Ministério da Integração Regional
Secretaria de Irrigação

PROJETO DE DERIVAÇÃO DAS ÁGUAS DO RIO SÃO FRANCISCO PARA REGIÕES SEMI-ÁRIDAS DOS ESTADOS DE PERNAMBUCO, CEARÁ, PARAÍBA E RIO GRANDE DO NORTE

CANAL DA ESPERANÇA

São Francisco - Jati
Projeto Básico - Estudos Básicos
Volume IX - Geologia e Geotecnia
IX.3 - Canais, Aquedutos e Túnel
Tomo I - Texto

dezembro/1994
DERIVAÇÃO DE ÁGUAS DO RIO SÃO FRANCISCO PARA REGIÕES SEMI-ÁRIDAS DOS ESTADOS DE PERNAMBUCO, CEARÁ, PARAÍBA E RIO GRANDE DO NORTE

PROJETO BÁSICO DO SISTEMA ADUTOR PRINCIPAL RIO SÃO FRANCISCO–JATI - 1ºESTÁGIO

Dr. Aluísio Alves
MINISTRO DA INTEGRAÇÃO REGIONAL

Dr. Abelírio Vasconcelos da Rocha
SECRETÁRIO DE IRRIGAÇÃO E SECRETÁRIO EXECUTIVO DO PROJETO

Dr. Alexandre Firmino de Melo Filho
SECRETÁRIO DE IRRIGAÇÃO SUBSTITUTO

Dr. Hidelberto Santos Araújo
DIRETOR GERAL DO DNOCS
DERIVAÇÃO DE ÁGUAS DO RIO SÃO FRANCISCO PARA REGIÕES SEMI-ÁRIDAS DOS ESTADOS DE PERNAMBUCO, CEARÁ, PARAÍBA E RIO GRANDE DO NORTE

PROJETO BÁSICO DO SISTEMA ADUTOR PRINCIPAL
1º ESTÁGIO
RIO SÃO FRANCISCO - JATI

Eng. Civil Rômulo Macedo Vieira
COORDENADOR GERAL

Eng. Civil Antônio Carlos de A. Vidon
COORDENADOR TÉCNICO
MINISTÉRIO DE MINAS E ENERGIA

Dr. Delcídio Gomez
MINISTRO DE ESTADO

Dr. Breno Augusto dos Santos
SECRETARIO DE MINAS E METALURGIA

COMPANHIA DE PESQUISA DE RECURSOS MINERAIS

Dr. Carlos Oiti Berbert
PRESIDENTE

Dr. Antonio Juarez Milmann Martins
DIRETOR DE RECURSOS MINERAIS

Dr. Augusto Wagner Padilha Martins
DIRETOR DE ADMINISTRAÇÃO E FINANÇAS

Dr. Gil Pereira de Souza Azevedo
DIRETOR DE RELAÇÕES COMERCIAIS

Dr. Humberto J. T. R. de Albuquerque
CHEFE DO DEPARTAMENTO DE EXPLORAÇÃO

Dr. João de Castro Mascarenhas
SUPERINTENDENTE REGIONAL DE RECIFE

Dr. Marinho Alves da Silva Filho
GERENTE DE RECURSOS MINERAIS - SUREG/RE
COMPANHIA DE PESQUISA DE RECURSOS MINERAIS
RESIDÊNCIA DE FORTALEZA

Dr. Thales de Queiroz Sampaio
CHEFE DA RESIDÊNCIA

Geól. José Carvalho Cavalcante
SUPERVISOR DE PROJETOS
SERVIÇOS GEOLÓGICO-GEOTÉCNICOS

EQUIPES CPRM

COORDENAÇÃO: Geól. José Carvalho Cavalcante

ADMINISTRAÇÃO DE CAMPO: Geól. Jaime Quintas dos S. Colares
Geól. Jader Parente Filho
Eng. de Minas Marcelo Soares Bezerra

