma de pequenos veios que cortam biotita-granito. A mineralização restringe-se aos bordos dos corpos graníticos, desaparecendo para o interior dos mesmos, e está sempre associada às zonas de falhamento com ampla brechação e milonitização.

RESULTADO

O Código Americano de Nomenclatura Estratigráfica é a base da sistemática estratigráfica usada no Brasil; entretanto, no mapeamento dos extensos complexos metamórficos, o seu uso tem causado sérios problemas de taxonomia. A individualização de unidades estratigráficas menores não são caracterizadas, devido à dificuldade em se reorganizar o emplilhamento inicial e a grande variação lateral dos corpos de rochas. O termo Grupo tem sido usado, antes mesmo de se definir sua real posição estratigráfica, para reunir tipos litológicos ocorrendo continuamente e com algumas afinidade das petrológicas. Sendo então o termo Grupo estritamente estratigráfico, sugere-se o uso do termo Associação para corpos litológicos com afinidades regionais quaisquer, mesmo com origens diferentes, mas relacionadas intimamente hoje, pelos efeitos diastróficos, e passíveis portanto de constituirem verdadeiras unidades de mapeamento.
A cratonização do Bacia Guianês, parece ter acontecido em torno de 1.800 m.a. Extensas áreas deste Cráton são constituídas de rochas pré-cambrianas. Datações acusam núcleos muito antigos (acima de 2.500 m.a.), mas muitas rochas, por ocasião do Ciclo Transamazoniano, foram remobilizadas e rejeitadas isotopicamente. Rochas intrusivas intermediárias, básicas e ultrabásicas representam um evento pós-cogenético, e em seguida ocorrem éfusões vulcânicas ácidas e intermediárias, com injeções de granitos hipoabissais e subvulcânicos. O Cráton Guianês sofreu um episódio metamórfico dinâmico durante o período de reajuste isostático, datado em 1.000 e 1.200 m.a. Há evidência de reativação cratonérica (intervalo de 136-250 m.a.) através do magmatismo toleítico na região costeira do Ampaú, Roraima e Guiana, nestas últimas representadas pelo "rift-valley" do Tacutu; após a sedimentação continental intercalando as vulcânicas (Formação Tacutu), o Cráton sofreu diastrofismo epirogenético positivo, com coberturas terciárias e quaternárias. A unidade geológica mais basal do Cráton, é o Complexo Guianense, com rochas de origem orto e paracetamórficas, e sobrepôs este, uma sequência vulcânica-sedimentar metamorfizada (Grupó Vila Nova e Grupó Rio Pe rina). Após cessar o movimento cogenético do Ciclo Transamazoniano, ao qual a mencionada sequência faz parte, a região foi submetida a movimentos epirogenéticos, com intrusões de granodícritos, piroxenitos, etc., e em seguida, éfusões magmáticas de ácidas a intermediárias com intrusões de granitos hipoabissais e subvulcânicos (Grupó Uatunã e Formação Surumu). A denominação Formação Roraima foi dada à sequência sedimentar continental originada após a atividades vulcânica, quando o Cráton foi submetido a movimentos verticais com rosnão e deposição de espessos pacotes sedimentares. Nova reativação de caráter básico-toleítico foi registrada (1598+66 m.a.) nas Guianas e Suriname. Ferro, manganês, cassiterita, tantalita e columbita, ouro, diamante e urânio, são as possibilidades econômicas da área.
RESUMO

Mapeamento geológico na escala de 1:1.000.000, abrangendo 250.000 km² nas porções pertencentes ao território brasileiro das folhas acima mencionadas, utilizando imagens de radar (mosaicos em escala de 1:250.000), auxiliados com dados de campo através de levantamentos ao longo de estradas e emprego de helicópteros. As rochas mais antigas foram mapeadas como Complexo metamórfico e de fácies almandina-anfibolito e granulito; foram individualizadas áreas mais homogêneas petrograficamente e estruturalmente, e deu-se o nome de grana
diorito Rio Novo a esta unidade. Denomina-se Grupo Rio Pará,
a uma sequência sedimentar e vulcânica submetida a meta
morfismo regional; o termo Formação Surumu foi mantido para as grandes ocorrências de vulcânicas intermediárias a ácidas associadas com pirométicas de mesma composição; as intrusivas subvulcânicas geneticamente ligadas às eruptivas foram definidas como Granodiorito Serra do Mel. Sobre o Cráton Guiana, jaz discordantemente a Formação Roraima, intrudida por "sills" e diques de diabásio (diabásio Pedra Preta), cons
tituída de arenitos e conglomerados, principalmente. Durante o Mesozóico, o "graben" do Tacutu foi preenchido, estando associado a este evento, o Grupo Rewa, incluindo os derrames basálticos e diques de diabásio (Pm. Apoteri) e a Formação Tacutu (arenitos finos e conglomeráticos, siltitos e folhe
lhos). Foram identificados depósitos cenozoicos. Falhas e dobras destacam-se entre as estruturas regionais e o "gra
ben" de Tacutu entre as estruturas locais, muito mascarado pela cobertura cenozoica; NE-SW, são as principais direções de falhamentos. É ressaltada a presença de recursos minerais e recomenda-se estudos de detalhe em determinadas áreas.

RESULTADO

O objetivo do trabalho foi a análise de estudos anteriores, bem como de conhecimentos de campo recentes, a respeito dos corpos graníticos do Nordeste. A verificação das tendências petrográficas das tipologias tectônicas foi feita, obtendo-se como resultados a seguinte classificação, de acordo com a bibliografia concernente ao tema: a) rochas graníticas pré-tectônicas, mas caradas pelas transformações dinâmicas e somáticas processadas, com presença na plataforma de batólitos granodioríticos, tonalíticos e adamalíticos predominantes, gradando com os migmatitos encaixantes, sendo comum a presença de "resisters" e relictos de rochas básicas e ultrabásicas; b) rochas graníticas sintectônicas, de composição variada, tendo caráter intrusivo precoce, com predominância de tipos granodioríticos e tonalíticos, que representam migmatização regional, as custas inclusive do material do embasamento; c) rochas graníticas tardi-tectônicas, que compreendem as rochas graníticas e afins inseridas na supraestrutura da região dobrada em forma de "stocks" subcircuitares, cujo relacionamento tardio com a tectogênese é nítido; d) rochas graníticas pós-tectônicas, compostas por alguns "stocks" graníticos associados ao desenvolvimento das sequências molassicas, intrusivas fissurais e veios hidrotermais, diferenciados na consolidação final e sorgimento da região dobrada.

RESUMO

Um magmatismo predominantemente ácido deve ter afetado durante o Pré-Cambriano, grande parte da atual região Amazônica; a denominação Grupo Uatumã é representativa das rochas vulcânicas e intrusivas provenientes desta atividade ígnea. Forma extensa área vulcânica descontínua, situada a leste dos rios Negro e Aripuanã (Arco de Purús) e a oeste do T. F. do Amapá e do rio Araguaia (Arco de Curupá?); engloba as Formações Rio Fresco e Iriri, o Grupo Rumaça, as eutuvas ácidas do Aripuanã e as seqüências vulcânicas e intrusivas do rio Jamanxim. As unidades vulcânicas ácidas (riolitos, riodacitos e dacitos) e, secundariamente vulcânicas intermediárias (andesitos, porfíritos), intrusivas ácidas (granito, granodiorito e granófiro) e piroclásticas (tufos, brechas e ignimbritos), constituem, litologicamente, o Grupo Uatumã e poderão ser mapeadas independentemente como formações, em trabalhos mais detalhados. Modernos trabalhos de datação radiométrica colocam este grupo no Pré-Cambriano, no intervalo 1.600 a 1.800 m.a., e, se esses valores forem confirmados, ficará comprovada a correlação com os Grupos Burro-Burro e Kuywini da Guiana, a Formação Suruma de Roraima e a Assembléia granítico-vulcânica do Suriname.

RESUMO

Riolitos alcalinos pré-cambrianos da Chapada Diamantina (área Ibitiara-Ibajara), foram definidos petrologicamente e quimicamente. Hidrotermalismo, intemperismo e metamorfismo cataclástico, modificaram a mineralogia original e a química total das rochas, levando a uma intensa sericitização ou microclinização dos feldspatos, bem como a lixiviação do sódio e alcalino-terrosos em geral. Gnaisses a biotita foram considerados como as mais prováveis rochas originais, de vez que o caráter químico das rochas analisadas sugere uma composição próxima da mistura cotética quartzo-feldspato, e uma fusão parcial dentro da crosta, de material de composição granítica rico em potássio. Talvez este vulcanismo esteja ligado a uma linha de descontinuidade dentro da placa brasileira, durante o Pré-Cambriano, devido a separação progressiva entre unidades menores, estáveis, deslocando-se diferencialmente para oeste.
O depósito de mólbdênio de Boss Mountain dista aproximadamente 225 milhas a nordeste de Vancouver, tem uma composição granodiorítica e localiza-se na margem leste do basalto Takonkane (Triássico Superior - Jurássico Inferior) de composição quartzo-monzonítica. A mineralização do mólbdênio está relacionada tanto espacialmente quanto geneticamente com diques de riolitos pôrfiros ou não, e três fases de brechas. Dentro da área da mina ainda coexistem duas unidades: Diques Andésíticos de idade pré-mineral e Diques Basálticos pleistocênicos. O estudo detalhado de fraturas, tanto estéreis quanto mineralizadas, resultou no reconhecimento de oito períodos distintos de fracturamento. Estas fraturas na maioria das vezes são preenchidas por veios de quartzo. O corpo de mólbdênio está contido em corpos brechados ou sistemas de veios. Em depósitos brechados os limites mineralizados são abruptos e facilmente visíveis, enquanto os limites mineralizados nos sistemas de veios são definidos pelas distâncias entre os veios e a própria composição destes veios. Evidências estruturais e mineralógicas indicam que o "stock" de Boss Mountain esteve ativo através da seqüência inteira de eventos relacionados à formação do depósito (Diques de Riolito, formação das brechas, desenvolvimento de fraturas, alteração e mineralização), porém quando do fim da seqüência já era em parte, cristalino. O desenvolvimento de fraturas após a cristalização da parte superior do "stock" sugere um segundo evento mineralizante de uma profunda câmara magnética. Portanto o "stock" de Boss Mountain, que é em parte pós-mineral, poderia conter mineralização de mólbdênio a profundidade.
RESULTADO

Trabalho sobre as regiões do sudeste da Venezuela e nordeste da América do Sul que se apresentam potencialmente ricas em "placeres" de diamante e ouro. Quatro unidades geológicas são reconhecidas para as rochas do Escudo Guianense na Venezuela, cada uma tendo uma específica importância para a mineralização e depósitos de "placeres". Estas unidades compreendem os depósitos recentes, a Formação Roraima, as rochas vulcânicas ácidas e o Complexo Imapaca. Embora o autor exponha ideias de outros que defendem a hipótese destes "placeres" serem oriundos do oeste da África antes da deriva dos continentes, ele próprio acredita que tais kimberlitos estejam no próprio escudo das Guianas. O autor também sugere um guia de pesquisa para esta nascente indústria mineira no nordeste da América do Sul.
Os depósitos japoneses de molibdênio, são em sua maior parte do tipo veios de quartzo-molibdenita, ocorrendo a maioria da molibdenita em qualquer veio pegmatítico, hipotermal ou mesotermal, entendo quase todos estes distribuídos nos grâmos intrusivos; 97% do molibdênio está contido nas rochas graníticas mais jovens (Terciário) e os 3% restantes estão nas mais antigas (Cretáceo). Quatro fatores estruturais controlam os depósitos: 1) proximidades da rocha intrusiva; 2) contato plano; 3) juntas de resfriamento; 4) fraturas abertas das rochas graníticas. Os mais importantes agentes são o contato plano e juntas. Este controle estrutural e a deposição de quase toda molibdenita dentro das rochas graníticas indicam que a solução contendo o molibdênio foi derivada do mesmo material que originou as rochas, separado de fusão silicatada, próxima do lugar de formação do depósito de molibdênio e então precipitado. O ambiente calmo envolveu completamente o processo.
O trabalho descreve a morfologia e a natureza dos halos primários associados com certos tipos de depósitos minerais, incluindo zonamento vertical e lateral dos elementos indicados. Pesquisas recentes mostram que é possível determinar as formas básicas dos halos primários com o propósito de localizar depósitos minerais. A dimensão dos halos primários de certos elementos excede consideravelmente os depósitos em torno dos quais eles se desenvolvem. Sua extensão vertical alcança a superfície acima dos corpos mineralizados. Este aspecto facilita a prospecção para jazimentos que se localizam em profundidade. Também próximos a superfície os halos são mais intensos e mais largos. Este fato indica que sua extensão vertical acima do depósito é maior do que a traçada pelo nível de erosão. Uma das feições notáveis dos halos primários é o seu zonamento, que é visível mais claramente na direção dos fluxos da solução mineralizadora. No caso de depósitos mergulhantes, o zonamento vertical manifesta-se como uma distribuição diferencial dos elementos em seção vertical. Alguns elementos formam halos mais intensos e mais amplos nas partes mais altas das zonas mineralizadas, outros desenvolvem-se mais amplamente nas partes inferiores.
VANDERWILT, J.W. - Structure of the Climax molybdenite depo-
sits. [Denver, Colorado] 136-137. (Fonte e data não iden-
tificadas).

RESUMO

A mina de Climax, no Colorado, produz aproximadamente 27.000.000 lb de molibdeno anualmente e tem uma reserva a proximada de 140.000.000 ton. Este depósito, como a maioria do tipo chaminé e "pipe", não mostra feição estrutural que ocasiona a localização da molibdenita, todavia as mais importantes feições são de interesse para comparação com outros depósitos deste tipo. A área mineralizada é confinada a granitos e gnaisses pré-cambrianos. O granito e a mineralização são limitados a oeste, pela falha do Mosquito com direção a proximadamente norte, mergulhos abruptos para oeste e deslo- camento normal. Diques de quartzo-monzonito pôrfiro no grani-
to e "sills" da mesma rocha no xisto são cortados pela fa-
lha. A mineralização é predominantemente uma silicificação das rochas regionais com introdução da molibdenita e pirita numa área circular (em planta). Variações na mineralização são gradacionais, passando de material imitil (quartzo) para minério. O conteúdo de molibdenita é muito uniforme e varia de 0,5 a 0,3%, numa extensão de 100 a 200 pés. Os limites das zonas de substituição do quartzo com a de minério são bem definidos, não mostram influência resultante das fratu-
ras pré-minerais, e nem as soluções foram afetadas pelos di-
ques que cortam a área. Tanto o gnaissse como o granito estão enriquecidos com molibdenita na parte principal da zona mine-
ralizada. A forma do depósito de molibdenita não mostra rela-
ção com feições estruturais assim como falhas, fissuras, con-
tato-gnaissse, ou diques de pôrfiro. A ocorrência de minerali-
zação próxima à maior estrutura como a falha do Mosquito e sugerida como uma relação casual.
7.2. ÍNDICE BIBLIOGRÁFICO

8. BANERJEE, A.K. & MOORHEAD, G.A. - Gold and

134

135

29. BRASIL, Ministério das Minas e Energia. DNPM. Região do alto rio Madeira. Relat. Inédito |s. ident.| 5º Distrito Norte, 1969. 6 p. il. 53

30. BRAUN, O.P.G. – Projeto Roraima. 2ª fase; levantamento geológico integrado... Mapeamento preliminar ao milionésimo... fotointerpretação preliminar". Rio de Janeiro, BRASIL. Ministério das Minas e Energia. Departamento Nacional da Produção Mineral, Convênio DNPM-CPRM, Relat. Inédito |s. ident.| 1973. 218 p. il. 113

39. DAMTÃO, R.N. & RANKRAB, G.E. - Diatomita do Igarapé Porãquê, Território Federal de R...

65. KOSALS, A. & MAZUROV, M.P. - Behavior of mo
lybdenum, tungstenum, tin, niobium and tan
talum, in the emplacement of the Bidu-Dzhi
da granite intrusion in South Western Bayka-
ia. Geokhimiya, [s.l.p.], 6: 731-743, 1970
il.

66. KUYUMJIAM, R.M. - Prospeção geoquímica de
orientação para molibdênio no Território Fe-
deral de Roraima. In: CONGRESSO BRASILEIRO
DE GEOLOGIA, 26, Belém, 1972. Resumo das...
Belém, Soc. bras. Geol., 1972 (Boletim Espe-
cial, 1) p. 228.

67. KUYUMJIAM, R.M. & OLIVEIRA, J.F. - Projeto
Serra do Mel. Manaus, CPRM, Relat. Inédito
[s. ident.] 1972. 2 v. il.

68. LAVIÉ, H.J. - Pro foes Geo miner a en Guayana
In: MEMORIA DE LA NOVENA CONFERENCI AGEO-
GICA INTER-GUAYANAS – MAYO 7-14, 1972. Puer-

69. LEE, M.A. - Minerals of Guyana in Atomic Ener-

70. LIDDY, J.C. - Molybdenite in Eastern Austra-
1971. il.

71. LOCZY, L. de - Some problems of the tectonic
framework of the Guiana Shield with special
regard for the Roraima Formation. Geol. Run-
1973. il.

72. LOPEZ, V.M. et alii - Geology of southeastern
Venezuela. Bulletin of the Geological Socie-
ty of America, Colorado, 53, 849-872, june,
1942. il.

73. LOWELL, J.D. & GUILBERT, J.M. - Lateral and
Vertical Alteration - Mineralization Zoning
in Porphyry Ore Deposits. Economic Geology

80. MANDETTA, P. & RAMGRAEB, G.E. - Levantamento dos garimpos do baixo rio Maú; Território

91. OVCHINNIKOV, L.N. & GRIGORYAN, S.V. - Primary halos in prospecting for sulphide deposits. CIM Special, 11, 375-380 s.d. il.

97. PERRY, J.K. - A new geochemical method for the determination of molybdenum in soil

103. —— Projeto Roraima; Relatório Progressivo 1ª Semestre de 1971... mapeamento geológico da Área Divisor. Manaus, BRASIL. Ministério das Minas e Energia. DNPM - Convênio CPRM. Relat. Inédito |s. ident.|, 1971. 28 p. il.

120. TAUSON, L.V. & KOSLOV, V.D. - Distribution functions and ratios of trace - element concentrations as estimators of the ore - bearing potential of granites. 1971 p. 37-44, il. [Local e fonte não identificados].

128. WOODSWORTH, C.J. - A geochemical drainage
survey and its implications for metallogene-
sis, Central Coast Mountains, British Colum-
bia. Economic Geology, Michigan, 66 (8):
1104-1120. dec. 1971. il.

129. YANEZ, G.A. - Geologia del area de Santa Elena
de Uairén. In: MEMORIA DE LA NOVENA CONFE-
RENCIA GEOLOGICA INTER-GUAYANAS - MAYO 7-14,
667. il.
7.3. - ÍNDICES REMISSIVOS
7.3.1. — ÍNDICE TEMÁTICO
<table>
<thead>
<tr>
<th>ADAMELITOS</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Guiana, país</td>
<td>GU</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Nordeste, região</td>
<td>BR</td>
<td>124</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AGATA</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maí, rio</td>
<td>RR</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Rio Branco, bacia</td>
<td>RR</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AGRICULTURA</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>23</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ÁGUA TERMO-SULFUROSA</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Campinas, localidade</td>
<td>PA</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Jardim, localidade</td>
<td>PA</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Itaituba, município</td>
<td>PA</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Monte Alegre, município</td>
<td>PA</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ALINHAMENTO ESTRUTURAL</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Guianas, escudo</td>
<td>AS</td>
<td>111</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ALTER DO CHÃO, Formação</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>103</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ALTERAÇÃO HIDROTERMAL</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorado, Estado</td>
<td>EUA</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>Guiana Francesa, país</td>
<td>GF</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Guiana, país</td>
<td>GU</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Novo México, Estado</td>
<td>EUA</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>Suriname, país</td>
<td>SU</td>
<td>63</td>
<td></td>
</tr>
</tbody>
</table>
Venezuela, país VE 63

ALTITUDE
Roraima, monte RR 18
Tabatinga, serra RR 6

ALUVIÕES
Branco, rio RR 30
Santa Elena de Uairén, cidade VE 98

AMBIENTE DE DEPOSIÇÃO
Bolívia, país BO 96
Guiana, país GU 92
Venezuela, país VE 96

AMOSTRAGENS
Roraima, Território Federal RR 106

ANÁLISES COLORIMÉTRICAS
Canadá, país CA 78
Roraima, Território Federal RR 106, 109

ANÁLISES DE ABSORÇÃO ATÔMICA
Canadá, país CA 78

ANÁLISES DE RAIO-X, Fluorescente
Canadá, país CA 78

ANÁLISES ESPECTROGRÁFICAS
<table>
<thead>
<tr>
<th>Localização</th>
<th>Código</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>105,106</td>
</tr>
<tr>
<td>Shakhtana, localidade</td>
<td>URSS</td>
<td>101</td>
</tr>
<tr>
<td>ANÁLISES GEOQUÍMICAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austrália, país</td>
<td>AU</td>
<td>104</td>
</tr>
<tr>
<td>ANÁLISES MINERALÓGICAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austrália, país</td>
<td>AU</td>
<td>104</td>
</tr>
<tr>
<td>ANÁLISES PETROGRÁFICAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austrália, país</td>
<td>AU</td>
<td>104</td>
</tr>
<tr>
<td>ANÁLISES QUÍMICAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canadá, país</td>
<td>CA</td>
<td>78</td>
</tr>
<tr>
<td>ANAÚÁ, Associação</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>120</td>
</tr>
<tr>
<td>ANAÚÁ, Grupo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anauá, rio</td>
<td>RR</td>
<td>70</td>
</tr>
<tr>
<td>ANAÚÁ-KUTUWINI, Associação</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>103</td>
</tr>
<tr>
<td>ANDESITOS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amazônica, região</td>
<td>BR</td>
<td>119,125</td>
</tr>
<tr>
<td>Canadá, país</td>
<td>CA</td>
<td>127</td>
</tr>
<tr>
<td>Colorado, Estado</td>
<td>EUA</td>
<td>115</td>
</tr>
<tr>
<td>Novo México, Estado</td>
<td>EUA</td>
<td>47</td>
</tr>
</tbody>
</table>

Total: 154
ANDINA, Crogênese	16
Guianas, escudo	AS
ANFIBOLÍTICOS, Cinturões	88
Guianas, escudo	AS
ANFIBOLITO	
Alto rio Branco, região	31
Amazônica, região	117
Anauá, grupo	70
Anauá/Barauana, rios	70
Auaris, rio	73
Guiana, país	54
Parima, rio	73
Roraima, Território Federal	68, 73
ANOMALIAS GEOQUÍMICAS	
Bolivar, Estado	93
Montana, Estado	59
Roraima, Território Federal	105, 106
ANOMALIAS MAGNÉTICAS	
Suriname, país	77
APATITA	
Shakhtama, localidade	101
APLANADA, zona	
Rio Branco, Território Federal	25

155
<table>
<thead>
<tr>
<th>Formação</th>
<th>Localização</th>
<th>Estado</th>
<th>Código</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>APLITO</td>
<td>Novo México, Estado</td>
<td>EUA</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>APOTERI, Formação</td>
<td>Brasil, país</td>
<td>BR</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>ARAGUAIA, Formação</td>
<td>Pará, Estado</td>
<td>PA</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>ARAI, Membro</td>
<td>Araí, serra</td>
<td>RR</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>ARAXÁ, Grupo</td>
<td>Amapá, Território Federal</td>
<td>AP</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>ARCO DE GURUPÁ</td>
<td>Amazônica, região</td>
<td>BR</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>ARCO DE PURUS</td>
<td>Amazônica, região</td>
<td>BR</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Negro/Aripuanã, bacias</td>
<td>AM</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>ARCÓSEOS</td>
<td>Amazônica, região</td>
<td>BR</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rio Branco, Território Federal</td>
<td>RR</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>AREIAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>------------</td>
<td>----</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>Apiaú, rio</td>
<td>RR</td>
<td>68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mucajá, rio</td>
<td>RR</td>
<td>68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>68</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AREIAS ORTOQUARTZÍTICAS</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Morro Branco, localidade</td>
<td>RR</td>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ARENITO RORAIMA</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rio Branco, bacia</td>
<td>RR</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ARENITO ROROIMA</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alto rio Branco, região</td>
<td>RR</td>
<td>5, 31</td>
<td></td>
</tr>
<tr>
<td>Quinô, rio</td>
<td>RR</td>
<td>31</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ARENITOS</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aicarém, rio</td>
<td>RR</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Alto rio Branco, região</td>
<td>RR</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Brasil, país</td>
<td>BR</td>
<td>123</td>
<td></td>
</tr>
<tr>
<td>Cotingo/Quinô, bacias</td>
<td>RR</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>Guiana, país</td>
<td>GU</td>
<td>42, 48</td>
<td></td>
</tr>
<tr>
<td>Maú, rio</td>
<td>RR</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Mê-Uê, localidade</td>
<td>RR</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Monte Roraima, região</td>
<td>RR</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Quinô, rio</td>
<td>RR</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Rio Branco, bacia</td>
<td>RR</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Rio Branco, Território Federal</td>
<td>RB</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>11, 23</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>26, 56</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>68, 95</td>
<td></td>
</tr>
</tbody>
</table>

| | | 157 | |
Rorimã, monte
Santa Elena de Uairén, cidade
Tacutu, rio
Tarumã-Açu
Uraricoera, rio

