PROJETO
MAPAS METALOGENÉTICOS
E DE PREVISÃO
DE RECURSOS MINERAI
FOLHA SD.24-X-A SALVADOR
ESCALA 1:250 000
VOLUME I
TEXTO E MAPAS

Adriano A. M. Martins

CPRM - DIDOTE
ARQUIVO TECNICO
Relatório n.º 1887-5
N.º de Volumes: 2

COMPANHIA DE PESQUISA DE RECURSOS MINERAI
SUPERINTENDÊNCIA REGIONAL DE SALVADOR

1986
PROJETO
MAPAS METALOGENÉTICOS
E DE PREVISÃO
DE RECURSOS MINERAIS
FOLHA SD.24-X-A SALVADOR

COORDENADOR GERAL
Luiz Peixoto de Siqueiro
(DEPEG / DIMETA)

COORDENADOR REGIONAL
João Dalton de Souza

EQUIPE EXECUTORA

Geologia - Metalogenia - Previsão
Adriano A. M. Martins

Geoquímica
José Erasmo de Oliveira
Léa Rodrigues Teixeira

Geofísica
Paulo José Pereira Gomes
Raimundo A. A. Dias Gomes

Colaboração Especial
João Pedreira das Neves
PROJETO
MAPAS METALOGENÉTICOS
E DE PREVISÃO
DE RECURSOS MINERAIS
FOLHA SD.24-X-A SALVADOR

ÍNDICE DOS VOLUMES

Volume I - TEXTO E MAPAS
Volume II - MAPAS DE SERVIÇOS
APRESENTAÇÃO

Este trabalho constitui o documento final do Projeto Mapas Metalogenéticos e de Previsão de Recursos Minerais, apresentando os elementos e resultados referentes aos estudos metalogenéticos e previsionais realizados na Folha Salvador (SD.24-X-A), com base nas informações geológicas multidisciplinares disponíveis até janeiro de 1986, através da Companhia de Pesquisa de Recursos Minerais (CPRM), na Superintendência Regional de Salvador (SUREG/SA), para a Divisão de Geologia e Mineralogia (DGM) do Departamento Nacional da Produção Mineral (DNPM).

Consta de dois volumes, sendo que o primeiro tem o texto, a Listagem dos Recursos Minerais e os mapas finais (Carta Metalogenética, Carta de Previsão de Recursos Minerais e Carta de Previsão para Planejamento de Ações Governamentais), enquanto o segundo volume apresenta os mapas de serviço, a partir dos quais foram obtidos os mapas finais, representados por sete cartas temáticas: Carta Tectono-Estrutural, Carta Lito-Ambiental, Carta Geofísica, Carta Geoquímica, Carta Geocronológica, Carta de Recursos Minerais e Carta Geológica.

Com a apresentação da Folha Salvador, do quarto conjunto de folhas executadas pela SUREG/SA, o Projeto Mapas Metalogenéticos e de Previsão de Recursos Minerais dá continuidade ao novo estágio no desenvolvimento das Ciências Geológicas no Brasil, por ele inaugurado em agosto de 1981, configurando na elaboração sistemática de cartas metalogenéticas e de cartas previsionais, na escala 1:250.000, através de um programa plurianual que visa cobrir progressivamente todo o território brasileiro, de modo diferenciado, nas escalas 1:250.000 e 1:1.000.000.
SUMÁRIO

APRESENTAÇÃO .. i

RESUMO .. iii

ABSTRACT ... iv

1. INTRODUÇÃO .. 1

1.1 Considerações Gerais 1

1.2 Objetivos .. 3

1.3 Justificativas ... 4

1.4 Metodologia .. 5

2. FOLHA SALVADOR (SD.24-X-A) 11

2.1 Localização .. 11

2.2 Conjunto de Cartas 11

2.3 Arcabouço Tectono-Geológico 13

2.4 Características Metalogenéticas 20

2.5 Mineralizações .. 24

2.6 Previsão das Áreas Mineralizadas 32

2.7 Áreas para Pesquisas Complementares 36

3. REFERÊNCIAS BIBLIOGRÁFICAS 42

4. LISTAGEM DOS RECURSOS MINERAIS 57

5. MAPAS

Carta Metalogenética
Carta de Previsão de Recursos Minerais
Carta de Previsão para Planejamento de Ações
Governamentais
RESUMO

Este documento refere-se à análise metalogenética e previsional executada na Folha Salvador (SD.24-X-A), situada na região leste do Estado da Bahia, com base em todas as informações geológicas multidisciplinares disponíveis até janeiro de 1966, através do Projeto Mapas Metalogenéticos e de Previsão de Recursos Minerais, do Convênio DNPM-CPRM.

Os resultados deste estudo estão sintetizados na Carta Metalogenética, na Carta de Previsão de Recursos Minerais e na Carta de Previsão para Planejamento de Ações Governamentais (Volume I), as quais formam um conjunto único e indissociável e não devem ser consideradas separadamente.

A Carta Metalogenética mostra, sobre uma base tectono-geológica especializada, a localização dos 323 (trezentos e vinte e três) jazimentos minerais registrados na Folha Salvador, representados por símbolos específicos caracterizando a substância mineral principal, a morfologia e o tipo genético do jazimento, além de relacionar a associação mineralógica-metalogenética. Os combustíveis fósseis petróleo/gás constituem os principais recursos minerais da área, seguindo-se calcário, conchífero, argila, caolim, areia e granulito (pedra para construção), todos em exploração. O bário, turfa e salgema destacam-se, dentre os recursos potenciais, por já possuírem reservas geológicas, enquanto as demais substâncias cadastradas, como garimpos abandonados e indícios/ocorrências, são: quartzo, manganes, cálcio, cobre, sílex, grafita e sulfato.

A Carta de Previsão de Recursos Minerais indica as 25 (vinte e seis) áreas mais favoráveis para a pesquisa mineral, com menores riscos de investimentos de capital, através da classificação das potencialidades destas áreas para determinados recursos minerais, destacando-se: calcário, conchífero, turfa, bário-chumbo-zinco-cobre, manganes e ouro. Apresenta a localização dos jazimentos minerais, classificados em indícios/ocorrências minerais, depósitos, jazidas, minas e garimpos e a tabulação das reservas geológicas dos depósitos e das reservas medidas, indicadas e inferidas das jazidas e minas. As concentrações minerais estão lançadas sobre uma base geográfica especializada contendo informações sobre a infra-estrutura da região.

A Carta de Previsão para Planejamento de Ações Governamentais propõe-se fundamentalmente com as programações do DNPM e de outros órgãos governamentais, pela indicação das necessidades de serviços complementares e sua metodologia, em 3 (três) áreas, para a melhor avaliação das potencialidades minerais da Folha Salvador, com destaque para a área que engloba a Região Metropolitana de Salvador, que incluirá a cartografia geotécnica do Município de Salvador e estudos de Geologia de Planejamento.

A listagem dos Recursos Minerais relaciona os jazimentos minerais pelos seus números de referência nas cartas, identificando-os nominalmente e fornecendo informações complementares sobre estas concentrações minerais.

As treze cartas temáticas, a partir das quais foram elaboradas as três cartas finais compõem o (Volume II): Carta Tectono-Estrutural, Carta Litoambiental, Carta Geofísica, Carta Geoquímica, Carta Geocronológica, Carta de Recursos Minerais e Carta Geológica.
ABSTRACT

This report refers to the metallogenic and previsional analysis of the Salvador(SD.24-X-A) Sheet (1°30' x 1000'), located in the eastern region of Bahia State, northeast Brazil, produced by the Projeto Mapas Metalogenéticos e de Previsão de Recursos Minerais (Metallogenic and Mineral Resource Previsional Maps Project) based on an integrated reappraisal of all available data in January 1986 from several branches of the geological sciences. This Project is being performed under a programme between the Departamento Nacional de Produção Mineral (DNPM) and the Companhia de Pesquisa de Recursos Minerais (CPRM).

The end products of this analysis are synthesized on the Carta Metalogenética (Metallogenic Map), Carta de Previsão de Recursos Minerais (Mineral Resource Previsional Map) and Carta de Previsão para Planejamento de Ações Governamentais (Government Previsional Planning Map). These maps form a unique and undissociable unit so that none of them should be considered separately.

The Metallogenic Maps shows on a special tectonic-geologic base 323 (three hundred and twenty-two) ore concentrations recorded on the Salvador Sheet presented by symbols describing the main mineral substance, mineralog-metallogenic association, shape and genetic type. Petroleum/gas appears as the most important mineral resources of the area, followed by shelly limestone, clay, kaolin, sand and building stone (granulite), every one being exploited. Baryum, peat and salt are also important due to its geological reserves. Quartz, manganese, limestone, copper, silex, graphite and sulfate these also exist in the area appearing as abandoned prospects ("ga-rimpos") and/or mineral showing/occurrence.

The Mineral Resource Previsional Maps gives to the private mining companies the location of 26 (twenty-six) more favourable areas for mineral research projects with less risks to investments, through the classification of the potential resources of these areas in relation to certain mineralizations, outstanding among which are shelly limestone, peat, baryum-lead-zinc-copper, manganese and gold. It shows the ore concentrations classified according to their economic and legal status as mineral showing/occurrence, ore deposit, economic ore deposit ("jazida"), mine and prospect ("ga-rimpo") and presents the geological or potential reserves of ore deposits and the identified reserves of economic ore deposits and mines. This map has a special geographic base showing the principal data about the infra-structure of the area.

The Government Previsional Planning Map provides a basis for the mineral research programmes of DNPM and other governmental organizations by showing 3 (three) areas that need complementary mineral research surveys and their suitable methodology, for a better appraisal of the potential mineral resources of the Salvador Sheet, but with distinction to the area that comprises the Metropolitan Area of Salvador, including the geotechnical mapping and the studies of planning geology.

A Listing of Mineral Resources, keyed by number to the maps, identifies the ore concentrations by name and gives supplementary informations about them.

The three maps related above were constructed by the integrated analysis of the following thematic maps (Volume II): Carta Tectono-Estrutural(Tectono-Structural Map), Carta Lito-Ambiental(Lithological Map), Carta Geofísica(Geophysical Map), Carta Geoquímica(Geochemical Map), Carta Geocronológica(Geochronologic Map), Carta de Recursos Minerais(Mineral Resources Map) and Carta Geológica(Geologic Map).
1. INTRODUÇÃO

1.1 Considerações Gerais

O Projeto Mapas Metalogenéticos e de Previsão de Recursos Minerais constitui uma atividade pioneira e um novo estágio no desenvolvimento das Geociências no Brasil, na medida em que se dedica, pela primeira vez no País, à elaboração sistemática de cartas metalogenéticas e de cartas provisionais regionais nas escalas 1:250.000 e 1:1.000.000.

O projeto, ora em execução pela Companhia de Pesquisa de Recursos Minerais (CPRM), para a Divisão de Geologia e Mineralogia (DGM) do Departamento Nacional da Produção Mineral (DNPM), foi iniciado em agosto de 1981, tem caráter programático pluriannual e visa cobrir progressivamente o território da República Federativa do Brasil com estudos metalogenéticos e provisionais sistemáticos em folhas 1º30' x 1º00' (escala 1:250.000) (Figura 1), nas áreas onde exista maior incidência de levantamentos básicos de natureza geológica, geoquímica e geofísica e em folhas 6º00' x 4º00' (escala 1:1.000.000), no caso específico da Região Amazônica.

Para assegurar a uniformidade de critérios de interpretação e de apresentação dos resultados, a estrutura organizacional do projeto, na CPRM, compreende as Coordenações Regionais sediadas nas Superintendências Regionais e na Residência de Porto Velho (Rondônia) e a Coordenação Geral e supervisão técnica centradas no Escritório do Rio de Janeiro, respectivamente através da DIMETA (Divisão de Metalogênica) e DIGEPE/DIGEOQ/DIGEOF (Divisão de Geologia Básica e Projetos Específicos/Divisão de Geoquímica/Divisão de Geofísica), estando as duas primeiras divisões ligadas ao DEPEG (Departamento de Pesquisa Geológica) e as duas últimas ao DEPRO (Departamento de Prospeção).
Em sendo um programa sistemático pioneiro no Brasil, é evidente que muitas foram as dificuldades encontradas na elaboração das cartas metalogenéticas e preventais do primeiro conjunto de folhas, na escala 1:250.000, prioritariamente selecionadas para iniciar o projeto. Entre os principais fatores condicionantes das dificuldades encontradas, podem ser citados: 1) Inexistência de uma tecnologia nacional de cartografia metalogenética e de previsão de recursos minerais; 2) Diversidades de métodos e critérios para o estabelecimento de tais cartas, variáveis em relação aos países mineiros desenvolvidos onde são elaboradas (Rússia, Estados Unidos, França, Canadá, Austrália, etc.); e 3) Consequentemente, necessidade de se estabelecer a filosofia, os métodos e os critérios definidores de uma cartografia metalogenética e preventional única e adequada a todas as regiões geográficas, com suas diversidades de ambientes geológicos e de áreas metalogenéticas, de um País de dimensões continentais como o Brasil.

Essas dificuldades tecnológicas-científicas foram sendo paulatinamente superadas, e já estavam satisfatoriamente superadas ao término das cartas metalogenéticas e preventiais do primeiro conjunto de folhas na escala 1:250.000, a partir das pesquisas desenvolvidas pela Coordenação Geral e por algumas Coordenações Regionais do projeto, das discussões/reuniões entre os coordenadores e supervisores e da experiência adquirida pelas equipes executoras das referidas folhas.

Outros obstáculos de ordem operacional, também detectados na fase inicial do projeto, como a dificuldade de e/ou impossibilidade de acesso a dados geológicos e mineiros de certas áreas mineralizadas, por serem considerados confidenciais pelas empresas privadas ou governamentais, conces-
sionárias dos alvarás de pesquisa, ou, com menor frequência, devido a entraves burocráticos em órgãos e empresas governamentais, infelizmente têm persistido e prejudicado a execução das cartas metalogenéticas e provisionais dos novos conjuntos de folhas na escala 1:250.000 estudadas pelo projeto.

1.2 Objetivos

O Projeto Mapas Metalogenéticos e de Previsão de Recursos Minerais tem como objetivo básico a elaboração de documentos cartográficos de prognóstico, representados pelos seguintes mapas finais especializados, na escala 1:250.000 (ou 1:1.000.000 na Região Amazônica).

1) Carta Metalogenética - Elaborada de forma a identificar os recursos minerais e os fatores lito-tectono-estrutural-ambientais que controlam a sua distribuição espaço-temporal.

2) Carta de Previsão de Recursos Minerais - Confeccionada com o objetivo de indicar, de forma direta, simples e clara, as zonas favoráveis para a pesquisa dos principais bens minerais, reais ou potenciais, caracterizados na região analisada, de modo a orientar os investimentos de capital e diminuir os riscos do minerador na prospecção mineral.

3) Carta de Previsão para Planejamento de Ações Governamentais - Seu objetivo é indicar aos órgãos governamentais, de forma objetiva, as áreas carentes de trabalhos adicionais de levantamentos básicos e pesquisa mineral, para a melhor avaliação das potencialidades minerais destas áreas. Servirá de documento-base para o planejamento dos projetos do DNPM.
1.3 Justificativas

As principais justificativas para a execução do Projeto Mapas Metalogenéticos e de Previsão de Recursos Minerais são as seguintes:

1) Existência de enorme acervo de dados geológicos, geofísicos e geoquímicos, sobre a maior parte do território brasileiro, adquiridos principalmente nos últimos quinze anos, através dos vários levantamentos sistemáticos geológicos, aerogeofísicos, gravimétricos e geoquímicos, nas escalas regional e de semidetalhe, promovidos pelo DNPM, através da CPRM, e por outros órgãos e empresas vinculadas aos governos federal e estaduais, bem como através de trabalhos de pesquisa mineral efetuados por empresas privadas.

2) Esses levantamentos regionais e de semidetalhe foram realizados em épocas distintas e por entidades e/ou equipes diversas, carecendo de uma uniformização de princípios e métodos de execução e de conceitos e interpretações geológicas/geoquímicas.

3) Os mapeamentos geológicos, bem como os demais levantamentos executados, apesar de na maioria das vezes serem de boa qualidade, não deram a resposta esperada em termos de descoberta de novas jazidas minerais, de seleção criteriosa de áreas mais favoráveis para investimentos governamentais e privados em pesquisa mineral e de orientação para o planejamento governamental do setor mineral, justamente por se ressentirem da utilização sistemática dos princípios básicos da metalogênia.

4) Inexistência de, e consequentemente necessidade de, se obter, documentos de fácil consulta contendo os resultados do tratamento pormenorizado e a avaliação integrada, com base em conceitos e interpretações geológicas.
modernas e uniformes e à luz dos princípios básicos da análise metalogenética e previsional, de todos os dados geológicos, geoquímicos e geofísicos disponíveis, a fim de sanar as deficiências acima listadas.

1.4 Metodologia

A metodologia aplicada para a obtenção das cartas metalogenéticas e das cartas previsionais na escala 1:250.000, elaboradas pelo Projeto Mapas Metalogenéticos e de Previsão de Recursos Minerais, é inspirada basicamente nos princípios metodológicos de pesquisa metalogenética e previsional de Orlova & Shatalov(1960) e no denominado "método da metalogênese complexa estrutural e regional" de K.I. Satpaev (1955, apud Orlova & Shatalov, 1960), da Escola Metalogenética Russa.

O procedimento determinado por esses princípios e métodos metalogenéticos e previsionais está fundamentado na elaboração de um conjunto de cartas temáticas, a partir de cuja integração e inter-relação são produzidas as cartas metalogenéticas e previsionais finais. No presente projeto, sempre que os dados disponíveis são suficientes, são confeccionadas sete cartas temáticas, aqui denominadas mapas de serviço, representadas pela Carta Geológica, Carta Lito-Ambiental, Carta Tectono-Estrutural, Carta Geofísica, Carta Geoquímica, Carta Geocronológica e Carta de Recursos Minerais; enquanto os mapas finais compreendem a Carta Metalogenética, a Carta de Previsão de Recursos Minerais e a Carta de Previsão para Planejamento de Ações Governamentais. Da mesma forma que os mapas finais, os mapas temáticos ou de serviço supracitados são elaborados na escala 1:250.000.