SONDAGEM: Eng. de Minas Saulo de Tarso Moreira Pires

DESCRIÇÕES GEOLÓGICO-GEOTÉCNICAS DE TESTEMUNHOS E ENSAIOS:
Geól. Pedro Augusto dos Santos Pfaltzgraff
Eng. de Minas Luiz Carlos de Souza Júnior
Téc. em Mineração Ambrósio Dantas Ferreira

GEOLOGIA BÁSICA E DE ENGENHARIA (SUPERFÍCIE)
Geól. Luiz A. de Aquino Angelim
Geól. Ivo Figueroa
Geól. Jorge Pimentel
Geól. Francisco Vladimir C. Oliveira
Geól. Antônio Oderson A. de Souza Filho
Geól. Carlos Augusto dos Santos
Geól. José Maria Alves Ferreira Júnior

PESQUISA DE JAZIDAS:
Geól. Marcelo de Freitas Medeiros
Geól. Epifânio Gomes da Costa
Geól. Felicissimo Melo
Téc. em Mineração Francisco Alves Pessoa
Téc. em Mineração Raimundo Anunciato de Carvalho
Aux. Técnico Antônio Celso Rodrigues de Melo

GEOFÍSICA:
Geól. Antônio Flávio U. Costa
Geól. Norberto Lessa Dias
Eng. Eletrônico Ludwig Zellner
Téc. em Mineração Odilon Corrêa
APOIO DE ESCRITÓRIO

- Digitalização Gráfica: Geól. Francisco Edson Mendonça Gomes
- Editoração: Geól. José Alberto Ribeiro
 Geól. Ricardo de Lima Brandão
 Geól. Iaponira de Oliveira Paiva
 Geól. Jaime Quintas dos S. Colares
- Digitação: Assist. de Administração Maria Ednir de Vasconcelos Moura
 Assist. de Administração Antonia Maria da Silva Lopes

- Minuta de Perfis Geológico-Geotécnicos:
 Geól. Paulo Fernando Moreira Torres
 Geól. Dunaldson E. Guedes Alcoforado da Rocha
 Geól. Sérgio João Frizzo
 Geól. José Roberto de Carvalho Gomes
- Desenho: Téc. em Geologia Luis da Silva Coelho

EQUIPES MIR/SIR

SUPERVISÃO: Geól. Wilson Roberto Mori

APOIO DE CAMPO: Geól. Fábio Roque S. Moreira
 Geól. Flávio Luiz Monteiro

SERVIÇOS DE TERCEIROS

CONSULTORIA: Geól. Carlos Eduardo Osório Ferreira
 Eng. de Minas Francisco Prazeres Ramalho de Castro
 Eng. Civil: Jorge da Silva Ayres Pessanha

OUTROS SERVIÇOS:

- Execução de Sondagens e Ensaios diversos: GEONORTE
- Desenho Eletrônico: Muniz Deusdará
 Selécis Lopes Nogueira
Organização e Elaboração do Texto

José Carvalho Cavalcante
Carlos Augusto dos Santos
Francisco Vladmir C. Oliveira
Ivo Figueria
Carlos Eduardo Osório Ferreira
Jaime Quintas dos Santos Colares
José Maria Alves Ferreira Júnior
Luiz A. de Aquino Angelim
Oderson de Souza Filho
Wilson Roberto Mori
APRESENTAÇÃO

O presente relatório, denominado estudos geológicos e geotécnicos, apresenta os resultados das investigações executadas ao longo do Sistema Adutor Principal da Obra de Transposição de Águas do Rio São Francisco para regiões semi-áridas dos Estados de Pernambuco, Ceará, Paraíba e Rio Grande do Norte.