ARENITOS CONGLOMERÁTICOS
Santa Elena de Uairén, cidade

ARENITOS KAITEUR
Roraima, Território Federal

ARGILA
Goiás, Estado

ARGILITOS
Canadá, país
Rio Branco, bacia
Roraima, Território Federal

ARMINA, Formação
Suriname, país

ARMINA, Série
Suriname, país

ARSENOPIRITA
Guiana Francesa, país
Guiana, país

Página 103
13
98
4, 56
30
4

Página 104
3
98

Página 105
10
99
4
26
71
55
63
63
158
<table>
<thead>
<tr>
<th>Localização</th>
<th>Abreviatura</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suriname, país</td>
<td>SU</td>
<td>63</td>
</tr>
<tr>
<td>Venezuela, país</td>
<td>VE</td>
<td>63</td>
</tr>
<tr>
<td>ARSENOPIRITIZAÇÃO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guiana, país</td>
<td>GU</td>
<td>54</td>
</tr>
<tr>
<td>ASPECTOS GEOGRÁFICOS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>113</td>
</tr>
<tr>
<td>ASPECTOS HUMANOS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brasil, país</td>
<td>BR</td>
<td>46</td>
</tr>
<tr>
<td>AUGEN-GNAISSE CORENTYNE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guiana, país</td>
<td>GU</td>
<td>53</td>
</tr>
<tr>
<td>BACURI, Cachoeira</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catrimãni, rio</td>
<td>RR</td>
<td>6</td>
</tr>
<tr>
<td>BARAMA, Grupo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guiana, país</td>
<td>GU</td>
<td>35, 42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>48, 54</td>
</tr>
<tr>
<td>BARAMA-MAZARUNI, Associação</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guiana, país</td>
<td>GU</td>
<td>35, 54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>Guiana, escudo</td>
<td>AS</td>
<td>94</td>
</tr>
</tbody>
</table>

Página 159
<table>
<thead>
<tr>
<th>Location</th>
<th>State</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>BARITINA</td>
<td>GO</td>
<td>10</td>
</tr>
<tr>
<td>BARREIRAS, Formação</td>
<td>RR</td>
<td>103</td>
</tr>
<tr>
<td>PARÁ, Estado</td>
<td>PA</td>
<td>102</td>
</tr>
<tr>
<td>BARREIRAS, Série</td>
<td>RR</td>
<td>17</td>
</tr>
<tr>
<td>BARRON, Falhamento</td>
<td>GU</td>
<td>77</td>
</tr>
<tr>
<td>BARTICA, Associação</td>
<td>GU</td>
<td>35, 42</td>
</tr>
<tr>
<td>BARTICA-MAZARUNI, Associação</td>
<td>GU</td>
<td>54</td>
</tr>
<tr>
<td>BASAL, Membro</td>
<td>AS</td>
<td>16</td>
</tr>
<tr>
<td>BASALTITOS</td>
<td>RR</td>
<td>14, 14, 14</td>
</tr>
<tr>
<td>Murupu, serra</td>
<td>RR</td>
<td>14</td>
</tr>
<tr>
<td>Pau Rainha, rio</td>
<td>RR</td>
<td>14</td>
</tr>
<tr>
<td>Pitomba,igarapé</td>
<td>RR</td>
<td>14</td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>14</td>
</tr>
<tr>
<td>Silú, igarapé</td>
<td>RR</td>
<td>14, 160</td>
</tr>
</tbody>
</table>
BASALTOS
Alto rio Branco, região RR 31
Canadá, escudo CA 127
Guianas, escudo AS 88
Murupuzinho, serra RR 14, 31
Veado, serra RR 31
Roraima, Território Federal RR 52

BÁSICA METAMORFISADA, Sequência
Roraima, Território Federal RR 107,120

BÁSICAS, Rochas
Guiana, país GU 89

BATHURST BATHOLITH, Depósito
Austrália, país AU 75

BAUXITA
Alenquer, município PA 52
Amazonas, Estado AM 52
Guianas, escudo AS 16
Pará, Estado PA 52
Roraima, Território Federal RR 56

BENEFICENTE
Amazônica, região BR 102;118

BERBICE, Formação
Guiana, país GU 42

161
BIOTITA-GRANITO
Guiana, país GU 34, 87

BIOTITA-GRANITO AKRAMUKRA-RAPPU
Guiana, país GU 34

BISMUTO
Austrália, país AU 75
Canadá, país CA 78
Roraima, Território Federal RR 105,106

BOA VISTA, Formação
Rio Branco, Território Federal RB 27
Roraima, Território Federal RR 85,102

BOIAÇU, Cachoeira
Catrimâni, rio RR 6

BONIDORO, Associação
Guianas, escudo AS 94

BORNITA
América do Norte AN 91

BOSS-MOUNTAIN
Canadá, país CA 127

BRECHAÇÃO
Amazônica, região BR 125
Canadá, país CA 99
162
Roraima, Território Federal RR 120
BRENDA, Stock
Canadá, país CA 99
BURRO-BURRO, Grupo
Guiana, país GU 89,112
 125
CABALLAPE, Formação
Venezuela, país VE 40
CABEÇAS, Formação
Maranhão, bacia MA/PI 102
CALCÁRIO
Amazonas, Estado AM 52
Canadá, país CA 99
Cupari, rio PA 10
Curuá, rio PA 10
Maecuru, rio AM 10
Maués, rio AM 10
Nova Olinda, serra RR 27
Rio Branco, Território Federal RB 27
Tapajós, rio PA 10
CALCOCITA
América do Norte AN 91
CALCOPIRITA
América do Norte, continente AN 91
Austrália, país AU 104
Canadá, país CA 79, 80
 99
Colorado, Estado EUA 16, 50
Guiana, país GU 54, 63
Guiana Francesa, país GF 63
Suriname, país SU 63
Venezuela, país VE 63

CAMPO DE PÓRFIRO FELSÍTICO
Alto rio Branco, região RR 31

CANAIMA, Formação
Santa Elena de Uairén, cidade VE 98

CAPIM, Garimpo
Capim, igarapé RR 27

CARBONIZAÇÃO
Guiana, país GU 54

CARTA GEOLOGICA DO BRASIL
Roraima, Território Federal RR 21

CASCALHOS
Apiaú, rio RR 68
Mucajá, rio RR 68
Roraima, Território Federal RR 68
<table>
<thead>
<tr>
<th>Localização</th>
<th>Município/Estado</th>
<th>Código</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amapá, Território Federal</td>
<td>AP</td>
<td>52</td>
</tr>
<tr>
<td>Amazonas, Estado</td>
<td>AM</td>
<td>52</td>
</tr>
<tr>
<td>Amazônia, região</td>
<td>RR</td>
<td>118</td>
</tr>
<tr>
<td>Anauá/Barauana, rios</td>
<td>RR</td>
<td>70</td>
</tr>
<tr>
<td>Austrália, país</td>
<td>AU</td>
<td>75</td>
</tr>
<tr>
<td>Brasil, país</td>
<td>BR</td>
<td>46</td>
</tr>
<tr>
<td>Guianas, escudo</td>
<td>AS</td>
<td>123</td>
</tr>
<tr>
<td>Lábreaes, município</td>
<td>AM</td>
<td>52</td>
</tr>
<tr>
<td>Médio Tapajós, região</td>
<td>PA</td>
<td>52</td>
</tr>
<tr>
<td>Novo Aripuanã, município</td>
<td>AM</td>
<td>52</td>
</tr>
<tr>
<td>Pará, Estado</td>
<td>PA</td>
<td>52</td>
</tr>
<tr>
<td>Rondônia, Território Federal</td>
<td>RO</td>
<td>44, 52</td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>52, 56</td>
</tr>
<tr>
<td></td>
<td></td>
<td>113</td>
</tr>
<tr>
<td>CATACLISITOS K'MULKU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHAPADA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rio Branco, bacia</td>
<td>RR</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHERT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guiana, país</td>
<td>GU</td>
<td>37</td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>26, 95</td>
</tr>
<tr>
<td>Verde, serra</td>
<td>RR</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHUMBO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alenquer, município</td>
<td>PA</td>
<td>10</td>
</tr>
<tr>
<td>Bolivar, Estado</td>
<td>VE</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>165</td>
</tr>
</tbody>
</table>
Novo México, Estado EUA 47
Pastora, província VE 97
São Felix do Xingu, município PA 10

CINTILOMETRIA
Guiana, país GU 48

CINTURÃO OROGENÉTICO TRANSAMAZÔNICO
Guiana, país GU 112

CLAYSTONE
Mauí, rio RR 53

CLIMA
Amapá, Território Federal AP 46
Amazônica, região BR 44
Brasil, país BR 18, 46
Roraima, Território Federal RR 45

CLIMAX, Depósito
Colorado, Estado EUA 24, 50

CLIMAX, Nina
Colorado, Estado EUA 86,131

COBERTURA SEDIMENTAR
Guianas, escudo AS 123

COBRE 166
<table>
<thead>
<tr>
<th>Localização</th>
<th>Código</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazonas, Estado</td>
<td>AM</td>
<td>52</td>
</tr>
<tr>
<td>América Ocidental, região</td>
<td>AN</td>
<td>108</td>
</tr>
<tr>
<td>Austrália, país</td>
<td>AU</td>
<td>104</td>
</tr>
<tr>
<td>Bolivar, Estado</td>
<td>VE</td>
<td>93</td>
</tr>
<tr>
<td>Colorado, Estado</td>
<td>EUA</td>
<td>115</td>
</tr>
<tr>
<td>Pastora, província</td>
<td>VE</td>
<td>97</td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>105,106</td>
</tr>
<tr>
<td></td>
<td></td>
<td>107,120</td>
</tr>
<tr>
<td>Shakhtama, localidade</td>
<td>URSS</td>
<td>101</td>
</tr>
</tbody>
</table>

COBRE NATIVO

<table>
<thead>
<tr>
<th>Localização</th>
<th>Código</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>América do Norte, continente</td>
<td>AN</td>
<td>91</td>
</tr>
</tbody>
</table>

COBRE PÓRFIRO, depósito

<table>
<thead>
<tr>
<th>Localização</th>
<th>Código</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>América Ocidental, região</td>
<td>AN</td>
<td>85</td>
</tr>
</tbody>
</table>

COLONIZAÇÃO

<table>
<thead>
<tr>
<th>Localização</th>
<th>Código</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>45</td>
</tr>
</tbody>
</table>

COLUMBITA

<table>
<thead>
<tr>
<th>Localização</th>
<th>Código</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amapá, Território Federal</td>
<td>AP</td>
<td>52</td>
</tr>
<tr>
<td>Guianas, escudo</td>
<td>AS</td>
<td>122</td>
</tr>
<tr>
<td>Nigéria, país</td>
<td>NG</td>
<td>74</td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>52</td>
</tr>
</tbody>
</table>

COLUNA ESTRATIGRÁFICA

<table>
<thead>
<tr>
<th>Localização</th>
<th>Código</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guiana, país</td>
<td>GU</td>
<td>54</td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>20,107</td>
</tr>
<tr>
<td>Suriname, país</td>
<td>SU</td>
<td>55</td>
</tr>
</tbody>
</table>

167
<table>
<thead>
<tr>
<th>Complexo</th>
<th>Localização</th>
<th>Estado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coluna Geocronológica</td>
<td>Guianas, país</td>
<td>GU</td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>112</td>
</tr>
<tr>
<td>Coluna Litoestratigráfica</td>
<td>Roraima, Território Federal</td>
<td>RR</td>
</tr>
<tr>
<td>Santa Elena de Uairén, cidade</td>
<td>VE</td>
<td>109</td>
</tr>
<tr>
<td>Colúvio-Aluviais, coberturas</td>
<td>Roraima, Território Federal</td>
<td>RR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>120</td>
</tr>
<tr>
<td>Complexo Basal</td>
<td>Roraima, Território Federal</td>
<td>RR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>103</td>
</tr>
<tr>
<td>Complexo Brasileiro</td>
<td>Branco, rio</td>
<td>RR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Complexo Cristalino</td>
<td>Roraima, Território Federal</td>
<td>RR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>67, 73</td>
</tr>
<tr>
<td>Complexo Guianense</td>
<td>Guianas, escudo</td>
<td>AS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>122</td>
</tr>
<tr>
<td>Complexo Ígneo-Metamórfico do Embamento</td>
<td>Santa Elena de Uairén, cidade</td>
<td>VE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98</td>
</tr>
<tr>
<td>Complexo Imataca</td>
<td>Venezuela, país</td>
<td>VE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>115</td>
</tr>
</tbody>
</table>
COMPLEXO METAMÓRFICO
Roraima, Território Federal RR 103

COMPLEXO PRÉ-CAMBIANO
Rio Branco, Território Federal RB 27

COMPLEXO XINGU
Amazônica, região BR 118

CONCENTRADOS DE BATEIA
Roraima, Território Federal RR 105,106

CONDICIONAMENTO ESTRATIGRÁFICO
Guiana, país GU 54

CONDICIONAMENTO ESTRUTURAL
Japão, país JP 129

CONDICIONAMENTO LITOLÓGICO-ESTRUTURAL
Guiana, país GU 54, 63
Guiana Francesa, país GF 63
Suriname, país SU 63
Venezuela, país VE 63
Roraima, Território Federal RR 81

CONGLOMERADOS
Alto Rio Branco, região RR 31
Apertar da hora, cachoeira RR 57
Baixo Maí, região RR 57

169
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cotingo/Quinô, bacias</td>
<td>RR</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>Guiana, país</td>
<td>GU</td>
<td>35,42</td>
<td>48,54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>Guianas, escudo</td>
<td>AS</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>Látum, serra</td>
<td>RR</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>Rio Branco, Território Federal</td>
<td>RB</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>21,23</td>
<td>26,56</td>
</tr>
<tr>
<td></td>
<td></td>
<td>95,103</td>
<td></td>
</tr>
<tr>
<td>Venezuela, país</td>
<td>VE</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

CONGLOMERADOS PIRÍTICOS

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>América do Norte, continente</td>
<td>AN</td>
<td>91</td>
<td></td>
</tr>
</tbody>
</table>

CORANTIJN, Grupo

<table>
<thead>
<tr>
<th>Surinama, país</th>
<th>SU</th>
<th>71</th>
</tr>
</thead>
</table>

CORENTYNE, Grupo

<table>
<thead>
<tr>
<th>Guiana, país</th>
<th>GU</th>
<th>42,112</th>
</tr>
</thead>
</table>

COROPINA, Formação

<table>
<thead>
<tr>
<th>Surinama, país</th>
<th>SU</th>
<th>71</th>
</tr>
</thead>
</table>

CORRELAÇÃO

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>África, continente</td>
<td>AF</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>Amazônica, região</td>
<td>BR</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>Colômbia, país</td>
<td>CO</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Guiana, país</td>
<td>GU</td>
<td>112,125</td>
<td></td>
</tr>
<tr>
<td>Guianas, escudo</td>
<td>AS</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>56,107</td>
<td>170</td>
</tr>
</tbody>
</table>
Venezuela, país

CRATON GUIANÊS
Brasil, país

CRISTAL DE ROCHAS
Cristais, serra
Porto Nacional, município
Rio Branco, bacia
Roraima, Território Federal

CRISTALINAS, Rochas
Ailan, rio
Maú, rio

CUESTAS
Arai, serra

CUQUENAN, Formação
Roraima, Território Federal

CURUÁ, Formação
Amazônica, bacia sedimentar

CUYUNI, Formação
Guiana, país

DACITOS
Amazônica, região BR 118,125
Guiana, país GU 34

DETAIKA, Deposição
Roraima, Território Federal RR 26

DEPÓSITOS, Tipos
Austrália, país AU 75

DEPÓSITOS MINERAIS
Guiana, país GU 90

DEPÓSITOS QUATERNÁRIOS
Roraima, Território Federal RR 56
Venezuela, país VE 9

DEPÓSITOS RECENTES
Guianas, escudo AS 16

DERIVA DOS CONTINENTES
África, continente AF 128
Venezuela, país VE 128

DERRAME ÁCIDO
Aicarém, rio RR 13
Alto Rio Branco, região RR 13
Mãe-Uê, localidade RR 13
Quinô, rio RR 13
Roroimã, monte RR 13
<table>
<thead>
<tr>
<th>DERRAMES BASÁLTICOS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Brasil, país</td>
<td>BR</td>
</tr>
<tr>
<td>DIABÁSIO APOTOÉ</td>
<td></td>
</tr>
<tr>
<td>Suriname, país</td>
<td>SU</td>
</tr>
<tr>
<td>DIABÁSIO AVANAVERO</td>
<td></td>
</tr>
<tr>
<td>Suriname, país</td>
<td>SU</td>
</tr>
<tr>
<td>DIABÁSIO RORAIMA</td>
<td></td>
</tr>
<tr>
<td>Guiana, país</td>
<td>GU</td>
</tr>
<tr>
<td>Venezuela, país</td>
<td>VE</td>
</tr>
<tr>
<td>DIABÁSIO TEFUIMANA-TÊ</td>
<td></td>
</tr>
<tr>
<td>Mê-Uê, localidade</td>
<td>RR</td>
</tr>
<tr>
<td>DIABÁSIOS</td>
<td></td>
</tr>
<tr>
<td>Aicarém, rio</td>
<td>RR</td>
</tr>
<tr>
<td>Alto Rio Branco, região</td>
<td>RR</td>
</tr>
<tr>
<td>Arai, serra</td>
<td>RR</td>
</tr>
<tr>
<td>Brasil, país</td>
<td>BR</td>
</tr>
<tr>
<td>Cotingo/Quinê, bacias</td>
<td>RR</td>
</tr>
<tr>
<td>Cujumã, cachoeira</td>
<td>RR</td>
</tr>
<tr>
<td>Guiana, país</td>
<td>GU</td>
</tr>
<tr>
<td>Guianas</td>
<td>AS</td>
</tr>
<tr>
<td>Maloca de Aicarém, localidade</td>
<td>RR</td>
</tr>
<tr>
<td>Monte Roraima, região</td>
<td>RR</td>
</tr>
<tr>
<td>Parimé, rio</td>
<td>RR</td>
</tr>
<tr>
<td>Rio Branco, bacia</td>
<td>RR</td>
</tr>
<tr>
<td>Rio Branco, Território Federal</td>
<td>RB</td>
</tr>
</tbody>
</table>

| Página | 173 |

<table>
<thead>
<tr>
<th>QR Code</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Code</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Santa Elena de Uairém, cidade</td>
<td>VE</td>
</tr>
<tr>
<td>Suriname, país</td>
<td>SU</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Tabaio, serra</td>
<td>RR</td>
</tr>
<tr>
<td>Tacutu, rio</td>
<td>RR/GU</td>
</tr>
<tr>
<td>Uraricoera, rio</td>
<td>RR</td>
</tr>
<tr>
<td>Verde, serra</td>
<td>RR</td>
</tr>
<tr>
<td>DIAMANTE</td>
<td></td>
</tr>
<tr>
<td>África, continente</td>
<td>AF</td>
</tr>
<tr>
<td>Alto Rio Branco, região</td>
<td>BR</td>
</tr>
<tr>
<td>Amapá, Território Federal</td>
<td>AP</td>
</tr>
<tr>
<td>Amazonas, Estado</td>
<td>AM</td>
</tr>
<tr>
<td>Amazônica, bacia</td>
<td>BR</td>
</tr>
<tr>
<td>Amazônica, região</td>
<td>BR</td>
</tr>
<tr>
<td>Araguaia, rio</td>
<td>GO/MT</td>
</tr>
<tr>
<td>Branco, rio</td>
<td>RR</td>
</tr>
<tr>
<td>Brasil, rio</td>
<td>RR</td>
</tr>
<tr>
<td>Campo Maior, localidade</td>
<td>RR</td>
</tr>
<tr>
<td>Capim, igarapé</td>
<td>RR</td>
</tr>
<tr>
<td>Cotingo, rio</td>
<td>RR</td>
</tr>
<tr>
<td>Guiana, país</td>
<td>GU</td>
</tr>
<tr>
<td>Guianas, escudo</td>
<td>AS</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Irampung, localidade</td>
<td>RR</td>
</tr>
<tr>
<td>Mauí, rio</td>
<td>RR</td>
</tr>
<tr>
<td>Orinoco, bacia</td>
<td>VE</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Localização</td>
<td>Estado</td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>Pará, Estado</td>
<td>PA</td>
</tr>
<tr>
<td>Quinô, rio</td>
<td>RR</td>
</tr>
<tr>
<td>Rio Branco, bacia</td>
<td>RR</td>
</tr>
<tr>
<td>Rio Branco, Território Federal</td>
<td>RB</td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Suapi, igarapé</td>
<td>RR</td>
</tr>
<tr>
<td>Suapi, rio</td>
<td>RR</td>
</tr>
<tr>
<td>Suriname, país</td>
<td>SU</td>
</tr>
<tr>
<td>Surubai, igarapé</td>
<td>RR</td>
</tr>
<tr>
<td>Tapajós, rio</td>
<td>PA</td>
</tr>
<tr>
<td>Tepequém, serra</td>
<td>RR</td>
</tr>
<tr>
<td>Venezuela, país</td>
<td>VE</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DIATOMITO

<table>
<thead>
<tr>
<th>Localização</th>
<th>Estado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branco, rio</td>
<td>RR</td>
<td>10</td>
</tr>
<tr>
<td>Firmeza, localidade</td>
<td>AM</td>
<td>10</td>
</tr>
<tr>
<td>Goiás, Estado</td>
<td>GO</td>
<td>10</td>
</tr>
<tr>
<td>Poraquê, igarapé</td>
<td>RR</td>
<td>7, 69</td>
</tr>
<tr>
<td>Rio Branco, bacia</td>
<td>RR</td>
<td>7</td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>56, 107</td>
</tr>
<tr>
<td></td>
<td></td>
<td>120</td>
</tr>
</tbody>
</table>

DIFERENCIACAO

<table>
<thead>
<tr>
<th>Localização</th>
<th>Estado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>175</td>
</tr>
</tbody>
</table>
Venezuela, país VE 22

DIORITO PÓRFIRO
Shakhtama, localidade URSS 101

DIORITO PÓRFIRO BELMONT
Montana, Estado EUA 59

DIORITOS
Anauá/Baruana, rios RR 70
Rio Branco, bacia RR 4

DIQUES
Venezuela, país VE 22

DIREÇÃO DE CORRENTE
Roraima, monte RR 95
Roraima, Território Federal RR 95

DISCORDÂNCIA
Guiana, país GU 42
Guianas, escudo AS 88

DISPERSÃO
Sierra Leone, país AF 38

DIVISOR
Acre, bacia AC 102

DOBRAMENTOS
Bolívia, país BO 96
Brasil, país BR 124
Guiana, país GU 35
Guianas, escudo AS 16
Venezuela, país VE 40, 96

DOLERITO
Roraima, Território Federal RR 28

DOLOMITA
Guiana, país GU 90

DOS RIOS, Formação
Roraima, Território Federal RR 109

DRENAGEM
Roraima, Território Federal RR 18, 28

DUMORTIERITA
Guiana, país GU 90

ECONOMIA MINERAL DO MOLIBDÊNIO
Brasil, país BR 100

ECONÔMICOS, aspectos
Roraima, Território Federal RR 18, 45

EFEITOS METASSOMÁTICOS
Venezuela, país VE 22

177
EL CALLAO, Formação
Venezuela, país

EMBASAMENTO, Grupo
Guianas, escudo

EMBASAMENTO ARQUEANO
Guiana, país

EMBASAMENTO CRISTALINO
Roraima, Território Federal

EMBASAMENTO GRANITÓIDE-VULCANICO
Suriname, país

ENDERBITO-GNAISSES
Guianas

ENDERBITOS
Guiana, país
Roraima, Território Federal

ENERGIA HIDRODINÂMICA
Roraima, Território Federal

EPISÓDIOS OROGÊNICOS
África, continente
Guiana, país
Guianas, escudo
ERERE, Formação
Amazônica, bacia sedimentar