Os mapas de serviço são preparados individualmente, em transparências separadas, porém eles são indisso
ciáveis e mutuamente dependentes, de tal modo que cada um destes mapas temáticos só é considerado finalizado, com vistas à elaboração dos mapas finais, após ter sido analisado e revisado à luz dos demais. Na elaboração destes mapas temáticos são utilizadas todas as informações geológicas disponíveis, na época de sua execução, incluindo a reanálise e integração dos dados contidos nos seguintes documentos, entre outros: relatórios técnicos e trabalhos publicados ou inéditos, teses, mapas geológicos e geoquímicos, cadernetas de campo, fichas de descrição de afloramentos e de cadastramento de ocorrências minerais, boletins de análises petrográfica, cacoográfica, química e geoquímica, perfis compostos de furo de sonda, fotografias aéreas convencionais, imagens de radar e satélite, relatórios de lavra, relatórios de pesquisa aprovados, não aprovados e arquivados, etc.

Embora o processo operatório, para obtenção dos mapas finais, esteja baseado nos princípios e métodos de cartografia metalogenética e previsional dos autores russos anteriormente citados, e tenham sido feitas consultas à Carte Metallogénique de l’Europe 1:2.500.000 (BRGM-UNESCO, 1968-1970), à Carte Metallogénique des Massifs des Vosges et de la Forêt-Noire 1:400.000 (BRGM, 1975) e ao Mineral Resources Map of the Nabetna Quadrangle, Alaska 1:250.000 (USGS, 1975), os conteúdos e consequentemente as legendas das cartas metalogenéticas e previsionais, bem como dos mapas de serviço, foram adaptados e/ou definidos de modo a se ajustarem às condições tectono-geológicas e metalogenéticas do território brasileiro, conforme atualmente conhecidas, e tendo em mente que tais legendas seriam únicas para todo o Brasil. Assim, estes mapas têm legendas próprias, sendo que as das duas cartas previsionais são exclusivamente brasileiras,
desenvolvidas e definidas durante a execução da etapa inicial/primeiro conjunto de folhas do projeto.

Carta Tectono-Estrutural – Tem como objetivo fornecer parâmetros para a caracterização das relações espaciais das mineralizações com os elementos estruturais dentro de cada unidade geotectônica. Contém os elementos estruturais, os mais completos possíveis, representados pelo traça do contínuo e/ou medidas de atitudes dos acamamentos, foliações, falhamentos, fraturas, clivagens, lineações, eixos de dobras, etc., bem como, a individualização das unidades geotectônicas.

Carta Lito-Ambiental – Nela são individualizadas as unidades litológicas e as associações e complexos de rochas, caracterizadas em função da sua natureza petrográfica/petroológica e da sua idade estratigráfica, bem como indicados os ambientes de deposição ou formadores de rocha, porém sem se fazer referência aos nomes das unidades estratigráficas formais e informais (andar, formação, grupo, unidade etc.). Objetiva o estabelecimento das correlações porventura existentes entre uma determinada mineralização e sua(s) rocha(s) hospedeira(s) preferencial(is).

Carta Geofísica – Contém a interpretação geológica-geofísica de todos os dados dos levantamentos aerogeofísico e gravimétrico disponíveis, e, em certos casos, de outros levantamentos terrestres cabíveis, quer pela escala do serviço, quer pela qualidade dos dados. Nela é feita a correlação entre as características geofísicas e as unidades de rochas e são assinalados os elementos estruturais e as principais unidades geotectônicas/gravimétricas.

Carta Geoquímica – Objetiva fornecer subsídios para a caracterização das leis metalogenéticas da repar
tição das mineralizações, pela representação das áreas e
donos geoquimicamente anômalas para determinados elementos
e das "faixas geoquímicas" definidas por associações geoquir-
nicas/metalogenéticas, como, por exemplo, a associação Cr-Ni
(† platinóides) ligada a rochas básicas-ultrabásicas, confor-
me interpretadas a partir de todos os dados geoquímicos (em
sedimento de corrente, concentrado de aluvião e de solo, solo
e rocha) disponíveis.

Carta de Recursos Minerais – Nesta carta
são representadas, sobre uma base com as unidades tectônicas
individualizadas, todas as concentrações minerais registra-
das na área, classificadas quanto a sua importância econômi-
ca e/ou situação legal em: indício/ocorrência mineral, depó-
sito, jazida, mina e garimpo. São ainda diferenciados os de-
pósitos e ocorrências extensivos, aflorantes ou não afloran-
tes, e as minas e garimpos a céu aberto ou subterrâneos e se
em explotação ou paralisados.

Carta Geocronológica – Contém a localização
de todos os dados geocronológicos disponíveis, que serão a
"posteriori" interpretados com base na correlação adequada
com as cartas geológica e tectono-estrutural, principalmente.

Carta Geológica – É o último mapa de servi-
ço finalizado, contendo a atualização e integração dos conhe-
cimentos geológicos da área e configurando, portanto, uma nova
base geológica na escala 1:250.000 dessa área.

Carta Metalogenética – É constituída por uma
base tectono-geológica especializada sobre a qual são assi-
nalados todos os jazimentos minerais, representados por sím-
bolos específicos caracterizando suas feições metalogenéti-
cas principais, quais sejam, substância mineral principal, as
sociações mineralógica/metalogenética, morfologia e tipo
genético. Contém também a representação dos dados de prospecção mineral, isto é, as anomalias geoquímicas e geofísicas.

Carta de Previsão de Recursos Minerais – É elaborada a partir da Carta Metalogenética e indica as áreas mais propícias para pesquisa mineral, através da classificação das potencialidades destas áreas para determinados recursos minerais. Contém também a localização dos jazimentos minerais classificados de acordo com o seu "status" mineiro (indício/ocorrência mineral, depósito, jazida, mina e garimpo) e a tabulação da potencialidade(reserva geológica) dos depósitos e garimpos e as reservas(medida, indicada e inferida) das jazidas e minas. Fornece ainda informações sobre a infra-estrutura da região, através da representação cartográfica de elementos importantes na viabilização de um empreendimento mineiro, tais como, rodovias, ferrovias, aeroportos, portos, rios navegáveis, meios de telecomunicações, disponibilidade de energia elétrica, capacidade dos reservatórios d'água, etc...

Carta de Previsão para Planejamento de Ações Governamentais – Esta carta informa ao DNPM e outros órgãos governamentais as áreas nas quais devem ser executados serviços de pesquisa complementares para se ter uma avaliação mais realística das potencialidades minerais da região estudada, com indicação da vocação em termos de mineralizações, dos serviços necessários e sua metodologia e da ordem de prioridade de investimentos, nas áreas recomendadas.

A Carta Metalogenética e as duas Cartas Previsionais se completam entre si, formando um conjunto único e indissociável, de modo que essas cartas não devem e não podem ser consideradas separadamente. Este conjunto de car
tas é complementado pela Listagem dos Recursos Minerais, contendo dados sobre a localização, características metalogénicas, "status" da mineralização e dados econômicos dos jazimentos minerais.
2. Folha Salvador (SD.24-X-A)

2.1 Localização

A Folha Salvador (SD.24-X-A), anteriormente denominada Alagoinhas, que constitui o objetivo deste documento, tem como limites as coordenadas 37°30' - 39°00' de longitude WGR e 12°00' - 13°00' de latitude S e abrange uma superfície de aproximadamente 11.554 km², correspondente à área continental, inserida na região leste do estado, englobando parte das seguintes microrregiões: Recôncavo Baiano, Salvador, Feira de Santana e Agrestes de Alagoinhas.

2.2 Conjunto de Cartas

Os resultados obtidos a partir dos estudos metalogenéticos e previsionais executados na Folha Salvador estão sintetizados nos mapas finais, representados pela Carta Metalogênica, Carta de Previsão de Recursos Minerais e Carta de Previsão para Planejamento de Ações Governamentais, contidas neste Volume I. Os mapas temáticos ou de serviço, a partir dos quais foram produzidos os mapas finais, compõem o Volume II deste relatório: Carta Tectono-Estrutural, Carta Lito-Ambiental, Carta Geofísica, Carta Geoquímica, Carta Geocronológica, Carta de Recursos Minerais e Carta Geológica.

Os mapas apresentados resultam do trabalho de avaliação integrada de todas as informações geológicas, geofísicas, geoquímicas, geocronológicas, de cadastramento mineral e de mineração disponíveis até janeiro de 1986.

As informações multidisciplinares ora apresentadas foram obtidas mediante a consulta e pesquisa de 31 relatórios técnicos e trabalhos publicados ou inéditos sobre geologia, geologia estrutural e geotectônica, 4 sobre cadastramento mineral,
FIGURA 1 - Programação dos Cartas Metalogenéticos e de Previsão de Recursos Minerais 1:250.000
3 sobre prospecção geofísica, 3 sobre prospecção geoquímica, 26 sobre metalogênio, geologia econômica e pesquisa mineral, 2 sobre geocronologia, e 85 relatórios de pesquisa e lavras realizados para o DNPM.

Os principais dados reavaliados totalizaram cerca de 446 afloramentos estudados, 114 análises petrográficas, 138 amostras geoquimicamente analisadas de sedimento de corrente, 34 amostras de rochas, 14 amostras de solo e 322 jazimentos minerais cadastrados.

A seguir serão enfocados os principais resultados dos estudos metalogenéticos e previsórios empreendidos na Folha Salvador, através da descrição sucinta dos principais elementos representados nas três cartas finais, com ênfase aos dados tectono-geológicos e metalogenéticos contidos na Carta Metalogenética (item 2.3 a 2.5), já que os elementos configurados na Carta de Previsão de Recursos Minerais e na Carta de Previsão para Planejamento de Ações Governamentais comportam uma abordagem mais sumarizada, devido ao caráter auto-explicativo das legendas destas cartas previsórias (itens 2.6 e 2.7).

2.3 Arcabouço Tectono-Geológico

A área englobada pela Folha Salvador apresenta, em cerca de 30% da extensão cartografada, terrenos cuja evolução geológica foi precambriana, representados por rochas arqueanas (≥ 2.600 m.a.) remobilizadas/rejuvenescidas isotopicamente no Ciclo Transamazônico (1.900 - 2.100 m.a.). A este ciclo associa-se o evento granitogênico documentado na folha apenas pela existência de um corpo granítico, o qual se estende para a Folha Tobias Barreto onde o mesmo tem maior expressão mapeada.
A maior porção da área, entretanto, teve uma evolução geológica mesozóica, relacionada à formação do Atlântico Sul e margem continental brasileira, iniciada com a implantação de uma ampla sinéclise e, posteriormente, a superimposição de um sistema de "rift valleys", no Cretáceo, onde resultariam bacias sedimentares como as do Recôncavo e Tucano, nas quais encontram-se rochas representativas destes dois estágios evolutivos (sinéclise e "rift").

Os eventos deposicionais posteriores são marcados pelos sedimentos, em geral semiconsolidados, do Terciário e pelos sedimentos inconsolidados do Quaternário.

Foram individualizadas na área segmentos das seguintes unidades tectono-geológicas: núcleo cratônico arqueano (Craton de Serrinha), complexo vulcano-sedimentar similar a "greenstone belt", os cinturões granulíticos-charnocksíticos (Cinturões Móveis Costeiro Atlântico e Salvador-Curaçá), a Bacia do Recôncavo/Tucano Sul, configurando uma cobertura sedimentar não dobrada envolvendo os estágios sinéclise e "rift" e, finalmente, a Cobertura Superimposta Final.

Estas unidades tectono-geológicas representadas na Figura 2, e que têm as suas principais características geológicas e metalogenéticas registradas na Tabela I, serão a seguir descritas.

No quadrante noroeste da folha individualizou-se uma pequena cunha de núcleo de crosta antiga, representada essencialmente por ortognaisses sieníticos, migmatisos e diatexitos, correspondendo à continuidade sul do Craton de Serrinha (Seixas et alii, 1975), cuja consolidação antecedeu ao Ciclo Jequié (≈ 2.700 m.a.) e talvez ao Ciclo Guriense(≈ 3.100m.a.). Esta unidade tectônica está bem individualizada/caracteriza -
DIVISÃO TECTONO-GEOLÓGICA

TERCIÁRIO-QUATERNÁRIO

Cobertura superimposta final

JURÁSSICO CRETÁCEO

Cobertura sedimentar não dobrada tipos sinódise (s1 e rift (s2) - Bacia do Recôncavo/Tucano Sul)

PROTEROZÓICO INFERIOR

Granitóides

ARQUEANO SUPERIOR

Complexo vulcano-sedimentar similar a "greenstone belt"

ARQUEANO INDIVISO

Cinturão granulítico-charnockítico: ① Cinturão Móvel Salvador-Curacá; ② Cinturão Móvel Costeiro-Atlântica

Núcleo de crosta antiga (oval gneissica) remobilizado ou não - Craton de Serrinha

FIGURA 2 - Divisão Tectono - Geológica (Extraída da Carta Metalogenética)
da pela gravimetria, com relação a seus limites, em geral por falhas, com características de espessura e composição de cros
ta (Gomes & Motta, 1980) e por mostrar feições similares a
"ovais" gnaissicas de Salop (1977), apresentando-se inclusive
tornada por cinturões metamórficos de alto grau. Este con-
unto de rochas limita-se a oeste com um cinturão granulítico
charnockítico, balizado aí por uma faixa de ortognaisses sie-
níticos porfiroblásticos e a leste é limitado por falhamen-
tos normais de direção N-S e NE-SW, que assinalam a borda oes
te da Bacia do Recôncavo/Tucano Sul.

No extremo ocidental da folha ocorre, estendendo-
se de norte a sul, uma faixa caracterizada como um cinturão
granulítico-charnockítico (Figura 2) referido como Cinturão
Móvel Salvador-Curaçá (Santos & Dalton de Souza, 1983) e consi-
derado uma ramificação do cinturão granulítico-charnockítico
que bordeia a costa brasileira desde o Rio Grande do Sul até
Sergipe, o denominado Cinturão Móvel Costeiro Atlântico (Mas-
carenhas, 1979), e que na folha em estudo ocupa a borda orien-
tal da mesma. Litologicamente estes cinturões estão represen-
tados por granulitos, frequentemente a cordierita, associados
da migmatitos, gnaisses migmatíticos e charnockíticos, com in-
tercalações de rochas básicas. Estes litótipos, todavia, não
estão individualizados na cartografia existente.

Estes cinturões móveis granulíticos-charnockíticos foram estruturados possivelmente no Ciclo Jequié, o que
está de acordo com a idade radiométrica de cerca de 2.643m.a.,
obtida pelo método Rb/Sr (em rocha total) em amostra deste do-
mínio tectônico, na Folha Tobias Barreto, e em conformidade
com dados regionais. A remobilização/re-homogeneização isotó-
pica destes cinturões, relacionada ao Ciclo Transamazônico, é
comprovada por datações, também consignadas na Folha Salva -
<table>
<thead>
<tr>
<th>NOME</th>
<th>UNIDADE GEOLOGICA</th>
<th>ROCHAS</th>
<th>DEFORMAÇÃO/METAMORFISMO</th>
<th>MINERALIZAÇÕES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Cobertura superímposta final</td>
<td>Dedicnais biotritáricos, submersao na Bahia de Todos os Santos</td>
<td>-</td>
<td>Calcário comífero (38)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aluvion</td>
<td>-</td>
<td>Areia (7), argila (10), turfa (27)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arenitos e conglomerados pouco consolidados, com fiúto argilosos</td>
<td>-</td>
<td>Areia (25), argila (4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Polbenhos, calcários e arenitos</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1.65</td>
<td>Cobertura sedimentar não de brada tipo "Mif", - Bacia do Recôncavo/Tucano Sul</td>
<td>Arenitos, conglomerados, allitos e folhelhos</td>
<td>Deformação decorrente do surgimento do Atlântico Sul, com formação de dois polos tectogênicos originando dois sistemas de falhas normais. Formação de greiros truturais tais como: falha de crescimento, anticondilina de compreensão e dísplices de argila/diagenese.</td>
<td>Areia (3), areia, argila (1), argila (1), caulina (7), caulina (54), argila (20), argila, caulina (2), caulina (7), cariato (1), argila (1), caulina (2), caulina (1), calcário (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arenitos, allitos e folhelhos</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arenitos, allitos, folhelhos e calcários</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Polbenhos esverdoados e arenitos</td>
<td>-</td>
<td>Petróleo, gás (72)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Folbenhos calciados e arenitos</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>Cobertura sedimentar não de brada tipo xínica - Bacia do Recôncavo/Tucano Sul</td>
<td>Arenitos, arenitos conglomeráticos</td>
<td>Deformação decorrente do surgimento do Atlântico Sul. Formação de xínica. Em caráter de falhas de gravidade e dobramentos emplúes/diagenese.</td>
<td>Silex (11), argila (1), caulina (2), salgadim (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Folbenhos verselhos, arenitos</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1.900</td>
<td>-</td>
<td>Granitos intrusivos</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2.600</td>
<td>-</td>
<td>Complexo vulcânico-sedimentar similar a "greenstone belt"</td>
<td>Predominância de basaltos transformados em xínicos ácidos com intercalações de metasedimentos químicos e policitos</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>Informação complexa e polifácies. Metamorfismo firmo regional na facies xistoso-verde a enfibulado, de baixa e média pressão. Influência têrmica/metatecônica de intrusões.</td>
<td></td>
</tr>
<tr>
<td>3.200</td>
<td>-</td>
<td>-</td>
<td>Informação complexa e polifácies. Estrutura regional com forte linearidade/metamorfismo regional na facies granulite.</td>
<td>Cobre (2), granulite (22), magnetita (7), quartzo (3), argila (2), calcita (1), feldspato (1),</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Quantidades de jazimentos minerais indicadas pelos números entre parênteses

TABELA I- Principais Características Geológicas e Metalogenéticas (Extralda da Carta Metalogenética)
dor, com idades no intervalo de 1.900 a 2.100 m.a.

As rochas do Cinturão Móvel Salvador-Curaçá apresentam maior linearidade estrutural do que aquelas do núcleo cratônico descrito, sendo que no canto sudoeste da folha as foliações infletem-se da direção NW-SE a N-S, enquanto na porção centro-oidental da área as mesmas mantêm a direção preferencial NW-SE e assim, estendem-se para a Folha Itaberaba. O retrabalhamento transamazônico é estruturalmente indicado pelas orientações impressas, bem como por uma faixa de milonitos que ocorre desde o sul de Guaí até as proximidades de São Félix. Idades Rb/Sr em torno de 2.000m.a. (convencionais e isocrônica), de amostras da borda oeste da folha, confirmam este evento.

O cinturão granulítico-charnockítico da faixa costeira, referido como Cinturão Móvel Costeiro Atlântico, apresenta um "trend" regional NE/SW e possui os mesmos litótipos citados quando da descrição do Cinturão Móvel Salvador-Curaçá, embora na área ocorram extensivamente encobertos por sedimentos terciários e quaternários, inclusive mascarando, em parte, os falhamentos normais que limitam a borda leste da Bacia do Recôncavo.