Os trabalhos de campo foram desenvolvidos pela Companhia de Pesquisa de Recursos Minerais - CPRM, sob a orientação do Grupo de Projeto do Ministério da Integração Regional - MIR.
SUMÁRIO

TOMO I

APRESENTAÇÃO

1. INTRODUÇÃO 1
 1.1 - Histórico 1
 1.2 - Localização 1
 1.3 - Objetivo 1

2. METODOLOGIA 2
 2.1 - Atividades de Campo 2
 2.2 - Procedimentos Técnicos Adotados 2
 2.3 - Caracterização das Rochas 3
 2.4 - Caracterização dos Solos 4
 2.5 - Grau de Facilidade à Escavação dos Materiais 4
 2.6 - Ensaios de Laboratório 4
 2.7 - Mapeamento Geológico 4
 2.8 - Estudos de Áreas de Materiais de Empréstimo 5

3. GEOLOGIA DE ENGENHARIA DO SISTEMA ADUTOR PRINCIPAL
 3.1 - Trecho Elevatória de São Francisco-Barragem Angicos 6
 3.1.1 - Aqueduto de Barro Vermelho 7
 3.2 - Trecho Barragem Angico-Barragem Maria Preta 9
 3.3 - Trecho Barragem Maria Preta-Barragem Mari 10
 3.4 - Trecho Barragem Mari-Barragem Terra Nova 11
 3.5 - Trecho Barragem Terra Nova-Elevatória Terra Nova 12
 3.6 - Trecho Elevatória Terra Nova-Aqueduto de Salgueiro 14
 3.7 - Aqueduto Salgueiro 16
 3.8 - Trecho Aqueduto Salgueiro-Barragem Barra 17
 3.9 - Trecho Barragem Barra-Barragem Mangueira 18
 3.10 - Trecho Barragem Mangueira-Elevatória Salgueiro 19
 3.11 - Trecho Elevatória Salgueiro-Barragem Negreiros 21
 3.12 - Trecho Barragem Negreiros-BR-232 22
 3.13 - Trecho BR-232 - Barragem Cerrado 23
 3.14 - Trecho Barragem Cerrado-Barragem Saúva 25
 3.15 - Trecho Barragem Saúva-Barragem Água Benta 26
 3.15.1 - Aqueduto Severino 27
 3.16 - Trecho Barragem Água Benta-Barragem Milagres 28
 3.17 - Trecho Barragem Milagres-Túnel Milagres/Jati 29
 3.18 - Túnel Milagres/Jati 30
 3.19 - Trecho Túnel Milagres/Jati-Riacho dos Porcos 32
4. ESTUDOS DE ÁREAS DE MATERIAIS DE EMPRÉSTIMO
 4.1 - Comentários Gerais
 4.2 - Jazidas Estudadas

5. BIBLIOGRAFIA CITADA

ILUSTRACÕES

Figura

1 - Mapa de Situação

Tabela

1 - Ensaios de Campo e Resultados Analíticos e Volumétricos das Jazidas

Apêndice

1 - Fotografias de Campo
2 - Fotografias de Testemunhos de Sondagens
3 - Boletins de Sondagens Rotativas
4 - Boletins de Sondagens Percussivas
5 - Boletins de Poços de Inspeção
6 - Boletins de Poços, Ensaios de Campo, Ensaios de Caracterização, Curva Granulométrica e Croqui de Localização

TOMO II

Desenhos

- GL-DS-CP-001 a GL-DS-CP-018 - Plantas e Seções Geológicas
- GL-DS-CP-020 a GL-DS-CP-064 - Plantas e Seções Geológicas
- Mapa de Localização de Jazidas de Materiais de Empréstimo
1. INTRODUÇÃO

1.1 - Histórico

Os estudos geológico-geotécnicos sobre os sitios a serem objetos de ações à derivação de águas do rio São Francisco, para as regiões do semi-árido nordestino, foram iniciados e desenvolvidos, na década de oitenta, pelo extinto Departamento Nacional de Obras e Saneamento - DNOS, através do Consórcio Noronha-Hidroterra, a nível de anteprojeto.

Por seu turno, os estudos atuais, iniciados em outubro/94, inserem-se no chamado Projeto Básico da Obra.

1.2 - Localização

O trecho correspondente ao Sistema Adutor Principal inicia-se na Elevatória de São Francisco (figura 1), município de Cabrobó, estado de Pernambuco, e termina no riacho dos Porcos, município de Jati - estado do Ceará.