ERUPTIVAS, rochas
Roraima, Território Federal

ESCARNITO, depósito
Canadá, país

ESFALERITA
Colorado, Estado
Guiana, país
Guiana Francesa, país
Suriname, país
Venezuela, país

ESMERALDA:
Lajes, fazenda

ESPÍLITO MATAPI, Formação
Suriname, país

ESTÁGIOS DE MINERALIZAÇÃO
Colorado, Estado

ESTANHO
Amazônica, região
Austrália, país
Bolívia, região
Bolivar, Estado
Roraima, Território Federal

ESTRATIGRAFIA

Bolívia, país
Guiana, país
Rio Branco, Território Federal
Roraima, Território Federal
Santa Elena de Uairén, cidade
Suriname, país
Venezuela, país

ESTRUTURAS DE FLUXOS

Guiana, país

EVENTO CATASTRÓFICO

América do Norte, continente

EVENTOS MINERALIZANTES

Canadá, país

EVENTOS TECTONOTERMAIS

Guianas

EVOLUÇÃO GEOLOGICA

Guianas, escudo

EXPLORAÇÃO MINERAL

Canadá, país
EXTRATIVISMO MINERAL
Amazônica, região BR 44

EXTRATIVISMO VEGETAL
Roraima, Território Federal RR 45

PÁCIES METAMÓRFICAS
Brasil, país BR 123

PALHAMENTOS
Bolívia, país BO 96
Brasil, país BR 123
Cipó, igarapé RR 53
Guiana, país GU 64
Guianas, escudo AS 16
Maú, rio RR 53
North Savannas, região GU 64
Roraima, Território Federal RR 81,106
Venezuela, país VE 96

FALHAS TRANSCORRENTES
Suriname, país SU 77
Amazônica, bacia BR 111
Guianas, escudo AS 111

FELDSPATO-PÓRFIRO
Guiana, país GU 34

FERRO
Amapá, Território Federal AP 52
<table>
<thead>
<tr>
<th>Localização</th>
<th>Estado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazôntica, região</td>
<td>BR</td>
<td>117</td>
</tr>
<tr>
<td>Guianas, escudo</td>
<td>AS</td>
<td>16</td>
</tr>
<tr>
<td>Pará, Estado</td>
<td>PA</td>
<td>52</td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>105,106</td>
</tr>
<tr>
<td>FERROMOLIBDENITA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Novo México, Estado</td>
<td>EUA</td>
<td>47</td>
</tr>
<tr>
<td>PILITOS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>21</td>
</tr>
<tr>
<td>FISIOGRAFIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alto rio Branco, região</td>
<td>RR</td>
<td>5</td>
</tr>
<tr>
<td>Branco, rio</td>
<td>RR</td>
<td>15</td>
</tr>
<tr>
<td>Guiana, país</td>
<td>GU</td>
<td>34</td>
</tr>
<tr>
<td>Irumutang, localidade</td>
<td>RR</td>
<td>53</td>
</tr>
<tr>
<td>Maú, rio</td>
<td>RR</td>
<td>53</td>
</tr>
<tr>
<td>Monte Roraima, região</td>
<td>RR</td>
<td>12</td>
</tr>
<tr>
<td>Parima, rio</td>
<td>RR</td>
<td>15</td>
</tr>
<tr>
<td>Rio Branco, bacia</td>
<td>RR</td>
<td>4, 7</td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>11, 23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>81,105</td>
</tr>
<tr>
<td></td>
<td></td>
<td>106,120</td>
</tr>
<tr>
<td>Urariocoera, rio</td>
<td>RR</td>
<td>15</td>
</tr>
<tr>
<td>Venezuela, país</td>
<td>VE</td>
<td>40</td>
</tr>
<tr>
<td>FLUORITA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amazôntica, região</td>
<td>BR</td>
<td>118</td>
</tr>
</tbody>
</table>

182
FOLHA NA. 20
Amazônica, região BR 123

FOLHA NA. 20/21
Amazônica, região BR 123

FOLHA NA. 21
Amazônica, região BR 123

FOLHELHOS
Ailin, rio RR 53
Alto Rio Branco, região RR 31
Apuã, rio AM 30
Brasil, país BR 123
Cotingo/Quinô, bacias RR 58
Guianas, escudo AS 16
Iramutang, localidade 53
Maú, rio RR 53, 56
Roraima, Território Federal RR 56, 95
Tacutu, rio RR/GU 56

FOTOGEOLOGIA
Santa Elena de Uairén, cidade VE 98

FOTOINTERPRETAÇÃO
Roraima, Território Federal RR 113

FRATURAS
Maú, rio RR 53
Uracá,localidade RR 53
183
Paiuá, rio

FUMAÇA, Grupo
 Amazônica, região

GABRO DE GÓEJE
 Suriname, país

GABRO MÊ-Ê
 Roraima, Território Federal

GABRO NORÍTICO
 Roraima, Território Federal

GABROS
 Rio Branco, Território Federal
 Roraima, Território Federal
 Santa Elena de Uairén, cidade
 Tabaio, serra

GALENA
 Colorado, Estado
 Guiana, país

GARIMPAGEM
 Quinô, rio
 Roraima, Território Federal

GARIMPO
 Baixo Maú, rio
GEOCRONOLOGIA

Amazônica, região BR 118,119
Canadá, país CA 125
Guiana, país GU 76
Guianas AS 35,49
Guianas, escudo AS 60
Rondônia, Território Federal RO 122
Roraima, Território Federal RR 119
Suriname, país SU 67
Venezuela, país VE 66,77
Xingu, rio PA 49

GEOFÍSICA

Amazônica, bacia BR 110
Bolivar, Estado VE 49
Guianas, escudo AS 119
Orinoco, bacia VE 111

GEOLOGIA

Acre, Estado AC 111
África, continente AF 112
Alto rio Branco, região RR 93
Amapá, Território Federal AP 94,111
Amazonas, Estado AM 94
Amazônica, bacia BR 69
Amazônica, região BR 102

América do Norte, continente AN 118,125

N° 602
<table>
<thead>
<tr>
<th>Termo</th>
<th>Estado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anauá, rio</td>
<td>RR</td>
<td>70</td>
</tr>
<tr>
<td>Anauá/Barasuana, rios</td>
<td>RR</td>
<td>70</td>
</tr>
<tr>
<td>Apiaú, rio</td>
<td>RR</td>
<td>68</td>
</tr>
<tr>
<td>Apuaú, rio</td>
<td>AM</td>
<td>30</td>
</tr>
<tr>
<td>Auaris, rio</td>
<td>RR</td>
<td>73</td>
</tr>
<tr>
<td>Bahia, Estado</td>
<td>BA</td>
<td>126</td>
</tr>
<tr>
<td>Bolivar, Estado</td>
<td>VE</td>
<td>93</td>
</tr>
<tr>
<td>Branco, rio</td>
<td>RR</td>
<td>15</td>
</tr>
<tr>
<td>Canadá, país</td>
<td>CA</td>
<td>127</td>
</tr>
<tr>
<td>Cotingo/Quinô, bacias</td>
<td>RR</td>
<td>58</td>
</tr>
<tr>
<td>Guiana, país</td>
<td>GU</td>
<td>35, 37</td>
</tr>
<tr>
<td>Guianas</td>
<td>AS</td>
<td>127</td>
</tr>
<tr>
<td>Guianas, escudo</td>
<td>AS</td>
<td>122</td>
</tr>
<tr>
<td>Iaú, rio</td>
<td>RR</td>
<td>53</td>
</tr>
<tr>
<td>Monte Roraima, região</td>
<td>RR</td>
<td>12</td>
</tr>
<tr>
<td>Macajãí, rio</td>
<td>RR</td>
<td>68</td>
</tr>
<tr>
<td>Nordeste, região</td>
<td>BR</td>
<td>124</td>
</tr>
<tr>
<td>Orinoco, bacia</td>
<td>VE</td>
<td>92</td>
</tr>
<tr>
<td>Pará, Estado</td>
<td>PA</td>
<td>102</td>
</tr>
<tr>
<td>Parima, rio</td>
<td>RR</td>
<td>15, 73</td>
</tr>
<tr>
<td>Rio Branco, bacia</td>
<td>RR</td>
<td>4, 7</td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>21, 23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>56, 68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>73, 81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>102,105</td>
</tr>
<tr>
<td></td>
<td></td>
<td>106,107</td>
</tr>
<tr>
<td></td>
<td></td>
<td>109</td>
</tr>
<tr>
<td>Santa Elena de Uairén, cidade</td>
<td>VE</td>
<td>98</td>
</tr>
<tr>
<td>Sierra Leone, país</td>
<td>AF</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td></td>
<td>186</td>
</tr>
<tr>
<td>Toponímica</td>
<td>Código</td>
<td>Página</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Suriname, país</td>
<td>SU</td>
<td>66</td>
</tr>
<tr>
<td>Tarumã-Açu, rio</td>
<td>AM</td>
<td>30</td>
</tr>
<tr>
<td>Uraricoera, rio</td>
<td>RR</td>
<td>15</td>
</tr>
<tr>
<td>Venezuela, país</td>
<td>VE</td>
<td>9, 40</td>
</tr>
</tbody>
</table>

GEOLOGIA ECONÔMICA

<table>
<thead>
<tr>
<th>Toponímica</th>
<th>Código</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazônica, região</td>
<td>BR</td>
<td>10</td>
</tr>
<tr>
<td>América do Norte, continente</td>
<td>AN</td>
<td>91</td>
</tr>
<tr>
<td>América Ocidental, região</td>
<td>AN</td>
<td>108</td>
</tr>
<tr>
<td>Austrália, país</td>
<td>AU</td>
<td>75</td>
</tr>
<tr>
<td>Brasil, país</td>
<td>BR</td>
<td>124</td>
</tr>
<tr>
<td>Canadá, país</td>
<td>CA</td>
<td>78, 79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80, 99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>127</td>
</tr>
<tr>
<td>Colorado, Estado</td>
<td>EUA</td>
<td>24, 50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>86, 115</td>
</tr>
<tr>
<td></td>
<td></td>
<td>116, 131</td>
</tr>
<tr>
<td>Guiana, país</td>
<td>GU</td>
<td>54, 63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90</td>
</tr>
<tr>
<td>Guiana Francesa, país</td>
<td>GF</td>
<td>63</td>
</tr>
<tr>
<td>Japão, país</td>
<td>JP</td>
<td>129</td>
</tr>
<tr>
<td>Novo México, Estado</td>
<td>EUA</td>
<td>8, 47</td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>56, 81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>107, 113</td>
</tr>
<tr>
<td></td>
<td></td>
<td>120</td>
</tr>
<tr>
<td>Shakhtama, localidade</td>
<td>URSS</td>
<td>101</td>
</tr>
<tr>
<td>Suriname, país</td>
<td>SU</td>
<td>63</td>
</tr>
<tr>
<td>Venezuela, país</td>
<td>VE</td>
<td>9</td>
</tr>
</tbody>
</table>

GEOLOGIA ESTRUTURAL

187
<table>
<thead>
<tr>
<th>Brasil, país</th>
<th>ER</th>
<th>123</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canadá, país</td>
<td>CA</td>
<td>127</td>
</tr>
<tr>
<td>Colorado, Estado</td>
<td>EUA</td>
<td>24, 50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>131</td>
</tr>
<tr>
<td>Guiana, país</td>
<td>GU</td>
<td>34, 90</td>
</tr>
<tr>
<td>Novo México, Estado</td>
<td>EUA</td>
<td>8</td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>107,113</td>
</tr>
<tr>
<td></td>
<td></td>
<td>120</td>
</tr>
<tr>
<td>Santa Elena de Uairén, cidade</td>
<td>VE</td>
<td>98</td>
</tr>
</tbody>
</table>

GEOMORFOLOGIA

Rio Branco, Território Federal	RB	25, 27
Roraima, Território Federal	RR	17, 18
		19, 23
		25, 27
		28, 33
		45,107
Santa Elena de Uairén, cidade	VE	98
Venezuela, país	VE	9

GEOQUÍMICA

Bahia, Estado	BA	126
Baykalia, região	URSS	72
Bolivar, Estado	VE	93
Canadá, país	CA	76, 79
Guiana, país	GU	48
Montana, Estado	EUA	59
Pastora, província	VE	97
Roraima, Território Federal	RR	105,106
Sierra Leone, país	AF	38

<p>| | | 188 |</p>
<table>
<thead>
<tr>
<th>GEOSSINCLINAL</th>
<th>GU</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guiana, país</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venezuela, país</td>
<td>VE</td>
<td>40</td>
</tr>
<tr>
<td>GIRON, Grupo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colombia, país</td>
<td>CO</td>
<td>26</td>
</tr>
<tr>
<td>GNAISSE.PALAWATRA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suriname, país</td>
<td>SU</td>
<td>71</td>
</tr>
<tr>
<td>GNAISSES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alto rio Branco, região</td>
<td>RR</td>
<td>13, 31</td>
</tr>
<tr>
<td>Amazônica, região</td>
<td>BR</td>
<td>117</td>
</tr>
<tr>
<td>Anauá, rio</td>
<td>RR</td>
<td>69</td>
</tr>
<tr>
<td>Bahia, Estado</td>
<td>BA</td>
<td>126</td>
</tr>
<tr>
<td>Canadá, país</td>
<td>CA</td>
<td>79</td>
</tr>
<tr>
<td>Colorado, Estado</td>
<td>EUA</td>
<td>131</td>
</tr>
<tr>
<td>Guiana, país</td>
<td>GU</td>
<td>35, 42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>48, 64</td>
</tr>
<tr>
<td>Mucaiaí, rio</td>
<td>RR</td>
<td>68</td>
</tr>
<tr>
<td>Parimé, rio</td>
<td>RR</td>
<td>13</td>
</tr>
<tr>
<td>Rio Branco, bacia</td>
<td>RR</td>
<td>4, 7</td>
</tr>
<tr>
<td>Rio Branco, Território Federal</td>
<td>RB</td>
<td>27</td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>56, 68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>73,103</td>
</tr>
<tr>
<td></td>
<td></td>
<td>109</td>
</tr>
<tr>
<td>Venezuela, país</td>
<td>VE</td>
<td>9</td>
</tr>
<tr>
<td>GRABEN</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

189
<table>
<thead>
<tr>
<th>Geografia</th>
<th>Estado/Região</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branco, rio</td>
<td>RR</td>
<td>30</td>
</tr>
<tr>
<td>GRANÍTICA-VULCÂNICA, Assembleia</td>
<td>SU</td>
<td>125</td>
</tr>
<tr>
<td>Suriname, país</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRANITICAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nordeste, região</td>
<td>BR</td>
<td>124</td>
</tr>
<tr>
<td>GRANITIZAÇÃO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guianas, escudo</td>
<td>AS</td>
<td>122</td>
</tr>
<tr>
<td>GRANITO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alto rio Branco, região</td>
<td>RR</td>
<td>31</td>
</tr>
<tr>
<td>Amazonônica, região</td>
<td>BR</td>
<td>117,125</td>
</tr>
<tr>
<td>Apiaú, rio</td>
<td>RR</td>
<td>68</td>
</tr>
<tr>
<td>Austrália, país</td>
<td>AU</td>
<td>75</td>
</tr>
<tr>
<td>Branco, rio</td>
<td>RR</td>
<td>30</td>
</tr>
<tr>
<td>Canadá, país</td>
<td>CA</td>
<td>80</td>
</tr>
<tr>
<td>Colorado, Estado</td>
<td>EUA</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td></td>
<td>131</td>
</tr>
<tr>
<td>Guiana, país</td>
<td>GU</td>
<td>112</td>
</tr>
<tr>
<td>Guianas, escudo</td>
<td>AS</td>
<td>49</td>
</tr>
<tr>
<td>Monte Roraima, região</td>
<td>RR</td>
<td>12</td>
</tr>
<tr>
<td>Nigéria, país</td>
<td>NG</td>
<td>74</td>
</tr>
<tr>
<td>Novo México, Estado</td>
<td>EUA</td>
<td>8</td>
</tr>
<tr>
<td>Rio Branco, bacia</td>
<td>RR</td>
<td>4, 7</td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>11, 28, 56, 68, 81,109</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Venezuela, país</td>
<td>VE</td>
<td>190</td>
</tr>
</tbody>
</table>
GRANITO I
Roraima, Território Federal RR 107,120
Suriname, país SU 55

GRANITO 2
Roraima, Território Federal RR 107,120
Suriname, país SU 55

GRANITO 3
Roraima, Território Federal RR 107,120

GRANITO CACHOEIRA PRIMEIRA
Anauá/Barauana, rios RR 70

GRANITO-GNAISSE
Roraima, Território Federal RR 21, 81

GRANITO-GNAISSE CORENTYNE
Guiana, país GU 112

GRANITO JOVEM, Grupo
Guiana, país GU 35, 54

GRANITO MALOQUINHA
Amazônica, região BR 118

GRANITO SOUTH SAVANNA
Guiana, país GU 35

GRANITO TELES PIRES

191
<table>
<thead>
<tr>
<th>Amazônica, região</th>
<th>BR</th>
<th>118</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRANITO VELO H GUILHERME</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amazônica, região</td>
<td>BR</td>
<td>118</td>
</tr>
<tr>
<td>GRANITOS ALASQUIFÍCOS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amazônica, região</td>
<td>BR</td>
<td>119</td>
</tr>
<tr>
<td>GRANITOS GRÁFICOS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guiana, país</td>
<td>GU</td>
<td>34</td>
</tr>
<tr>
<td>GRANITOS GRANOFÍRICOS ANNAI-IWOKRAMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guiana, país</td>
<td>GU</td>
<td>34</td>
</tr>
<tr>
<td>GRANITOS INTRUSIVOS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colorado, Estado</td>
<td>EUA</td>
<td>48</td>
</tr>
<tr>
<td>Guiana, país</td>
<td>GU</td>
<td>48, 64</td>
</tr>
<tr>
<td>Japão, país</td>
<td>JP</td>
<td>129</td>
</tr>
<tr>
<td>Suriname, país</td>
<td>SU</td>
<td>66</td>
</tr>
<tr>
<td>GRANITOS JOVENS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guiana, país</td>
<td>GU</td>
<td>34, 63</td>
</tr>
<tr>
<td>Guiana Francesa, país</td>
<td>GF</td>
<td>63</td>
</tr>
<tr>
<td>Suriname, país</td>
<td>SU</td>
<td>63</td>
</tr>
<tr>
<td>Venezuela, país</td>
<td>VE</td>
<td>63</td>
</tr>
<tr>
<td>GRANITOS PÓRPIROS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amazônica, região</td>
<td>BR</td>
<td>118</td>
</tr>
<tr>
<td>Guiana, país</td>
<td>GU</td>
<td>87</td>
</tr>
<tr>
<td>Shakhtama, localidade</td>
<td>URSS</td>
<td>101</td>
</tr>
<tr>
<td>Página</td>
<td></td>
<td></td>
</tr>
<tr>
<td>192</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
GRANITITOS SARACURA
Roraima, Território Federal RR 81,103

GRANODIORITO PÓRFIRO
Shakhtama, localidade URSS 101

GRANODIORITOS
Amazônica, região BR 119,125
Anauá/Barauana, rios RR 70
Canadá, país CA 80,127
Colorado, Estado EUA 86
Guiana, país GU 35, 42
Guianas, escudo AS 123
Nordeste, região BR 124
Roraima, Território Federal RR 73

GRANÓFIROS
Amazônica, região BR 118,125
Guiana, país GU 113
Roraima, Território Federal RR 52

GRANULÍTICOS, cinturões
Guianas, escudo AS 88

GRANULITIZAÇÃO
Guianas, escudo AS 123

GRANULITITOS
Guiana, país GU 112
Guianas AS 60

193
Roraima, Território Federal RR 109

GRANULITOS KANUKU
Guiana, país GU 112

GRAUVACAS
Guiana, país GU 54 63
Guiana Francesa, país GP 63
Suriname, país SU 63
Venezuela, país VE 40, 63

GRAUVACAS CONGLOMERÁTICAS
Venezuela, país VE 40

GUAÍQUINIMA, Formação
Santa Elena de Uairén, cidade VE 98

GUAPORÉ, Craton
Amazônica, região RR 119

GUIANA, Série
Rio Branco, Território Federal RB 27

GURUPI, Grupo
Maranhão, Estado MA 102
Pará, Estado PA 102

HALMARAKA, Formação
Guiana, país GU 35, 42
HERCYNOTYPE, cinturão orogênico
Guiana, país GU 89

HIDROGRAFIA
Brasil, país BR 46

Hiperstenização
Roraima, Território Federal RR 3

HISTÓRICO
Roraima, Território Federal RR 120

HORIZONTES CARBONÁCEOS
Guiana, país GU 63
Guiana Francesa, país GF 63
Suriname, país SU 63
Venezuela, país VE 63

HORIZONTES TUFÁCEOS
Guiana, país GU 63
Guiana Francesa, país GF 63
Suriname, país SU 63
Venezuela, país VE 63

Hornblendas-Granito
Guiana, país GU 34

Hornblendito
Parima, rio RR 73
| **HORNFEIS** | |
| Montana, Estado | EUA | 59 |

| **HUELENRIETA** | |
| Colorado, Estado | EUA | 116 |

HULHA		
• Flor de ouro, localidade	MT	10
Trairão, igarapé	RR	10

| **IDADES** | |
| Roraima, Território Federal | RR | 26,107 |

IGNIMBRITOS		
Amazônica, região	BR	118,125
Cotingo/Quinó, bacias	RR	58
Rio Branco, Território Federal	RB	27
Roraima, Território Federal	RR	56

ILMENITA		
Caju, localidade	RR	27
Roraima, Território Federal	RR	56

IMAGENS DE RADAR		
Brasil, país	BR	123
Guianas, escudo	AS	122
Santa Elena de Uairén, cidade	VE	98
Roraima, Território Federal	RR	109
ILATACA, episódio
Roraima, Território Federal

IMATACA, Formação
Guiana, país

INCLUSÕES FLUIDAS
Colorado, Estado

INSELBERGS
Roraima, Território Federal

INTRUSÃO PLUTÔNICA
Guianas, escudo

INTRUSIVA RORAIMA, Seqüência
.Roraima, Território Federal

INTRUSIVAS, rochas
Guiana, país

INTRUSIVAS ÁCIDAS, rochas
Austrália, país
Canadá, país

INTRUSIVAS BÁSICAS
Guiana, país
Santa Elena de Uairén, cidade
Suriname, país
Venezuela, país

Página 109

GU 96
EUA 40
RR 28
AS 88
RR 120
GU 90
AU 75
CA 76
GU 35
VE 98
SU 66
VE 22
197
Tasmânia, Estado AU 22

INTRUSIVAS BÁSICAS CONCORDANTES
Venezuela, país VE 22

INTRUSIVAS BÁSICAS EPIMETAMÓRFICAS
Roraima, Território Federal RR 81

INTRUSIVAS BÁSICAS JOVENS
Guiana, país GU 34

INTRUSIVAS BÁSICAS JOVENS, Grupo
Guiana, país GU 35

INTRUSIVAS BÁSICAS NÃO METAMORFISADAS
Roraima, Território Federal RR 120

INTRUSIVAS SUBVULCÂNICAS
Brasil, país BR 123

INTRUSIVAS SUBVULCÂNICAS SURLU
Roraima, Território Federal RR 109

INTRUSIVO RORAIMA, Grupo
Roraima, Território Federal RR 109

INTRUSÕES FLUIDAS
Colorado, Estado EUA 116

INTRUSÕES GRANÍTICAS 198
Amazônica, região
Baykalia, região
Colorado, Estado
Guiana, país
Roraima, Território Federal
Venezuela, país

INTRUSÕES GRANODIORÍTICAS

Amazônica, região

INTRUSÕES SUBVULCÂNICAS

Shakhtama, localidade

IRIRI, Formação

Amazônica, região

Pará, Estado

ITABIRITOS

Alto rio Branco, região

Guiana, país

Rio Branco, bacia

Roraima, Território Federal

ITACOLOMITO

Alto Rio Branco, região

Tabaio, serra

ITAITUBA, Formação

Amazônica, bacia sedimentar
IWOKRAMA, Formação
Guiana, país
Guianas

JADE-NEPRITA
Parima, rio
Rio Branco, bacia

JASPES
Goiás, Estado
Guiana, país

JASPILITO
Amazônica, região
Cipó, igarapé
Maú, rio
Rio Branco, Território Federal
Roraima, Território Federal
Santa Elena de Uairén, cidade