Uma outra unidade tectônica individualizada, na folha em estudo, é representada pelo complexo vulcano-sedimentar similar a "greenstone belt", que corresponde provavelmente a remanescentes do "greenstone belt" do Rio Itapicuru, implantado sobre o Cratão de Serrinha (Kishida & Riccio, 1979) e considerado preliminarmente como formado no Arqueano Superior (Santos & Dalton de Souza, 1983). Neste caso, a idade isocrônica(de referência) Rb/Sr de 2.080m.a. obtida em amostras de rochas metavulcânicas, do "greenstone belt" citado, in
dicaria uma re-homogeneização isotópica no Ciclo Transamazônico. Sua ocorrência limita-se a pequenas exposições sobre a continuidade sul do Craton de Serrinha na área, no quadrante noroeste da folha, representada por rochas metamórficas básicas (já transformadas em xistos-máficos) com intercalações de metassedimentos químicos e pelíticos subordinados e quartzos ferríferos. Estas rochas apresentam-se foliadas segundo a direção NNE/SSW, com mergulhos para NNW, em concordância, portanto, com o comportamento estrutural definido para o segmento do Craton de Serrinha na Folha Salvador.

Durante o Ciclo Transamazônico, no Proterozóico Inferior, houve a re-homogeneização isotópica das rochas arqueanas, evento ao qual se relacionam os diversos corpos granítóides intrusivos da Folha Tobias Barreto, dos quais apenas a continuidade sul de um pequeno corpo foi cartografado no extremo noroeste da folha, conforme já mencionado.

Cerca de 60% da área cartografada (área continental) da Folha Salvador corresponde à denominada Bacia do Recôncavo, considerada como uma cobertura sedimentar não dobrada, compreendendo as fases sinclise e "rift" da evolução desta bacia. A rigor, uma pequena porção desta cobertura sedimentar, no quadrante noroeste da folha, corresponde à extremidade-sul da Bacia de Tucano e daí a referência, neste trabalho, à unidade tectônica como Bacia do Recôncavo/Tucano Sul.

Arenitos fluviais, folhelhos e sequências arenossilicícicas lacustres-fluviais, do Jurássico Superior, representam a fase sinclise, enquanto sequências argilo-arenosas lacustres, sequência arenoso-argilosa lacustre-fluvial e arenito e conglomerados, do Cretáceo Inferior, representam a fase "rift". Observa-se que os arenitos e conglomerados fluviais
do Cretáceo Inferior, citados na literatura como Formação Marizal, embora incluídos na Carta Metalogenética neste estágio tectônico ("rift"), representam na realidade o entulhamento final da bacia, tendo a sua sedimentação extravasado os limites do "rift".

As rochas da fase sinéclise sofreram apenas deformações por falhamentos normais, enquanto aquelas da fase "rift", de caráter sintectônico, com elevadas taxas de deposição, apresentam estruturas geostáticas como falhas de crescimento, anticlinais de compensação e diápiros de argila (Medeiros & Ponte, 1981).

Finalmente, a Cobertura Superimposta Final compreende litótipos do Terciário ao Quaternário. Do Terciário tem-se, a nordeste de Salvador, um testemunho da atuação marinha na Bacia do Recôncavo marcada por uma sequência pelítica-carbonática, citada na literatura como Formação Sabiá, sem maior expressão geográfica mas que registra uma breve incursão marinha na citada bacia, naquele período geológico (Martin et alii, 1980). Também terciários são os arenitos semiconsolidados, conglomerados e argilas, referidos como Grupo Barreiras, que capeiam parcial e indiscriminadamente rochas do embasamento arqueano e da bacia fanerozóica. Por fim, têm-se ainda nesta unidade sedimentos aluvionares arenosos e areno-argilosos, bem como sedimentos costeiros inconsolidados de origens litorânea e eólica, do Quaternário.

2.4 Características Metalogenéticas

Petróleo e gás configuram os recursos minerais mais importantes da Folha Salvador, sendo também dos mais abundantes conforme evidenciado nas Tabelas I e II. Os jazimen
<table>
<thead>
<tr>
<th>SUSTÂNCIA MINERAL</th>
<th>VULCANOGÊNICA</th>
<th>ROÇADAS ENCANTADAS</th>
<th>CÁLCULOS EM MINERALIZAÇÃO</th>
<th>TOPOLOGIA</th>
<th>MORFOLOGIA</th>
<th>TIPO GENÉTICO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Areia (9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Estratiforme</td>
<td>Sedimentar</td>
</tr>
<tr>
<td>Petróleo, etc. (11)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Estratiforme</td>
<td>Sedimentar</td>
</tr>
<tr>
<td>Argila (41)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Estratiforme</td>
<td>Sedimentar</td>
</tr>
<tr>
<td>Calcário esquistoso (38)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Supergênico</td>
</tr>
<tr>
<td>Turfa (27)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Estratiforme</td>
<td>Sedimentar</td>
</tr>
<tr>
<td>Gramílito (22)</td>
<td></td>
<td></td>
<td>Gramílitos (22)</td>
<td>> 2.600</td>
<td>Não especificado</td>
<td>Não especificado</td>
</tr>
<tr>
<td>Caúla (2)</td>
<td></td>
<td></td>
<td>Arenitos e alúvios (15)</td>
<td>100-141</td>
<td>Lenticular</td>
<td>Sedimentar</td>
</tr>
<tr>
<td>Manganês (7)</td>
<td></td>
<td></td>
<td>Gramílitos (7)</td>
<td>> 1.600</td>
<td>Lenticular (2)</td>
<td>Supergênico</td>
</tr>
<tr>
<td>Quartz (2)</td>
<td></td>
<td></td>
<td>Gramílitos (2)</td>
<td>> 2.600</td>
<td>Pisolítico</td>
<td>Hidrotérmal</td>
</tr>
<tr>
<td>Calcário esquistoso (23)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pisolítico</td>
<td>Supergênico</td>
</tr>
<tr>
<td>Areia, argila (1)</td>
<td></td>
<td></td>
<td>Arenitos e alúvios (1)</td>
<td>100-141</td>
<td>Lenticular</td>
<td>Sedimentar</td>
</tr>
<tr>
<td>Calçado (1)</td>
<td></td>
<td></td>
<td>Arenitos, alúvios e folhelhos</td>
<td>100-141</td>
<td>Estratiforme</td>
<td>Sedimentar</td>
</tr>
<tr>
<td>Sulfeto (1)</td>
<td></td>
<td></td>
<td>Gramílitos</td>
<td>> 2.600</td>
<td>Irregular</td>
<td>Supergênico</td>
</tr>
<tr>
<td>Grafita (1)</td>
<td></td>
<td></td>
<td>Gramílitos</td>
<td>> 2.600</td>
<td>Não especificado</td>
<td>Meteorólogo</td>
</tr>
<tr>
<td>Silina (1)</td>
<td></td>
<td></td>
<td>Arenitos</td>
<td>141-160</td>
<td>Não especificado</td>
<td>Sedimentar</td>
</tr>
<tr>
<td>Berio (1)</td>
<td></td>
<td></td>
<td>Arenitos</td>
<td>100-141</td>
<td>Irregular</td>
<td>Sedimentar</td>
</tr>
</tbody>
</table>

Obs.: Quantidades de jazimentos minerais indicadas pelos números entre parênteses

TABELA II - Principais Característicos dos Jazimentos Minerais (Extraído da Carta Metalogenética)
tos possuem caráter estratiforme-sedimentar e foram acumula-
dos em "traps" estruturais/estratigráficos relacionados à uni-
dade tectono-geológica representada pela cobertura sedimentar
não dobrada da Bacia do Recôncavo/Tucano Sul.

O segundo recurso mineral, em abundância e de re-
leve
significação econômica, na folha em estudo, é o calcá-
rio conchífero que ocorre como jazimentos estratiformes forma-
dos a partir da acumulação de sedimentos biodetríticos (> 50%
de restos de conchas e restos de corais), na Baía de Todos os
Santos, e tem idade quaternária.

Calcário cretácico, encaixado em folhelhos, ocor-
re
como jazimentos, também de caráter estratiforme-sedimen-
tar, relacionados à cobertura sedimentar não dobrada do tipo
"rift".

A argila e o caalım são outros importantes recur-
sos minerais da área. A argila se apresenta como jazimentos
de origem sedimentar e morfologias estratiforme e lenticular,
quando especificadas, sendo a primeira a mais frequente, prin-
cipalmente relacionados à cobertura sedimentar não dobrada do
tipo "rift", embora ocorram também jazimentos na fase sinéclí-
se da evolução da Bacia do Recôncavo/Tucano Sul. Finalmente,
também são comuns concentrações de argila ligadas à Cobertura
Superimposta Final, abrangendo litótipos do Terciário (Grupo
Barreiras) e do Quaternário (aluvões). Apenas dois jazimen-
tos de argila são encontrados no domínio do Cinturão Móvel
Salvador-Curaçá, ambos com morfologia ainda não especificada
e tipo genético supergênico, formados a partir do intemperis-
mo e concentração residual sobre rochas pertencentes ao com-
plexo charnockítico. O caalım ocorre sob forma lenticular, ha-
vendo apenas um jazimento de morfologia não especificada, tem
origem sedimentar e relaciona-se à cobertura sedimentar não dobrada do tipo "rift" da Bacia do Recôncavo/Tucano Sul.

A areia constitui jazimentos estratiformes-sedimentares relacionados a litótipos da cobertura sedimentar não dobrada tipo "rift", portanto ao Cretáceo Inferior, e também a litologias do Terciário (Grupo Barreiras) e do Quaternário (aluviones), nestes casos pertencentes à Cobertura Superimposta Final.

O granulito utilizado "in natura" é um bem mineral também de grande importância econômica na Folha Salvador, o qual corresponde ao litótipo predominante dos cinturões granulíticos-charnockíticos arqueanos. Outros recursos minerais relacionados à esta unidade tectônica, todavia ainda sem expressão econômica, constituem jazimentos de: quartzo com morfologia filoneana e origem hidrotermal; manganês apresentando morfologias lenticulares, irregulares e não especificada e tipo genético supergênico, concentrou-se a partir de protominério manganêsífero encaixado em litótipos do complexo charnockítico; cobre ocorre com morfologia filoneana e tipo genético supergênico ou com forma e tipo genético ainda não especificados, devendo tratar-se de remobilização deste elemento principalmente em zona de cisalhamento nas rochas charnockíticas; grafita ocorre irregularmente disseminada em rochas gnaissicas e tem origem e tipo genético não especificados; e sulfato, descrito próximo a São Félix, com forma não especificada e origem supergênica, foi concentrado a partir do litótipo também pertencente ao complexo charnockítico.

O bário é o mais recente bem mineral constatado na folha, identificado em 1982 pela Petromisa, e constitui uma importante mineralização do tipo "stratabound" sindiagenética.
ca, onde a barita ocorre como cimento de arenitos fluviais cretácicos pertencentes à Formação Marizal. Ainda na região do jazimento de barita ocorrem também mineralizações sulfetadas de zinco e chumbo, em arenitos deltários do Grupo Ilhas, os quais estariam em fase de avaliação (Bandeira et alii, 1986).

O salgema, que configura o bem mineral mais importante das Folhas Jequié/Jaguaripe (SD.24-V-D/SD.24-X-C), apresenta a continuidade do jazimento definido naquelas folhas estendendo-se para a porção meridional da Folha Salvador. A mineralização que é do tipo estratiforme-sedimentar está ligada ao ciclo evaporítico da Bacia do Recôncavo e encaixa-se em pelitos do Jurássico Superior constitutivos da cobertura sedimentar não dobrada tipo sincléise. Este jazimento ocorre relacionado ao "Horst" de Matarandiba, a partir de 1.16m de profundidade, e o limite setentrional da mineralização situa-se no extremo sudoeste da Folha Salvador.

A turfa é outro bem mineral existente na Folha Salvador relacionado à Cobertura Superimposta Final. Ocorre estratiformemente em aluições areno-argilosos ricos em matéria orgânica e de ambientes fluviais e flúvio-lagunares restritos, protegidos da zona de influência de marés por cordões litorâneos do Holoceno e/ou Pleistoceno.

O sílex, com morfologia e tipo genético não especificados, ocorre em arenitos do Jurássico Superior da Bacia do Recôncavo relacionado, portanto, à fase sincléise da mesma.

2.5 Mineralizações

Foram cadastrados e analisados na Folha Salvador, conforme discriminados nas Tabelas I e II, trezentos e vinte e três (323) jazimentos minerais correspondendo a: oitenta e
nove (89) de areia; setenta e um (71) de petróleo, gás; quarenta e um (41) de argila; trinta e oito (38) de calcário conchífero; vinte e sete (27) de turfa; vinte e dois (22) de granulito; quinze (15) de caulim; sete (7) de manganês; dois (2) de quartzo; dois (2) de cobre; dois (2) de argila, caulim; um (1) de sódio (salgema); um (1) de bário; um (1) de areia, argila; um (1) de calcário; um (1) de sulfato; um (1) de grafita e um (1) de sílex. Estes jazimentos apresentam os seguintes "status" e/ou situação legal: sessenta e seis (66) ocorrências/indícios, cinqüenta e nove (59) minas subterrâneas em exploração (sendo que uma se refere à mina de salgema e as restantes referem-se à campos de petróleo e gás, ressaltando-se que ocorrem mais oito campos sem informações quanto ao "status"), cinqüenta e três (53) depósitos, quarenta e cinco (45) jazidas, trinta e uma (31) minas a céu aberto em exploração, vinte e oito (28) garimpos a céu aberto abandonados, vinte e um (21) garimpos a céu aberto em exploração, onze (11) minas a céu aberto abandonadas e uma (1) mina subterrânea abandonada (de petróleo e gás).

Petróleo e gás, conforme já referido, constituem os recursos minerais principais da área estudada e cujos jazimentos ocorrem em arenitos do Jurássico Superior e do Cretáceo Inferior da Bacia do Recôncavo/Tucano Sul.

Até outubro/82, as reservas recuperáveis disponíveis (provadas) somavam 58.011.000 m³ de petróleo e 18.676.469.000 m³ de gás, enquanto que as produções acumuladas totalizavam 152.155.000 m³ de petróleo e 23.597.594.000 m³ de gás (Petrobrás, 1982 b). Os condicionamentos geológicos das acumulações de petróleo e gás são principalmente estruturais, ocorrendo também os "traps" estruturais/estratigráficos,
conforme demonstrado pela Petrobrás (in Pedreira, 1976). Os chamados grandes campos de óleo, aqueles com volumes originais recuperáveis acima de 10 milhões de metros cúbicos, são os seguintes: Água Grande, Buracica, Miranga, Dom João, Araçás, Candeias e Taquipe, e exibiam cerca de 87% do volume original recuperável dos campos de petróleo desta folha. Os campos de médio porte, aqueles com volume original recuperável entre 1 a 10 milhões de metros cúbicos são: Remanso, Mata de São João, Fazenda Imbé, Fazenda Boa Esperança e Cassarongongo, e detinham 9% do volume original recuperável. Os 4% restantes do volume original recuperável total estavam distribuídos entre 34 acumulações, consideradas pequenas e marginais (Fernandes Filho et alii, 1982).

Com relação aos volumes originais recuperáveis de gás, deve-se ressaltar os seguintes campos: Água Grande, Araçás, Candeias, Biriba, Dom João, Itapaíra, Mata de São João, Miranga e Taquipe, todos com mais de 1 bilhão de metros cúbicos de gás.

O calcário conchífero, assim denominado o material dos depósitos biodetríticos constituídos de mais de 50% de componentes biogênicos, compõe-se principalmente de restos de moluscos, equinodermas e algas calcárias do gênero Halimeda e, em menores percentagens, algas coralínaceas e foraminíferos (raros), segundo Martin et alii (1980). Estes jazimentos são irregulares tanto na extensão quanto na espessura, a qual varia de 1 a 6m, e são influenciados por acidentes submarinos, correntes marínicas, fatores climáticos, direções dos ventos e lâmina d'água.

Estas acumulações submersas na Baía de Todos os Santos são alvos de pesquisa e explotação pelo processo de
sucção por parte da Companhia de Cimento Salvador - COCISA e pela Cimento Aratu S.A., detentoras de mais de 90% das áreas requeridas na citada baía, para o fabrico de cimento "portland". Apenas um jazimento, com "status" de mina em explotação, é detido pela mineração Boquira S.A.

Um único jazimento de calcário litificado está cadastrado na área, o qual relaciona-se a litótipos do Cretáceo Inferior e possui "status" de indício/ocorrência.

A argila e o caulim são bens minerais também dos mais importantes da folha em estudo, cujos jazimentos apresentam-se com "status" de minas e garimpos, por vezes já abandonados, jazidas, depósitos e indícios/ocorrências. A maior incidência de jazimentos de argila da Folha Salvador relaciona-se a litótipos do Cretáceo Inferior, tratando-se no caso de argila para uso na cerâmica vermelha (fabrico de blocos, telhas, pisos, etc.), bem como para o fabrico do cimento "portland", neste caso utilizada tanto pela Fábrica de Cimento Aratu (jazimento da Faz. Aratu com reserva medida de 1.167.738 t e reserva indicada de 2.507.310 t), como pela Companhia de Cimento Salvador - COCISA (jazimento de São Tomé de Paripé com reserva medida de 2.334.454 t e reserva indicada de 9.750.000 t). Relacionadas a folhelhos do Jurássico Superior, existem apenas 3 (três) ocorrências de argila (no município de Pedrão). A argila que ocorre associada a arenitos incondolidados do Terceirão (Grupo Barreiras), e em aluviões provenientes do re-trabalhamento, no Quaternário, de sequências argilo-arenosas da Bacia do Recôncavo, vem sendo explotada em regime de garimpo para uso rudimentar em olarias. Os dois únicos jazimentos de argila cadastrados como do tipo supergênico, correspondem a garimpos em explotação (no município de Maragogipe) cu-
ja argila é utilizada em cerâmica artesanal. O caulim apresenta seus jazimentos principais no município de Camaçari. É a matéria prima para a cerâmica branca (azulejos, pisos ladrilhos, etc.) e ocorre em corpos lenticulares de origem sedimentar, em caixados em sedimentos areno-argilosos do Cretáceo Inferior, a maioria deles, relacionados à Formação São Sebastião.