1.3 - Objetivo

O objetivo destes estudos é o fornecimento de subsídios geológicos e geotécnicos, para a elaboração do Projeto Básico da Obra. Para tanto, foram executados trabalhos de mapeamento geológico-geotécnico ao longo do eixo da obra, bem como estudos de subsuperfície a partir de métodos indiretos (levantamento sísmico) e diretos (escavações).
2. - METODOLOGIA DE TRABALHO

2.1 - Atividades de Campo

Os trabalhos de campo desenvolvidos pela Companhia de Pesquisa de Recursos Minerais, orientados e especificados pelo MIR/SIR, foram iniciados em outubro/94. O programa das investigações foram norteados no sentido de obter-se informações geológico-geotécnicas ao longo do eixo do canal.

Foram executadas 1 sondagem rotativa no Túnel Milagres-Jati, 6 sondagens percussivas e 5 poços de inspeção nos Aquedutos Salgueiro e Severino, patrocinadas pelo Grupo Executivo MIR/SIR.

Em complemento aos estudos de subsuperfície foi executado mapeamento geológico-geotécnico ao longo do eixo do canal.

2.2 - Procedimentos Técnicos Adotados

As investigações de campo tiveram propósito de obter informações geológico-geotécnicas dos materiais existentes ao longo do canal (substrato rochoso, formações superficiais, estruturas tectônicas-falhas, juntas etc., sismicidade, formas de erosão e acumulação, permeabilidade e grau de coerência).

Nas áreas onde serão implantados os aquedutos foram realizadas sondagem percussivas, que objetivaram a determinação do topo rochoso, auxiliado, ainda, pela investigação através de poços de inspeção. No Túnel Milagres-Jati foi realizada sondagem rotativa para análise das características geomecânicas do maciço rochoso.

Os critérios de paralisações das sondagens constaram, basicamente, das indicações fornecidas pelo MIR/SIR.
2.3 - Caracterização das Rochas

- **Grau de Alteração** - Para este parâmetro usa-se as características macroscópicas das rochas, como segue:

<table>
<thead>
<tr>
<th>TIPO</th>
<th>GRAU DE ALTERAÇÃO</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁</td>
<td>Rocha Sã</td>
</tr>
<tr>
<td>A₂</td>
<td>Rocha pouco alterada (oxidação perceptível nas fraturas)</td>
</tr>
<tr>
<td>A₃</td>
<td>Rocha medianamente alterada (minerais apresentam sinais de alteração)</td>
</tr>
<tr>
<td>A₄</td>
<td>Rocha muito alterada (minerais apresentam alteração profunda)</td>
</tr>
<tr>
<td>A₅</td>
<td>Rocha totalmente alterada ou decomposta (apenas vestígios da estrutura original)</td>
</tr>
</tbody>
</table>

- **Grau de Coerência** - Parâmetro estimado a partir das características físicas das rochas através de parâmetros de resistência ao impacto, resistência ao risco e tenacidade.

<table>
<thead>
<tr>
<th>TIPO</th>
<th>GRAU DE COERÊNCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₁</td>
<td>Rocha muito resistente (som metálico, quebra com dificuldade com o martelo)</td>
</tr>
<tr>
<td>C₂</td>
<td>Rocha coerente (som abafado, quebra com facilidade com o martelo)</td>
</tr>
<tr>
<td>C₃</td>
<td>Rocha medianamente coerente (as bordas se quebram com facilidade com os dedos)</td>
</tr>
<tr>
<td>C₄</td>
<td>Rocha branda (se desfaz com o martelo)</td>
</tr>
<tr>
<td>C₅</td>
<td>Rocha friável (se desfaz com os dedos)</td>
</tr>
</tbody>
</table>

- **Grau de Fraturamento** - Baseia-se no número de fraturas (fissuras, diáclases, falhas e juntas) por metro linear, em duas direções perpendiculares.