JAÚ, Formação
Amazonas, Estado

JORNAL, Grupo
Amapá, Território Federal

KALETTEUR, Formação
Apertar da Hora, cachoeira
Baixo Maú, região
Cotingo/Quinó, bacias RR 58
Iramutang, localidade RR 53
Maí, rio RR 53
Ebull, serra RR 57
Rio Branco, Território Federal RB 27

KAIETEUR SANDSTONES, Formação
Alto rio Branco, região RR 31
Quinó, rio RR 31

KANUKU, Complexo
Guiana, país GU 89

KANUKU, Grupo
Guiana, país GU 35, 64

KERATÓFIRO
Amazônica, região BR 29

KIMBERLITOS
África, continente AF 114,128
Venezuela, país VE 128

K'MUDKU, cataclasitos
Guiana, país GU 89

K'MUDKU, episódio
Roraima, Território Federal RR 109

KUYUWINI, Grupo
<table>
<thead>
<tr>
<th>Termo</th>
<th>Localização</th>
<th>Código</th>
<th>Páginas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guiana, país</td>
<td>GU</td>
<td>35, 42</td>
<td>89,112</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>125</td>
</tr>
<tr>
<td>KWITARO, Grupo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guiana, país</td>
<td>GU</td>
<td></td>
<td>89,112</td>
</tr>
<tr>
<td>LA QUINTA, Formação</td>
<td></td>
<td>VE</td>
<td>26</td>
</tr>
<tr>
<td>Venezuela, país</td>
<td>VE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LACÓLITOS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roraima, monte</td>
<td>RR</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>LAGUNAR, deposição</td>
<td></td>
<td>RR</td>
<td>26</td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>LAMITO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venezuela, país</td>
<td>VE</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>LAMPRÓFIROS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shakhtama, localidade</td>
<td>URRS</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>LATERITAS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amazônica, região</td>
<td>BR</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>17, 45</td>
<td>109</td>
</tr>
<tr>
<td>Tarumã-Açu</td>
<td>AM</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>LATERITAS ALUMINOSAS</td>
<td></td>
<td>202</td>
<td></td>
</tr>
</tbody>
</table>

(*)
Arai, serra RR 27
Rio Branco, Território Federal RB 27
Roraima, Território Federal RR 107,120

LATITOS
Novo México, Estado EUA 47

LAVAS
Cotingo/Quinô, bacias RR 58
Rio Branco, Território Federal RB 25, 27

LAVAS ESPILÍTICAS
Venezuela, país VE 40

LAVAS PORFIRÍTICAS
Roraima, Território Federal RR 21

LAVAS QUERATÓFIIRAS
Roraima, Território Federal RR 21

LAVAS RIODACÍTICAS
Roraima, Território Federal RR 56,109

LEVANTAMENTO SISTEMÁTICO
Roraima, Território Federal RR 113

LINHITO
Amazônica, região BR 117

203
LITOLOGIA
Guiana, país
Roraima, Território Federal

LONGÁ, Formação
Maranhão, bacia

LUTITOS
Guiana, país
Santa Elena de Uairén, cidade

MAECURU, Formação
Amazônica, bacia sedimentar

MAGMATISMO
Amazônica, região

MAGMATISMO ÁCIDO
Amazônica, região

MAGMATISMO BÁSICO
Alto Rio Branco, região
Roraima, Território Federal
Suriname, país
<table>
<thead>
<tr>
<th>Location</th>
<th>State/Region</th>
<th>Code</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKARAPAN MOUNTAIN, Granito</td>
<td>GU</td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>MANGANÊS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amapá, Território Federal</td>
<td>AP</td>
<td></td>
<td>44, 46</td>
</tr>
<tr>
<td>Amazonas, Estado</td>
<td>AM</td>
<td></td>
<td>52</td>
</tr>
<tr>
<td>Amazônica, região</td>
<td>BR</td>
<td></td>
<td>102,117</td>
</tr>
<tr>
<td>Bolivar, município</td>
<td>AM</td>
<td></td>
<td>52</td>
</tr>
<tr>
<td>Brasil, país</td>
<td>BR</td>
<td></td>
<td>46</td>
</tr>
<tr>
<td>Canumã, rio</td>
<td>AM</td>
<td></td>
<td>52</td>
</tr>
<tr>
<td>Guianas, escudo</td>
<td>AS</td>
<td></td>
<td>122</td>
</tr>
<tr>
<td>Navio, serra</td>
<td>AP</td>
<td></td>
<td>46</td>
</tr>
<tr>
<td>Pará, Estado</td>
<td>PA</td>
<td></td>
<td>52</td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td></td>
<td>105,106</td>
</tr>
</tbody>
</table>

| MAPA DE LOBO D'ALMADA | | | |
| Amariaki, serra | RR | | 6 |

MAPA GEOLOGICO			
Roraima, Território Federal	RR		109
Suriname, país	SU		71

| MAPA METALOGENÉTICO | | | |
| Guiana, país | GU | | 90 |

| MAPEAMENTO BÁSICO | | | |
| Roraima, Território Federal | RR | | 103,113 |

Núm. 062
MAPEAMENTO FOTOGEOLOGICO
Guiana, país GU 112

MAPEAMENTO GEOLOGICO
Roraima, Território Federal RR 81,107

MARACÁ, Associação
Roraima, Território Federal RR 103,107

MARAWIJANE, Grupo
Suriname, país SU 71

MÁRMORE
Canadá, país CA 79

MARUDI, Grupo
Guiana, país GU 35, 42

MATANI, Formação
Roraima, Território Federal RR 95

MATURUCA, Garimpo
Rio Branco, Território Federal RB 27

MAZARUNI, Grupo

Página
Guiana, país GU 34, 35
 42, 54

MECANISMO DE INTRUSÃO
Tasmânia, Estado AU 22
Venezuela, país VE 22

MÉDIO, Membro
Guianas, escudo AS 16

METACONGIOMERADOS
Roraima, Território Federal RR 21

METAIS NÃO FERROSOS
Amazônica, região BR 117

METALOGENÉTICA, evolução
Amazônica, região BR 117

METAMORFISMO
Guiana, país GU 54

METASSEDEMENTARES, rochas
Guianas, escudo AS 111

METASSEDEMENTARES, sequências
Amazônica, região BR 117

207
<table>
<thead>
<tr>
<th>METASSEMENTOS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Auaris, rio</td>
<td>RR</td>
<td>73</td>
</tr>
<tr>
<td>Guiana, país</td>
<td>GU</td>
<td>42, 48</td>
</tr>
<tr>
<td>Parima, rio</td>
<td>RR</td>
<td>73</td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>73</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>METASSEMENTOS ARGILOSOS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Guiana, país</td>
<td>GU</td>
<td>34</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>METAULCÂNICAS, rochas</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Guiana, país</td>
<td>GU</td>
<td>42, 87</td>
</tr>
<tr>
<td>Guianas, escudo</td>
<td>AS</td>
<td>111</td>
</tr>
<tr>
<td>Parima, rio</td>
<td>RR</td>
<td>73</td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>73</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>METAULCÂNICAS CACHOEIRA XIRIRIANA</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Parima, rio</td>
<td>RR</td>
<td>73</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MÉTODOS RADIOMÉTRICOS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Guiana, país</td>
<td>GU</td>
<td>64</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MICA</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Branco, rio</td>
<td>RR</td>
<td>10</td>
</tr>
<tr>
<td>Tocantins/Xingu, bacias</td>
<td>PA/GO/MA</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MICRODIORITO</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Montana, Estado</td>
<td>EUA</td>
<td>59</td>
</tr>
</tbody>
</table>

Página 208
<table>
<thead>
<tr>
<th>MICROPÓSSEIS</th>
<th></th>
<th>GU</th>
<th>37</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guiana, país</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MICROGRANITOS</th>
<th></th>
<th>BR</th>
<th>118</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazônica, região</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MICROPEGNATITO</th>
<th></th>
<th>RR</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branco, rio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parimé, rio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pau Rainha, rio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td></td>
<td>RR</td>
<td>68, 73</td>
</tr>
<tr>
<td>Socó, rio</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MIGMATITOS</th>
<th></th>
<th>BR</th>
<th>117</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazônica, região</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canadá, país</td>
<td></td>
<td>CA</td>
<td>79</td>
</tr>
<tr>
<td>Guiana, país</td>
<td></td>
<td>GU</td>
<td>54, 64</td>
</tr>
<tr>
<td>Guianas</td>
<td></td>
<td>AS</td>
<td>60</td>
</tr>
<tr>
<td>Nordeste, região</td>
<td></td>
<td>BR</td>
<td>101</td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td></td>
<td>RR</td>
<td>68, 73, 109</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MILONITIZAÇÃO</th>
<th></th>
<th>RR</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roraima, Território Federal</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| MINAS, Série | | | |
Rio Branco, bacia RR 7

MINERAIS DE PEGMATITO
Amazônica, região BR 117

MINERALIZAÇÃO "RING FRACTURE"
Colorado, Estado EUA 24

MINIHORST
Guiana, país GU 64

MIRIMQUITO
Branco, rio RR 14
Parimé, rio RR 14
Pau Rainha, rio RR 14
Roraima, Território Federal RR 3
Socó, rio RR 14

MOA, Formação
Acre, bacia AC 102

MOBILIDADE DO MOLIBDÊNIO
Montana, Estado EUA 59

MOLÁSSICAS, seqüências
Nordeste, região BR 101
MOLIBDÊNIO

América Ocidental, região AN 108
Bahia, Estado BA 100
Baykalia, região URSS 72
Banco, serra RR 120
Bolívar, Estado VE 93
Brasil, país ER 100
Canadá, país CA 78,127
Ceará, Estado CE 100
Colorado, Estado EUA 24, 50
Espírito Santo, Estado ES 100
Guariba, serra RR 120
Guiana, país GU 87
Mato, serra RR 120
Minas Gerais, Estado MG 100
Moreninha, fazenda RR 120
Nordeste, região RR 100
Paraíba, Estado PB 100
Paraná, Estado PR 100
Rio de Janeiro, Estado RJ 100
Rio Grande do Sul, Estado RS 100
Roraima, Território Federal RR 100,105
Santa Catarina, Estado SC 100
Shakhtama, localidade URSS 101
Sierra Leone, país AF 38

MOLIBDÊNIO-PÓRFIRO, depósito

211
<table>
<thead>
<tr>
<th>Localização</th>
<th>Código</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>América Ocidental, região</td>
<td>AN</td>
<td>85</td>
</tr>
<tr>
<td>MOLIBDENITA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austrália, país</td>
<td>AU</td>
<td>75</td>
</tr>
<tr>
<td>Canadá, país</td>
<td>CA</td>
<td>79, 80</td>
</tr>
<tr>
<td>Colorado, Estado</td>
<td>EUA</td>
<td>76, 116</td>
</tr>
<tr>
<td>Guiana, país</td>
<td>GU</td>
<td>54, 63</td>
</tr>
<tr>
<td>Guiana Francesa, país</td>
<td>GF</td>
<td>63</td>
</tr>
<tr>
<td>Japão, país</td>
<td>JP</td>
<td>129</td>
</tr>
<tr>
<td>Mel, serra</td>
<td>RR</td>
<td>81</td>
</tr>
<tr>
<td>Montana, Estado</td>
<td>EUA</td>
<td>59</td>
</tr>
<tr>
<td>Novo México, Estado</td>
<td>EUA</td>
<td>8, 47</td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>81, 107</td>
</tr>
<tr>
<td>Suriname, país</td>
<td>SU</td>
<td>63</td>
</tr>
<tr>
<td>Venezuela, país</td>
<td>VE</td>
<td>63</td>
</tr>
<tr>
<td>MONADNOCKS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guiana, país</td>
<td>GU</td>
<td>64</td>
</tr>
<tr>
<td>Makarapan, montana</td>
<td>GU</td>
<td>64</td>
</tr>
<tr>
<td>Urumé, montana</td>
<td>GU</td>
<td>64</td>
</tr>
<tr>
<td>Wurumú, montana</td>
<td>GU</td>
<td>64</td>
</tr>
<tr>
<td>MONTE ALEGRE, Formação</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amazônica, região</td>
<td>BR</td>
<td>102</td>
</tr>
<tr>
<td>MORRO GRANDE, Grupo</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Página

212
Pará, Estado
MOSQUITO, falha
Colorado, Estado
MOSQUITO, Formação
Maranhão, bacia
MOTUCA, Formação
Maranhão, bacia
MOVIMENTOS EPIROGENÉTICOS
Guianas, escudo
MURUWA, Formação
Guiana, país
NAVEGABILIDADE
.Xiriana, rio
NEW SOUTH WALES, depósito
Austrália, país
NICKERIE, Episódio
Suriname, país
NIÓBIO
<table>
<thead>
<tr>
<th>Location</th>
<th>Region</th>
<th>Country</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baykalia</td>
<td>região</td>
<td>URSS</td>
<td>72</td>
</tr>
<tr>
<td>NÍQUEL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mantiqueira, serra</td>
<td></td>
<td>MG</td>
<td>10</td>
</tr>
<tr>
<td>NORITOS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rio Branco, Território Federal</td>
<td></td>
<td>RB</td>
<td>27</td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td></td>
<td>RR</td>
<td>14</td>
</tr>
<tr>
<td>NORTH SAVANNAS, Rift-Valley</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guiana, país</td>
<td></td>
<td>GU</td>
<td>89</td>
</tr>
<tr>
<td>NOVA OLINDA, Formação</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nova Olinda, município</td>
<td></td>
<td>AM</td>
<td>102</td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td></td>
<td>RR</td>
<td>21</td>
</tr>
<tr>
<td>OCORRÊNCIAS MINERAIS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td></td>
<td>RR</td>
<td>106</td>
</tr>
<tr>
<td>ONDERDACHT, Formação</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suriname, país</td>
<td></td>
<td>SU</td>
<td>71</td>
</tr>
<tr>
<td>ORAPU, Associação</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guianas, escudo</td>
<td></td>
<td>AS</td>
<td>94</td>
</tr>
<tr>
<td>OROGENIA BARRACENA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>São João Del Rey, Distrito</td>
<td></td>
<td>MG</td>
<td>77</td>
</tr>
<tr>
<td>ORTOQUARTZITOS</td>
<td>GU</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-----</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>Guiana, país</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>21</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OURO</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Amapá, Território Federal</td>
<td>AP</td>
<td>52</td>
</tr>
<tr>
<td>Amazonas, Estado</td>
<td>AM</td>
<td>52</td>
</tr>
<tr>
<td>Amazonas, rio</td>
<td>AM/PA</td>
<td>10</td>
</tr>
<tr>
<td>Amazônica, bacia</td>
<td>BR</td>
<td>111</td>
</tr>
<tr>
<td>Amazônica, região</td>
<td>BR</td>
<td>102,117</td>
</tr>
<tr>
<td>América do Norte, continente</td>
<td>AN</td>
<td>91</td>
</tr>
<tr>
<td>Anauá/Barauana, rios</td>
<td>RR</td>
<td>70</td>
</tr>
<tr>
<td>Bolivar, Estado</td>
<td>VE</td>
<td>93</td>
</tr>
<tr>
<td>Brasil, Estado</td>
<td>BR</td>
<td>46</td>
</tr>
<tr>
<td>Canadá, país</td>
<td>CA</td>
<td>79</td>
</tr>
<tr>
<td>Goiás, Estado</td>
<td>GO</td>
<td>10</td>
</tr>
<tr>
<td>Guiana, país</td>
<td>GU</td>
<td>34, 42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>48, 54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>63, 87</td>
</tr>
<tr>
<td>Guiana Francesa, país</td>
<td>GF</td>
<td>63</td>
</tr>
<tr>
<td>Guianas, escudo</td>
<td>AS</td>
<td>16,111</td>
</tr>
</tbody>
</table>

Mato Grosso, Estado	MT	10
Mauí, rio	RR	53
Médico Tapajós, região	PA	52
Mina seca, localidade	PA	56
Orinoco, bacia	VE	111
Pauá, rio	RR	53

215
Pará, Estado
Pastora, província
Quinó, rio
Rio Branco, bacia
Rio Branco, Território Federal
Rondônia, Território Federal
Roraima, Território Federal
Serra Verde, localidade
Suapi, rio
Suriname, país
Tacutu, rio
Tapajós, rio
Tepequém, serra
Uruçá, localidade
Venezuela, país

PAINISHANAS, cachoeira
Catrimâni, rio

PALEOCORRENTES, direções
Guiana, país
Venezuela, país

PALEONTOLOGIA
<table>
<thead>
<tr>
<th>Termo</th>
<th>Código</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guiana, país</td>
<td>GU</td>
<td>37</td>
</tr>
<tr>
<td>PALEOTECTÔNICA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guianas, escudo</td>
<td>AS</td>
<td>88</td>
</tr>
<tr>
<td>PALEOZÓICO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apuaú, rio</td>
<td>AM</td>
<td>30</td>
</tr>
<tr>
<td>PARAMACA, Associação</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guianas, escudo</td>
<td>AS</td>
<td>94</td>
</tr>
<tr>
<td>PASTORA, Formação</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venezuela, país</td>
<td>VE</td>
<td>96</td>
</tr>
<tr>
<td>PASTORA, Série</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guiana, país</td>
<td>GU</td>
<td>40</td>
</tr>
<tr>
<td>Venezuela, país</td>
<td>VE</td>
<td>40</td>
</tr>
<tr>
<td>PASTORA-CARICHAPO, Associação</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guianas, escudo</td>
<td>AS</td>
<td>94</td>
</tr>
<tr>
<td>PECUÁRIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>18, 23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>PEDRA DE FOGO, Formação</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maranhão, bacia</td>
<td>MA/PI</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td></td>
<td>217</td>
</tr>
</tbody>
</table>
PEGMATITOS
Canadá, país
Guiana, país
Japão, país
Maracá, canal
Roraima, Território Federal
Uraricoera, rio

PEGMATITOS, depósito
Canadá, país

PEGMATÓIDES, veios
Apiaú, rio

PENEPLANÍCIE
Rio Branco, bacia

PETROGÊNESE
Venezuela, país

PETROGRAFIA
Guiana, país
Roraima, Território Federal
Venezuela, país

PETRÓLEO

Página

CA
GU
JP
RR
RR
RR

79

68

7

22

34
81,107
22

218
<table>
<thead>
<tr>
<th>Localização</th>
<th>Estado/Abreviação</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazôntica, bacia sedimentar</td>
<td>BR</td>
<td>117</td>
</tr>
<tr>
<td>Amazôntica, região</td>
<td>BR</td>
<td>117</td>
</tr>
<tr>
<td>PIAUÍ, Formação</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maranhão, bacia</td>
<td>MA/PI</td>
<td>102</td>
</tr>
<tr>
<td>PIRABAS, Formação</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pará, Estado</td>
<td>PA</td>
<td>102</td>
</tr>
<tr>
<td>PIRANTEIRA, cachoeira</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catrimâni, rio</td>
<td>RR</td>
<td>6</td>
</tr>
<tr>
<td>PIRITA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>América do Norte, continente</td>
<td>AN</td>
<td>91</td>
</tr>
<tr>
<td>Canadá, país</td>
<td>CA</td>
<td>79, 80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>122</td>
</tr>
<tr>
<td>Colorado, Estado</td>
<td>EUA</td>
<td>8, 50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>86,115</td>
</tr>
<tr>
<td></td>
<td></td>
<td>116</td>
</tr>
<tr>
<td>Goiás, Estado</td>
<td>GO</td>
<td>10</td>
</tr>
<tr>
<td>Guiana, país</td>
<td>GU</td>
<td>63, 87</td>
</tr>
<tr>
<td>Guiana Francesa, país</td>
<td>GF</td>
<td>63</td>
</tr>
<tr>
<td>Novo México, Estado</td>
<td>EUA</td>
<td>47</td>
</tr>
<tr>
<td>Suriname, país</td>
<td>SU</td>
<td>63</td>
</tr>
<tr>
<td>PIRITIZAÇÃO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guiana, país</td>
<td>GU</td>
<td>54</td>
</tr>
</tbody>
</table>

N° 002
<table>
<thead>
<tr>
<th>Termo</th>
<th>Localização</th>
<th>Código</th>
<th>Nível</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIROCLÁSTICAS, rochas</td>
<td>Amazônica, região</td>
<td>BR</td>
<td>118,125</td>
</tr>
<tr>
<td></td>
<td>Brasil, país</td>
<td>BR</td>
<td>123</td>
</tr>
<tr>
<td>PIROXÊNIO–ANFIBOLITO</td>
<td>Cigana, serra</td>
<td>RR</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>67</td>
</tr>
<tr>
<td>PIROXÊNIO–HORNBLENDITOS</td>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>68</td>
</tr>
<tr>
<td>PIROXENITOS</td>
<td>Guianas, escudo</td>
<td>AS</td>
<td>122</td>
</tr>
<tr>
<td>PIRROTITA</td>
<td>América do Norte, continente</td>
<td>AN</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>Canadá, país</td>
<td>CA</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>Guiana, país</td>
<td>GU</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Guiana Francesa, país</td>
<td>GF</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Suriname, país</td>
<td>SU</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Venezuela, país</td>
<td>VE</td>
<td>63</td>
</tr>
<tr>
<td>PLATINA</td>
<td>Amazonas, Estado</td>
<td>AM</td>
<td>52</td>
</tr>
<tr>
<td>PLUTONISMO</td>
<td>Guianas, escudo</td>
<td>AS</td>
<td>122</td>
</tr>
</tbody>
</table>
PONTA PRETA, diabásio
Brasil, país

POPULAÇÃO
Amazônica, região
Aracá, rio
Demêni, rio
Roraima, Território Federal

PORFIRITOS
Gran Sabana, região
Pacaraima, serra
Venezuela, país

PÓRFIROS
Alto rio Branco, região
Amazônica, região
Austrália, país
Canadá, país
Colorado, Estado
Maloca do Uairén, localidade
Mauá, rio
Mé-Ué, localidade
Novo México, Estado
Quinó, rio
Rio Branco, bacia
Rio Branco, Território Federal
Roraima, monte

PÓRFIROS - RIOLITOS
Parima, rio

POTI, Formação
Maranhão, bacia

PRAINHA, Formação
Amazônica, bacia

PRATA
América do Norte, continente
Canadá, país

PRATA/COBALTO
América do Norte, continente

PRODUÇÃO
Colorado, Estado

PROJETO RORAIMA
Guiana, país

PROJETO SERRA DO MEL
Roraima, Território Federal
PROSPEÇÃO GEOQUÍMICA
Guiana, país

PROSPERANÇA, Formação
Amazônica, região

PROVÍNCIA MAMMÁTICA DE RORAIMA
Rio Branco, bacia
Roraima, Território Federal
Venezuela, país

PURUS, Formação
Amazonas, Estado

QUARTZITO
Alto rio Branco, região
Anauá, rio
Canadá, país
Guiana, país
Mauru, rio
Monte Roraima, região
Paiuá, rio
Rio Branco, bacia
Roraima, Território Federal
Tabaio, serra
Uruca, localidade

QUARTZO-DIORITO
Canadá, país
Guiana, país
São João Del Rey, distrito

QUARTZO-KERATÓFIRO
Amazonônica, região

QUARTZO-MONZONITO
Canadá, país

QUARTZO-MONZONITO PÓRFIRO
Colorado, Estado

QUARTZO-PÓRFIRO
Amazonônica, região

QUATERNÁRIO
Anauá/Barauana, rios
Roraima, Território Federal
Tarumã-Açu, rio

QUATERNÁRIO ALUVIAL
Roraima, Território Federal

QUATERNÁRIO INDIFERENCIADO
Roraima, Território Federal

QUEENSLAND, Depósito
Austrália, país
QUERATÓFIROS
- Baixo Maú, região
- Mutum, serra
- Roraima, Território Federal