Com a provável exaustão destes tradicionais jazimentos da região de Camaçari estimulou-se a pesquisa em áreas de aluviões. A Pedreiras Valéria Ltda. efetuou pesquisas em aluviões do rio Paraguaçu, nos municípios de Cachoeira e São Félix, onde existem definidos quatro jazimentos com "status" de mina em explotação, com reservas medidas de 3.901.165 m³, e três depósitos, com reservas geológicas de 6.329.710 m³, de areia com características para utilização na construção civil.

O granulito, explotado para utilização como material de construção, restringe-se às faixas de rochas arqueanas pertencentes aos cinturões granulíticos-charnockíticos descritos no item 2.3. As rochas que ocorrem na periferia de Salvador possuem boas características de fragmentação e cons-
tituem-se na principal fonte de pedras para construção na cap-
pital do Estado, segundo Sá et alii (1980). Sua localização é
favorável aos centros consumidores assim como o sistema viá-
rio necessário à distribuição do produto. O município de Sal-
vador e os municípios de Lauro de Freitas e Simões Filho são
os principais produtores destacando-se, no município de Salva-
dor, a mina da Pedreiras Valéria S.A., na localidade Engenho
do Buraco, com uma reserva medida de 38.459.809 m³ de rocha a
ser explotada, segundo o relatório anual de lavra, de 1985,pa-
ra o DNPM. Outros jazimentos de granulito em explotação estão
nos municípios de Feira de Santana e Concepção de Feira.

Observe-se que a mineração do granulito exige e a
presenta, em geral, mecanização especializada para a explota-
çã e beneficiamento. Atualmente tem-se incentivado a locali-
zação e avaliação de novas jazidas, fora dos sítios tradicio-
nais, para fins de futura exploração, pressionado pelo cresci-
mento urbano de Salvador.

O único jazimento de bário da área tem "status"
de depósito, apresenta uma localização geográfica privilegia-
da e possui reservas avaliadas em 370.396,8 t, correspondendo
a 177.897,9 t de reserva indicada, com teor de 37,27% de BaSO₄ e
reserva inferida de 192.498,9 t. Estas reservas foram obtidas
para espessuras superiores a 6m, profundidade máxima de 21m e
teor médio de 21% em peso de BaSO₄. As bruscas descontinuida-
des e variações laterais de teores são características marcan-
tes do jazimento em foco (Bandeira et alii, 1986).

O salgema cadastrado na área, conforme já mencio-
nado, corresponde ao mesmo horizonte mineralizado que encerra
a mina em exploração da Folha Jáguaípe. Segundo Guedes (1972),
a halita se concentra em uma camada numa bacia local formada
a partir do paleo-relevo do embasamento e no presente delimitada por um "horst". A camada mineralizada possui 32 metros de espessura e situa-se entre 1.116 a 1.148 metros de profundidade na área em exploração, mas podendo atingir até 60 metros de espessura na continuidade sudoeste da mina. A mineralização tem caráter singenético e tem como rocha hospedear folhelhos vermelhos, duros, quebradiços, micácios e piritosos, com delgadas intercalações de arenitos e calcários do Jurássico Superior (Formação Aliança). A linha de contorno desta mineralização mostra o fechamento da mesma, em mapa, nas proximidades de Salinas das Margaridas e Itaparica (Folha Salvador), conforme assinalado na Carta Metalogênica e na Carta de Previsão de Recursos Minerais.

A turfa é outro importante recurso mineral da folha, na qual são encontrados depósitos e ocorrências desta substância associados a sedimentos quaternários arenos-argilosos. As turfeiras estudadas e avaliadas foram caracterizadas como depósitos de turfa energética, cujas reservas medias, em base seca, alcançam 668.990 t com o teor de cinza variando de 19,2 a 42,8% e o poder calorífico também variando de 2.800 a 4.400 kcal/kg (Lima et alii, 1984).

O sílex ocorre em meio a arenitos do Jurássico (Formação Sergi) e tem-se apenas um único jazimento cadastrado. Trata-se de um garimpo cujo material explorado foi utilizado para encascalhar estradas.

O quartzo ocorre encaixado em granulitos e os veios de quartzo foram alvo de pesquisa e garimpagem por parte da Minérios Metalúrgicos do Nordeste Ltda. (SIBRA).

O manganês é o único representante dos metais ferrosos na folha, cujos jazimentos possuem "status" de indi
<table>
<thead>
<tr>
<th>ÁREA Nº</th>
<th>EXTENSÃO (km²)</th>
<th>POTENCIALIDADE</th>
<th>1ª PRIORIDADE</th>
<th>2ª PRIORIDADE</th>
<th>3ª PRIORIDADE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>7,0</td>
<td>1</td>
<td>tr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>4,6</td>
<td>1</td>
<td>tr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>1,8</td>
<td>1</td>
<td>tr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>5,3</td>
<td>1</td>
<td>tr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>12,2</td>
<td>1</td>
<td>tr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>4,9</td>
<td>1</td>
<td>tr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td>9,3</td>
<td>2</td>
<td>tr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIII</td>
<td>19,8</td>
<td>2</td>
<td>tr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IX</td>
<td>3,0</td>
<td>2</td>
<td>tr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>228,2</td>
<td>2</td>
<td>Mn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XI</td>
<td>12,7</td>
<td>1</td>
<td>ca</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XII</td>
<td>14,0</td>
<td>1</td>
<td>ca</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XIII</td>
<td>4,9</td>
<td>1</td>
<td>ca</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XIV</td>
<td>33,9</td>
<td>1</td>
<td>ca</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XV</td>
<td>8,2</td>
<td>1</td>
<td>ca</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XVI</td>
<td>7,5</td>
<td>1</td>
<td>ca</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XVII</td>
<td>2,9</td>
<td>1</td>
<td>ca</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XVIII</td>
<td>17,1</td>
<td>1</td>
<td>ca</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XIX</td>
<td>5,5</td>
<td>3</td>
<td>ca</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XX</td>
<td>5,5</td>
<td>3</td>
<td>ca</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XXI</td>
<td>73,0</td>
<td>1</td>
<td>Na</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XXII</td>
<td>450,2</td>
<td>1</td>
<td>Ba-Pb-Zn-Cu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XXIII</td>
<td>195,4</td>
<td>3</td>
<td>Ba-Pb-Zn-Cu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XXIV</td>
<td>8,4</td>
<td>3</td>
<td>Ba-Pb-Zn-Cu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XXV</td>
<td>16,2</td>
<td>2</td>
<td>Au</td>
<td>Cu</td>
<td></td>
</tr>
<tr>
<td>XXVI</td>
<td>100,8</td>
<td>3</td>
<td>tr</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ca = calcário; tr = turfa; demais substâncias indicadas pelos símbolos dos elementos químicos.

TABELA III - Áreas Favoráveis para Exploração Mineral (Extraição da Carta de Previsão de Recursos Minerais)
cicio/ocorrência e os minerais-minério são pirolusita, psilome-lana e manganita. Ocorrem em forma de lentes ou irregularmente como concentrações superficiais supergênicas e estão restritos à área de exposição de rochas do complexo charnockítico (não individualizadas na Carta Metalogenética), onde estaria encaixado o protominério manganesífero.

O cobre ocorre associado a rochas do Cinturão Móvel Salvador–Curaçá, tratando-se do único metal não ferroso cadastrado na folha. No jazimento do povoado de Traíras ocorre na forma de veios centimétricos de malaquita, porém sem maiores informações.

A grafita ocorre como placas disseminadas em rochas gnaissicas intemperizadas e intercaladas com faixas anfíbolíticas, orientadas segundo a direção N-S, pertencentes ao complexo charnockítico.

A ocorrência de sulfato da área foi constatada no município de São Félix, no local denominado Varre Estrada, sob morfologia irregular e origem não especificada, tendo como encaixante rocha granulítica. Trata-se de concentrações na superfície da rocha intemperizada, de cor amarela esverdeada, de sabor levemente amargo e odor de enxofre, tratando-se possivelmente de sulfatos, porém não se conhece nada de comprobatório, do ponto de vista analítico, até o presente trabalho.

2.6 Previsão das Áreas Mineralizadas

A partir da análise da Carta Metalogenética da Folia Salvador foram selecionadas vinte e seis (26) áreas favoráveis para prospecção/pesquisa mineral as quais, classificadas segundo três graus de potencialidade para as respectivas substâncias minerais, estão discriminadas na Tabela III. Os
critérios gerais e específicos que foram utilizados para o selec
acionamento das áreas estão explícitos na legenda da Carta
de Previsão de Recursos Minerais. Estas áreas destacadas com-
preendem as seguintes substâncias minerais prioritárias: cal-
cário (10), turfa(10), bário-chumbo-zinco-cobre(3), manga-
nês(1), ouro(1), sódio(salgema) (1).

O calcário, aqui abrangendo calcário conchífero e
calcário coralino, constitui-se em importante insumo mineral
a ser prospectado/pesquisado na área, em função da crescente
demanda dessa matéria prima para utilização na indústria ci-
menteira da Grande Salvador. Os limites das áreas indicadas
para prospecção de calcário conchífero correspondem aos con-
tornos atuais destes depósitos detríticos submersos. A situa-
ção geográfica destes jazimentos, distribuídos na Baía de To-
dos os Santos, é relativamente próxima dos centros de benefi-
ciamento, ou seja as fábricas de cimento implantadas na mar-
gem leste da baía. A presença de minas e jazidas nas Áreas
XI a XVIII justificaram a classificação destas áreas como de
Potencialidade 1 e apenas a Área XIX tem Potencialidade 2,
pois aí se tem apenas a rocha hospedeira, o mesmo se verifi-
cando com a Área XX, situada no litoral da ilha de Itaparica,
que delimita área de calcário coralino. A exploração de even-
tuais jazidas nestas áreas de previsão deve ser feita de ma-
néira similar à que vem sendo utilizada atualmente no caso do
calcário conchífero, isto é, por desagregação e sucção do mi-
nério, o qual é transportado por via marítima até a margem da
baía e daí levado para os centros de beneficiamento (fábricas
de cimento) e, por conseguinte, sem necessidade de grandes in-
vestimentos, embora bem maiores que aqueles para lavra de ja-
zimentos clássicos (em terra).

A turfa é um dos principais recursos minerais po
tenciais da folha, associa-se a sedimentos arenocarregados fluviais e flúvio-lagunares, e tem sua ocorrência restrita ao Quaternário. Os limites das áreas selecionadas, como de interesse prospectivo, coincidem com aqueles das litologias favoráveis à estes jazimentos, algumas das quais encerrando depósitos extensivos já conhecidos. As Áreas de I a VI, de Potentialidade 1, e a Área VIII de Potentialidade 2, estão localizadas próximas ao CIA e COPEC, o que concorre significativamente para a viabilização econômica dos depósitos. As Áreas VII e IX, de Potentialidade 2, e a Área XXVI, de Potentialidade de 3, estão mais afastadas daqueles polos industriais mas o sistema viário permite o fácil acesso às mesmas. As reservas conhecidas/estudadas (Áreas I a VI) alcançam 668.990t de turfa energética e espera-se que futuros trabalhos de pesquisa, em outras áreas, ampliem estas reservas e assim se possa viabilizar a explotação a curto prazo e a baixo custo deste potencial energético. No caso das turfeiras cuja turfa não se preste para fins energéticos admite-se que a mesma tenha utilização na agricultura, etc.

As áreas sugeridas para bário-chumbo-zinco-cobre correspondem a exposições da sequência clástica continental, composta por arenitos e conglomerados onde ocorrem, subordinadamente, folhelhos e siltitos, de origem a partir de sistemas deposicionais dos tipos fluviais anastomados, leques aluviais e lagunares. Esta sequência é passível de conter mineralizações do tipo "stratabound" de bário e sulfetos metálicos, dentre outros, conforme preconiza a metalogenia sedimentar e recentemente comprovado no caso da Área XXII, com relação ao bário, e daí sua Potentialidade 1. Já as Áreas XXIII e XXIV foram caracterizadas como de Potentialidade 3, pois aí ocorrrem apenas sequências similares àquela da Área XXII desconhecen-
do-se, portanto, a presença de mineralizações nas mesmas. Estudos adicionais nestas áreas trariam novas informações e assim poder-se-ia caracterizar melhor a potencialidade das mesmas. Admite-se que uma exploração semimecanizada a mecanizada, com investimentos razoáveis, seria requerida para a eventual lavra de depósitos destas substâncias localizados nas áreas consideradas.

As ocorrências de manganês, como pequenas concentrações supergênicas, possibilitaram a individualização da área X, de Potencialidade 2, como favorável para mineralizações de oxidos deste metal ferroso. Esta área situa-se em domínio de rochas do complexo charnockítico cujo relevo acidentado, favorecendo a concentração supergênica, foi um dos critérios utilizados na sua delimitação. Com o estudo da área citada abrem-se perspectivas de se revelar depósitos deste bem mineral, próximos do principal consumidor dessa matéria prima (SIBRA), os quais poderiam ser explotados com razoável investimento.

A Área XXV, indicada para ouro, está localizada a sudeste de Feira de Santana e compreende pequenas porções cartografadas como restos de sequência matavulcano-sedimentar, considerada similar a "greenstone belt". A área em apreço foi destacada como passível de conter mineralizações de metais nobres (ouro, prata, etc.) e metais base e ferrosos (cobre, chumbo, zinco, cromo e níquel). A partir da reanálise dos dados geoquímicos da amostragem regional, realizada pelo Projeto Baixo São Francisco/Vaza-Barris, não se constatou anomalias mas destacaram-se alguns valores realçados de cobre, chumbo, zinco, cromo e níquel em sedimento de corrente, nas proximidades desta Área XXV, o que pode sugerir alguma relação com a mesma. Apesar de se tratar de pequenas exposições da sequên
cia citada, não se descarta a possibilidade de se identificar algum depósito de interesse econômico o que, neste caso, supõe-se que exigiria um alto investimento para exploração do mesmo.

2.7 Àreas para Pesquisas Complementares

A partir da análise da Carta Metalogenética e da Carta de Previsão de Recursos Minerais da Folha Salvador concluiu-se que três (3) áreas merecem prioridade de estudos adicionais, afim de se adquirir informações complementares básicas, para que se processe uma avaliação mais substancial sobre as potencialidades minerais desta folha, bem como sejam desenvolvidos estudos geotécnicos e de Geologia de Planejamento de áreas específicas (Tabela IV). As informações complementares necessárias serão obtidas a partir de levantamentos básicos abrangendo principalmente mapeamento geológico e prospecção geoquímica, em níveis sistemático e estratégico, incluindo-se a avaliação e/ou reavaliação de depósitos e/ou jazimentos não estudados, além da cartografia geotécnica e estudos de Geologia de Planejamento, respectivamente, do município de Salvador e da região metropolitana homônima. A partir desses levantamentos, em escalas adequadas à ampliação dos conhecimentos geológicos, geotécnicos, metalogenéticos, etc. será possível melhor delimitar as áreas já previstas como favoráveis para mineralizações da Carta de Previsão de Recursos Minerais, selecionar novos alvos para um maior detalhamento e fornecer subsídios ao planejamento urbano de Salvador e da região metropolitana citada.

As características geológicas gerais, os trabalhos já executados e as justificativas que levaram à seleção das três áreas, assim como os trabalhos recomendados e os ob-
<table>
<thead>
<tr>
<th>ÁREAS RECOMENDADAS</th>
<th>LEVANTAMENTOS RECOMENDADOS*</th>
<th>SUBSTÂNCIAS MINERAIS PREVISTAS E ORDEM DE IMPORTÂNCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº</td>
<td>EXTENSÃO (km²)</td>
<td>PRIORIDADE</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>------------</td>
</tr>
<tr>
<td>I</td>
<td>1.634</td>
<td>1</td>
</tr>
<tr>
<td>II</td>
<td>2.372</td>
<td>2</td>
</tr>
<tr>
<td>III</td>
<td>834</td>
<td>2</td>
</tr>
</tbody>
</table>

* Levantamentos sistemáticos e estratégicos (estes entre parênteses)

TABELA IV — Áreas Recomendadas para Levantamentos Básicos Complementares (Extraída da Carta de Previsão para Planejamento de Ações Governamentais)
jetivos dos mesmos, estão descritos implicitamente na legenda da Carta de Previsão para Planejamento de Ações Governamentais e, por este motivo, serão aqui abordados apenas os itens pertinentes a trabalhos propostos, justificativas e objetivos das atividades recomendadas.

No domínio da Área I estão cartografadas rochas arqueanas do complexo granulítico, retrabalhadas no Transamazônico e, em maior extensão, rochas sedimentares da Bacia do Recôncavo de idade jurássico-cretácea. As primeiras foram cartografadas sistematicamente na escala 1:250.000, enquanto a bacia sedimentar possui mapeamento na escala 1:25.000, porém efetuado há mais de 20 anos atrás. Para esta área, destacada como de Prioridade 1, por abranger a Região Metropolitana de Salvador, estão sendo recomendados mapeamento geológico sistemático na escala 1:50.000, cartografia geotécnica do município de Salvador (Cartas ZERMOS-Zonas Expostas a Riscos ligados aos Movimentos do Solo e Subsolo) e estudos de Geologia de Planejamento, envolvendo Geologia Aplicada ao Planejamento Mineral e ao Planejamento de Uso e Ocupação do Solo, Geologia Ambiental e Geologia de Engenharia.

As justificativas principais que nortearam a seleção da Área I foram: 1) Necessidade de se efetuar o mapeamento geológico da Região Metropolitana de Salvador e cercanias, principalmente, com vistas ao suprimento de matérias-primas minerais de emprego na construção civil; 2) Dotar o município de Salvador de cartografia geotécnica, objetivando o planejamento urbano e de obras de engenharia; e 3) Necessidade de estudos sobre poluição ambiental, de prevenção e recuperação de terrenos, paisagens, aquíferos, etc. em função do uso urbano, mineração, indústria, etc. Estes trabalhos subsidiarão o Plano Diretor da Mineração da Região Metropolitana de
Salvador, sobretudo com a elaboração de estudos sobre a produção e consumo de substâncias minerais de uso imediato e na indústria da construção civil, com projeção até o ano 2.010. Serão desenvolvidos ainda estudos geológicos envolvendo a prospecção e pesquisa, sobretudo de areia, granulito (pedras para construção), argila, caulim e calcário, bem como métodos de lavra adequados etc., com o que será possível estabelecer o zoneamento para a mineração da região.

Com os trabalhos recomendados objetiva-se: 1) identificar novas fontes e assegurar o suprimento de substâncias minerais de emprego na construção civil, visando atender principalmente a Região Metropolitana de Salvador; 2) Subsidiar o planejamento urbano da cidade de Salvador efetuando a cartografia geotécnica do município; 3) Desenvolver estudos sobre a recuperação e preservação do meio ambiente; e 4) Subsidiar o Plano Diretor da Mineração da Região Metropolitana de Salvador.