<table>
<thead>
<tr>
<th>TIPO</th>
<th>GRAU DE FRATURAMENTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>F₁</td>
<td>Pouco fraturada (< 1 fratura/m)</td>
</tr>
<tr>
<td>F₂</td>
<td>Fraturada (1-5 fraturas/m)</td>
</tr>
<tr>
<td>F₃</td>
<td>Muito fraturada (6-10 fraturas/m)</td>
</tr>
<tr>
<td>F₄</td>
<td>Extremamente fraturada (11-20 fraturas/m)</td>
</tr>
<tr>
<td>F₅</td>
<td>Fragmentada (>20 fraturas/m)</td>
</tr>
</tbody>
</table>

Na caracterização das fraturas, especialmente em testemunhos de sondagens, levou-se em conta o nível de consolidação (fechamento com rocha sã), o tipo de preenchimento, as feições das paredes, a rugosidade e o espelhamento.
2.4 - Caracterização dos solos

A caracterização macroscópica (visual - a olho nu e teto) dos materiais incondolidos (solos resíduais ou eluvis, coluviais e aluviais) foi efetuada em termos de granulometria acrescida, quando possível da tipologia mineralógica-petrográfica das partículas/fragmentos como segue:

- Material argiloso;
- Material siltoso;
- Material argilo-siltoso;
- Material silt-arenoso;
- Material silt-argiloso com fragmentos de gnaisses;
- Material argilo-arenoso com cascalho de quartzo;
- etc.

2.5 - Grau de facilidade à escavação dos materiais

Para essa variável, foram utilizados os mesmos critérios do Anteprojeto (MI/DNOS, 1984), baseados na "qualificação dos terrenos quanto ao arranque mecânico ou ao uso de explosivos", como seja:

<table>
<thead>
<tr>
<th>CATEGORIA</th>
<th>CARACTERÍSTICAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>I - Primeira</td>
<td>Escavação com equipamentos comuns.</td>
</tr>
<tr>
<td>II - Segunda</td>
<td>Necessária uma pré-desagregação por meios mecânicos.</td>
</tr>
<tr>
<td>III - Terceira</td>
<td>Extração com emprego de explosivos</td>
</tr>
</tbody>
</table>

2.6 - Ensaios de Laboratório

Questões relativas a caracterização física dos materiais a serem utilizados nas obras de barragens, encontram-se no volume IX.4a. Con tudo, amostras de solos colhidos durante a execução de poços de inspeção ao longo dos eixos das barra gens de Milagres (incluindo dique) e Água Benta, foram objetos de carac terização in situ e laboratorial (peso específico, granulometria com sedi mentação, limites de Atterberg, umidade natural e ensaio de compactação proctor normal).

2.7 - Mapeamento Geológico

Para o trabalho de mapeamento geológico, o substrato rochoso foi cartografado em termos das unidades de rochas, em função da tipologia meso e micropetrográfica, evitando-se divisões lito (formação, gru po etc.) e cronoestratigráficas (Quaternário, Protózoico etc.). Informações sobre a estratigrafia da região, podem ser obtidas nos estudos de BRASIL/OMM (1983) e MI/DNOS (1984).
2.8 - Estudos de Áreas de Materiais de Empréstimo

Os estudos suplementares nesta fase de trabalho foram feitos com poços de inspeção abertos manualmente, utilizando-se picareta/chibancas/avalancas e pá. Os locais de abertura dos mesmos foram previamente selecionados em campo, após visita da área da jazida.

Para cada jazida os poços foram identificados pela sigla P, seguido do número sequencial crescente. Para as jazidas fotointerpretadas, foi utilizado, para identificação a sigla do técnico coletor, seguido do número indicativo sequencial crescente ou identificada por algarismo romano.

A escavação do poço era iniciada após limpeza superficial de uma área de 4,0 m x 4,0 m. A boca do poço tinha diâmetro de 1,10 m. O material retirado era disposto próximo à boca em montes colocados no sentido dos ponteiros do relógio, para facilitar a amostragem e descrição do perfil.

Os poços executados atingiram profundidades entre 0,25 m e 1,80 m. Era paralisado quando se atingia o solo residual (rocha alterada) penetrando-se na mesma cerca de 0,10 m, quando possível.

Após a amostragem, estudo do perfil e realização de ensaio de campo, os poços foram aterrados e identificados com estacas indicativas, onde constam número do poço, número da jazida e profundidade dos mesmos.