QUINÔ, Formação
- Roraima, Território Federal

QUINÔ, Garimpo
- Quinô, rio

QUINÔ, Membro
- Quinô, rio
- Roraima, Território Federal

RADIOATIVOS, Minerais
- Guiana, país

RÁMON, Formação
- Amazonas, Estado

RAZÃO ISOTÓPICA
- Colorado, Estado

REATIVAÇÃO CRATÔNICA
- Guianas, escudo

RECONHECIMENTO
<table>
<thead>
<tr>
<th>Item</th>
<th>Estado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catrimâni, rio</td>
<td>RR</td>
<td>6</td>
</tr>
<tr>
<td>Demêni, rio</td>
<td>AM</td>
<td>6</td>
</tr>
<tr>
<td>RECURSOS MINERAIS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brasil, país</td>
<td>BR</td>
<td>46</td>
</tr>
<tr>
<td>Rio Branco, bacia</td>
<td>RR</td>
<td>7</td>
</tr>
<tr>
<td>REINTERPRETAÇÃO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guiana, país</td>
<td>GU</td>
<td>64</td>
</tr>
<tr>
<td>RELAÇÕES DE CONTATOS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>120</td>
</tr>
<tr>
<td>RELEVO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brasil, país</td>
<td>BR</td>
<td>46</td>
</tr>
<tr>
<td>RELICTOS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nordeste, região</td>
<td>BR</td>
<td>101</td>
</tr>
<tr>
<td>REMOBILIZAÇÕES GRANÍTICAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guianas, escudo</td>
<td>AS</td>
<td>88</td>
</tr>
<tr>
<td>REWA, Grupo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brasil, país</td>
<td>BR</td>
<td>123</td>
</tr>
<tr>
<td>Guiana, país</td>
<td>GU</td>
<td>112</td>
</tr>
</tbody>
</table>

<p>| Item | | 226 |
| RIFT VALLEY | | |</p>
<table>
<thead>
<tr>
<th>Feature</th>
<th>Code</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guiana, país</td>
<td>GU</td>
<td>64</td>
</tr>
<tr>
<td>North Savannas, região</td>
<td>GU</td>
<td>64</td>
</tr>
<tr>
<td>RIO AZUL, Formação</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acre, bacia</td>
<td>AC</td>
<td>102</td>
</tr>
<tr>
<td>RIO BRANCO, Associação</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>109</td>
</tr>
<tr>
<td>RIO BRANCO, Grupo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>102</td>
</tr>
<tr>
<td>RIO BRANCO, Série</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alto rio Branco, região</td>
<td>RR</td>
<td>31</td>
</tr>
<tr>
<td>RIO FRESCO, Formação</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amazônica, região</td>
<td>BR</td>
<td>125</td>
</tr>
<tr>
<td>Fresco, rio</td>
<td>PA</td>
<td>102</td>
</tr>
<tr>
<td>RIO PARINA, Grupo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brasil, país</td>
<td>BR</td>
<td>123</td>
</tr>
<tr>
<td>Guianas, escudo</td>
<td>AS</td>
<td>122</td>
</tr>
<tr>
<td>RIO YANA, Formação</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venezuela, país</td>
<td>VE</td>
<td>40</td>
</tr>
<tr>
<td>RIODACITOS</td>
<td></td>
<td>227</td>
</tr>
</tbody>
</table>
Amazônica, região
Guiana, país
Rio Branco, Território Federal

RIOLITO DALBANA
Suriname, país

RIOLITOS
Amazônica, região
Bahia, Estado
Colorado, Estado

RIOLITOS PÓRFIROS
Canadá, país

RICZINHO DA ANFRÍSIO, Formação
Iriri/Curuá, bacias

ROCHAS, amostragens
Montana, Estado
Roraima, Território Federal

ROCHAS GRANITÓIDES
Suriname, país

RORAIMA, episódio
Roraima, Território Federal RR 109

RORAIMA, Formação
Bolívia, país BO 96
Brasil, país BR 124
Guiana, país GU 35, 37
42, 92
114

Guianas, escudo AS 16,111
Rio Branco, Território Federal RB 27
Roraima, Território Federal RR 21, 26
56, 73
95,103
107,109
120

Santa Elena de Uairén, cidade VE 98
Suriname, país SU 55, 66
71,110

Venezuela, país VE 9, 22
96,114
128

RORAIMA, Grupo
Roraima, Território Federal RR 67, 73
95

RORAIMA, Projeto
Roraima, Território Federal RR 120

229
RORAIMA, Série
Roraima, Território Federal RR 11

RORAIMA, vulcanismo
Cujumã, cachoeira RR 73
Rio Branco, Território Federal RB 27
Roraima, Território Federal RR 56, 73

ROSEBEL, Formação
Suriname, país SU 71, 114

ROSEBEL, Série
Suriname, país SU 55

RUPUNUNI, Associação
Guiana, país GU 35
Guianas AS 60
Roraima, Território Federal RR 103, 107

120

RUTILO
Almas, rio MA 10
Tocantins, rio PA/GO/MA 10

SAL-GEIMA
Amazônica, região BR 117
Aveiro, município PA 52
Pará, Estado PA 52
SALITRE
- Mina, serra: RR, 7, 10
- Rio Branco, bacia: RR, 7

SAMBÂBA, Formação
- Maranhão, bacia: MA/PI, 102

SCHEELITA
- Guiana, país: GU, 63
- Guiana Francesa, país: GF, 63
- Suriname, país: SU, 63
- Venezuela, país: VE, 63

SEDIMENTARES
- Amazônica, região: BR, 119

SEDIMENTOS DE CORRENTE, amostragem
- Canadá, país: CA, 79
- Pastora, província: VE, 97
- Roraima, Território Federal: RR, 105, 106

SEMIXISTOS
- Parima, rio: RR, 73

SEQUÊNCIA PARAGENÉTICA
- Colorado, Estado: EUA, 116

SEQUÊNCIAS ROCOSAS

231
América do Norte, continente AN 91

SERICITIZAÇÃO
Guiana, país GU 63
Guiana Francesa, país GF 63
Suriname, país SU 63
Venezuela, país VE 63

SERRA DO MEL, granodiorito
Brasil, país BR 123

SERRA DO NAVIO, Grupo
Amapá, Território Federal AP 102

SERRANA, zona
Rio Branco, Território Federal RB 25

SERRANIA
Rio Branco, bacia RR 4, 10

SHAKHTAMA, depósito
Shakhtama, localidade URSS 101

SILICIFICAÇÃO
Guiana, país GU 63
Suriname, país SU 63
Venezuela, país VE 22, 63

SILTITO DOLOMÍTICO

232
<table>
<thead>
<tr>
<th>Toponímias</th>
<th>Região</th>
<th>Localidade</th>
</tr>
</thead>
<tbody>
<tr>
<td>América do Norte</td>
<td>AN</td>
<td>91</td>
</tr>
<tr>
<td>SILTITOS</td>
<td>BR</td>
<td>123</td>
</tr>
<tr>
<td>Cotingo/Quinã</td>
<td>RR</td>
<td>58</td>
</tr>
<tr>
<td>Iraraimutã, localidade</td>
<td>RR</td>
<td>53</td>
</tr>
<tr>
<td>Mauí, rio</td>
<td>RR</td>
<td>53</td>
</tr>
<tr>
<td>Rio Branco, Território Federal</td>
<td>RB</td>
<td>27</td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>26,103</td>
</tr>
</tbody>
</table>

SISTEMA DE "RIFT"

<table>
<thead>
<tr>
<th>Toponímias</th>
<th>Região</th>
</tr>
</thead>
<tbody>
<tr>
<td>África, continente</td>
<td>AF</td>
</tr>
</tbody>
</table>

SOBREIRO, Formação

<table>
<thead>
<tr>
<th>Toponímias</th>
<th>Região</th>
<th>Localidade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazônica, região</td>
<td>BR</td>
<td>119</td>
</tr>
</tbody>
</table>

SOLO, Amostragem

<table>
<thead>
<tr>
<th>Toponímias</th>
<th>Região</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montana, Estado</td>
<td>EUA</td>
</tr>
<tr>
<td>Pastora, província</td>
<td>VE</td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
</tr>
</tbody>
</table>

SOLOS

<table>
<thead>
<tr>
<th>Toponímias</th>
<th>Região</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brasil, país</td>
<td>BR</td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
</tr>
</tbody>
</table>

SONDAGENS

<table>
<thead>
<tr>
<th>Toponímias</th>
<th>Região</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guiana, país</td>
<td>GU</td>
</tr>
</tbody>
</table>

SOUTH SAVANNAS, Grupo

233
Guiana, país

STON, Formação
 Suriname, país

SUAPI, Formação
 Roraima, Território Federal

SUAPI, Garimpo
 Suapi, rio

SUAPI, Membro
 Roraima, Território Federal

SUCUNDURI, Formação
 Aripuanã/Sucunduri, bacias

SULFETO DE COBRE
 Novo México, Estado

SULFETOS
 Guiana, país
 Guiana Francesa, país
 Rio Branco, Território Federal
 Suriname, país
 Venezuela, país

SULFETOS NIQUELÍFEROS
 América do Norte, continente
SUPERIOR, Membro
Guianas, escudo AS 16

SURUMU, Formação
Brasil, país BR 124
Guianas, escudo AS 123
Rio Branco, Território Federal RB 27
Roraima, Território Federal RR 21, 56

SURUMU, Grupo
Roraima, Território Federal RR 67

SURUMU, vulcanismo
Baixo Maú, região RR 57

SURUMU-COTINGO-MAÚ, interflúvios
Roraima, Território Federal RR 19

TACUTU, Formação
Guiana, país GU 35
Guianas, escudo AS 123
Maú, rio RR 56
Roraima, Território Federal RR 56, 102

Página 235
Tacutu, rio RR/GU 56

TACUTU, graben
Brasil, país BR 123
Roraima, Território Federal RR 103

TACUTU, Rift Valley
Guianas, escudo AS 123

TAKONKANE, batólito
Canadá, país CA 127

TALCO
Goiás, Estado GO 10

TANGA, cachoeira
Catrimâni, rio RR 6

TANTALITA
Amapá, Território Federal AP 52
Amazônica, região BR 118
Eral, igarapé RR 56
Guianas, escudo AS 122
Pará, Estado PA 52
Pouso Alto, localidade RR 56
Roraima, Território Federal RR 52, 56
107,120
Uraricoera, rio RR 56

236
<table>
<thead>
<tr>
<th>Localização</th>
<th>Código</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>TANTALITA-COLUMBITA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maracá, canal</td>
<td>RR</td>
<td>73</td>
</tr>
<tr>
<td>Rio Grande do Sul, Estado</td>
<td>RS</td>
<td>52</td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>113</td>
</tr>
<tr>
<td>TÂNTAULO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baykalia, região</td>
<td>URSS</td>
<td>72</td>
</tr>
<tr>
<td>TASMÂNIA, Depósito</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austrália, país</td>
<td>AU</td>
<td>75</td>
</tr>
<tr>
<td>TAXIONOMIA ESTRATIGRÁFICA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brasil, país</td>
<td>BR</td>
<td>121</td>
</tr>
<tr>
<td>TECTÔNICA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>África, continente</td>
<td>AF</td>
<td>94</td>
</tr>
<tr>
<td>América Ocidental, região</td>
<td>AN</td>
<td>85</td>
</tr>
<tr>
<td>Bolívia, país</td>
<td>BO</td>
<td>96</td>
</tr>
<tr>
<td>Brasil, país</td>
<td>BR</td>
<td>51, 61</td>
</tr>
<tr>
<td>Colorado, Estado</td>
<td>EUA</td>
<td>86</td>
</tr>
<tr>
<td>Guiana, país</td>
<td>GU</td>
<td>63</td>
</tr>
<tr>
<td>Guianas</td>
<td>AS</td>
<td>51</td>
</tr>
<tr>
<td>Guianas, escudo</td>
<td>AS</td>
<td>94,111</td>
</tr>
<tr>
<td>Nordeste, região</td>
<td>BR</td>
<td>124</td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>6, 19</td>
</tr>
<tr>
<td>Suriname, país</td>
<td>SU</td>
<td>63</td>
</tr>
<tr>
<td>Venezuela, país</td>
<td>VE</td>
<td>40, 96</td>
</tr>
</tbody>
</table>
TECTÔNICA, evolução
Amazonônica, região BR 117

TECTONO-GEOLÓGICO, mapa
Guiana, país GU 89

TECTONO-MAGMÁTICOS, ciclos
Brasil, país BR 51
Guianas AS 51

TECTONO-TERMAIS, eventos
Guianas, escudo AS 88
Roraima, Território Federal RR 109

TEORIA DAS PLACAS TECTÔNICAS
Américas Ocidental, região AN 85

TEPEQUÉM, garimpo
Rio Branco, Território Federal RB 27
Tepequém, serra RR 56

TERCIÁRIO
Tarumã-Açu AM 30

TERRA SALITROSA
Poraquê, igarapé RR 69

TOCANTINS, Grupo
Pará, Estado PA 102
<table>
<thead>
<tr>
<th>TONALITO</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Guiana, país</td>
<td>GU</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Nordeste, região</td>
<td>BR</td>
<td>124</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TOPÁZIO</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazônica, região</td>
<td>BR</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>Colorado, Estado</td>
<td>EUA</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TORDRILITO</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazônica, região</td>
<td>BR</td>
<td>29</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRANSAMAZÔNICO, ciclo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazônica, região</td>
</tr>
<tr>
<td>Suriname, país</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRANSPORTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roraima, Território Federal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRATAMENTO ESTATÍSTICO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roraima, Território Federal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TROMBETAS, Formação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazônica, bacia</td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TSINGTAUTÍTOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazônica, região</td>
</tr>
<tr>
<td>Guianas, escudo</td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
</tr>
</tbody>
</table>

239
TUFIOS

Canadá, país CA 99
Guianas, escudo AS 16

TUNGSTÊNIO

Austrália, país AU 104
Baykalio, região URSS 72
Bolivar, Estado VE 93
Canadá, país CA 78
Colorado, Estado EUA 24,116
Guiana, país GU 22
Pastora, província VE 97
Roraima, Território Federal RR 105,106

TURMALINA

Alto Rio Branco, região RR 31
Guiana, país GU 63
Guiana Francesa, país GF 63
Roraima, Território Federal RR 56
Suriname, país SU 63
Uraricoera, rio RR 31

TURMALINIZAÇÃO

Guiana, país GU 54

UAIMAPUZ, Formação

Roraima, Território Federal RR 95

UAIRÉN, Formação

Roraima, Território Federal RR 95 240
<table>
<thead>
<tr>
<th>UATUMÃ, Grupo</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Amapá, Território Federal</td>
<td>AP</td>
<td>125</td>
</tr>
<tr>
<td>Amazônica, bacia</td>
<td>BR</td>
<td>102</td>
</tr>
<tr>
<td>Amazônica, região</td>
<td>BR</td>
<td>118,125</td>
</tr>
<tr>
<td>Araguaia, bacia</td>
<td>PA/GO</td>
<td>125</td>
</tr>
<tr>
<td>Aripuanã, rio</td>
<td>AM/MT</td>
<td>125</td>
</tr>
<tr>
<td>Guianas, escudo</td>
<td>AS</td>
<td>122</td>
</tr>
<tr>
<td>Jamanxim, rio</td>
<td>AM</td>
<td>125</td>
</tr>
<tr>
<td>Negro/Aripuanã, bacias</td>
<td>PA</td>
<td>125</td>
</tr>
<tr>
<td>Pará, Estado</td>
<td>PA</td>
<td>102</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UATUMÃ, Série</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazônica, região</td>
<td>BR</td>
<td>29</td>
</tr>
<tr>
<td>Aripuanã, rio</td>
<td>AM/MT</td>
<td>29</td>
</tr>
<tr>
<td>Erepecuru, rio</td>
<td>PA</td>
<td>29</td>
</tr>
<tr>
<td>Curuá, rio</td>
<td>PA</td>
<td>29</td>
</tr>
<tr>
<td>Jatapu, rio</td>
<td>AM</td>
<td>29</td>
</tr>
<tr>
<td>Nhemundá, rio</td>
<td>AM/PA</td>
<td>29</td>
</tr>
<tr>
<td>Parauari, rio</td>
<td>AM</td>
<td>29</td>
</tr>
<tr>
<td>Paru, rio</td>
<td>PA</td>
<td>29</td>
</tr>
<tr>
<td>Tapajós, rio</td>
<td>PA</td>
<td>29</td>
</tr>
<tr>
<td>Trombetas, rio</td>
<td>PA</td>
<td>29</td>
</tr>
<tr>
<td>Uatunã, rio</td>
<td>AM</td>
<td>29</td>
</tr>
<tr>
<td>Urubu, rio</td>
<td>AM</td>
<td>29</td>
</tr>
<tr>
<td>Xingu, rio</td>
<td>PA</td>
<td>29</td>
</tr>
</tbody>
</table>

ULTRABÁSICAS, rochas

| Guiana, país | GU | 89 |

UNIDADES LITOESTRATIGRÁFICAS

241
<table>
<thead>
<tr>
<th>Guiana, país</th>
<th>GU</th>
<th>92,112</th>
</tr>
</thead>
<tbody>
<tr>
<td>URANINITA</td>
<td></td>
<td>91</td>
</tr>
<tr>
<td>América do Norte, continente</td>
<td>AN</td>
<td></td>
</tr>
<tr>
<td>URÂNIO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amazônica, bacia</td>
<td>BR</td>
<td>111</td>
</tr>
<tr>
<td>Colorado, Estado</td>
<td>EUA</td>
<td>48</td>
</tr>
<tr>
<td>Guiana, país</td>
<td>GU</td>
<td>48</td>
</tr>
<tr>
<td>Guianas, escudo</td>
<td>AS</td>
<td>111,122</td>
</tr>
<tr>
<td>Orinoco, bacia</td>
<td>VE</td>
<td>111</td>
</tr>
<tr>
<td>USUPANO, Batólito</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venezuela, país</td>
<td>VE</td>
<td>40</td>
</tr>
<tr>
<td>VEGETAÇÃO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amazônica, região</td>
<td>BR</td>
<td>44</td>
</tr>
<tr>
<td>Brasil, país</td>
<td>BR</td>
<td>46</td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>103</td>
</tr>
<tr>
<td>VEÍOS PEGNATÓIDES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>68</td>
</tr>
<tr>
<td>VICTORIA, depósito</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austrália, país</td>
<td>AU</td>
<td>75</td>
</tr>
<tr>
<td>VILA NOVA, Grupo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guianas, escudo</td>
<td>AS</td>
<td>122</td>
</tr>
</tbody>
</table>
VILA PIRES, garimpo
Cotingo/Quinô, bacias RR 58

VISTA GERAL, Superfície de Aplanamento
Quinô, rio RR 33
Tiporém, rio RR 33

VULCÂNICA APOTERI, Formação
Guianas AS 60
Roraima, Território Federal RR 107,109

VULCÂNICAS, rochas
Canadá, país CA 79
Guianas, escudo AS 16

VULCÂNICAS ÁCIDAS, rochas
Amazônica, região BR 117
Guiana, país GU 42
Pastora, província VE 97
Roraima, Território Federal RR 103
Venezuela, país VE 26

VULCÂNICAS BÁSICAS, rochas
Pastora, província VE 97

VULCÂNICAS DALBANA-MATAPI
Guianas AS 60

VULCÂNICAS IWOKRAMA
Guiana, país

VULCÂNICAS SURUMU
Cotingo/Quinô, bacias
Roraima, Território Federal
Santo Antônio do Pão, fazenda

VULCÂNICO, Grupo
Guianas, escudo

VULCANISMO
Guianas, escudo

VULCANISMO BASÁLTICO
Roraima, Território Federal

VULCANISMO RORAIMA
Cotingo/Quinô, bacias

XISTO VERDE, cinturões
Guianas, escudo

XISTOS
Alto Rio Branco, região
Anauá, rio
Canadá, país
Colorado, Estado
Novo México, Estado

GU 34
RR 58
RR 81
RR 58
AS 16
AS 88,122
RR 21
RR 58, 81
RR 107
AS 88
RR 31
RR 70
CA 79
EUA 131
EUA 8

244
<table>
<thead>
<tr>
<th>Location</th>
<th>Code</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>10</td>
</tr>
<tr>
<td>Guiana, país</td>
<td>GU</td>
<td>63</td>
</tr>
<tr>
<td>Guiana Francesa, país</td>
<td>GF</td>
<td>63</td>
</tr>
<tr>
<td>Suriname, país</td>
<td>SU</td>
<td>63</td>
</tr>
<tr>
<td>Venezuela, país</td>
<td>VE</td>
<td>63</td>
</tr>
<tr>
<td>Yuruari, Formação</td>
<td>VE</td>
<td>40</td>
</tr>
<tr>
<td>Bolivar, Estado</td>
<td>VE</td>
<td>93</td>
</tr>
<tr>
<td>Novo México, Estado</td>
<td>EUA</td>
<td>47</td>
</tr>
<tr>
<td>Pastora, província</td>
<td>VE</td>
<td>97</td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>105,106</td>
</tr>
<tr>
<td>Roraima, Território Federal</td>
<td>RR</td>
<td>107</td>
</tr>
<tr>
<td>Zona de "Rift"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>América do Norte, continente</td>
<td>AN</td>
<td>91</td>
</tr>
</tbody>
</table>

ZINCÔ
7.3.2. - ÍNDICE TOponímico
<table>
<thead>
<tr>
<th>Localidade</th>
<th>Estado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACRE, bacia</td>
<td>AC</td>
<td>102</td>
</tr>
<tr>
<td>Divisor, formação</td>
<td></td>
<td>102</td>
</tr>
<tr>
<td>Goia, formação</td>
<td></td>
<td>102</td>
</tr>
<tr>
<td>Rio Azul, formação</td>
<td></td>
<td>102</td>
</tr>
<tr>
<td>ACRE, Estado</td>
<td>AC</td>
<td>102</td>
</tr>
<tr>
<td>Geologia</td>
<td></td>
<td>102</td>
</tr>
<tr>
<td>ÁFRICA, continente</td>
<td>AF</td>
<td></td>
</tr>
<tr>
<td>Correlação</td>
<td></td>
<td>88</td>
</tr>
<tr>
<td>Deriva dos Continentes</td>
<td></td>
<td>128</td>
</tr>
<tr>
<td>Diamante</td>
<td></td>
<td>114,128</td>
</tr>
<tr>
<td>Episódio orogênico</td>
<td></td>
<td>94</td>
</tr>
<tr>
<td>Geologia</td>
<td></td>
<td>94</td>
</tr>
<tr>
<td>Kimberlitos</td>
<td></td>
<td>114,128</td>
</tr>
<tr>
<td>Sistema de "rift"</td>
<td></td>
<td>94</td>
</tr>
<tr>
<td>Tectônica</td>
<td></td>
<td>94</td>
</tr>
<tr>
<td>AICARÉM, rio</td>
<td>RR</td>
<td></td>
</tr>
<tr>
<td>Arenitos</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Derrame ácido</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Diabásico</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Pórﬁro</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>ALLAN, rio</td>
<td>RR</td>
<td></td>
</tr>
<tr>
<td>Cristalinas, rochas</td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>Polhelho</td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>ALENQUER, município</td>
<td>PA</td>
<td></td>
</tr>
<tr>
<td>Bauxita</td>
<td></td>
<td>52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>247</td>
</tr>
</tbody>
</table>
Chumbo

AIMAS, rio
Rutilo

ALTO RIO BRANCO, região

Anfibolito
Arenito
Arenito Roroina
Basalto
Campo de pórfiro felsítico
Conglomerado
Derrame ácido
Diabásio
Dianante
Fisiografia
Folhelho
Geologia

Gnaisses
Granitos
Itabirito
Itacolomito
Kaieteur Sandstones, formação
Magnetismo básico
Pórfiros
Quartzito
Rio Branco, série
Turmalina
Xisto

Página 10

RR
31
13
5, 31
31
31
31
13
13, 31
31
5
31
13, 31
31
13
13
13, 31
31
31
31

248
AMAPÁ, Território Federal

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Araxá, grupo</td>
<td>4</td>
</tr>
<tr>
<td>Cassiterita</td>
<td>52</td>
</tr>
<tr>
<td>Clima</td>
<td>46</td>
</tr>
<tr>
<td>Columbita</td>
<td>52</td>
</tr>
<tr>
<td>Diamante</td>
<td>52</td>
</tr>
<tr>
<td>Ferro</td>
<td>52</td>
</tr>
<tr>
<td>Geologia</td>
<td>102</td>
</tr>
<tr>
<td>Jornal, grupo</td>
<td>102</td>
</tr>
<tr>
<td>Manganês</td>
<td>44, 46</td>
</tr>
<tr>
<td>Ouro</td>
<td>52</td>
</tr>
<tr>
<td>Serra do Navio</td>
<td>102</td>
</tr>
<tr>
<td>Tantalita</td>
<td>46</td>
</tr>
<tr>
<td>Uatumã, grupo</td>
<td>125</td>
</tr>
</tbody>
</table>

AMARIAKI, serra

<table>
<thead>
<tr>
<th>Localização</th>
<th>Estado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mapa de Lobo d'Almada</td>
<td>RR</td>
<td>6</td>
</tr>
</tbody>
</table>

AMAZONAS, Estado

<table>
<thead>
<tr>
<th>Mineral</th>
<th>AM</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bauxita</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Calcário</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Cassiterita</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Cobre</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Diamante</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Geologia</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>Jaz, formação</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>Manganês</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Ouro</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Platina</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Purus, formação</td>
<td></td>
<td>102</td>
</tr>
</tbody>
</table>