A Área II está relacionada ao domínio de rochas arqueanas, retrabalhadas no Transamazônico, e só dispõe de mapeamento geológico em escala regional (1:250.000) e prospecção geoquímica com amostragem de densidade média de 1 amostra/50 km². Esta área foi considerada de Prioridade 2 e propõe-se para a mesma mapeamento geológico em escala 1:100.000, a nível sistemático e, concomitantemente, a prospecção geoquímica por sedimento de corrente com densidade média de 1 amostra/km². Prevê-se análises por absorção atômica para cobre, chumbo, zinco, níquel e manganês e também amostragens de concentrados de bateia coletadas a uma densidade média de 1 amostra/4 km², a fim de se dosar cromo e ouro. No caso de se selecionar alvos nesta Área II, serão efetuados nos mesmos amostragens estratégicas de pedogeocquímica e litogeocquímica.
Os trabalhos enumerados para a Área II justificam-se em razão da: 1) Necessidade de mapeamento geológico em escala adequada para o melhor conhecimento da área; 2) Necessidade de se ampliar o conhecimento metalogenético desta faixa do cinturão granulítico- charnockítico onde, com referência a substâncias metálicas são conhecidos apenas indícios/ocorrências de manganês e cobre, mas ainda sem estudos sistemáticos; 3) Amostragem geoquímica regional efetuada pelo Projeto Baixo São Francisco/Vaza-Barris não ter sido adequada para indicar mineralizações, embora ressalte-se os realce geoquímicos em sedimento de corrente (manganês, cromo, níquel, chumbo) e em rocha (cobre, zinco, cromo, manganês) detectados.

Com os trabalhos propostos objetiva-se a identificação e caracterização dos diversos litótipos da área, dando-se ênfase ao estudo dos restos da sequência similar a "greenstone belt", bem como de possíveis corpos básicos/ultra básicos ainda não cartografados e, assim, melhor avaliar metalogeneticamente as possibilidades desta área.

A Área III ocupa parte da faixa costeira da Folha Salvador e, a exemplo da Área II, possui mapeamento geológico sistemático apenas em escala 1:250.000. Mais recentemente esta área foi objeto de reconhecimento geológico na escala 1:100.000, visando a prospecção de turfa.

Para esta área é proposto o mapeamento geológico em escala de semidetalhe (1:25.000), com ênfase ao estudo dos sedimentos quaternários. Propõe-se também uma amostragem sistemática das turfeiras conhecidas e das áreas favoráveis que venham a ser identificadas, a fim de se proceder análises físico-químicas e ensaios tecnológicos para se caracterizar o material constituinte das turfeiras. Faz-se necessário também
levantamentos topográficos e estudos hidrológicos, para fins de avaliação de reservas e planejamento de drenagem e lavra das turfeiras.

As justificativas principais para os trabalhos propostos baseiam-se no fato de que o conhecimento geológico desta área é ainda a nível regional, assim como as amostragens realizadas para turfa não foram suficientes para a real avaliação da mesma. Além disso, a existência de áreas potenciais para turfa ainda não estudadas/avaliadas conclusivamente e a proximidade da localização geográfica destas turfeiras, com relação ao CIA e COPEC, o que poderá viabilizar o aproveitamento dos depósitos de turfa como recurso energético também nestes polos industriais, são fatores que reforçam o interesse prospectivo da área.

Os objetivos principais dos trabalhos planejados seriam a identificação de novas turfeiras e a delimitação e definição das reservas de turfas energética e agrícola da área.
3. REFERÊNCIAS BIBLIOGRÁFICAS

33. ENCAL S.A. Projeto Baixo São Francisco; Levantamento Aeromagnétométrico e Aerogamaespectrométrico. Relatório Final. s. n.t. 1978. Convênio DNPM/CPRM.

46. KUCK, L. & BARRETO NETO, M. Projeto Areia, para Construção Civil na Região Metropolitana de Salvador, [Salvador], PROGEO, 1977. 7 v.

68. MINERAÇÃO GERAL DO NORDESTE S.A. Relatório Anual de Lavra de Argila em São José da Várzea; município de Pojuca, Bahia. Salvador, 1985 e. Processo DNPM-DFPM nº 804.929/70.

79. PEDREIRA LIMOEIRO LTDA. **Relatório Anual de Lavra de Grãos** nas Faz. Telhas Lobão e Berro Duro; **Município de Lauro de Freitas, Bahia. Salvador 1985. Processo DNPM-DFFM no 808.082/75.**

80. PEDREIRA LIMOEIRO LTDA. **Relatório Anual de Lavra de Granulito no Parque Rural Sr. do Bomfim**; **Município de Lauro de Freitas, Bahia. Salvador, 1985b. Processo DNPM-DFFM no 802.101/71.**

81. PEDREIRAS VALÉRIA LTDA. **Relatório Anual de Lavra de Areia no Rio Paraguaçu; Municípios de Cachoeira e São Félix, Bahia. Salvador, 1984. Processo DNPM-DFFM 808.506/74.**

82. PEDREIRAS VALÉRIA LTDA. **Relatório Anual de Lavra de Granulito em Engenho do Buraco; Município de Salvador, Bahia. Salvador, 1985a. Processo DNPM-DFFM 804.317/73.**

83. PEDREIRAS VALÉRIA LTDA. **Relatórios Anuais de Lavras de Areia do Rio Paraguaçu; Municípios de Cachoeira e São Félix, Bahia. Salvador, 1985b. Processos DNPM-DFFM 808.506/74, 808.507/74, 808.508/74.**

84. PEDREIRAS VALÉRIA LTDA. **Relatório de Pesquisa de Areia e Granulito na Faz. Capivara; Municípios de Cachoeira e São Félix, Bahia. Salvador, 1982. Processo DNPM-DFFM 870.493/78.**

85. PEDREIRAS VALÉRIA LTDA. **Relatório de Pesquisa de Areia no Rio Paraguaçu; Municípios de Cachoeira e São Félix, Bahia. Salvador, 1978. Processo DNPM-DFFM 808.506/74.**

86. PEDREIRAS VALÉRIA LTDA. **Relatório de Pesquisa de Areia no Rio Paraguaçu; Municípios de Cachoeira e São Félix, Bahia. Salvador, 1980. Processo DNPM-DFFM 801.836/78.**

87. PETROBRÁS. PETRÓLEO BRASILEIRO S.A. **Campos de Óleo e Gás das Bacias do Recôncavo/Tucano Sul. Salvador, DEPEX-DEXBA-DINTER, 1982 a. Inédito.**

91. PETROBRÁS. PETRÓLEO BRASILEIRO S.A. Reserva de Óleo e Gás por Campo - RPba de 31.10.82. Tabelas XI e XXI. Salvador, 1982 b.

100. SÁ Fº, R.J. & LEÃO, M.A.C.C. Projeto Ilhéus. Relatório de Prospecção Preliminar. Salvador, CPRM, 1976. 5p.i.l. 1 mapa anexo.

106. SCHOBENHAUS, C. et alii Coord. Geologia do Brasil. Texto Ex
plicativo do Mapa Geológico do Brasil e da Área Oceânica
Adjacente Incluindo Depósitos Minerais. Escala 1:2.500.000.

107. SEIXAS, S.R.M.; MARINHO, M.M.; MORAES Fº, O.; AWDZIEJ, J.
Projeto Bahia II. Relatório Final da Geologia das Folhas
Itaberaba e Serrinha. Salvador, CPRM, 1975. 6v. Convênio
DNPM-CPRM.

SANTANA, A.C.; BRAZ FILHO, P.A. Projeto Baixo São Francisco/
Vaza-Barris; Geologia da Geossinclinal Sergipana e do

109. SILVA, J.G. Relatório de Pesquisa de Granito e Gnaiss em Ba-
cia do Jaíba e Cantagalo; Município de Lauro de Freitas, Ba-

-SD.24: Observações sobre sua Petrologia e Metalogênese. In:
CONGRESSO BRASILEIRO DE GEOLOGIA (31. 1980, Balneário de
Camboriú) Anais do ... Florianópolis, SBG, 1980. v.4. p
2.300-2.312.

111. SILVA, M.F. Relatório de Pesquisa de Argila e Caulim na Faz.
Limoeiro (II e VIII); Município de Camaçari, Bahia. Salvado,

112. SIQUEIRA, L.P. A Evolução Geológica do Precambriano no Esta
do da Bahia e as Mineralizações. In: CONGRESSO BRASILEIRO
DE GEOLOGIA (30: 1978, Recife). Anais do ... Recife, SBG,

113. SIQUEIRA, L.P. Legenda Parcial para Uso nas Cartas Metaloge-
néticas 1:250.000 - Dados da Base Tectono-Geológica. |Sal-

Referências Bibliográficas Adicionais

4. LISTAGEM DOS RECURSOS MINERAIS
ABREVIATURAS E CÓDICOS UTILIZADOS NA LISTAGEM

TIPO GENÉTICO DAS MINERALIZAÇÕES

<table>
<thead>
<tr>
<th>Código</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Residual detritico - "placer"</td>
</tr>
<tr>
<td>Ia</td>
<td>Residual detritico aluvionar</td>
</tr>
<tr>
<td>Ib</td>
<td>Residual detritico elúvio-colluvionar</td>
</tr>
<tr>
<td>II</td>
<td>Superógeno</td>
</tr>
<tr>
<td>IIa</td>
<td>Crosta laterítica</td>
</tr>
<tr>
<td>IIb</td>
<td>Chepão de ferro</td>
</tr>
<tr>
<td>IIIa</td>
<td>Sedimentar</td>
</tr>
<tr>
<td>IIIb</td>
<td>Sedimentar-metamórfico</td>
</tr>
<tr>
<td>IVa</td>
<td>Vulcâneo-sedimentar</td>
</tr>
<tr>
<td>IVb</td>
<td>Vulcâneo-sedimentar-metamórfico</td>
</tr>
<tr>
<td>Va</td>
<td>Vulcânico</td>
</tr>
<tr>
<td>Vb</td>
<td>Vulcânico-metamórfico</td>
</tr>
<tr>
<td>VI</td>
<td>Hidrotermal</td>
</tr>
<tr>
<td>VII</td>
<td>Pegmatítico/pneumatolítico</td>
</tr>
<tr>
<td>VIIa</td>
<td>Pegmatítico</td>
</tr>
<tr>
<td>VIIb</td>
<td>Pneumatolítico</td>
</tr>
<tr>
<td>VIIIa</td>
<td>Plutônico</td>
</tr>
<tr>
<td>VIIIb</td>
<td>Plutônico-metamórfico</td>
</tr>
<tr>
<td>IX</td>
<td>Metasomático</td>
</tr>
<tr>
<td>X</td>
<td>Metamorfoógico</td>
</tr>
<tr>
<td>XI</td>
<td>Não especificado</td>
</tr>
</tbody>
</table>

IDADE DAS ENCAIXANTES

<table>
<thead>
<tr>
<th>Código</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>Quaternário</td>
</tr>
<tr>
<td>T</td>
<td>Terciário</td>
</tr>
<tr>
<td>K1</td>
<td>Cretáceo Inferior</td>
</tr>
<tr>
<td>J2</td>
<td>Jurásico Superior</td>
</tr>
<tr>
<td>A(2)</td>
<td>Arqueano Indiviso, retrabalhado no Transamazônico</td>
</tr>
</tbody>
</table>

SUBSTÂNCIAS MINERAIS

<table>
<thead>
<tr>
<th>Código</th>
<th>Substância Mineral</th>
</tr>
</thead>
<tbody>
<tr>
<td>ad</td>
<td>amídrita</td>
</tr>
<tr>
<td>eg</td>
<td>argila</td>
</tr>
<tr>
<td>ba</td>
<td>bárula</td>
</tr>
<tr>
<td>bo</td>
<td>bornita</td>
</tr>
<tr>
<td>ha</td>
<td>halita</td>
</tr>
<tr>
<td>man</td>
<td>manganita</td>
</tr>
<tr>
<td>sq</td>
<td>sálquita</td>
</tr>
<tr>
<td>pr</td>
<td>pirolusita</td>
</tr>
<tr>
<td>psi</td>
<td>psilomelana</td>
</tr>
<tr>
<td>qz</td>
<td>quartzo</td>
</tr>
<tr>
<td>st</td>
<td>silte</td>
</tr>
<tr>
<td>tr</td>
<td>turfa</td>
</tr>
</tbody>
</table>

STATUS DAS MINERALIZAÇÕES

<table>
<thead>
<tr>
<th>Código</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ocorrência/Indício</td>
</tr>
<tr>
<td>2</td>
<td>Depósito</td>
</tr>
<tr>
<td>3</td>
<td>Jasida</td>
</tr>
<tr>
<td>4</td>
<td>Mina a céu aberto em explotação</td>
</tr>
<tr>
<td>4a</td>
<td>Mina a céu aberto abandonada</td>
</tr>
<tr>
<td>5</td>
<td>Mina subterrânea em explotação</td>
</tr>
<tr>
<td>5a</td>
<td>Mina subterrânea abandonada</td>
</tr>
<tr>
<td>6</td>
<td>Garispo a céu aberto em explotação</td>
</tr>
<tr>
<td>6a</td>
<td>Garispo a céu aberto abandonado</td>
</tr>
<tr>
<td>NÚMERO</td>
<td>LOCALIZAÇÃO</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>Maragopita</td>
</tr>
<tr>
<td>2</td>
<td>Teodoro Sampayo</td>
</tr>
<tr>
<td>3</td>
<td>Caicocheira</td>
</tr>
<tr>
<td>4</td>
<td>Caicocheira</td>
</tr>
<tr>
<td>5</td>
<td>Caicocheira</td>
</tr>
<tr>
<td>6</td>
<td>Feira de Santana</td>
</tr>
<tr>
<td>7</td>
<td>Quarto</td>
</tr>
<tr>
<td>8</td>
<td>Camapo</td>
</tr>
<tr>
<td>9</td>
<td>Argila</td>
</tr>
<tr>
<td>10</td>
<td>Aretas, argila</td>
</tr>
<tr>
<td>11</td>
<td>Argila</td>
</tr>
<tr>
<td>12</td>
<td>Camapo</td>
</tr>
<tr>
<td>13</td>
<td>Argila, colina</td>
</tr>
<tr>
<td>14</td>
<td>Argila</td>
</tr>
<tr>
<td>15</td>
<td>Caicocheira</td>
</tr>
<tr>
<td>16</td>
<td>Caicocheira</td>
</tr>
<tr>
<td>17</td>
<td>Caicocheira</td>
</tr>
<tr>
<td>18</td>
<td>Calpaito com chifre</td>
</tr>
<tr>
<td>19</td>
<td>Camapo</td>
</tr>
<tr>
<td>20</td>
<td>Camapo</td>
</tr>
<tr>
<td>21</td>
<td>Camapo</td>
</tr>
<tr>
<td>22</td>
<td>Petróleo, gás</td>
</tr>
<tr>
<td>23</td>
<td>Petróleo, gás</td>
</tr>
<tr>
<td>24</td>
<td>Petróleo, gás</td>
</tr>
<tr>
<td>N°</td>
<td>Localização</td>
</tr>
<tr>
<td>----</td>
<td>-------------</td>
</tr>
<tr>
<td>25</td>
<td>Petróleo, gás</td>
</tr>
<tr>
<td>26</td>
<td>Gás</td>
</tr>
<tr>
<td>27</td>
<td>Petróleo, gás</td>
</tr>
<tr>
<td>28</td>
<td>Gás</td>
</tr>
<tr>
<td>29</td>
<td>Petróleo, gás</td>
</tr>
<tr>
<td>30</td>
<td>Petróleo, gás</td>
</tr>
<tr>
<td>31</td>
<td>Petróleo, gás</td>
</tr>
<tr>
<td>32</td>
<td>Petróleo, gás</td>
</tr>
<tr>
<td>33</td>
<td>Petróleo, gás</td>
</tr>
<tr>
<td>34</td>
<td>Gás</td>
</tr>
<tr>
<td>35</td>
<td>Gás</td>
</tr>
<tr>
<td>36</td>
<td>Petróleo, gás</td>
</tr>
<tr>
<td>37</td>
<td>Petróleo, gás</td>
</tr>
<tr>
<td>38</td>
<td>Petróleo, gás S. Sebastião do Pau-çé</td>
</tr>
<tr>
<td>39</td>
<td>Petróleo, gás S. Sebastião do Pau-çé</td>
</tr>
<tr>
<td>40</td>
<td>Petróleo, gás</td>
</tr>
<tr>
<td>41</td>
<td>Petróleo, gás</td>
</tr>
<tr>
<td>42</td>
<td>Petróleo, gás</td>
</tr>
<tr>
<td>43</td>
<td>Petróleo, gás</td>
</tr>
<tr>
<td>44</td>
<td>Petróleo, gás</td>
</tr>
<tr>
<td>45</td>
<td>Petróleo, gás</td>
</tr>
<tr>
<td>46</td>
<td>Petróleo, gás</td>
</tr>
<tr>
<td>47</td>
<td>Petróleo, gás</td>
</tr>
<tr>
<td>48</td>
<td>Petróleo, gás</td>
</tr>
<tr>
<td>Cod.</td>
<td>Localização</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>49</td>
<td>Petróleo, gás</td>
</tr>
<tr>
<td>50</td>
<td>Petróleo, gás</td>
</tr>
<tr>
<td>51</td>
<td>Petróleo, gás</td>
</tr>
<tr>
<td>52</td>
<td>Petróleo, gás</td>
</tr>
<tr>
<td>53</td>
<td>Petróleo, gás</td>
</tr>
<tr>
<td>54</td>
<td>Gás</td>
</tr>
<tr>
<td>55</td>
<td>Petróleo, gás</td>
</tr>
<tr>
<td>56</td>
<td>Petróleo, gás</td>
</tr>
<tr>
<td>57</td>
<td>Petróleo, gás</td>
</tr>
<tr>
<td>58</td>
<td>Gás</td>
</tr>
<tr>
<td>59</td>
<td>Petróleo, gás</td>
</tr>
<tr>
<td>60</td>
<td>Petróleo, gás</td>
</tr>
<tr>
<td>61</td>
<td>Petróleo, gás</td>
</tr>
<tr>
<td>62</td>
<td>Petróleo, gás</td>
</tr>
<tr>
<td>63</td>
<td>Petróleo, gás</td>
</tr>
<tr>
<td>64</td>
<td>Petróleo, gás</td>
</tr>
<tr>
<td>65</td>
<td>Petróleo, gás</td>
</tr>
<tr>
<td>66</td>
<td>Petróleo, gás</td>
</tr>
<tr>
<td>67</td>
<td>Petróleo, gás</td>
</tr>
<tr>
<td>68</td>
<td>Gás</td>
</tr>
<tr>
<td>69</td>
<td>Calçado conchiveis</td>
</tr>
<tr>
<td>70</td>
<td>Calçado conchiveis</td>
</tr>
<tr>
<td>71</td>
<td>Calçado conchiveis</td>
</tr>
</tbody>
</table>