Em algumas áreas de empréstimo foram abertas picadas de acesso e de serviço, e também utilizado GPS para localização/amarração dos poços abertos.

- Amostragem

As amostras nos poços foram coletadas a cada metro, quando em material homogêneo, e a cada mudança de material eram coletada amostras de cada um dos materiais.

As amostras foram do tipo deformada e foram acondicionadas em sacos plásticos, pesando entre 20 e 40 kg. Simultaneamente era coletada uma amostra de 200 g que colocada em recipiente hermeticamente fechado, era selada com fita adesiva para evitar saída da unidade.

As amostras foram identificadas por duas etiquetas, uma interna e outra externa, onde são especificados o número do poço, intervalo de profundidade, data da coleta e proprietário da terra. Após a coleta as amostras eram enviadas para o laboratório para ensaios.

- Ensaios

No campo eram realizados os ensaios de densidade seca e umidade natural. No laboratório foram feitos ensaios de granulometria com sedimentação, limites de Atterberg, densidade aparente, densidade específica real e compactação.
3. GEOLOGIA DE ENGENHARIA DO SISTEMA ADUTOR PRINCIPAL

3.1 - TRECHO ELEVATÓRIA DO SÃO FRANCISCO BARRAGEM ANGICOS

O trecho é recoberto predominaentemente por delgado capamento de solos colúvio-residuais arenos-siltosos, finos, amarelados a amarronzados, localmente recobertos por cascalheira de quartzo e/ou fragmentos de rocha, onde podem aflorar pequenos lajeados do substrato (Desenhos GL-DS-CP-001 a 006). Na parte inicial do percurso ocorre pequena depressão preenchida por solo cinza-esverdeado, siltos-argilosos, contendo granos dispersos de areia fina a grossa, com espessura afluente de 0,60 m, destacando-se gretas de contração. No vale do riacho Saco da Serra, correspondente ao Aquedu-to Barro Vermelho, o furo de sonda SPA-BV-02 detectou um solo aluvial arenoso com espessura de 4,10 m.

Durante a etapa de anteprojeto (MI/DNOS, 1984), foram executados sobre ou nas proximidades do eixo deste trecho de canal, 10 poços de inspeção (PI-101 a PI-104 e PI-304 a PI-309) e 6 sondagens mistas (SMC-106, SMC-303, SMC-304, sendo SMB-OE, SMC-C e SMB-OD relativas ao eixo da barragem de Barro Vermelho). Os poços atingiram o topo da rocha alterada com profundidades variando entre 0,30 m e 1,00 m.

O topo da rocha sã e o nível d’água, conforme as sondagens, foram encontrados em profundidades variáveis, a saber:

- SMB-OD - rocha - 0,80 m/NA-1,95 m
- SMC-306 - rocha - 8,02 m/NA-4,10 m

O substrato rochoso pode ser dividido, em termos de composição litológica e arranjo estrutural, em dois domínios:

- O primeiro domínio, a partir da Estação Elevatória do São Francisco, com extensão de aproximadamente 2000 m, é composto por biotita-gnaisses de coloração cinza, granulação média, em diversos níveis de milonitização (deformação dúctil), com intercalações localizadas de anfibolitos e de pequenos corpos granitos de granulação fina a pegmatóide. As rochas exibem foliações verticalizadas de direção E-W. Esta zona de falha (cisalhamento) corresponde a uma estrutura de escala regional de direção aproximada NW-SE. As características físicas das rochas que compõem este segmento são: biotita gnaisses milonitizados e milonitos - A2-A4, C2-C4 e F3-F4 (fraturas preferenciais-verticalizadas de direções N80E e N10W); rochas graníticas - A1, C1, F1 (fraturas preferenciais - N75E/70NW, N55E/60SE e N10E/75SE).
• O segundo domínio, que compreende o maior pacote do trecho Elevatória do São Francisco-Barragem Angicos, é constituído por rochas granítico-gnáissicas grosseiras (augen) (Foto 1), de coloração rosada e rochas de granulação fina, esbranquiçada, cinza e levemente rosada, com maior ou menor grau de deformação (cisalhamento) e incluídas numa tectônica de baixo ângulo (foliações com mergulhos da ordem de 20° a 30° para SE).