Total: 249
<table>
<thead>
<tr>
<th>Amazonas, rio AM/PA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ouro</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Amazonica, bacia BR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diamante</td>
</tr>
<tr>
<td>Falhas transcorrentes</td>
</tr>
<tr>
<td>Geofisica</td>
</tr>
<tr>
<td>Geologia</td>
</tr>
<tr>
<td>Monte Alegre, formacao</td>
</tr>
<tr>
<td>Ouro</td>
</tr>
<tr>
<td>Prainha, formacao</td>
</tr>
<tr>
<td>Trombetas, formacao</td>
</tr>
<tr>
<td>Uatumã, grupo</td>
</tr>
<tr>
<td>Urânio</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Amazonica, bacia sedimentar BR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curuá, formacao</td>
</tr>
<tr>
<td>Ererê, formacao</td>
</tr>
<tr>
<td>Itaituba, formacao</td>
</tr>
<tr>
<td>Maecuru, formacao</td>
</tr>
<tr>
<td>Petróleo</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Amazonica, região BR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andesitos</td>
</tr>
<tr>
<td>Anfibolitos</td>
</tr>
<tr>
<td>Arco de Gurupá</td>
</tr>
<tr>
<td>Arco de Purus</td>
</tr>
<tr>
<td>Arcóseo</td>
</tr>
</tbody>
</table>

Página

102

10

111

111

111

102

111

102

102

102

117

119,125

117

125

125

29

250
<table>
<thead>
<tr>
<th>Termo</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beneficente, grupo</td>
<td>102,118</td>
</tr>
<tr>
<td>Brechas</td>
<td>125</td>
</tr>
<tr>
<td>Cassiterita</td>
<td>118</td>
</tr>
<tr>
<td>Clima</td>
<td>44</td>
</tr>
<tr>
<td>Complexo Xingu</td>
<td>118</td>
</tr>
<tr>
<td>Correlações</td>
<td>125</td>
</tr>
<tr>
<td>Dacitos</td>
<td>118,125</td>
</tr>
<tr>
<td>Diamante</td>
<td>117</td>
</tr>
<tr>
<td>Estanho</td>
<td>117</td>
</tr>
<tr>
<td>Extrativismo mineral</td>
<td>44</td>
</tr>
<tr>
<td>Ferro</td>
<td>117</td>
</tr>
<tr>
<td>Fluorita</td>
<td>118</td>
</tr>
<tr>
<td>Fumaça, grupo</td>
<td>125</td>
</tr>
<tr>
<td>Geocronologia</td>
<td>117,118</td>
</tr>
<tr>
<td>Geologia</td>
<td>119,125</td>
</tr>
<tr>
<td>29,125</td>
<td></td>
</tr>
<tr>
<td>Geologia Econômica</td>
<td>10</td>
</tr>
<tr>
<td>Gnaisses</td>
<td>117</td>
</tr>
<tr>
<td>Grotire, formação</td>
<td>102</td>
</tr>
<tr>
<td>Granito Maloquinha</td>
<td>118</td>
</tr>
<tr>
<td>Granito Teles Pires</td>
<td>118</td>
</tr>
<tr>
<td>Granito Velho Guilherme</td>
<td>118</td>
</tr>
<tr>
<td>Granitos</td>
<td>117,125</td>
</tr>
<tr>
<td>Granitos alasquíticos</td>
<td>119</td>
</tr>
<tr>
<td>Granitos pórfiros</td>
<td>118</td>
</tr>
<tr>
<td>Granodioritos</td>
<td>119,125</td>
</tr>
<tr>
<td>Granófiros</td>
<td>118,125</td>
</tr>
<tr>
<td>Guaporé, cráton</td>
<td>119</td>
</tr>
<tr>
<td>Ignimbritos</td>
<td>118,125</td>
</tr>
<tr>
<td>Intrusões graníticas</td>
<td>117,118</td>
</tr>
<tr>
<td>251</td>
<td></td>
</tr>
</tbody>
</table>
Intrusões granodioríticas
Iriri, formação

Jaspilito
Keratófiro
Lateritas
Liniltro
Magmatismo
Magmatismo ácido
Manganês
Metais não ferrosos
Metalogênea, evolução
Metassedimentares, sequências
Microgranitos
Migmatitos
Minerais de pegmatito
Curo
Petróleo
Piroclásticas, rochas
População
Pórfiros
Prosperança, formação
Quartzo-Keratófiro
Quartzo-Pórfiro
Rio Fresco, formação
Riodacitos
Riolitos
Sal-gema
Sedimentares, rochas

Página
118
118, 119
125
29
29
117
117
119
125
102, 117
117
117
117
118
117
117
117
102, 117
117
102, 118
44
29, 125
118
29
119, 29
125
118, 119
125
125
117
117
252
Sobreiro, formação 119
Tantalita 118
Tectônica, evolução 117
Topázio 118
Tordrilito 29
Transamazônico, ciclo 119
Tsingtautíts 29
Tufos 125
Uatumã, grupo 118,125
Uatumã, série 29
Vegetação 44
Vulcânicas ácidas, rochas 117

AMÉRICA DO NORTE, continente AN
Bornita 91
Calcocita 91
Calcopirita 91
Cobre nativo 91
Conglomerados piríticos 91
Evento catastrófico 91
Geologia 91
Geologia Econômica 91
Hematita 91
Magnetita 91
Ouro 91
Pirita 91
Pirrotita 91
Prata 91
Prata-cobalto 91
Seqüências rochosas 91

253
Siltito dolomítico | 91
Sulfetos niquelíferos | 91
Uraninita | 91
Zona de "rift" | 91

AMÉRICA OCIDENTAL, região

<table>
<thead>
<tr>
<th>Matéria</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cobre</td>
<td>108</td>
</tr>
<tr>
<td>Cobre-pórfiro, depósitos</td>
<td>85</td>
</tr>
<tr>
<td>Geologia econômica</td>
<td>85,108</td>
</tr>
<tr>
<td>Molibdênio</td>
<td>108</td>
</tr>
<tr>
<td>Molibdênio-pórfiro, depósitos</td>
<td>85</td>
</tr>
<tr>
<td>Tectônica</td>
<td>85</td>
</tr>
<tr>
<td>Teoria das placas tectônicas</td>
<td>85</td>
</tr>
</tbody>
</table>

ANAÚÁ, rio

<table>
<thead>
<tr>
<th>Matéria</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anauá, grupo</td>
<td>70</td>
</tr>
<tr>
<td>Anfibolitos</td>
<td>70</td>
</tr>
<tr>
<td>Geologia</td>
<td>70</td>
</tr>
<tr>
<td>Gnaisses</td>
<td>70</td>
</tr>
<tr>
<td>Quartzitos</td>
<td>70</td>
</tr>
<tr>
<td>Xistos</td>
<td>70</td>
</tr>
</tbody>
</table>

ANAÚÁ/BARAUANA, rios

<table>
<thead>
<tr>
<th>Matéria</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfibolitos</td>
<td>70</td>
</tr>
<tr>
<td>Cassiterita</td>
<td>70</td>
</tr>
<tr>
<td>Diorito</td>
<td>70</td>
</tr>
<tr>
<td>Geologia</td>
<td>70</td>
</tr>
<tr>
<td>Granito Cachoeira Primeira</td>
<td>70</td>
</tr>
<tr>
<td>Granodiorito</td>
<td>70</td>
</tr>
<tr>
<td>Ouro</td>
<td>70</td>
</tr>
<tr>
<td>Localidade</td>
<td>Ressources</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>Quaternário</td>
<td></td>
</tr>
<tr>
<td>APERTAR DA HORA, cachoeira</td>
<td></td>
</tr>
<tr>
<td>Conglomerados</td>
<td></td>
</tr>
<tr>
<td>Kaieteur, formação</td>
<td></td>
</tr>
<tr>
<td>APITAU, rio</td>
<td></td>
</tr>
<tr>
<td>Areias</td>
<td></td>
</tr>
<tr>
<td>Cascalhos</td>
<td></td>
</tr>
<tr>
<td>Geologia</td>
<td></td>
</tr>
<tr>
<td>Granitos</td>
<td></td>
</tr>
<tr>
<td>Pagmatóides, veios</td>
<td></td>
</tr>
<tr>
<td>AFUAU, rio</td>
<td></td>
</tr>
<tr>
<td>Folhelho</td>
<td></td>
</tr>
<tr>
<td>Geologia</td>
<td></td>
</tr>
<tr>
<td>Paleozóico</td>
<td></td>
</tr>
<tr>
<td>ARACÁ, rio</td>
<td></td>
</tr>
<tr>
<td>População</td>
<td></td>
</tr>
<tr>
<td>ARAGUAIA, bacia</td>
<td></td>
</tr>
<tr>
<td>Uatumã, grupo</td>
<td></td>
</tr>
<tr>
<td>ARAGUAIA, rio</td>
<td></td>
</tr>
<tr>
<td>Diamante</td>
<td></td>
</tr>
<tr>
<td>ARAI, serra</td>
<td></td>
</tr>
<tr>
<td>Arai, membro</td>
<td></td>
</tr>
<tr>
<td>Cuestas</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Diabásios 26
Lateritas aluminosas 27

ARIFUAMÁ, rio AM/MT
Uatumã, grupo 125
Uatumã, série 29

ARIFUAMÁ/SUCUNDURI, bacias AM
Sucunduri, formação 102

AUARIS, rio RR
Anfibolitos 73
Geologia 73
Metassedimentos 73

AUSTRÁLIA, país AU
Análises geoquímicas 104
Análises mineralógicas 104
Análises petrológicas 104
Bathurst batholith, depósito 75
Bismuto 75
Calcopirita 104
Cassiterita 75
Cobre 104
Depósitos, tipos 75
Estanho 104
Geologia Econômica 75
Granito 75
Intrusivas ácidas 75
Molibdenita 75

256
New South Wales, depósito
75
Pórfiros
75
Queensland, depósito
75
Tasmânia, depósito
75
Tungstênio
104
Victoria, depósito
75
Wolframita
75

AVEIRO, município
52
Sal-gema

BAHIA, Estado
126
Geologia
126
Geoquímica
126
Gnaisses
100
Molibdênio
126
Riolitos

BAIXO MAU, região
RR
Conglomerados
63
Garimpo
63
Kaieteur, formação
63
Queratófiros
63
Surumu, vulcanismo

BANCO, serra
RR
Molibdênio
120

BAYKALIA, região
URSS
Estanho
72

257
Geoquímica 72
Intrusões graníticas 72
Molibdênio 72
Nióbio 72
Tântalo 72
Tungstênio 72

BOLIVAR, Estado VE
Anomalias geoquímicas 93
Cobre 93
Estanho 93
Geofísica 93
Geologia 93
Geoquímica 93
Manganês 93
Molibdênio 93
Ouro 93
Tungstênio 93
Zinco 93

BOLÍVIA, país DO
Ambiente de deposição 96
Dobramentos 96
Estratigrafia 96
Falhamentos 96
Roraima, formação 96
Tectônica 96

BORBA, município AM
Manganês 52
<table>
<thead>
<tr>
<th>BRASIL, país</th>
<th>RR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apoteri, formação</td>
<td>123</td>
</tr>
<tr>
<td>Arenitos</td>
<td>123</td>
</tr>
<tr>
<td>Aspectos humanos</td>
<td>100</td>
</tr>
<tr>
<td>Cassiterita</td>
<td>46</td>
</tr>
<tr>
<td>Clima</td>
<td>46</td>
</tr>
<tr>
<td>Cráton Guianês</td>
<td>123</td>
</tr>
<tr>
<td>Derrames basálticos</td>
<td>123</td>
</tr>
<tr>
<td>Diabásios</td>
<td>123</td>
</tr>
<tr>
<td>Diamante</td>
<td>46</td>
</tr>
<tr>
<td>Dobramentos</td>
<td>123</td>
</tr>
<tr>
<td>Economia mineral do Molibdênio</td>
<td>100</td>
</tr>
<tr>
<td>Fácies metamórficos</td>
<td>123</td>
</tr>
<tr>
<td>Falhamentos</td>
<td>123</td>
</tr>
<tr>
<td>Folha NA.20</td>
<td>123</td>
</tr>
<tr>
<td>Folha NA.20/21</td>
<td>123</td>
</tr>
<tr>
<td>Folha NA.21</td>
<td>123</td>
</tr>
</tbody>
</table>
Folhelhos 123
Geologia Econômica 123
Geologia Estrutural 123
Hidrografia 46
Imagens de radar 123
Intrusivas subvulcânicas 123
Manganês 46
Molibdênio 46
Ouro 46
Pedra Preta, diabásio 123
Piroclásticas, rochas 123
Recursos minerais 46
Relevo 46
Rewa, grupo 123
Rio Parima 123
Serra do Mel, granodiorito 123
Siltitos 123
Solo 46
Sururu, formação 123
Tacutu, graben 123
Taxonomia estratigráfica 121
Tectônica 51, 61
Tectono-magmáticos, ciclos 51
Vegetação 46

BRASIL/COLOMBIA, fronteira
Linhito 10

BRASIL/PERU, fronteira
Linhito 10
<table>
<thead>
<tr>
<th>CAJU, localidade</th>
<th>RR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ilmenita</td>
<td>27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAMPINAS, localidade</th>
<th>PA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Água termo-sulfurosa</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAMPO MAIOR, localidade</th>
<th>RR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diamante</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CANADÁ, país</th>
<th>CA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Análises colorimétricas</td>
<td>78</td>
</tr>
<tr>
<td>Análises de absorção atômica</td>
<td>78</td>
</tr>
<tr>
<td>Análises de raio-X fluorescente</td>
<td>78</td>
</tr>
<tr>
<td>Análises químicas</td>
<td>78</td>
</tr>
<tr>
<td>Andesitos</td>
<td>127</td>
</tr>
<tr>
<td>Argilitos</td>
<td>99</td>
</tr>
<tr>
<td>Basaltos</td>
<td>127</td>
</tr>
<tr>
<td>Bismuto</td>
<td>78</td>
</tr>
<tr>
<td>Boss Mountain</td>
<td>127</td>
</tr>
<tr>
<td>Brechação</td>
<td>99</td>
</tr>
<tr>
<td>Brenda, stock</td>
<td>99</td>
</tr>
<tr>
<td>Calcário</td>
<td>99</td>
</tr>
<tr>
<td>Calcopirita</td>
<td>80,7</td>
</tr>
<tr>
<td>Escarnito, depósito</td>
<td>79</td>
</tr>
<tr>
<td>Eventos mineralizantes</td>
<td>127</td>
</tr>
<tr>
<td>Exploração mineral</td>
<td>76</td>
</tr>
<tr>
<td>Geocronologia</td>
<td>76</td>
</tr>
<tr>
<td>Geologia</td>
<td>127</td>
</tr>
<tr>
<td>Geologia econômica</td>
<td>80,99</td>
</tr>
</tbody>
</table>

<p>| | 261 |</p>
<table>
<thead>
<tr>
<th>Item</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geologia estrutural</td>
<td>127</td>
</tr>
<tr>
<td>Geoquímica</td>
<td>76, 79</td>
</tr>
<tr>
<td>Gnaisses</td>
<td>79</td>
</tr>
<tr>
<td>Granito</td>
<td>80</td>
</tr>
<tr>
<td>Granodiorito</td>
<td>80, 127</td>
</tr>
<tr>
<td>Intrusivas ácidas, rochas</td>
<td>76</td>
</tr>
<tr>
<td>Mármore</td>
<td>79</td>
</tr>
<tr>
<td>Migmatitos</td>
<td>79</td>
</tr>
<tr>
<td>Molibdênio</td>
<td>78, 127</td>
</tr>
<tr>
<td>Molibdenita</td>
<td>80, 99</td>
</tr>
<tr>
<td>Nicola, grupo</td>
<td>99</td>
</tr>
<tr>
<td>Ouro</td>
<td>79</td>
</tr>
<tr>
<td>Pegmatítico, depósito</td>
<td>79</td>
</tr>
<tr>
<td>Pegmatitos</td>
<td>80</td>
</tr>
<tr>
<td>Pirita</td>
<td>80, 99</td>
</tr>
<tr>
<td>Pirrotita</td>
<td>79</td>
</tr>
<tr>
<td>Pórfiro</td>
<td>80</td>
</tr>
<tr>
<td>Prata</td>
<td>79</td>
</tr>
<tr>
<td>Quartzito</td>
<td>79</td>
</tr>
<tr>
<td>Quartzo-diorito</td>
<td>80, 99</td>
</tr>
<tr>
<td>Quartzo-monzonita</td>
<td>80, 99</td>
</tr>
<tr>
<td>Riolitos pórfiros</td>
<td>127</td>
</tr>
<tr>
<td>Sedimentos de correntes, amostragens</td>
<td>79</td>
</tr>
<tr>
<td>Takonkane, batólito</td>
<td>127</td>
</tr>
<tr>
<td>Tufos</td>
<td>99</td>
</tr>
<tr>
<td>Localização</td>
<td>Estado</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Tungstênio</td>
<td></td>
</tr>
<tr>
<td>Vulcânicas, rochas</td>
<td></td>
</tr>
<tr>
<td>Xistos</td>
<td></td>
</tr>
<tr>
<td>CANUMA, rio</td>
<td>AM</td>
</tr>
<tr>
<td>Nanganês</td>
<td></td>
</tr>
<tr>
<td>CAPIM, igarapé</td>
<td>BR</td>
</tr>
<tr>
<td>Capim, garimpo</td>
<td></td>
</tr>
<tr>
<td>Diamante</td>
<td></td>
</tr>
<tr>
<td>CATRINHãI, rio</td>
<td>RR</td>
</tr>
<tr>
<td>Bacuri, cachoeira</td>
<td></td>
</tr>
<tr>
<td>Boiaçu, cachoeira</td>
<td></td>
</tr>
<tr>
<td>Painishanas, cachoeira</td>
<td></td>
</tr>
<tr>
<td>Piranteira, cachoeira</td>
<td></td>
</tr>
<tr>
<td>Reconhecimento</td>
<td></td>
</tr>
<tr>
<td>Tanga, cachoeira</td>
<td></td>
</tr>
<tr>
<td>CEARÁ, Estado</td>
<td>CE</td>
</tr>
<tr>
<td>Molibdênico</td>
<td></td>
</tr>
<tr>
<td>CIGANA, serra</td>
<td>RR</td>
</tr>
<tr>
<td>Piroxênio-anfibolito</td>
<td></td>
</tr>
<tr>
<td>CRIPó, igarapé</td>
<td>RR</td>
</tr>
<tr>
<td>Falhamento</td>
<td></td>
</tr>
<tr>
<td>Jaspilito</td>
<td></td>
</tr>
<tr>
<td>COLOMBIA, país</td>
<td>CO</td>
</tr>
<tr>
<td>Correlação</td>
<td></td>
</tr>
</tbody>
</table>
COLORADO, Estado EUA
Alteração hidrotermal 86
Andesitos 115
Calcopirita 16,97
Climax, depósito 97,116
 24
Climax, mina 86,131
Cobre 115
Esfalerita 50,116
Estágios de mineralização 50,115
Galena 116
Geologia econômica 86,116
 115,131
 24,50
 50,131
 24
Geologia estrutural
Gnaisses 131
Granitos 86,116
 131
Granitos intrusivos 48
Granodiorito 86
Huebnerita 116
Inclusões fluidas 116
Intrusões graníticas 50
Mineralização "ring-fracture" 24
Molibdênio 24,50
Molibdenita 115,116
 131
 264
Mosquito, falha

Pirita

Pórfiros
Produção
Quartzo-monzonito pórfiro
Razão isotópica
Riolitos
Seqüência paragenética
Tectônica
Topázio
Tungstênio
Urânio
Xistos

COTINGO, rio

Diamante
Vulcânicas Surumu

COTINGO/QUINÓ, bacias

Arenitos
Conglomerados
Diabásio
Polhelho
Geologia
Ignimbritos
Kaieiteur, formação
Lavas

Página

58, 131
24, 50
86, 116
115, 131
50
24, 116
86
131
116
116, 116
116
86
50
24, 116
48
131

Diamante
Vulcânicas Surumu

Arenitos
Conglomerados
Diabásio
Polhelho
Geologia
Ignimbritos
Kaieiteur, formação
Lavas

RR

56
58

RR

58
58
58
58
58
58
58
58

265
Siltitos
Vila Pires, garimpo
Vulcânicas Surumuí
Vulcanismo Roraima

CRISTAIS, serra
Cristal de rocha

CUJUMã, cachoeira
Diabásio
Roraima, vulcanismo

CUPARI, rio
Calcário

CURUá, rio
Calcário
Uatumã, série

DEMÊNII, rio
População
Reconhecimento

ERAL, igarapê
Tantalita

EREPEECURU, rio
Uatumã, série

Página
58
58
58
58
4,7
73
73
10
10
29
6
6
10
29
<table>
<thead>
<tr>
<th>Localização</th>
<th>Estado</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Espírito Santo, Estado Molibdênio</td>
<td>ES</td>
<td>100</td>
</tr>
<tr>
<td>Fírmeza, localidade Diatomito</td>
<td>AM</td>
<td>10</td>
</tr>
<tr>
<td>FIOR DE OURO, localidade Hulha</td>
<td>MT</td>
<td>10</td>
</tr>
<tr>
<td>Fresco, rio</td>
<td>PA</td>
<td>102</td>
</tr>
<tr>
<td>Rio Fresco, formação</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goiás, Estado</td>
<td>GO</td>
<td>10</td>
</tr>
<tr>
<td>Argila</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Baritina</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Diatomito</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Jaspe</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Ouro</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Piritia</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Talco</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Gran Sabana, região Porfiritos</td>
<td>VE</td>
<td>9</td>
</tr>
<tr>
<td>Guariba, serra Molibdênio</td>
<td>RR</td>
<td>120</td>
</tr>
<tr>
<td>Guiana, país</td>
<td>GU</td>
<td>35</td>
</tr>
<tr>
<td>Adamelito</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Alteração hidrotermal</td>
<td></td>
<td>267</td>
</tr>
</tbody>
</table>
Ambiente de deposição
Ambibolitos
Arcóseo
Arenitos
Arsenopírita
Arsenopiritização
Augen-gnaissse Kuwad
Barana, grupo

Barama-Mazaruni, associação

Barron, falhamento
Bartica, associação
Bartica-Mazaruni, associação
Básicas, rochas
Berbice, formação
Berílio
Biotita-granito Akiramakra-Rappu
Biotita-granitos
Burro-Burro, grupo

Calcopírita
Carbonização
Chert
Cintilometria
Cinturão orogenético transamazônico
Coluna estratigráfica
Coluna geocronológica
Condicionamento estratigráfico
Condicionamento litológico-estrutural
Conglomerados

Corentyne, grupo

Correlações

Cuyuni, formação

Dacitos

Depósitos minerais

Diabásico Roraima

Diabásios

Diamante

Discordância

Dobramentos

Dolomita

Dumortierita

Enderbitos

Embasamento arqueano

Episódios orogênicos

Esfalerita

Estratigrafia

Estruturas de fluxo

Falhamentos

Feldspato-pórfiro

Fisiografia

Galena

Geocronologia

Página

42,54

48,92

35

42,112

112,125

35

34

90

49

34,42

90,114

42

35,54

90

64

42

112

54,63

42,54

34

64

34

34

54

35,49

87,89

54,63

90

269
<table>
<thead>
<tr>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geologia estrutural</td>
<td>34,90</td>
</tr>
<tr>
<td>Geoquímica</td>
<td>48</td>
</tr>
<tr>
<td>Geossinclinal</td>
<td>40,42</td>
</tr>
<tr>
<td>Gnaisses</td>
<td>42,64</td>
</tr>
<tr>
<td>Granito</td>
<td>112</td>
</tr>
<tr>
<td>Granito-gnaissse Corentyne</td>
<td>112</td>
</tr>
<tr>
<td>Granito Jovem, grupo</td>
<td>35,54</td>
</tr>
<tr>
<td>Granito pórfiro</td>
<td>87</td>
</tr>
<tr>
<td>Granito South Savanna</td>
<td>35</td>
</tr>
<tr>
<td>Granitos Intrusivos</td>
<td>48,64</td>
</tr>
<tr>
<td>Granitos granófíricos Annai-Iwokrama</td>
<td>34</td>
</tr>
<tr>
<td>Granitos Jovens</td>
<td>34,63</td>
</tr>
<tr>
<td>Granodicrito</td>
<td>35,42</td>
</tr>
<tr>
<td>Granófírós</td>
<td>34</td>
</tr>
<tr>
<td>Gramulitos</td>
<td>112</td>
</tr>
<tr>
<td>Gramulitos Kanuku</td>
<td>112</td>
</tr>
<tr>
<td>Grauvacas</td>
<td>54,63</td>
</tr>
<tr>
<td>Haimaraka, formação</td>
<td>35,42</td>
</tr>
<tr>
<td>Hercynotype, cinturão orogenico</td>
<td>89</td>
</tr>
<tr>
<td>Horizontes carbonáceos</td>
<td>63</td>
</tr>
<tr>
<td>Horizontes tufáceos</td>
<td>63</td>
</tr>
<tr>
<td>Hornblenda-granitos</td>
<td>34</td>
</tr>
<tr>
<td>Imataca, formação</td>
<td>96</td>
</tr>
<tr>
<td>Intrusivas, rochas</td>
<td>90</td>
</tr>
<tr>
<td>Intrusivas, básicas</td>
<td>35</td>
</tr>
<tr>
<td>Intrusivas básicas jovens</td>
<td>34</td>
</tr>
<tr>
<td>Intrusivas Básicas Jovens, grupo</td>
<td>35</td>
</tr>
<tr>
<td>Intrusões graníticas</td>
<td>42</td>
</tr>
<tr>
<td>Itabiritos</td>
<td>42</td>
</tr>
<tr>
<td>Iwokrama, formação</td>
<td>64,120</td>
</tr>
<tr>
<td>Jaspes</td>
<td>37,42</td>
</tr>
</tbody>
</table>