Grupo Minas 35 8,29,69
*Reserva no Jóias de 69 72,99

Grupo Minas 35 8,29,69
*Reserva no Jóias de 69 72,99

Grupo Minas 35 8,29,69
*Reserva no Jóias de 69 99
<table>
<thead>
<tr>
<th>Código</th>
<th>Localização</th>
<th>Data de Coleta</th>
<th>Latit.</th>
<th>Longit.</th>
<th>Tipo de Recurso</th>
<th>Resolvido</th>
<th>Reservado</th>
<th>Expurgado</th>
<th>Inexplorado</th>
<th>Testemunho</th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
<td>Chã de São Francisco da Candeia</td>
<td>12°38'57"S</td>
<td>-</td>
<td>38°10'18"W</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Sedimentos</td>
<td>Q</td>
<td>1</td>
<td>1.281.400m³; 85,56,99</td>
</tr>
<tr>
<td>73</td>
<td>Souto de Pinheiro</td>
<td>12°47'53"S</td>
<td>-</td>
<td>38°27'22"W</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Arenitos e mís</td>
<td>sitos</td>
<td>1</td>
<td>1.167.738m³; 85,28,69, 99</td>
</tr>
<tr>
<td>74</td>
<td>Granito</td>
<td>12°50'18"S</td>
<td>-</td>
<td>38°22'31"W</td>
<td>Não especificado</td>
<td>XI</td>
<td>Granitos</td>
<td>A(T)</td>
<td>3</td>
<td>1.457.042m³</td>
</tr>
<tr>
<td>75</td>
<td>Granito</td>
<td>12°52'05"S</td>
<td>-</td>
<td>38°20'14"W</td>
<td>Não especificado</td>
<td>XI</td>
<td>Granitos</td>
<td>A(T)</td>
<td>4</td>
<td>1.316.099m³</td>
</tr>
<tr>
<td>76</td>
<td>Granito</td>
<td>12°50'43"S</td>
<td>-</td>
<td>38°27'56"W</td>
<td>Não especificado</td>
<td>XI</td>
<td>Granitos</td>
<td>A(T)</td>
<td>4</td>
<td>1.316.099m³</td>
</tr>
<tr>
<td>77</td>
<td>Granito</td>
<td>12°56'45"S</td>
<td>-</td>
<td>38°27'56"W</td>
<td>Não especificado</td>
<td>XI</td>
<td>Granitos</td>
<td>A(T)</td>
<td>4</td>
<td>38.459.899m³</td>
</tr>
<tr>
<td>78</td>
<td>Granito</td>
<td>12°53'58"S</td>
<td>-</td>
<td>38°27'03"W</td>
<td>Não especificado</td>
<td>XI</td>
<td>Granitos</td>
<td>A(T)</td>
<td>4</td>
<td>38.459.899m³</td>
</tr>
<tr>
<td>79</td>
<td>Petróleo, gás</td>
<td>12°21'14"S</td>
<td>-</td>
<td>38°21'22"W</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Arenitos</td>
<td>J</td>
<td>5</td>
<td>Reservado: 101.000m³</td>
</tr>
<tr>
<td>80</td>
<td>Turfa</td>
<td>12°51'46"S</td>
<td>-</td>
<td>38°16'02"W</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Sedimentos (7)</td>
<td>Qh</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>81</td>
<td>Turfa</td>
<td>12°50'23"S</td>
<td>-</td>
<td>38°14'52"W</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Sedimentos (7)</td>
<td>Qh</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>82</td>
<td>Turfa</td>
<td>12°44'54"S</td>
<td>-</td>
<td>38°10'07"W</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Sedimentos (7)</td>
<td>Qh</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>83</td>
<td>Turfa</td>
<td>12°03'23"S</td>
<td>-</td>
<td>37°42'40"W</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Sedimentos (7)</td>
<td>Qh</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>84</td>
<td>Turfa</td>
<td>12°00'32"S</td>
<td>-</td>
<td>37°39'43"W</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Sedimentos (7)</td>
<td>Qh</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>85</td>
<td>Turfa</td>
<td>12°36'50"S</td>
<td>-</td>
<td>38°03'35"W</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Sedimentos (7)</td>
<td>Qh</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>86</td>
<td>Turfa</td>
<td>12°35'22"S</td>
<td>-</td>
<td>38°04'26"W</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Sedimentos (7)</td>
<td>Qh</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>87</td>
<td>Turfa</td>
<td>12°37'31"S</td>
<td>-</td>
<td>38°09'55"W</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Sedimentos (7)</td>
<td>Qh</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>88</td>
<td>Turfa</td>
<td>12°41'59"S</td>
<td>-</td>
<td>38°09'22"W</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Sedimentos (7)</td>
<td>Qh</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>89</td>
<td>Turfa</td>
<td>12°43'00"S</td>
<td>-</td>
<td>38°11'09"W</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Sedimentos (7)</td>
<td>Qh</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>90</td>
<td>Turfa</td>
<td>12°43'40"S</td>
<td>-</td>
<td>38°12'07"W</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Sedimentos (7)</td>
<td>Qh</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>91</td>
<td>Turfa</td>
<td>12°42'50"S</td>
<td>-</td>
<td>38°09'36"W</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Sedimentos (7)</td>
<td>Qh</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>92</td>
<td>Petróleo, gás</td>
<td>12°48'30"S</td>
<td>-</td>
<td>38°29'23"W</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Arenitos</td>
<td>K</td>
<td>5</td>
<td>Reservado: 11.000m³</td>
</tr>
</tbody>
</table>
PROJETO MAPAS METALOGENÉTICOS E DE PREVISÃO DE RECURSOS MINERAIS

LISTAGEM DOS RECURSOS MINERAIS

<table>
<thead>
<tr>
<th>Código</th>
<th>Recurso</th>
<th>Localização</th>
<th>Fotografia</th>
<th>Número de Fotografias</th>
<th>Mineral</th>
<th>Quantidade</th>
<th>Localização Geográfica</th>
<th>Detalhes</th>
</tr>
</thead>
<tbody>
<tr>
<td>93</td>
<td>Manganesa</td>
<td>São Felix</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>Manganesa</td>
<td>São Felix</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>Quartzo</td>
<td>São Felix</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>Caolino</td>
<td>Camará</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>Caolino</td>
<td>Camará</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>Caolino</td>
<td>Camará</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>Caolino</td>
<td>Camará</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>Argila</td>
<td>Poços</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>Granulito</td>
<td>Salvador</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>Granulito</td>
<td>Salvador</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>Caolino</td>
<td>Simões Pêlo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>Cebre</td>
<td>Maranguape</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>Calcário con-</td>
<td>Santo Amaro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>ótico</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>Petróleo</td>
<td>Entre Rio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>Petróleo</td>
<td>Entre Rio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>Petróleo</td>
<td>Entre Rio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>Petróleo</td>
<td>Entre Rio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>Petróleo</td>
<td>Entre Rio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>Petróleo</td>
<td>Entre Rio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>Petróleo</td>
<td>ABC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>Petróleo</td>
<td>ABC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>Petróleo</td>
<td>ABC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>Petróleo</td>
<td>ABC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>Sócio (Salgada)</td>
<td>ABC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>Petróleo</td>
<td>ABC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>Petróleo</td>
<td>ABC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>Petróleo</td>
<td>ABC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>Granulito</td>
<td>ABC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Obs.: Reservas indicadas são em kg e cantas. Reservas inferiores são em mg.
<table>
<thead>
<tr>
<th>Localização</th>
<th>Proveniência</th>
<th>Coordenadas</th>
<th>Referência</th>
<th>Gravidade</th>
</tr>
</thead>
<tbody>
<tr>
<td>122 Granulito</td>
<td>Conceição de Baixo</td>
<td>12º29'31" S 38º38'37" W</td>
<td>Não especificado</td>
<td>XI</td>
</tr>
<tr>
<td>123 Granulito</td>
<td>Salvador</td>
<td>12º59'52" S 38º38'53" W</td>
<td>Não especificado</td>
<td>XI</td>
</tr>
<tr>
<td>124 Granulito</td>
<td>Salvador</td>
<td>12º51'07" S 38º36'33" W</td>
<td>Não especificado</td>
<td>XI</td>
</tr>
<tr>
<td>125 Granulito</td>
<td>Salvador</td>
<td>12º51'58" S 38º25'08" W</td>
<td>Não especificado</td>
<td>XI</td>
</tr>
<tr>
<td>126 Granulito</td>
<td>Salvador</td>
<td>12º59'03" S 38º24'22" W</td>
<td>Não especificado</td>
<td>XI</td>
</tr>
<tr>
<td>127 Granulito</td>
<td>Salvador</td>
<td>12º52'20" S 38º23'40" W</td>
<td>Não especificado</td>
<td>XI</td>
</tr>
<tr>
<td>128 Granulito</td>
<td>Leandro de Freitas</td>
<td>12º51'11" S 38º21'15" W</td>
<td>Não especificado</td>
<td>XI</td>
</tr>
<tr>
<td>129 Granulito</td>
<td>Leandro de Freitas</td>
<td>12º50'15" S 38º21'23" W</td>
<td>Não especificado</td>
<td>XI</td>
</tr>
<tr>
<td>130 Granulito</td>
<td>Leandro de Freitas</td>
<td>12º50'27" S 38º20'22" W</td>
<td>Não especificado</td>
<td>XI</td>
</tr>
<tr>
<td>131 Granulito</td>
<td>Simões Filho</td>
<td>12º59'48" S 38º23'48" W</td>
<td>Não especificado</td>
<td>XI</td>
</tr>
<tr>
<td>132 Areia</td>
<td>Leandro de Freitas</td>
<td>12º51'48" S 38º20'05" W</td>
<td>Arenitico</td>
<td>IIIa</td>
</tr>
<tr>
<td>133 Areia</td>
<td>Leandro de Freitas</td>
<td>12º55'37" S 38º18'47" W</td>
<td>Arenitico</td>
<td>IIIa</td>
</tr>
<tr>
<td>134 Areia</td>
<td>Camacuá</td>
<td>12º39'05" S 38º12'43" W</td>
<td>Arenitico</td>
<td>IIIa</td>
</tr>
<tr>
<td>135 Areia</td>
<td>Caetite e São Félix</td>
<td>12º37'12" S 38º11'17" W</td>
<td>Arenitico</td>
<td>IIIa</td>
</tr>
<tr>
<td>136 Areia</td>
<td>Caetite e São Félix</td>
<td>12º37'12" S 38º11'17" W</td>
<td>Arenitico</td>
<td>IIIa</td>
</tr>
<tr>
<td>137 Areia</td>
<td>Camacuá</td>
<td>12º39'05" S 38º10'35" W</td>
<td>Arenitico</td>
<td>IIIa</td>
</tr>
<tr>
<td>138 Areia</td>
<td>Caetite e São Félix</td>
<td>12º39'05" S 38º10'35" W</td>
<td>Arenitico</td>
<td>IIIa</td>
</tr>
<tr>
<td>139 Areia</td>
<td>Caetite e São Félix</td>
<td>12º39'05" S 38º10'35" W</td>
<td>Arenitico</td>
<td>IIIa</td>
</tr>
<tr>
<td>140 Areia</td>
<td>Camacuá</td>
<td>12º39'05" S 38º10'35" W</td>
<td>Arenitico</td>
<td>IIIa</td>
</tr>
<tr>
<td>141 Areia, Caetite e São Félix</td>
<td>Camacuá</td>
<td>12º39'05" S 38º10'35" W</td>
<td>Arenitico</td>
<td>IIIa</td>
</tr>
<tr>
<td>142 Areia</td>
<td>Camacuá</td>
<td>12º39'05" S 38º10'35" W</td>
<td>Arenitico</td>
<td>IIIa</td>
</tr>
<tr>
<td>143 Areia</td>
<td>Camacuá</td>
<td>12º39'05" S 38º10'35" W</td>
<td>Arenitico</td>
<td>IIIa</td>
</tr>
<tr>
<td>144 Areia</td>
<td>Caetite e São Félix</td>
<td>12º39'05" S 38º10'35" W</td>
<td>Arenitico</td>
<td>IIIa</td>
</tr>
<tr>
<td>145 Areia</td>
<td>Caetite e São Félix</td>
<td>12º39'05" S 38º10'35" W</td>
<td>Arenitico</td>
<td>IIIa</td>
</tr>
<tr>
<td>146 Areia</td>
<td>Caetite e São Félix</td>
<td>12º39'05" S 38º10'35" W</td>
<td>Arenitico</td>
<td>IIIa</td>
</tr>
<tr>
<td>147 Areia</td>
<td>Caetite e São Félix</td>
<td>12º39'05" S 38º10'35" W</td>
<td>Arenitico</td>
<td>IIIa</td>
</tr>
<tr>
<td>148 Areia</td>
<td>Caetite e São Félix</td>
<td>12º39'05" S 38º10'35" W</td>
<td>Arenitico</td>
<td>IIIa</td>
</tr>
<tr>
<td>149 Areia</td>
<td>Caetite e São Félix</td>
<td>12º39'05" S 38º10'35" W</td>
<td>Arenitico</td>
<td>IIIa</td>
</tr>
<tr>
<td>150 Calcário e arenito</td>
<td>Salvador</td>
<td>12º39'05" S 38º10'35" W</td>
<td>Arenitico</td>
<td>IIIa</td>
</tr>
<tr>
<td>151 Calcário e arenito</td>
<td>Salvador/Simões Filho</td>
<td>12º39'05" S 38º10'35" W</td>
<td>Arenitico</td>
<td>IIIa</td>
</tr>
<tr>
<td>NÚMERO</td>
<td>MUN.</td>
<td>NOME</td>
<td>LOCALIZAÇÃO</td>
<td>LATITUDE</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>152</td>
<td>BA</td>
<td>Salvador</td>
<td>Baía de Todos os Santos II</td>
<td>12°55'19"</td>
</tr>
<tr>
<td>153</td>
<td>BA</td>
<td>Salvador</td>
<td>Baía de Todos os Santos III</td>
<td>12°44'37"</td>
</tr>
<tr>
<td>154</td>
<td>BA</td>
<td>Salvador</td>
<td>Baía de Todos os Santos IV</td>
<td>12°34'41"</td>
</tr>
<tr>
<td>155</td>
<td>BA</td>
<td>Salvador</td>
<td>Baía de Todos os Santos V</td>
<td>12°34'28"</td>
</tr>
<tr>
<td>156</td>
<td>BA</td>
<td>Salvador</td>
<td>Baía de Todos os Santos VI</td>
<td>12°42'26"</td>
</tr>
<tr>
<td>157</td>
<td>BA</td>
<td>Salvador</td>
<td>Baía de Todos os Santos VII</td>
<td>12°42'39"</td>
</tr>
<tr>
<td>158</td>
<td>BA</td>
<td>Salvador</td>
<td>Baía de Todos os Santos VIII</td>
<td>12°44'29"</td>
</tr>
<tr>
<td>159</td>
<td>BA</td>
<td>Salvador</td>
<td>Baía de Todos os Santos IX</td>
<td>12°50'18"</td>
</tr>
<tr>
<td>160</td>
<td>BA</td>
<td>Salvador</td>
<td>Baía de Todos os Santos X</td>
<td>12°51'49"</td>
</tr>
<tr>
<td>161</td>
<td>BA</td>
<td>Salvador</td>
<td>Baía de Todos os Santos XI</td>
<td>12°43'08"</td>
</tr>
<tr>
<td>162</td>
<td>BA</td>
<td>Salvador</td>
<td>Baía de Todos os Santos XII</td>
<td>12°50'09"</td>
</tr>
<tr>
<td>163</td>
<td>BA</td>
<td>Salvador</td>
<td>Baía de Todos os Santos XIII</td>
<td>12°42'31"</td>
</tr>
<tr>
<td>164</td>
<td>BA</td>
<td>Salvador</td>
<td>Baía de Ela de Maré</td>
<td>12°44'17"</td>
</tr>
<tr>
<td>165</td>
<td>BA</td>
<td>Salvador</td>
<td>Baía de Todos os Santos XIV</td>
<td>12°47'03"</td>
</tr>
<tr>
<td>166</td>
<td>BA</td>
<td>Salvador</td>
<td>Baía de Todos os Santos XV</td>
<td>12°47'07"</td>
</tr>
<tr>
<td>167</td>
<td>BA</td>
<td>Salvador</td>
<td>Barra de Alag.</td>
<td>12°42'35"</td>
</tr>
<tr>
<td>168</td>
<td>BA</td>
<td>Salvador</td>
<td>Barra de Alag.</td>
<td>12°42'35"</td>
</tr>
<tr>
<td>169</td>
<td>BA</td>
<td>Salvador</td>
<td>Baía de Todos os Santos XVII</td>
<td>12°49'10"</td>
</tr>
<tr>
<td>170</td>
<td>BA</td>
<td>Salvador</td>
<td>Baía de Todos os Santos XVIII</td>
<td>12°49'00"</td>
</tr>
<tr>
<td>171</td>
<td>BA</td>
<td>Salvador</td>
<td>Baía de Todos os Santos XX</td>
<td>12°49'31"</td>
</tr>
<tr>
<td>172</td>
<td>BA</td>
<td>Salvador</td>
<td>Baía de Todos os Santos XXI</td>
<td>12°47'56"</td>
</tr>
<tr>
<td>173</td>
<td>BA</td>
<td>Salvador</td>
<td>Baía de Todos os Santos XXII</td>
<td>12°56'49"</td>
</tr>
<tr>
<td>174</td>
<td>BA</td>
<td>Salvador</td>
<td>Ponta do Castelo</td>
<td>12°42'02"</td>
</tr>
<tr>
<td>175</td>
<td>BA</td>
<td>Salvador</td>
<td>Ilha de Frade</td>
<td>12°47'12"</td>
</tr>
<tr>
<td>Código</td>
<td>Localização</td>
<td>Departamento</td>
<td>Depósitos bio-destríticos</td>
<td>Reserva medida</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>--------------</td>
<td>---------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>176</td>
<td>Caldeirão com o Rio de Frel tes</td>
<td>BA</td>
<td>Estratiforme</td>
<td>3,682,000t 29,69,99</td>
</tr>
<tr>
<td>177</td>
<td>Caldeirão com o Rio de Frel tes</td>
<td>BA</td>
<td>Estratiforme</td>
<td>3,392,000t, tep.</td>
</tr>
<tr>
<td>178</td>
<td>Caldeirão com o Rio de Frel tes</td>
<td>BA</td>
<td>Estratiforme</td>
<td>4a, 10,390,000t, 26,69,99</td>
</tr>
<tr>
<td>179</td>
<td>Caldeirão com o Rio de Frel tes</td>
<td>BA</td>
<td>Estratiforme</td>
<td>4a, 22,664, 70 a 100% CaCO3</td>
</tr>
<tr>
<td>180</td>
<td>Caldeirão com o Rio de Frel tes</td>
<td>BA</td>
<td>Estratiforme</td>
<td>4a, 334,552,70 a 100% CaCO3</td>
</tr>
<tr>
<td>181</td>
<td>Caldeirão com o Rio de Frel tes</td>
<td>BA</td>
<td>Estratiforme</td>
<td>4a, 237,244,70 a 100% CaCO3</td>
</tr>
<tr>
<td>182</td>
<td>Granulito</td>
<td>BA</td>
<td>Estratiforme</td>
<td>11,900,660m³ 75,69,99</td>
</tr>
<tr>
<td>183</td>
<td>Granulito</td>
<td>BA</td>
<td>Estratiforme</td>
<td>96,90,99</td>
</tr>
<tr>
<td>184</td>
<td>Granulito</td>
<td>BA</td>
<td>Estratiforme</td>
<td>96,90,99</td>
</tr>
<tr>
<td>185</td>
<td>Arelia</td>
<td>BA</td>
<td>Estratiforme</td>
<td>4, 334,552,70 a 100% CaCO3</td>
</tr>
<tr>
<td>186</td>
<td>Arelia</td>
<td>BA</td>
<td>Estratiforme</td>
<td>4, 334,552,70 a 100% CaCO3</td>
</tr>
<tr>
<td>187</td>
<td>Arelia</td>
<td>BA</td>
<td>Estratiforme</td>
<td>4, 334,552,70 a 100% CaCO3</td>
</tr>
<tr>
<td>188</td>
<td>Arelia</td>
<td>BA</td>
<td>Estratiforme</td>
<td>4, 334,552,70 a 100% CaCO3</td>
</tr>
<tr>
<td>189</td>
<td>Arelia</td>
<td>BA</td>
<td>Estratiforme</td>
<td>4, 334,552,70 a 100% CaCO3</td>
</tr>
<tr>
<td>190</td>
<td>Arelia</td>
<td>BA</td>
<td>Estratiforme</td>
<td>4, 334,552,70 a 100% CaCO3</td>
</tr>
<tr>
<td>191</td>
<td>Arelia</td>
<td>BA</td>
<td>Estratiforme</td>
<td>4, 334,552,70 a 100% CaCO3</td>
</tr>
</tbody>
</table>
| 192 | Turfa | BA | Estratiforme | 5, 7,750,000t,
| 193 | Turfa | BA | Estratiforme | 5, 7,750,000t,
| 194 | Turfa | BA | Estratiforme | 5, 7,750,000t,
| 195 | Turfa | BA | Estratiforme | 5, 7,750,000t,
| 196 | Turfa | BA | Estratiforme | 5, 7,750,000t,
| 197 | Turfa | BA | Estratiforme | 5, 7,750,000t,
| 198 | Turfa | BA | Estratiforme | 5, 7,750,000t,
| 199 | Turfa | BA | Estratiforme | 5, 7,750,000t,