Suas propriedades físicas são: A₁-A₂, C₁-C₂, F₁ (fraturas principais: mergulhos verticalizados com direções E-W, N70W e N10W).

Estas rochas, de modo geral, são duras e abrasivas, com coberturas de alteração pouco desenvolvidas. Nesta área, os principais problemas de estabilidade das escavações devem estar relacionados a estruturas (falhas, fraturas, etc.), já que os tipos litológicos observados são fortemente coerentes.

Estas rochas podem ser utilizadas em enrocamento e como agregado de concreto, sem restrições.

3.1.1 - AQUEDUTO BARRO VERMELHO

O segmento indicado para a construção dessa obra fica entre as estacas 30 e 55 do Trecho Elevatória São Francisco-Barragem Angicos (Desenho GL-DS-CP-004).

Com base nos dados bibliográficos (MI/DNOS, 1984) e aqueles levantados durante os trabalhos de campo, a geologia de engenharia do sítio desse Aqueduto, marcada pelas seguintes características:

• Cobertura aluvial: Distribui-se ao longo do riochão Serra, sendo composta de areias finas argilosas, de cores amareladas e amarronzadas, atingindo espessuras de até 6,50 m. Lateralmente, gradam a depósitos coluviais, apre-sentando granulometria de areia grossa.

• Cobertura coluvio-eluvial: Tem ampla distribuição superficial e espessuras variáveis (máx. em torno de 2,00 m), sendo representada por solos arenoso-siltos-argilosos, argilo-siltos-arenosos, em parte com pedregulhos e com cascalhos de quartzo espalhados na superfície.

• Solo residual: Encontram-se representados, dominantemente, por materiais de alteração de rochas granito-gnáissicas, por vezes xistosas encerrando
veios e vênulas de quartzo não desagregados.

- Substrato rochoso: Domínio de rochas preferencialmente gnáissicas, de tonalidade rosada ou cinza-rosada, duras a muito duras e fracturadas, raramente com fina foliação e exibindo graus de milonitização (deformação tectônica dúctil) variáveis.

Quanto aos problemas geotécnicos de fundação, destacam-se o grau de fraturamento (massa muito fraturada), fraturas preenchidas por material argilosos, existência provável de matacões imersos em materiais colúvio-eluviados argilosos incondensados.

Os níveis d'água, como determinados nas sondagens (SMB-OD, SMB-C, SMB-OE) da Noronha Hidrolterra (MI/NDOS, 1984), encontram-se em profundidades de 1.95 m, 4.85 m e 2.40 m, respectivamente; enquanto isto, a respeito de indicadores de permeabilidade, tem-se (SMB-C, proximidades da calha do riacho Serra) um K variando 2.7 x 10^-3 cm/s (primeiros 30 s) a 7.5 x 10^-4 cm/s (últimos segundos).
O trecho é capeado de forma irregular por solos colúvio-residuais areno-siltosos, finos, de coloração amarelada a amarronzada, podendo conter horizontes de cascalhos com matriz de areia fina a grosseira, conforme observado em alguns barrancos de riachos (Desenhos GL-DS-CP-007 a 010). Observa-se ainda coberturas localizadas de cascalheira de quartzo e/ou fragmentos de rocha. As espessuras deste solo podem atingir até 2,20 m. A irregularidade do substrato rochoso propicia o afloramento de pequenos lajeados nos domínios destas coberturas.

Na etapa de anteprojeto (MI/DNOS-1984), foram executados 2 poços de inspeção (PI-106 e 107) a cerca de 2200 m a Este do eixo, que atingiram rocha alterada com 0,4 m e 0,7 m respectivamente. A sondagem SMC-105, também executada nesta etapa, entre os 2 poços, a 100 m do eixo, e a meio caminho do trecho de canal, no entanto, determinou o topo do maciço rochoso a 7,15 m de profundidade.