270
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>K'buduk, cataclasitos</td>
<td>89</td>
</tr>
<tr>
<td>Kamuku, complexo</td>
<td>89</td>
</tr>
<tr>
<td>Kamuku, grupo</td>
<td>35,64</td>
</tr>
<tr>
<td>Kuyuwini, grupo</td>
<td>42,89</td>
</tr>
<tr>
<td></td>
<td>35,112</td>
</tr>
<tr>
<td>Kwitaro, grupo</td>
<td>125</td>
</tr>
<tr>
<td>Litologia</td>
<td>89,112</td>
</tr>
<tr>
<td>Intitos</td>
<td>90</td>
</tr>
<tr>
<td>Lakerapen Mountain, granito</td>
<td>54</td>
</tr>
<tr>
<td>Mapa metalogenético</td>
<td>64</td>
</tr>
<tr>
<td>Mapamento fotogeológico</td>
<td>90</td>
</tr>
<tr>
<td>Marudi, grupo</td>
<td>112</td>
</tr>
<tr>
<td>Mazaruni, grupo</td>
<td>35,42</td>
</tr>
<tr>
<td></td>
<td>42,54</td>
</tr>
<tr>
<td></td>
<td>34,35</td>
</tr>
<tr>
<td>Metamorfismo</td>
<td>54</td>
</tr>
<tr>
<td>Metassedimentos</td>
<td>42,48</td>
</tr>
<tr>
<td>Metassedimentos argilosos</td>
<td>34</td>
</tr>
<tr>
<td>Metavulcânicas, rochas</td>
<td>42,87</td>
</tr>
<tr>
<td>Métodos radiométricos</td>
<td>64</td>
</tr>
<tr>
<td>Microfósseis</td>
<td>37</td>
</tr>
<tr>
<td>Migmatitos</td>
<td>64,89</td>
</tr>
<tr>
<td>Migmatitos Kamuku</td>
<td>112</td>
</tr>
<tr>
<td>Minihorst</td>
<td>64</td>
</tr>
<tr>
<td>Molibdênio</td>
<td>87</td>
</tr>
<tr>
<td>Molibdenita</td>
<td>54,63</td>
</tr>
<tr>
<td>Monadnocks</td>
<td>64</td>
</tr>
<tr>
<td>Muruwa, formação</td>
<td>42</td>
</tr>
<tr>
<td>North Savannas, rift-valley</td>
<td>89</td>
</tr>
<tr>
<td>Ortoquartzitos</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>271</td>
</tr>
</tbody>
</table>
Ouro

Paleocorrentes, direções 114
Paleontologia 37
Pastora, série 40
Pegmatitos 48
Petrografia 34
Pirita 63-87
Piritização 54
Pirrotita 63
Projeto Roraima 92
Prospecção geoquímica 54
Quartzitos 35
Quartzo-diorito 42
Radioativos, minerais 48-56
Reinterpretação 64
Rewa, grupo 112
Rift valley 34
Riodacitos 34
Riolitos 34
Roraima, formação 37-42, 48-92, 35-114

Rupumuni, associação 35
Scheelita 63
Sericitização 63
Silicificação 63
Sondagens 54
South Savannas, grupo 48

Página

63-87
42-54
34-49

272
Sulfetos 63
Tacutu, formação 35
Tectônica 63
Tectônico-geológico, mapa 89
Tonalito 42
Tungstênio 87
Turmalina 63
Turmalinização 54
Ultrabássicas, rochas 89
Unidades litoestratigráficas 51, 92
Urânio 42
Vulcânicas ácidas, rochas 42
Vulcânicas Iwokrama 34
Xistos Verdes 63

GULÁNA FRANCESA, país GF
Alteração hidrotermal 63
Arsenopirita 63
Calcopirita 63
Condicionamento litológico-estrutural 63
Esfalerita 63
Geologia econômica 63
Granitos Jovens 63
Grauvacas 63
Horizontes carbonáceos 63
Horizontes tufáceos 63
Molibdenita 63
Ouro 63
Pirrita 63
Pirrotita 63

273
Scheelita 63
Sericitização 63
Sulfetos 63
Turmalina 63
Xistos Verdes 63

GUIANAS, escudo AS
Alinhamento estrutural 111
Andina, orogênese 16
Anfibolíticos, cinturões 88
Barema-Nazaruní, associação 94
Basal, membro 16
Basaltos 88
Bauxita 16
Bonidoro, associação 94
Cassiterita 122
Cobertura sedimentar 122
Columbita 122
Complexo Guianense 122
Conglomerados 111
Correlação 88
Cratonização 88
Depósitos recentes 16
Diamante 16,111
122

Discordância 88
Dobramentos 16
Embasamento, grupo 16
Episódio orogênico 94
Evolução geológica 122
274
<table>
<thead>
<tr>
<th>Tópico</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rio Parima, grupo</td>
<td>122</td>
</tr>
<tr>
<td>Roraima, formação</td>
<td>16,111</td>
</tr>
<tr>
<td></td>
<td>94,122</td>
</tr>
<tr>
<td>Superior, membro</td>
<td>16</td>
</tr>
<tr>
<td>Suruma, formação</td>
<td>122</td>
</tr>
<tr>
<td>Tacutu, formação</td>
<td>122</td>
</tr>
<tr>
<td>Tacutu, rift-valley</td>
<td>122</td>
</tr>
<tr>
<td>Tantalita</td>
<td>122</td>
</tr>
<tr>
<td>Tectônica</td>
<td>16,88</td>
</tr>
<tr>
<td></td>
<td>94,111</td>
</tr>
<tr>
<td>Tectonotermais, eventos</td>
<td>88</td>
</tr>
<tr>
<td>Tufos</td>
<td>16</td>
</tr>
<tr>
<td>Uatumã, grupo</td>
<td>122</td>
</tr>
<tr>
<td>Urânio</td>
<td>111,122</td>
</tr>
<tr>
<td>Vila Nova, grupo</td>
<td>122</td>
</tr>
<tr>
<td>Vulcânicas, rochas</td>
<td>16</td>
</tr>
<tr>
<td>Vulcânico, grupo</td>
<td>16</td>
</tr>
<tr>
<td>Vulcanismo</td>
<td>88,122</td>
</tr>
<tr>
<td>Xisto Verde, cinturões</td>
<td>88</td>
</tr>
</tbody>
</table>

GUIANAS, região

<table>
<thead>
<tr>
<th>Tópico</th>
<th>AS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabásios</td>
<td>60</td>
</tr>
<tr>
<td>Enderbito-gnaisses</td>
<td>60</td>
</tr>
<tr>
<td>Evento tectonotermais</td>
<td>60</td>
</tr>
<tr>
<td>Geocronologia</td>
<td>60</td>
</tr>
<tr>
<td>Geologia</td>
<td>60</td>
</tr>
<tr>
<td>Granulitos</td>
<td>60</td>
</tr>
<tr>
<td>Ivokrama, formação</td>
<td>60</td>
</tr>
<tr>
<td>Migmatitos</td>
<td>60</td>
</tr>
</tbody>
</table>

Total de Páginas: 276
Rupununi, associação 60
Tectônica 51
Tectono-magmáticos, ciclos 51
Vulcânica Apoteri, formação 60
Vulcânicas Daltana–Matapi 60

IRAMUTANG, localidade RR
Diamante 31
Fisiografia 53
Folhelho 53
Kaieteur, formação 53
Siltito 53

IRIRI/CURUA, bacias PA
Riozinho do Anfrízio, formação 104

JAMANXIM, rio AM
Uatumã, grupo 125

JAPÃO, país JP
Condiçãoamento estrutural 129
Geologia econômica 129
Granitos Intrusivos 129
Molibdenita 129
Pegmatito 129

JARDIM, localidade PA
Água termo-sulfurosa 10

JATAPU, rio AM 277
<table>
<thead>
<tr>
<th>Localização</th>
<th>Estado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uatumã, sér</td>
<td>AM</td>
</tr>
<tr>
<td>Lábrea, município</td>
<td>AM</td>
</tr>
<tr>
<td>Cassiterita</td>
<td></td>
</tr>
<tr>
<td>Lajes, fazenda</td>
<td>GO</td>
</tr>
<tr>
<td>Esmeralda</td>
<td></td>
</tr>
<tr>
<td>Maecuru, rio</td>
<td>AM</td>
</tr>
<tr>
<td>Calcário</td>
<td></td>
</tr>
<tr>
<td>Makarapan, montanha</td>
<td>GU</td>
</tr>
<tr>
<td>Monadocks</td>
<td></td>
</tr>
<tr>
<td>Riebeckita-granito</td>
<td>64</td>
</tr>
<tr>
<td>Maloca Do Aicarém, localidade</td>
<td>RR</td>
</tr>
<tr>
<td>Diabásio</td>
<td></td>
</tr>
<tr>
<td>Pórfiro</td>
<td></td>
</tr>
<tr>
<td>Mantiqueira, serra</td>
<td>MG</td>
</tr>
<tr>
<td>Niáque</td>
<td></td>
</tr>
<tr>
<td>Marabá, município</td>
<td>PA</td>
</tr>
<tr>
<td>Ferro</td>
<td></td>
</tr>
<tr>
<td>Maracá, canal</td>
<td>RR</td>
</tr>
<tr>
<td>Pegmatitos</td>
<td></td>
</tr>
<tr>
<td>Tantalita-columbita</td>
<td>73</td>
</tr>
<tr>
<td>Maranhão, bacia</td>
<td>MA/PI</td>
</tr>
</tbody>
</table>
Cabeças, formação 102
Longá, formação 102
Mosquito, formação 102
Motuca, formação 102
Pedra de Fogo, formação 102
Piauí, formação 102
Poti, formação 102
Sambaíba, formação 102

MARANHÃO, Estado MA
Gurupi, grupo 102

MATO GROSSO, Estado MT
Ouro 10

MAU, rio RR
Agata 7
Arenitos 56
Claystone 53
Cristalinhas, rochas 53
Diamante 56
Falhamento 56,120
Fisiografia 53
Folhelhos 53,56
Fraturas 53
Geologia 53
Jaspilito 53
Kaieteur, formação 53
Ouro 53
Pórfiro 4

279
Quartzito
Siltito
Tacutu, formação

MAUÉS, rio
Calcário

MÉ-UÊ, localidade
Arenitos
Derrame ácido
Diábásico MÉ-UÊ
Diábásico Tepuimana-Tê
Pórfiros

MEL, serra
Molibdênio
Molibdenita

MÉDIO TAPAJÓS, região
Cassiterita
Ouro

MINA, serra
Salitre

MINA SECA, localidade
Ouro

MINAS GERAIS, Estado
Molibdênio
MONTANA, Estado

Anomalia geoquímica 59
Diorito pórforo Belmont 59
Geoquímica 59
Hornfels 59
Microdioritos 59
Mobilidade do molibdênio 59
Molibdenita 59
Rochas, amostragens 59
Solo, amostragens 59

MONTE ALEGRE, município

Água termo-sulfurosa 10

MONTE RORAIMA, região

Arenitos 12
Diabásio 12
Fisiografia 12
Geologia 12
Granito 12
Quartzitos 12

MORENHIINHA, fazenda

Molibdênio 120

MORRO BRANCO, localidade

Areias ortoquartzoíticas 70

MUCAJAI, rio

Areias 68
Cascalhos
Geologia
Graisses

MURUPU, serra
Basaltitos

MURUPUZINHO, serra
Basaltos

MUTUM, serra
Conglomerados
Kaieteur, formação
Queratófiros

NAVIO, serra
Manganês

NEGRO/ARIHUANÁ, bacias
Arco de Purus
Uatumã, grupo

NHAMUNDÁ, rio
Uatumã, série

NIGÉRIA, país
Columbita
Granitos

NORDESTE, região
<table>
<thead>
<tr>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adamelitos</td>
<td>101</td>
</tr>
<tr>
<td>Geologia</td>
<td>101</td>
</tr>
<tr>
<td>Graníticas, rochas</td>
<td>124</td>
</tr>
<tr>
<td>Granodioritos</td>
<td>124</td>
</tr>
<tr>
<td>Migmatitos</td>
<td>124</td>
</tr>
<tr>
<td>Molássicas, sequências</td>
<td>124</td>
</tr>
<tr>
<td>Molibdênio</td>
<td>100</td>
</tr>
<tr>
<td>Relictos</td>
<td>124</td>
</tr>
<tr>
<td>Tectônica</td>
<td>124</td>
</tr>
<tr>
<td>Tonalitos</td>
<td>124</td>
</tr>
<tr>
<td>NORTH SAVANHAS, região</td>
<td>GU 64</td>
</tr>
<tr>
<td>Falhamentos</td>
<td>64</td>
</tr>
<tr>
<td>Rift valley</td>
<td>64</td>
</tr>
<tr>
<td>NOVA OLINDA, município</td>
<td>AM 102</td>
</tr>
<tr>
<td>Nova Olinda, formação</td>
<td></td>
</tr>
<tr>
<td>NOVA OLINDA, serra</td>
<td>RR 27</td>
</tr>
<tr>
<td>Calcário</td>
<td></td>
</tr>
<tr>
<td>NOVO ARIPUANIA, município</td>
<td>AM 52</td>
</tr>
<tr>
<td>Cassiterita</td>
<td></td>
</tr>
<tr>
<td>NOVO MÉXICO, Estado</td>
<td>EUA 47</td>
</tr>
<tr>
<td>Alteração hidrotermal</td>
<td>47</td>
</tr>
<tr>
<td>Andesitos</td>
<td>47</td>
</tr>
<tr>
<td>Aplito</td>
<td>47</td>
</tr>
<tr>
<td>Chumbo</td>
<td>47</td>
</tr>
<tr>
<td>Ferromolibdenita</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>283</td>
</tr>
<tr>
<td>Geologia econômica</td>
<td>8,47</td>
</tr>
<tr>
<td>------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Geologia estrutural</td>
<td>8</td>
</tr>
<tr>
<td>Granito</td>
<td>8</td>
</tr>
<tr>
<td>Iatitos</td>
<td>47</td>
</tr>
<tr>
<td>Molibdenita</td>
<td>8,123</td>
</tr>
<tr>
<td>Piritá</td>
<td>47</td>
</tr>
<tr>
<td>Pórfiros</td>
<td>47</td>
</tr>
<tr>
<td>Riolitos</td>
<td>47</td>
</tr>
<tr>
<td>Sulfetos de cobre</td>
<td>47</td>
</tr>
<tr>
<td>Xistos</td>
<td>8</td>
</tr>
<tr>
<td>Zinco</td>
<td>47</td>
</tr>
</tbody>
</table>

ORINOCO, bacia

<table>
<thead>
<tr>
<th>Diamante</th>
<th>VE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geofísica</td>
<td>111</td>
</tr>
<tr>
<td>Geologia</td>
<td>111</td>
</tr>
<tr>
<td>Ouro</td>
<td>111</td>
</tr>
<tr>
<td>Urânio</td>
<td>111</td>
</tr>
</tbody>
</table>

PACARAIMA, serra

<table>
<thead>
<tr>
<th>Porfiritos</th>
<th>VE/RR</th>
</tr>
</thead>
</table>

PAIÚÁ, rio

<table>
<thead>
<tr>
<th>Fraturas</th>
<th>RR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ouro</td>
<td>53</td>
</tr>
<tr>
<td>Quartzito</td>
<td>53</td>
</tr>
</tbody>
</table>

PARÁ, Estado

<table>
<thead>
<tr>
<th>Araguaia, formação</th>
<th>PA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barreiras, grupo</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>284</td>
</tr>
<tr>
<td>Material</td>
<td>Página</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------</td>
</tr>
<tr>
<td>Bauxita</td>
<td>52</td>
</tr>
<tr>
<td>Cassiterita</td>
<td>52</td>
</tr>
<tr>
<td>Diamante</td>
<td>52</td>
</tr>
<tr>
<td>Ferro</td>
<td>52</td>
</tr>
<tr>
<td>Geologia</td>
<td>102</td>
</tr>
<tr>
<td>Gurupi, grupo</td>
<td>102</td>
</tr>
<tr>
<td>Iriri, formação</td>
<td>102</td>
</tr>
<tr>
<td>Manganês</td>
<td>52</td>
</tr>
<tr>
<td>Morro grande, grupo</td>
<td>102</td>
</tr>
<tr>
<td>Ouro</td>
<td>44,52</td>
</tr>
<tr>
<td>Pirabas, formação</td>
<td>102</td>
</tr>
<tr>
<td>Sal-gema</td>
<td>52</td>
</tr>
<tr>
<td>Tantalita</td>
<td>52</td>
</tr>
<tr>
<td>Tocantins, grupo</td>
<td>102</td>
</tr>
<tr>
<td>Uatumã, grupo</td>
<td>102</td>
</tr>
</tbody>
</table>

PARAÍBA, Estado

<table>
<thead>
<tr>
<th>Material</th>
<th>PB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molibdênio</td>
<td>100</td>
</tr>
</tbody>
</table>

PARANÁ, Estado

<table>
<thead>
<tr>
<th>Material</th>
<th>PR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molibdênio</td>
<td>100</td>
</tr>
</tbody>
</table>

PARAUARI, rio

<table>
<thead>
<tr>
<th>Material</th>
<th>AM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uatumã, série</td>
<td>29</td>
</tr>
</tbody>
</table>

PARIMA, rio

<table>
<thead>
<tr>
<th>Material</th>
<th>RR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfibolitos</td>
<td>73</td>
</tr>
<tr>
<td>Fisiografia</td>
<td>15</td>
</tr>
<tr>
<td>Geologia</td>
<td>15,73</td>
</tr>
<tr>
<td>Localização</td>
<td>Estado</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Hornblendito</td>
<td></td>
</tr>
<tr>
<td>Jade-nefrita</td>
<td></td>
</tr>
<tr>
<td>Metassedimentos</td>
<td></td>
</tr>
<tr>
<td>Metavulcânicas, cachoeira Kiririana</td>
<td></td>
</tr>
<tr>
<td>Metavulcânicas, rochas</td>
<td></td>
</tr>
<tr>
<td>Pórfiro-riolitos</td>
<td></td>
</tr>
<tr>
<td>Semixistos</td>
<td></td>
</tr>
<tr>
<td>PARIMÉ, rio</td>
<td>RR</td>
</tr>
<tr>
<td>Diabásio</td>
<td></td>
</tr>
<tr>
<td>Gnaisses</td>
<td></td>
</tr>
<tr>
<td>Micropegmatito</td>
<td></td>
</tr>
<tr>
<td>Mirmequito</td>
<td></td>
</tr>
<tr>
<td>PARU, rio</td>
<td>PA</td>
</tr>
<tr>
<td>Uatumã, série</td>
<td></td>
</tr>
<tr>
<td>PASTORA, província</td>
<td>VE</td>
</tr>
<tr>
<td>Chumbo</td>
<td></td>
</tr>
<tr>
<td>Cobre</td>
<td></td>
</tr>
<tr>
<td>Geoquímica</td>
<td></td>
</tr>
<tr>
<td>Ouro</td>
<td></td>
</tr>
<tr>
<td>Sedimentos de corrente, amostragem</td>
<td></td>
</tr>
<tr>
<td>Solo, amostragem</td>
<td></td>
</tr>
<tr>
<td>Tungstênio</td>
<td></td>
</tr>
<tr>
<td>Vulcânicas ácidas, rochas</td>
<td></td>
</tr>
<tr>
<td>Vulcânicas básicas, rochas</td>
<td></td>
</tr>
<tr>
<td>Zinco</td>
<td></td>
</tr>
<tr>
<td>PAU RAINHA, rio</td>
<td>RR</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Basaltitos 14
Micropegmatito 14
Mirmecito 14

PITOMBA, igarapé RR Basaltitos 14

PORÁQUE, igarapé RR Diatomito 7,69
Terra salitrosa 69

PORTO NACIONAL, município GO Cristal de rocha 10

POUSO ALTO, localidade RR Tantalita 10

QUINÓ, rio RR Arenito Roroimã 31
Arenitos 13
Derrame ácido 13
Diamante 4,56

Garimpagem 31
Kaieteur sandstones, formação 4
Ouro 4,56
Pórfiro 13
Quinó, garimpo 26
Quinó, membro 13

Vista Geral, superfície de aplanamento 33

287
RIO BRANCO, bacia

Ágata 7
Arenito Roraima 7
Arenitos 4
Argilitos 4
Chapada 4
Cristal de rocha 4,7
Diabásio 4
Diamante 4,7
Diatomito 31
Dioritos 7
Fisiografia 7
Geologia 4,7
Gnaisses 4,7
Granitos 4,7
Itabiritos 7
Jade-néfrita 7
Minas, série 7
Ouro 4,7
Peneplanície 7
Pórfiro 4
Província Magmática de Roraima 7
Quartzitos 7
Recursos minerais 7
Salitre 7
Serrania 4,7

RIO BRANCO, Território Federal

Aplanada, zona 25
Arenitos
Arcóseos
Boa Vista, formação
Calcário
Complexo Pré-Cambriano
Conglomerados
Diabásicos
Diamante
Estratigrafia
Gabros
Geomorfologia
Gnaisses
Guiana, série
Ignimbritos
Jaspilitos
Kaieteur, formação
Lateritas aluminosas
Levas
Maturuca, garimp
Noritos
Ouro
Pórfiros
Riodacitos
Roraima, formação
Roraima, vulcanismo
Serrana, zona
Siltitos
Suapi, garimp
Surum, formação
Tepequém, garimp
Página

RIO DE JANEIRO, Estado
Molibdênio 100

RIO GRANDE DO SUL, Estado
Molibdênio 100

RONDÔNIA, Território Federal
Cassiterita 44,52
Geocronologia 119
Ouro 52
Tantalita-columbíta 52

RORAIMA, monte
Altitude 18
Direção de corrente 125
Iacolito 3

RORAIMA, Território Federal
Agricultura 23
Alter do chão, formação 103
Amostragens 106
Análises colorimétricas 105,106
Análises espectrográficas 105,106
Anauá, associação 120
Anauá-Kuyuwini, associação 103
Anfibolitos 68,73
Anomalias geoquímicas 105,106
Apoteri, formação 103