Notas:
- Depósitos bio-destríticos são estimados.
- Reservas medidas são em toneladas.
<table>
<thead>
<tr>
<th>Código</th>
<th>Localidade</th>
<th>Alteração</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Estratigrafia</th>
<th>Catalgo</th>
<th>Unidade</th>
<th>1000</th>
<th>10000</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>Turfa</td>
<td>Camapari</td>
<td>23º52'24"</td>
<td>115º18'14"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>tri; elite, ag</td>
<td>Depósitos aluv. Ch</td>
<td>1</td>
</tr>
<tr>
<td>201</td>
<td>Turfa</td>
<td>Camapari</td>
<td>23º52'24"</td>
<td>115º18'14"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>tri; elite, ag</td>
<td>Depósitos aluv. Ch</td>
<td>1</td>
</tr>
<tr>
<td>202</td>
<td>Turfa</td>
<td>Camapari</td>
<td>23º52'24"</td>
<td>115º18'14"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>tri; elite, ag</td>
<td>Depósitos aluv. Ch</td>
<td>1</td>
</tr>
<tr>
<td>203</td>
<td>Turfa</td>
<td>Camapari</td>
<td>23º52'24"</td>
<td>115º18'14"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>tri; elite, ag</td>
<td>Depósitos aluv. Ch</td>
<td>1</td>
</tr>
<tr>
<td>204</td>
<td>Turfa</td>
<td>Camapari</td>
<td>23º52'24"</td>
<td>115º18'14"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>tri; elite, ag</td>
<td>Depósitos aluv. Ch</td>
<td>1</td>
</tr>
<tr>
<td>205</td>
<td>Turfa</td>
<td>Camapari</td>
<td>23º52'24"</td>
<td>115º18'14"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>tri; elite, ag</td>
<td>Depósitos aluv. Ch</td>
<td>1</td>
</tr>
<tr>
<td>206</td>
<td>Turfa</td>
<td>Camapari</td>
<td>23º52'24"</td>
<td>115º18'14"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>tri; elite, ag</td>
<td>Depósitos aluv. Ch</td>
<td>1</td>
</tr>
<tr>
<td>207</td>
<td>Município</td>
<td>Caçacriu</td>
<td>23º52'24"</td>
<td>115º18'14"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>tri; elite, ag</td>
<td>Depósitos aluv. Ch</td>
<td>1</td>
</tr>
<tr>
<td>208</td>
<td>Município</td>
<td>Caçacriu</td>
<td>23º52'24"</td>
<td>115º18'14"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>tri; elite, ag</td>
<td>Depósitos aluv. Ch</td>
<td>1</td>
</tr>
<tr>
<td>209</td>
<td>Município</td>
<td>Caçacriu</td>
<td>23º52'24"</td>
<td>115º18'14"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>tri; elite, ag</td>
<td>Depósitos aluv. Ch</td>
<td>1</td>
</tr>
<tr>
<td>210</td>
<td>Município</td>
<td>Caçacriu</td>
<td>23º52'24"</td>
<td>115º18'14"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>tri; elite, ag</td>
<td>Depósitos aluv. Ch</td>
<td>1</td>
</tr>
<tr>
<td>211</td>
<td>Município</td>
<td>Caçacriu</td>
<td>23º52'24"</td>
<td>115º18'14"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>tri; elite, ag</td>
<td>Depósitos aluv. Ch</td>
<td>1</td>
</tr>
<tr>
<td>212</td>
<td>Município</td>
<td>Caçacriu</td>
<td>23º52'24"</td>
<td>115º18'14"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>tri; elite, ag</td>
<td>Depósitos aluv. Ch</td>
<td>1</td>
</tr>
<tr>
<td>213</td>
<td>Município</td>
<td>Caçacriu</td>
<td>23º52'24"</td>
<td>115º18'14"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>tri; elite, ag</td>
<td>Depósitos aluv. Ch</td>
<td>1</td>
</tr>
<tr>
<td>214</td>
<td>Município</td>
<td>Caçacriu</td>
<td>23º52'24"</td>
<td>115º18'14"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>tri; elite, ag</td>
<td>Depósitos aluv. Ch</td>
<td>1</td>
</tr>
<tr>
<td>215</td>
<td>Município</td>
<td>Caçacriu</td>
<td>23º52'24"</td>
<td>115º18'14"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>tri; elite, ag</td>
<td>Depósitos aluv. Ch</td>
<td>1</td>
</tr>
<tr>
<td>216</td>
<td>Município</td>
<td>Caçacriu</td>
<td>23º52'24"</td>
<td>115º18'14"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>tri; elite, ag</td>
<td>Depósitos aluv. Ch</td>
<td>1</td>
</tr>
<tr>
<td>217</td>
<td>Município</td>
<td>Caçacriu</td>
<td>23º52'24"</td>
<td>115º18'14"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>tri; elite, ag</td>
<td>Depósitos aluv. Ch</td>
<td>1</td>
</tr>
<tr>
<td>218</td>
<td>Município</td>
<td>Caçacriu</td>
<td>23º52'24"</td>
<td>115º18'14"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>tri; elite, ag</td>
<td>Depósitos aluv. Ch</td>
<td>1</td>
</tr>
<tr>
<td>219</td>
<td>Município</td>
<td>Caçacriu</td>
<td>23º52'24"</td>
<td>115º18'14"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>tri; elite, ag</td>
<td>Depósitos aluv. Ch</td>
<td>1</td>
</tr>
<tr>
<td>220</td>
<td>Município</td>
<td>Caçacriu</td>
<td>23º52'24"</td>
<td>115º18'14"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>tri; elite, ag</td>
<td>Depósitos aluv. Ch</td>
<td>1</td>
</tr>
<tr>
<td>221</td>
<td>Município</td>
<td>Caçacriu</td>
<td>23º52'24"</td>
<td>115º18'14"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>tri; elite, ag</td>
<td>Depósitos aluv. Ch</td>
<td>1</td>
</tr>
<tr>
<td>222</td>
<td>Município</td>
<td>Caçacriu</td>
<td>23º52'24"</td>
<td>115º18'14"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>tri; elite, ag</td>
<td>Depósitos aluv. Ch</td>
<td>1</td>
</tr>
<tr>
<td>223</td>
<td>Município</td>
<td>Caçacriu</td>
<td>23º52'24"</td>
<td>115º18'14"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>tri; elite, ag</td>
<td>Depósitos aluv. Ch</td>
<td>1</td>
</tr>
<tr>
<td>224</td>
<td>Município</td>
<td>Caçacriu</td>
<td>23º52'24"</td>
<td>115º18'14"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>tri; elite, ag</td>
<td>Depósitos aluv. Ch</td>
<td>1</td>
</tr>
<tr>
<td>NÚC NUMER</td>
<td>LOCALIZAÇÃO</td>
<td>Dados da mineralização</td>
<td>Rochas Encontradas</td>
<td>Status da Mineralização</td>
<td>Dados Econômicos</td>
<td>Notas e Observações</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>------------------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>------------------</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>225</td>
<td>Araguaína</td>
<td>12°21'49"S 38°18'35"W</td>
<td>Não especificado</td>
<td>Areia, areia e sílica</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>226</td>
<td>Araguaína</td>
<td>12°26'11"S 38°18'36"W</td>
<td>Lenticular</td>
<td>Areia, areia e sílica</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>227</td>
<td>Araguaína</td>
<td>12°20'29"S 38°17'15"W</td>
<td>Estratiforme</td>
<td>Areia, areia e sílica</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>228</td>
<td>Araguaína</td>
<td>12°20'06"S 38°16'37"W</td>
<td>Estratiforme</td>
<td>Areia, areia e sílica</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>229</td>
<td>Araguaína</td>
<td>12°26'54"S 38°10'57"W</td>
<td>Estratiforme</td>
<td>Areia, areia e sílica</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>230</td>
<td>Araguaína</td>
<td>12°21'00"S 38°18'56"W</td>
<td>Estratiforme</td>
<td>Areia, areia e sílica</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>231</td>
<td>Araguaína</td>
<td>12°22'00"S 38°19'32"W</td>
<td>Estratiforme</td>
<td>Areia, areia e sílica</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>232</td>
<td>Araguaína</td>
<td>12°29'39"S 38°17'13"W</td>
<td>Estratiforme</td>
<td>Areia, areia e sílica</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>233</td>
<td>Araguaína</td>
<td>12°29'39"S 38°17'13"W</td>
<td>Estratiforme</td>
<td>Areia, areia e sílica</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>234</td>
<td>Araguaína</td>
<td>12°23'06"S 38°11'25"W</td>
<td>Estratiforme</td>
<td>Areia, areia e sílica</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>235</td>
<td>Araguaína</td>
<td>12°29'39"S 38°17'13"W</td>
<td>Estratiforme</td>
<td>Areia, areia e sílica</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>236</td>
<td>Araguaína</td>
<td>12°23'06"S 38°11'25"W</td>
<td>Estratiforme</td>
<td>Areia, areia e sílica</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>237</td>
<td>Araguaína</td>
<td>12°23'06"S 38°11'25"W</td>
<td>Estratiforme</td>
<td>Areia, areia e sílica</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>238</td>
<td>Araguaína</td>
<td>12°23'06"S 38°11'25"W</td>
<td>Estratiforme</td>
<td>Areia, areia e sílica</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>239</td>
<td>Araguaína</td>
<td>12°23'06"S 38°11'25"W</td>
<td>Estratiforme</td>
<td>Areia, areia e sílica</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>Araguaína</td>
<td>12°23'06"S 38°11'25"W</td>
<td>Estratiforme</td>
<td>Areia, areia e sílica</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>241</td>
<td>Araguaína</td>
<td>12°23'06"S 38°11'25"W</td>
<td>Estratiforme</td>
<td>Areia, areia e sílica</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>242</td>
<td>Araguaína</td>
<td>12°23'06"S 38°11'25"W</td>
<td>Estratiforme</td>
<td>Areia, areia e sílica</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>243</td>
<td>Araguaína</td>
<td>12°23'06"S 38°11'25"W</td>
<td>Estratiforme</td>
<td>Areia, areia e sílica</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>244</td>
<td>Araguaína</td>
<td>12°23'06"S 38°11'25"W</td>
<td>Estratiforme</td>
<td>Areia, areia e sílica</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>245</td>
<td>Araguaína</td>
<td>12°23'06"S 38°11'25"W</td>
<td>Estratiforme</td>
<td>Areia, areia e sílica</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>246</td>
<td>Araguaína</td>
<td>12°23'06"S 38°11'25"W</td>
<td>Estratiforme</td>
<td>Areia, areia e sílica</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>247</td>
<td>Araguaína</td>
<td>12°23'06"S 38°11'25"W</td>
<td>Estratiforme</td>
<td>Areia, areia e sílica</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>248</td>
<td>Araguaína</td>
<td>12°23'06"S 38°11'25"W</td>
<td>Estratiforme</td>
<td>Areia, areia e sílica</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>249</td>
<td>Araguaína</td>
<td>12°23'06"S 38°11'25"W</td>
<td>Estratiforme</td>
<td>Areia, areia e sílica</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>Araguaína</td>
<td>12°23'06"S 38°11'25"W</td>
<td>Estratiforme</td>
<td>Areia, areia e sílica</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>251</td>
<td>Araguaína</td>
<td>12°23'06"S 38°11'25"W</td>
<td>Estratiforme</td>
<td>Areia, areia e sílica</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VÍDE GLEU</td>
<td>SUSTENÁCIA</td>
<td>MINERAL</td>
<td>LOCALIZAÇÃO</td>
<td>COORDENSAS GEOGRÁFICAS</td>
<td>DESEMPENHO</td>
<td>ROTEINÇAS ENCANTADAS</td>
<td>STATUS DA MINERALIZAÇÃO</td>
<td>DADOS ECONÔMICOS</td>
<td>REFERÊNCIAS (EXC.OutOfBoundsException)</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>---------</td>
<td>-------------</td>
<td>-------------------------</td>
<td>------------</td>
<td>----------------------</td>
<td>-------------------------</td>
<td>-------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>252</td>
<td>Areia</td>
<td>laranja</td>
<td>Pasajeiro</td>
<td>12°51'10" S 30°22'08" W</td>
<td>Estratificada</td>
<td>IIIa</td>
<td>Areitões T</td>
<td>6a</td>
<td>46</td>
</tr>
<tr>
<td>253</td>
<td>Areia</td>
<td>Camarão</td>
<td>Pasajeiro</td>
<td>12°51'10" S 30°22'08" W</td>
<td>Estratificada</td>
<td>IIIa</td>
<td>Areitões T</td>
<td>Reserva Geológica 356.459 m³ 46,99</td>
<td></td>
</tr>
<tr>
<td>254</td>
<td>Areia</td>
<td>Camarão</td>
<td>Pasajeiro</td>
<td>12°51'10" S 30°22'08" W</td>
<td>Estratificada</td>
<td>IIIa</td>
<td>Areitões T</td>
<td>Reserva Geológica 357.121 m³ 46,99</td>
<td></td>
</tr>
<tr>
<td>255</td>
<td>Areia</td>
<td>Camarão</td>
<td>Pasajeiro</td>
<td>12°51'10" S 30°22'08" W</td>
<td>Estratificada</td>
<td>IIIa</td>
<td>Areitões T</td>
<td>Reserva Geológica 397.940 m³ 46,99</td>
<td></td>
</tr>
<tr>
<td>256</td>
<td>Areia</td>
<td>Camarão</td>
<td>Pasajeiro</td>
<td>12°51'10" S 30°22'08" W</td>
<td>Estratificada</td>
<td>IIIa</td>
<td>Areitões T</td>
<td>Reserva Geológica 322.000 m³ 46,99</td>
<td></td>
</tr>
<tr>
<td>257</td>
<td>Areia</td>
<td>Camarão</td>
<td>Pasajeiro</td>
<td>12°51'10" S 30°22'08" W</td>
<td>Estratificada</td>
<td>IIIa</td>
<td>Areitões T</td>
<td>Reserva Geológica 706.100 m³ 46,99</td>
<td></td>
</tr>
<tr>
<td>258</td>
<td>Areia</td>
<td>Camarão</td>
<td>Pasajeiro</td>
<td>12°51'10" S 30°22'08" W</td>
<td>Estratificada</td>
<td>IIIa</td>
<td>Areitões T</td>
<td>Reserva Geológica 96.000 m³ 46,99</td>
<td></td>
</tr>
<tr>
<td>259</td>
<td>Areia</td>
<td>Camarão</td>
<td>Pasajeiro</td>
<td>12°51'10" S 30°22'08" W</td>
<td>Estratificada</td>
<td>IIIa</td>
<td>Areitões T</td>
<td>Reserva Geológica 4.883.140 m³ 46,99</td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>Areia</td>
<td>Camarão</td>
<td>Pasajeiro</td>
<td>12°51'10" S 30°22'08" W</td>
<td>Estratificada</td>
<td>IIIa</td>
<td>Areitões T</td>
<td>Reserva Geológica 4.883.140 m³ 46,99</td>
<td></td>
</tr>
<tr>
<td>261</td>
<td>Areia</td>
<td>Camarão</td>
<td>Pasajeiro</td>
<td>12°51'10" S 30°22'08" W</td>
<td>Estratificada</td>
<td>IIIa</td>
<td>Areitões T</td>
<td>Reserva Geológica 4.883.140 m³ 46,99</td>
<td></td>
</tr>
<tr>
<td>262</td>
<td>Areia</td>
<td>Camarão</td>
<td>Pasajeiro</td>
<td>12°51'10" S 30°22'08" W</td>
<td>Estratificada</td>
<td>IIIa</td>
<td>Areitões T</td>
<td>Reserva Geológica 4.883.140 m³ 46,99</td>
<td></td>
</tr>
<tr>
<td>263</td>
<td>Areia</td>
<td>Camarão</td>
<td>Pasajeiro</td>