290
<table>
<thead>
<tr>
<th>Termo</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arai, membro</td>
<td>103</td>
</tr>
<tr>
<td>Arcóseo</td>
<td>26</td>
</tr>
<tr>
<td>Areias</td>
<td>68</td>
</tr>
<tr>
<td>Arenito Kaieteur</td>
<td>3</td>
</tr>
<tr>
<td>Arenitos</td>
<td>26,68</td>
</tr>
<tr>
<td></td>
<td>11,103</td>
</tr>
<tr>
<td></td>
<td>56,95</td>
</tr>
<tr>
<td></td>
<td>23</td>
</tr>
<tr>
<td>Argilitos</td>
<td>26</td>
</tr>
<tr>
<td>Aspectos geográficos</td>
<td>113</td>
</tr>
<tr>
<td>Barreiras, formação</td>
<td>103</td>
</tr>
<tr>
<td>Barreiras, série</td>
<td>17</td>
</tr>
<tr>
<td>Basaltitos</td>
<td>14</td>
</tr>
<tr>
<td>Basaltos</td>
<td>109</td>
</tr>
<tr>
<td>Básica metamorfológica, sequência</td>
<td>107,120</td>
</tr>
<tr>
<td>Bauxita</td>
<td>56</td>
</tr>
<tr>
<td>Biassutio</td>
<td>105,106</td>
</tr>
<tr>
<td>Boa Vista, formação</td>
<td>102,109</td>
</tr>
<tr>
<td></td>
<td>10,21</td>
</tr>
<tr>
<td>Brechação</td>
<td>120</td>
</tr>
<tr>
<td>Carta geológica do Brasil</td>
<td>21</td>
</tr>
<tr>
<td>Cascalhos</td>
<td>68</td>
</tr>
<tr>
<td>Cassiterita</td>
<td>52,113</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Cataclasitos K'Mudku</td>
<td>120</td>
</tr>
<tr>
<td>Chert</td>
<td>26,106</td>
</tr>
<tr>
<td>Clima</td>
<td>20,109</td>
</tr>
<tr>
<td></td>
<td>45</td>
</tr>
<tr>
<td>Cobre</td>
<td>105,120</td>
</tr>
<tr>
<td></td>
<td>106,107</td>
</tr>
<tr>
<td></td>
<td>291</td>
</tr>
<tr>
<td>Termo</td>
<td>Página</td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>Colonização</td>
<td>45</td>
</tr>
<tr>
<td>Columbita</td>
<td>52</td>
</tr>
<tr>
<td>Coluna estratigráfica</td>
<td>20,107</td>
</tr>
<tr>
<td>Coluna geocronológica</td>
<td>120</td>
</tr>
<tr>
<td>Coluna litoestratigráfica</td>
<td>120</td>
</tr>
<tr>
<td>Colúvio-aluviais, coberturas</td>
<td>103</td>
</tr>
<tr>
<td>Complexo basal</td>
<td>67,73</td>
</tr>
<tr>
<td>Complexo cristalino</td>
<td>10,11</td>
</tr>
<tr>
<td></td>
<td>21</td>
</tr>
<tr>
<td>Complexo metamórfico</td>
<td>103</td>
</tr>
<tr>
<td>Concentrados de bateia</td>
<td>105,106</td>
</tr>
<tr>
<td>Condicionamento litológico-estrutural</td>
<td>81</td>
</tr>
<tr>
<td>Conglomerados</td>
<td>21,56</td>
</tr>
<tr>
<td></td>
<td>23,95</td>
</tr>
<tr>
<td>Correlações</td>
<td>26,120</td>
</tr>
<tr>
<td></td>
<td>56,107</td>
</tr>
<tr>
<td>Cristal de rocha</td>
<td>52</td>
</tr>
<tr>
<td>Cuquenan, formação</td>
<td>10</td>
</tr>
<tr>
<td>Deltaica, deposição</td>
<td>26</td>
</tr>
<tr>
<td>Depósitos quaternários</td>
<td>56</td>
</tr>
<tr>
<td>Diabásios</td>
<td>11,68</td>
</tr>
<tr>
<td></td>
<td>3,14</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Diamante</td>
<td>109,120</td>
</tr>
<tr>
<td></td>
<td>46,52</td>
</tr>
<tr>
<td></td>
<td>44,113</td>
</tr>
<tr>
<td></td>
<td>18,45</td>
</tr>
<tr>
<td></td>
<td>10,107</td>
</tr>
<tr>
<td></td>
<td>21,95</td>
</tr>
<tr>
<td>Diatomito</td>
<td>10,120</td>
</tr>
<tr>
<td></td>
<td>292</td>
</tr>
</tbody>
</table>
Geologia econômica

Geologia estrutural

Geomorfologia

Geoquímica

Gnaisses

Granito 1
Granito 2
Granito 3
Granito-gnaisses
Granito Saracura
Granitos

Granodioritos
Granófiros
Gramulitos
Hiperstenização
Idades
Ignimbritos

Página
56,107
21,81
23
113,120
56,107
81
113,120
107
19,33
17,28
45,48
23,107
105,106
68,109
73,103
56
107,120
107,120
107,120
21,81
81,103
28,109
11,68
56,81
73
103
109
120
26,120
107
294
<table>
<thead>
<tr>
<th>Item</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ilmenita</td>
<td>56</td>
</tr>
<tr>
<td>Imagem de radar</td>
<td>109</td>
</tr>
<tr>
<td>Imataca, episódio</td>
<td>109</td>
</tr>
<tr>
<td>Inselbergs</td>
<td>28</td>
</tr>
<tr>
<td>Intrusiva Roraima, sequência</td>
<td>120</td>
</tr>
<tr>
<td>Intrusivas básicas epimétamórficas</td>
<td>81</td>
</tr>
<tr>
<td>Intrusivas básicas não metamórficas</td>
<td>120</td>
</tr>
<tr>
<td>Intrusivas subvulcânicas Surumu</td>
<td>109</td>
</tr>
<tr>
<td>Intrusivo Roraima, grupo</td>
<td>109</td>
</tr>
<tr>
<td>Intrusões graníticas</td>
<td>109</td>
</tr>
<tr>
<td>Itabiritos</td>
<td>21</td>
</tr>
<tr>
<td>Jaspilitos</td>
<td>56</td>
</tr>
<tr>
<td>K'NdKa, episódio</td>
<td>109</td>
</tr>
<tr>
<td>Lacólito</td>
<td>3</td>
</tr>
<tr>
<td>Lagunar, episódio</td>
<td>3</td>
</tr>
<tr>
<td>Laterita</td>
<td>26</td>
</tr>
<tr>
<td>Lateritas aluminosas</td>
<td>17,109</td>
</tr>
<tr>
<td>Lava porfirítica</td>
<td>107,120</td>
</tr>
<tr>
<td>Lava queratofíra</td>
<td>21</td>
</tr>
<tr>
<td>Lava riodacítica</td>
<td>21</td>
</tr>
<tr>
<td>Levantamento sistemático</td>
<td>56,103</td>
</tr>
<tr>
<td>Litologia</td>
<td>113</td>
</tr>
<tr>
<td>Magnatismo básico</td>
<td>120</td>
</tr>
<tr>
<td>Manganês</td>
<td>67</td>
</tr>
<tr>
<td>Mapa geológico</td>
<td>105,106</td>
</tr>
<tr>
<td>Mapeamento básico</td>
<td>103</td>
</tr>
<tr>
<td>Mapeamento geológico</td>
<td>103,113</td>
</tr>
<tr>
<td>Maracá, associação</td>
<td>107</td>
</tr>
<tr>
<td>Maracá, associação</td>
<td>103,120</td>
</tr>
<tr>
<td></td>
<td>295</td>
</tr>
</tbody>
</table>
Matani, formação
Metabasaltos
Metaconglomerados
Metadiabásicos
Metassedimentos
Metavulcânicas, rochas
Mica
Micropegmatitos
Migmatitos
Milonitização
Mirmequito
Molibdênio

Molibdenita
Norito
Nova Olinda, formação
Ocorrências minerais
Ortoquartzitos
Ouro

Pecuária
Pegmatitos
Petrografia
<table>
<thead>
<tr>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piroxênio-anfibolito</td>
<td>67</td>
</tr>
<tr>
<td>Piroxênio-hornblenditos</td>
<td>68</td>
</tr>
<tr>
<td>População</td>
<td>18,45</td>
</tr>
<tr>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Projeto Roraima</td>
<td>103,113</td>
</tr>
<tr>
<td>Projeto Serra do Mel</td>
<td>56</td>
</tr>
<tr>
<td>Província magmática Roraima</td>
<td>106</td>
</tr>
<tr>
<td>Quartzitos</td>
<td>11</td>
</tr>
<tr>
<td>Quaternário</td>
<td>21,56</td>
</tr>
<tr>
<td>Quaternário aluvial</td>
<td>77</td>
</tr>
<tr>
<td>Quaternário indiferenciado</td>
<td>107,120</td>
</tr>
<tr>
<td>Queratófiros</td>
<td>120</td>
</tr>
<tr>
<td>Quinô, formação</td>
<td>28</td>
</tr>
<tr>
<td>Relações de contatos</td>
<td>21</td>
</tr>
<tr>
<td>Rio Branco, associação</td>
<td>120</td>
</tr>
<tr>
<td>Rio Branco, grupo</td>
<td>109</td>
</tr>
<tr>
<td>Rocha, amostragens</td>
<td>102</td>
</tr>
<tr>
<td>Roraima, episódio</td>
<td>105,106</td>
</tr>
<tr>
<td>Roraima, formação</td>
<td>109</td>
</tr>
<tr>
<td>Roraima, grupo</td>
<td>102,109</td>
</tr>
<tr>
<td>Roraima, projeto</td>
<td>26,120</td>
</tr>
<tr>
<td>Roraima, série</td>
<td>73,103</td>
</tr>
<tr>
<td>Roraima, vulcanismo</td>
<td>10,107</td>
</tr>
<tr>
<td>Rupumuni, associação</td>
<td>21,106</td>
</tr>
<tr>
<td></td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>56,73</td>
</tr>
<tr>
<td></td>
<td>103,120</td>
</tr>
<tr>
<td></td>
<td>297</td>
</tr>
</tbody>
</table>
Sedimentos de corrente, amostragens
Siltitos
Solos
Solos, amostragens
Suapi, formação
Suapi, membro
Surumu-Cotingo-Mai, interflúvios
Surumu, formação

Surumu, grupo
Tacutu, formação

Tacutu, graben
Tantalita

Tantalita-columbita
Tectônica

Tectonotermais, eventos
Transamazônico, ciclo
Transporte
Tratamento estatístico
Tufos
Tungstênio
Turmalina

Uaimapué, formação
Uairen, formação

Página
107
105, 106
23, 103
18, 45
105, 106
21
26
19
56, 103
107, 125
21
67
109, 120
56, 103
107
103
52, 120
56, 107
113
19, 109
81, 106
109
109
109
45
109
105, 106
10
95
106
298
Vegetação	103
Veios pegmatítides	68
Vulcânica Apoteri, formação	107,109
Vulcânicas Surumu	81
Vulcanismo basáltico	21
Vulcanismo Roraima	81,107
Vulcânicas ácidas, rochas	103
Zinco	105,106
Zircão	107
Xistos	56

ROROIMA, monte

Arenitos	13
Derrame ácido	13
Pórfiro	13

SANTA CATARINA, Estado

| Molibdênio | 100 |

SANTA ELENA DE UAI RÉN, cidade

Aluviões	98
Arenitos	98
Arenitos conglomeráticos	98
Canaima, formação	98
Coluna litoestratigráfica	98
Complexo-ígneo-metamórfico do embasamento	98
Diabásio	98
Estratigrafia	98
Fotogeologia	98
Gabro	98
Geologia 98
Geologia estrutural 98
Geomorfologia 98
Guaiquinima, formação 98
Imagens de radar 98
Intrusivas básicas 98
Jaspilitos 98
Iutitos 98
Roraima, formação 98

SANTO ANTÔNIO DO PÃO, fazenda 58
Vulcânicas Surumu

SÃO FELIX DO XINGU, município 10
Chumbo

SÃO JOÃO DEL REY, distrito 77
Orogenia Barbacena
Quartz-diorito

SERRA VERDE, localidade 56
Ouro

SHAKHTAMA, localidade 101
Análises espectrográficas
Apatita
Cobre
Diorito pórfiro
Geologia econômica
Granito pórfiro
Granodiorito pórﬁro 101
Intrusões subvulcânicas 101
Lampróﬁros 101
Molibdênio 101
Shakhtana, depósito 101

SIERRA LEONE, país AF
Dispersão 38
Geologia 111
Geoquímica 38
Molibdênio 38

SIUJ, igarapé RR
Basaltitos 14

SOCO, rio RR
Micropegmatito 14
Mirmequito 14

SUAPI, igarapé RR
Diamante 7

SUAPI, rio RR
Diamante 56
Ouro 56
Suapi, garimpo 56

SURINAME, país SU
Alteração hidrotermal 63
Anomalia magnética 77
<table>
<thead>
<tr>
<th>Termo</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armina, formação</td>
<td>71</td>
</tr>
<tr>
<td>Armina, série</td>
<td>55</td>
</tr>
<tr>
<td>Arsenopirita</td>
<td>63</td>
</tr>
<tr>
<td>Backuys Mountain, falhamento</td>
<td>77</td>
</tr>
<tr>
<td>Calcopirita</td>
<td>63</td>
</tr>
<tr>
<td>Coesewyne, formação</td>
<td>71</td>
</tr>
<tr>
<td>Coluna estratigráfica</td>
<td>55</td>
</tr>
<tr>
<td>Condicionamento litológico estrutural</td>
<td>63</td>
</tr>
<tr>
<td>Corantijn, grupo</td>
<td>71</td>
</tr>
<tr>
<td>Demerara, formação</td>
<td>71</td>
</tr>
<tr>
<td>Diabásio, Apotoé</td>
<td>71</td>
</tr>
<tr>
<td>Diabásio Avanavero</td>
<td>71</td>
</tr>
<tr>
<td>Diabásios</td>
<td>55,110</td>
</tr>
<tr>
<td>Diamante</td>
<td>114</td>
</tr>
<tr>
<td>Embasamento granítóide-vulcânico</td>
<td>66</td>
</tr>
<tr>
<td>Esfalerita</td>
<td>63</td>
</tr>
<tr>
<td>Espilito Katapi, formação</td>
<td>71</td>
</tr>
<tr>
<td>Estratigrafia</td>
<td>55,71</td>
</tr>
<tr>
<td>Falhas transcorrentes</td>
<td>77</td>
</tr>
<tr>
<td>Gabro Goeje</td>
<td>71</td>
</tr>
<tr>
<td>Geocronologia</td>
<td>77,110</td>
</tr>
<tr>
<td>Geologia</td>
<td>66</td>
</tr>
<tr>
<td>Geologia econômica</td>
<td>63</td>
</tr>
<tr>
<td>Gnaisse Falawatra</td>
<td>71</td>
</tr>
<tr>
<td>Granítico-vulcânica, assembléia</td>
<td>125</td>
</tr>
<tr>
<td>Granito 1</td>
<td>55</td>
</tr>
<tr>
<td>Granito 2</td>
<td>55</td>
</tr>
<tr>
<td>Granito intrusivo</td>
<td>66</td>
</tr>
</tbody>
</table>

302
Granitos jovens
Grauvacas
Horizontes carbonáceos
Horizontes tufáceos
Intrusões básicas
Magmatismo básico
Mapa geológico
Marawijane, grupo
Molibdenita
Nickerie, episódio
Nickerie, formação
Onverdacht, formação
Ouro
Paleocorrentes, direções
Paramaka, formação
Pirita
 Piroclásticas, rochas
Pirrotita
Riolito Dalbana
Rochas granitóides
Roraima, formação
Rosebel, formação
Rosebel, série
Scheelita
Sericitização
Silicificação
Ston, formação
Sulfetos
Tectônica

Página

63
63
63
63
66
55,110
71
71
63
66,77
71
71
71
63
110
63
71
71
55,71
66,110
71,114
55
63
63
63
71
63
63

303
Transamazônico, ciclo
Turmalina
Xistos verdes

SURUBAI, igarapé
Diamante

TABAIO, serra
Diabásio
Gabro
Itacolomito
Quartzito

TABATINGA, serra
Altitude

TACUTU, rio
Arenitos
Diabásios
Folhelhos
Ouro
Tacutu, formação

TAPAJÓS, rio
Calcário
Diamante
Ouro
Uatumã, série

TARUMA-AÇU

Página
63
63
63
RR
10
RR
13
14
13
13
RR
6
RR/GV
4,56
4
56
56
56
PA
10
46
46
29
AM
304
Arenitos 30
Geologia 30
Lateritas 30
Quaternário 30
Terciário 30

TASMANIA, Estado AU
Intrusivas básicas 22
Mecanismo de Intrusões 22

TEPEQUÉI, serra RR
Diamante 56
Ouro 56
Tepequém, garimpo 56

TIPORÉM, rio RR
Vista Geral, superfície de aplanamento 33

TOCANTINS, rio PA/GO/MA
Rutilo 10

TRAIRÍOC, igarapé RR
Hulha 10

TROMBETAS, rio PA
Uatumã, série 29

UATUMÃ, rio AM
Uatumã, série 29

305
<table>
<thead>
<tr>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arenitos</td>
<td>4</td>
</tr>
<tr>
<td>Diabásio</td>
<td>4</td>
</tr>
<tr>
<td>Fisiografia</td>
<td>15</td>
</tr>
<tr>
<td>Geologia</td>
<td>15</td>
</tr>
<tr>
<td>Mirmequito</td>
<td>14</td>
</tr>
<tr>
<td>Pegmatito</td>
<td>14</td>
</tr>
<tr>
<td>Tantalita</td>
<td>56</td>
</tr>
<tr>
<td>Turmalina</td>
<td>31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Localização</th>
<th>Estado</th>
</tr>
</thead>
<tbody>
<tr>
<td>UURUHU, rio</td>
<td>AM</td>
</tr>
<tr>
<td>Uatumá, série</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
</tr>
<tr>
<td>UUCÁ, localidade</td>
<td>RR</td>
</tr>
<tr>
<td>Traturas</td>
<td></td>
</tr>
<tr>
<td>Curo</td>
<td></td>
</tr>
<tr>
<td>Quartzito</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td></td>
</tr>
<tr>
<td>UURUMÉ, montanha</td>
<td>GU</td>
</tr>
<tr>
<td>Monadnocks</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td></td>
</tr>
<tr>
<td>VEADO, serra</td>
<td>RR</td>
</tr>
<tr>
<td>Basaltos</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
</tr>
<tr>
<td>VENEZUELA, país</td>
<td>VE</td>
</tr>
<tr>
<td>Alteração hidrotermal</td>
<td>63</td>
</tr>
<tr>
<td>Ambiente de sedimentação</td>
<td>96</td>
</tr>
<tr>
<td>Arsenopirita</td>
<td>63</td>
</tr>
<tr>
<td>Caballape, formação</td>
<td>40</td>
</tr>
<tr>
<td>Calcaopirita</td>
<td>63</td>
</tr>
<tr>
<td>Complexo Imataca</td>
<td>128</td>
</tr>
<tr>
<td>360</td>
<td></td>
</tr>
<tr>
<td>Tópico</td>
<td>Página</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>Condicionamento litológico-estrutural</td>
<td>63</td>
</tr>
<tr>
<td>Conglomerados</td>
<td>40</td>
</tr>
<tr>
<td>Correlação</td>
<td>26</td>
</tr>
<tr>
<td>Depósitos quaternários</td>
<td>9</td>
</tr>
<tr>
<td>Deriva dos continentes</td>
<td>128</td>
</tr>
<tr>
<td>Diábásio Roraima</td>
<td>57</td>
</tr>
<tr>
<td>Diamante</td>
<td>9,128</td>
</tr>
<tr>
<td>Diferenciação magmática</td>
<td>22</td>
</tr>
<tr>
<td>Diques</td>
<td>22</td>
</tr>
<tr>
<td>Dobramentos</td>
<td>40,96</td>
</tr>
<tr>
<td>Efeitos metassomáticos</td>
<td>22</td>
</tr>
<tr>
<td>El Callao, formação</td>
<td>40</td>
</tr>
<tr>
<td>Esfalerita</td>
<td>63</td>
</tr>
<tr>
<td>Estratigrafia</td>
<td>40,72</td>
</tr>
<tr>
<td>Falhamentos</td>
<td>96</td>
</tr>
<tr>
<td>Fisiografia</td>
<td>96</td>
</tr>
<tr>
<td>Geocronologia</td>
<td>40</td>
</tr>
<tr>
<td>Geologia</td>
<td>49</td>
</tr>
<tr>
<td>Geologia econômica</td>
<td>9,40</td>
</tr>
<tr>
<td>Geologia</td>
<td>63,108</td>
</tr>
<tr>
<td>Geomorfologia</td>
<td>9</td>
</tr>
<tr>
<td>Geoculinale</td>
<td>40</td>
</tr>
<tr>
<td>Gnaisses</td>
<td>9</td>
</tr>
<tr>
<td>Granitos</td>
<td>9</td>
</tr>
<tr>
<td>Granitos Juvenis</td>
<td>63</td>
</tr>
<tr>
<td>Grauvacas</td>
<td>40,63</td>
</tr>
<tr>
<td>Grauvacas conglomeráticas</td>
<td>40</td>
</tr>
<tr>
<td>Horizontes carbonáceos</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>307</td>
</tr>
<tr>
<td>Tópico</td>
<td>Página</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>Horizontes tufáceos</td>
<td>63</td>
</tr>
<tr>
<td>Intrusivas básicas</td>
<td>22</td>
</tr>
<tr>
<td>Intrusivas básicas concordantes</td>
<td>22</td>
</tr>
<tr>
<td>Intrusões básicas</td>
<td>40</td>
</tr>
<tr>
<td>Kimberlitos</td>
<td>128</td>
</tr>
<tr>
<td>La Quinta, formação</td>
<td>26</td>
</tr>
<tr>
<td>Lemoitio</td>
<td>40</td>
</tr>
<tr>
<td>Laves espilíticas</td>
<td>40</td>
</tr>
<tr>
<td>Mecanismo de intrusão</td>
<td>22</td>
</tr>
<tr>
<td>Molibdenita</td>
<td>63</td>
</tr>
<tr>
<td>Ouro</td>
<td>63,128</td>
</tr>
<tr>
<td>Paleocorrentes, direções</td>
<td>105</td>
</tr>
<tr>
<td>Pastora, formação</td>
<td>96</td>
</tr>
<tr>
<td>Pastora, série</td>
<td>40</td>
</tr>
<tr>
<td>Petrogênese</td>
<td>22</td>
</tr>
<tr>
<td>Petrografia</td>
<td>22</td>
</tr>
<tr>
<td>Pirrotita</td>
<td>63</td>
</tr>
<tr>
<td>Porfiritos</td>
<td>9</td>
</tr>
<tr>
<td>Província Magmática de Roraima</td>
<td>22</td>
</tr>
<tr>
<td>Rio Yama, formação</td>
<td>40</td>
</tr>
<tr>
<td>Roraima, formação</td>
<td>22,128</td>
</tr>
<tr>
<td></td>
<td>9,40</td>
</tr>
<tr>
<td></td>
<td>96,105</td>
</tr>
<tr>
<td>Scheelita</td>
<td>63</td>
</tr>
<tr>
<td>Sericitização</td>
<td>63</td>
</tr>
<tr>
<td>Silicificação</td>
<td>22,63</td>
</tr>
<tr>
<td>Sulfetos</td>
<td>63</td>
</tr>
<tr>
<td>Tectônica</td>
<td>40,96</td>
</tr>
<tr>
<td>Usupamo, batólito</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>308</td>
</tr>
<tr>
<td>Título</td>
<td>Página</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>Vulcânicas ácidas, rochas</td>
<td>128</td>
</tr>
<tr>
<td>Xistos Verdes</td>
<td>63</td>
</tr>
<tr>
<td>Yuruari, formação</td>
<td>40</td>
</tr>
<tr>
<td>VERDE, serra</td>
<td></td>
</tr>
<tr>
<td>Chert</td>
<td>26</td>
</tr>
<tr>
<td>Diabásio</td>
<td>62</td>
</tr>
<tr>
<td>WURUMU, montanhas</td>
<td></td>
</tr>
<tr>
<td>Nonadnocks</td>
<td>64</td>
</tr>
<tr>
<td>XINGU, rio</td>
<td></td>
</tr>
<tr>
<td>Geocronologia</td>
<td>119</td>
</tr>
<tr>
<td>Uatumã, série</td>
<td>29</td>
</tr>
<tr>
<td>XIRIANA, rio</td>
<td></td>
</tr>
<tr>
<td>Navegabilidade</td>
<td>6</td>
</tr>
</tbody>
</table>
7.4. - ALISTAGEM DOS TRABALHOS NÃO CONSULTADOS

6. BROWN, C.B. & SAWKINS, J.G. - Reports on the physical, descriptive and economic geology of Br. Guiana... In: GANSSE, A. - The Guiana Shield (S.America); geological observations | Mineralogish - Petrogr. Institut der Universitat Bern, Sahlistrasse 6, 3012 Bern, Switzerland il.

8. CARPENTER, R.H. - Geology and ore deposits of the Questa molybdenum mine area, Taos County, New Mexico... In: ISHIHARA, S. - Structural factors controlling formation of molybdenum deposits. Soc. Mining Japan Spec. Issue, 3, p. 34-40 |s.d.| il.

10. COBB, E.H. - Molybdenum, tin and tungsten occurrences in

19. HAWKES, D.D. - Differentiation of the Tumtumari-Kopinang