<td>12°51'10" S 30°22'08" W</td>
<td>Estratificada</td>
<td>IIIa</td>
<td>Areitões T</td>
<td>Reserva Geológica 4.883.140 m³ 46,99</td>
<td></td>
</tr>
<tr>
<td>264</td>
<td>Areia</td>
<td>Camarão</td>
<td>Pasajeiro</td>
<td>12°51'10" S 30°22'08" W</td>
<td>Estratificada</td>
<td>IIIa</td>
<td>Areitões T</td>
<td>Reserva Geológica 4.883.140 m³ 46,99</td>
<td></td>
</tr>
<tr>
<td>265</td>
<td>Areia</td>
<td>Camarão</td>
<td>Pasajeiro</td>
<td>12°51'10" S 30°22'08" W</td>
<td>Estratificada</td>
<td>IIIa</td>
<td>Areitões T</td>
<td>Reserva Geológica 4.883.140 m³ 46,99</td>
<td></td>
</tr>
<tr>
<td>266</td>
<td>Areia</td>
<td>Camarão</td>
<td>Pasajeiro</td>
<td>12°51'10" S 30°22'08" W</td>
<td>Estratificada</td>
<td>IIIa</td>
<td>Areitões T</td>
<td>Reserva Geológica 4.883.140 m³ 46,99</td>
<td></td>
</tr>
<tr>
<td>267</td>
<td>Areia</td>
<td>Camarão</td>
<td>Pasajeiro</td>
<td>12°51'10" S 30°22'08" W</td>
<td>Estratificada</td>
<td>IIIa</td>
<td>Areitões T</td>
<td>Reserva Geológica 4.883.140 m³ 46,99</td>
<td></td>
</tr>
<tr>
<td>268</td>
<td>Areia</td>
<td>Camarão</td>
<td>Pasajeiro</td>
<td>12°51'10" S 30°22'08" W</td>
<td>Estratificada</td>
<td>IIIa</td>
<td>Areitões T</td>
<td>Reserva Geológica 4.883.140 m³ 46,99</td>
<td></td>
</tr>
<tr>
<td>269</td>
<td>Areia</td>
<td>Camarão</td>
<td>Pasajeiro</td>
<td>12°51'10" S 30°22'08" W</td>
<td>Estratificada</td>
<td>IIIa</td>
<td>Areitões T</td>
<td>Reserva Geológica 4.883.140 m³ 46,99</td>
<td></td>
</tr>
<tr>
<td>270</td>
<td>Areia</td>
<td>Camarão</td>
<td>Pasajeiro</td>
<td>12°51'10" S 30°22'08" W</td>
<td>Estratificada</td>
<td>IIIa</td>
<td>Areitões T</td>
<td>Reserva Geológica 4.883.140 m³ 46,99</td>
<td></td>
</tr>
<tr>
<td>271</td>
<td>Areia</td>
<td>Camarão</td>
<td>Pasajeiro</td>
<td>12°51'10" S 30°22'08" W</td>
<td>Estratificada</td>
<td>IIIa</td>
<td>Areitões T</td>
<td>Reserva Geológica 4.883.140 m³ 46,99</td>
<td></td>
</tr>
<tr>
<td>272</td>
<td>Areia</td>
<td>Camarão</td>
<td>Pasajeiro</td>
<td>12°51'10" S 30°22'08" W</td>
<td>Estratificada</td>
<td>IIIa</td>
<td>Areitões T</td>
<td>Reserva Geológica 4.883.140 m³ 46,99</td>
<td></td>
</tr>
<tr>
<td>273</td>
<td>Areia</td>
<td>Camarão</td>
<td>Pasajeiro</td>
<td>12°51'10" S 30°22'08" W</td>
<td>Estratificada</td>
<td>IIIa</td>
<td>Areitões T</td>
<td>Reserva Geológica 4.883.140 m³ 46,99</td>
<td></td>
</tr>
<tr>
<td>274</td>
<td>Areia</td>
<td>Camarão</td>
<td>Pasajeiro</td>
<td>12°51'10" S 30°22'08" W</td>
<td>Estratificada</td>
<td>IIIa</td>
<td>Areitões T</td>
<td>Reserva Geológica 4.883.140 m³ 46,99</td>
<td></td>
</tr>
<tr>
<td>275</td>
<td>Areia</td>
<td>Camarão</td>
<td>Pasajeiro</td>
<td>12°51'10" S 30°22'08" W</td>
<td>Estratificada</td>
<td>IIIa</td>
<td>Areitões T</td>
<td>Reserva Geológica 4.883.140 m³ 46,99</td>
<td></td>
</tr>
<tr>
<td>276</td>
<td>Areia</td>
<td>Camarão</td>
<td>Pasajeiro</td>
<td>12°51'10" S 30°22'08" W</td>
<td>Estratificada</td>
<td>IIIa</td>
<td>Areitões T</td>
<td>Reserva Geológica 4.883.140 m³ 46,99</td>
<td></td>
</tr>
<tr>
<td>277</td>
<td>Areia</td>
<td>Camarão</td>
<td>Pasajeiro</td>
<td>12°51'10" S 30°22'08" W</td>
<td>Estratificada</td>
<td>IIIa</td>
<td>Areitões T</td>
<td>Reserva Geológica 4.883.140 m³ 46,99</td>
<td></td>
</tr>
<tr>
<td>NÚMERO</td>
<td>LOCALIZAÇÃO</td>
<td>X de CEN 19</td>
<td>LOCAL</td>
<td>DADOS DA MINERALIZAÇÃO</td>
<td>ROCHAS EMANCIPADAS</td>
<td>STATUS ROCHA MINERAL</td>
<td>DADOS ECONÔMICOS</td>
<td>APERFEIÇOAMENTOS</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------</td>
<td>------------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>279</td>
<td>Areia</td>
<td>28º36'50"</td>
<td>BA</td>
<td>8º35'14"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Arenitos</td>
<td>X1</td>
<td>2 Reservas Geológicas: 226,000m³</td>
</tr>
<tr>
<td>280</td>
<td>Areia</td>
<td>28º36'50"</td>
<td>BA</td>
<td>8º35'14"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Arenitos</td>
<td>X1</td>
<td>2 Reservas Geológicas: 88,000m³</td>
</tr>
<tr>
<td>281</td>
<td>Areia</td>
<td>28º35'13"</td>
<td>BA</td>
<td>8º35'14"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Arenitos</td>
<td>X1</td>
<td>2 Reservas Geológicas: 88,000m³</td>
</tr>
<tr>
<td>282</td>
<td>Areia</td>
<td>28º34'53"</td>
<td>BA</td>
<td>8º34'53"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Arenitos</td>
<td>X1</td>
<td>2 Reservas Geológicas: 106,000m³</td>
</tr>
<tr>
<td>283</td>
<td>Areia</td>
<td>28º35'15"</td>
<td>BA</td>
<td>8º35'15"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Arenitos</td>
<td>X1</td>
<td>2 Reservas Geológicas: 106,000m³</td>
</tr>
<tr>
<td>284</td>
<td>Areia</td>
<td>28º35'15"</td>
<td>BA</td>
<td>8º35'15"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Arenitos</td>
<td>X1</td>
<td>2 Reservas Geológicas: 106,000m³</td>
</tr>
<tr>
<td>285</td>
<td>Areia</td>
<td>28º34'53"</td>
<td>BA</td>
<td>8º34'53"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Arenitos</td>
<td>X1</td>
<td>2 Reservas Geológicas: 106,000m³</td>
</tr>
<tr>
<td>286</td>
<td>Areia</td>
<td>28º34'53"</td>
<td>BA</td>
<td>8º34'53"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Arenitos</td>
<td>X1</td>
<td>2 Reservas Geológicas: 106,000m³</td>
</tr>
<tr>
<td>287</td>
<td>Areia</td>
<td>28º34'53"</td>
<td>BA</td>
<td>8º34'53"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Arenitos</td>
<td>X1</td>
<td>2 Reservas Geológicas: 106,000m³</td>
</tr>
<tr>
<td>288</td>
<td>Areia</td>
<td>28º34'53"</td>
<td>BA</td>
<td>8º34'53"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Arenitos</td>
<td>X1</td>
<td>2 Reservas Geológicas: 106,000m³</td>
</tr>
<tr>
<td>289</td>
<td>Areia</td>
<td>28º34'53"</td>
<td>BA</td>
<td>8º34'53"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Arenitos</td>
<td>X1</td>
<td>2 Reservas Geológicas: 106,000m³</td>
</tr>
<tr>
<td>290</td>
<td>Areia</td>
<td>28º34'53"</td>
<td>BA</td>
<td>8º34'53"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Arenitos</td>
<td>X1</td>
<td>2 Reservas Geológicas: 106,000m³</td>
</tr>
<tr>
<td>291</td>
<td>Areia</td>
<td>28º34'53"</td>
<td>BA</td>
<td>8º34'53"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Arenitos</td>
<td>X1</td>
<td>2 Reservas Geológicas: 106,000m³</td>
</tr>
<tr>
<td>292</td>
<td>Areia</td>
<td>28º34'53"</td>
<td>BA</td>
<td>8º34'53"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Arenitos</td>
<td>X1</td>
<td>2 Reservas Geológicas: 106,000m³</td>
</tr>
<tr>
<td>293</td>
<td>Areia</td>
<td>28º34'53"</td>
<td>BA</td>
<td>8º34'53"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Arenitos</td>
<td>X1</td>
<td>2 Reservas Geológicas: 106,000m³</td>
</tr>
<tr>
<td>294</td>
<td>Areia</td>
<td>28º34'53"</td>
<td>BA</td>
<td>8º34'53"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Arenitos</td>
<td>X1</td>
<td>2 Reservas Geológicas: 106,000m³</td>
</tr>
<tr>
<td>295</td>
<td>Areia</td>
<td>28º34'53"</td>
<td>BA</td>
<td>8º34'53"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Arenitos</td>
<td>X1</td>
<td>2 Reservas Geológicas: 106,000m³</td>
</tr>
<tr>
<td>296</td>
<td>Areia</td>
<td>28º34'53"</td>
<td>BA</td>
<td>8º34'53"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Arenitos</td>
<td>X1</td>
<td>2 Reservas Geológicas: 106,000m³</td>
</tr>
<tr>
<td>297</td>
<td>Areia</td>
<td>28º34'53"</td>
<td>BA</td>
<td>8º34'53"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Arenitos</td>
<td>X1</td>
<td>2 Reservas Geológicas: 106,000m³</td>
</tr>
<tr>
<td>298</td>
<td>Areia</td>
<td>28º34'53"</td>
<td>BA</td>
<td>8º34'53"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Arenitos</td>
<td>X1</td>
<td>2 Reservas Geológicas: 106,000m³</td>
</tr>
<tr>
<td>299</td>
<td>Areia</td>
<td>28º34'53"</td>
<td>BA</td>
<td>8º34'53"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Arenitos</td>
<td>X1</td>
<td>2 Reservas Geológicas: 106,000m³</td>
</tr>
<tr>
<td>300</td>
<td>Areia</td>
<td>28º34'53"</td>
<td>BA</td>
<td>8º34'53"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Arenitos</td>
<td>X1</td>
<td>2 Reservas Geológicas: 106,000m³</td>
</tr>
<tr>
<td>301</td>
<td>Areia</td>
<td>28º34'53"</td>
<td>BA</td>
<td>8º34'53"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Arenitos</td>
<td>X1</td>
<td>2 Reservas Geológicas: 106,000m³</td>
</tr>
<tr>
<td>302</td>
<td>Areia</td>
<td>28º34'53"</td>
<td>BA</td>
<td>8º34'53"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Arenitos</td>
<td>X1</td>
<td>2 Reservas Geológicas: 106,000m³</td>
</tr>
<tr>
<td>303</td>
<td>Areia</td>
<td>28º34'53"</td>
<td>BA</td>
<td>8º34'53"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Arenitos</td>
<td>X1</td>
<td>2 Reservas Geológicas: 106,000m³</td>
</tr>
<tr>
<td>304</td>
<td>Areia</td>
<td>28º34'53"</td>
<td>BA</td>
<td>8º34'53"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Arenitos</td>
<td>X1</td>
<td>2 Reservas Geológicas: 106,000m³</td>
</tr>
<tr>
<td>305</td>
<td>Areia</td>
<td>28º34'53"</td>
<td>BA</td>
<td>8º34'53"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Arenitos</td>
<td>X1</td>
<td>2 Reservas Geológicas: 106,000m³</td>
</tr>
<tr>
<td>306</td>
<td>Areia</td>
<td>28º34'53"</td>
<td>BA</td>
<td>8º34'53"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Arenitos</td>
<td>X1</td>
<td>2 Reservas Geológicas: 106,000m³</td>
</tr>
<tr>
<td>307</td>
<td>Areia</td>
<td>28º34'53"</td>
<td>BA</td>
<td>8º34'53"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Arenitos</td>
<td>X1</td>
<td>2 Reservas Geológicas: 106,000m³</td>
</tr>
<tr>
<td>308</td>
<td>Areia</td>
<td>28º34'53"</td>
<td>BA</td>
<td>8º34'53"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Arenitos</td>
<td>X1</td>
<td>2 Reservas Geológicas: 106,000m³</td>
</tr>
<tr>
<td>N.º ORDEM</td>
<td>SUSTÂNCIA</td>
<td>MIN.</td>
<td>UF</td>
<td>LOCAL</td>
<td>COORDENADAS GEOGRÁFICAS</td>
<td>MORFOLÓGIA</td>
<td>TEXTURA / ESTRUTURA</td>
<td>ROCHA ENCUANTO</td>
<td>LITÓLOGIA</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>------</td>
<td>----</td>
<td>-------</td>
<td>--------------------------</td>
<td>------------</td>
<td>---------------------</td>
<td>---------------</td>
<td>-----------</td>
</tr>
<tr>
<td>309</td>
<td>Areia</td>
<td>BA</td>
<td>Areal Petranar / Pao. Capelaão</td>
<td>12°52'07" 30°21'06"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Arenitos</td>
<td>T</td>
<td>6</td>
</tr>
<tr>
<td>310</td>
<td>Areia</td>
<td>BA</td>
<td>Pao. Cali'</td>
<td>12°52'23" 30°20'20"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Arenitos</td>
<td>T</td>
<td>6</td>
</tr>
<tr>
<td>311</td>
<td>Areia</td>
<td>BA</td>
<td>Pao. Cap. Varn VIII</td>
<td>12°36'04" 30°05'51"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Arenitos</td>
<td>1</td>
<td>46</td>
</tr>
<tr>
<td>312</td>
<td>Areia</td>
<td>BA</td>
<td>Simões Filho</td>
<td>12°45'08" 30°23'43"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Arenitos</td>
<td>T</td>
<td>6</td>
</tr>
<tr>
<td>313</td>
<td>Areia</td>
<td>BA</td>
<td>Conoart</td>
<td>12°39'46" 30°21'39"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Arenitos</td>
<td>6A</td>
<td>46</td>
</tr>
<tr>
<td>314</td>
<td>Petróleo, gás</td>
<td>BA</td>
<td>Brejinho</td>
<td>12°23'18" 30°11'39"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Arenitos</td>
<td>K1</td>
<td>5</td>
</tr>
<tr>
<td>315</td>
<td>Petróleo, gás</td>
<td>BA</td>
<td>Cabo Branco</td>
<td>12°20'21" 30°32'02"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Arenitos</td>
<td>K1</td>
<td>5</td>
</tr>
<tr>
<td>316</td>
<td>Petróleo, gás</td>
<td>BA</td>
<td>Candeias II</td>
<td>12°41'48" 30°30'42"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Arenitos</td>
<td>K1</td>
<td>5</td>
</tr>
<tr>
<td>317</td>
<td>Petróleo, gás</td>
<td>BA</td>
<td>Candeias III</td>
<td>13°39'54" 30°32'04"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Arenitos</td>
<td>K1</td>
<td>5</td>
</tr>
<tr>
<td>318</td>
<td>Petróleo, gás</td>
<td>BA</td>
<td>Candeias IV</td>
<td>12°38'49" 30°31'41"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Arenitos</td>
<td>K1</td>
<td>5</td>
</tr>
<tr>
<td>319</td>
<td>Petróleo, gás</td>
<td>BA</td>
<td>Saboio II</td>
<td>12°52'12" 30°28'03"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Arenitos</td>
<td>K1</td>
<td>5</td>
</tr>
<tr>
<td>320</td>
<td>Petróleo, gás</td>
<td>BA</td>
<td>Santa Is. II</td>
<td>12°28'17" 30°21'56"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Arenitos</td>
<td>K1</td>
<td>5</td>
</tr>
<tr>
<td>321</td>
<td>Petróleo, gás</td>
<td>BA</td>
<td>Gom II</td>
<td>12°21'43" 30°28'05"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Arenitos</td>
<td>K1</td>
<td>5</td>
</tr>
<tr>
<td>322</td>
<td>Petróleo, gás</td>
<td>BA</td>
<td>Horta de S. João</td>
<td>12°30'36" 30°27'16"</td>
<td>Estratiforme</td>
<td>IIIa</td>
<td>Arenitos</td>
<td>K1</td>
<td>5</td>
</tr>
<tr>
<td>323</td>
<td>Marro</td>
<td>BA</td>
<td>Pass. Barre</td>
<td>12°02'07" 30°35'09"</td>
<td>Irregular</td>
<td>IIIa</td>
<td>Arenitos</td>
<td>2</td>
<td>46,99</td>
</tr>
</tbody>
</table>

Observações:
- Reservas: Indicadas 177,697,9t com teor de 27,27% de CaO; e inferidas 192,490,8t.
5. MAPAS

- Carta Metalogenética
- Carta de Previsão de Recursos Minerais
- Carta de Previsão para Planejamento de Ações Governamentais