O substrato rochoso é constituído por rochas granítico-gnáissicas grosseiras (augen) e de granulação fina, de coloração cinza-clara a rosa-dada, ora com predominância de uma ou de outra facies granítica, contendo, subordinadamente, mega-enclaves de biotita gnaisse e intrusiones de granito fino, cinza a rosáceo-claro, isotrópico.

Estas rochas geralmente são duras e abrasivas. A cobertura de alteração é quase sempre pouco desenvolvida e o maciço, respeitados os problemas relativos a descontinuidades (falhas, fraturas, etc.), expressivos nesta área, suporta taludes com altos ângulos em escavações.

Estas rochas podem ser usadas em enrocamentos e como agregado de concreto, sem restrições.

Estruturalmente, o trecho enquadra-se numa tectônica de baixo ângulo com maior ou menor grau de deformação (milonitização), com foliações de mergulhos inicialmente variando de 12° a 15° para SE e 30° a 45° para SW, nas proximidades da barragem Maria Preta, adaptando-se ao grande falhamento de alto ângulo (ciscalhamento) denominado "Lineamento Pernambuco", que passa a norte da barragem de Mari.

A sondagem SMC-105 (MI/DNOS-1984) determinou a profundidade do nível d'água a 4,70 m.
A cobertura superficial consiste de um solo colúvio-residual arenoso-siltoso, fino, amarelado e amarronzado, localmente com fração argilosa (solo residual de anfibolito) com espessura observada de até 0,95 m (Desenhos GL-DS-CP-011 a 012).

Na etapa de anteprojeto (MI/DNOS-1984) foram executados 2 poços de inspeção (PI-108 e PI-109) e uma sondagem mista (SMC-104) neste trecho de canal. Os poços atingiram rocha alterada com 0,40 m, e a sondagem determinou o topo da rocha praticamente sã a 1,50 m de profundidade.

O substrato rochoso, nas proximidades do sangradouro da barragem Maria Preta, está representado por uma faixa de granito gnássico grosseiro ('augen'), rosado, milonítico. A seguir tem-se um domínio de biotita-gnaissse, de coloração cinza, silicificado (Foto 2), bastante deformado, e com passagens para milonitos e ultramilonitos (Fotos 3,4,5 e 6).

Esta rochas são duras e abrasivas, com cobertura de alteração quase sempre pouco desenvolvida. A estabilidade das escavações está condicionada por estruturas (falhas, fraturas, etc.), bastante expressivas nesta área, já que estes tipos litológicos são fortemente coerentes, quando em estado sã. Podem ser utilizados em enrocamentos e como agregado de concreto, sem restrições.

As rochas, de maneira geral, exibem alto grau de deformação (milonitização), com foliações de mergulhos fortes variando de 60° a sub-vertical e sentido SW, evidenciando já a influência da megaestrutura de falha (cismalemento) do Lineamento Pernambuco, imediatamente a norte deste trecho.

Suas características físicas são: A_2-A_3, C_2-C_4 e F_1-F_2.

A sondagem SMC-104 (MI/DNOS-1984) determinou a profundidade do nível d'água a 1,90 m.
3.4 - TRECHO BARRAGEM MARI-BARRAGEM TERRA NOVA

O trecho é amplamente capa- peado, em sua porção intermediária, por solos colúvio-residuais areno-siltosos, finos, amarelados a amarronzados, incluindo, em alguns perfis, níveis de cascalho cimentado por areia fina a grossa, e espacialmente recobertos por cascalheira de quartzo e fragmentos de rocha. Foram observadas espessuras de até 0,90 m (Desenhos GL-DS-CP-013 a 015). No riacho Terra Nova ocorre solo aluvial areno-siltoso, fino, amarelado, com 3,0 m de espessura aflorante.

Os poços atingiram rocha alterada com profundidades variando entre 0,50 m e 1,10 m.

As sondagens SMC-101 e SMC-102 atingiram o topo do maciço rochoso praticamente são, com profundidades de 4,30 m e 4,50 m, respectivamente. A sondagem SMC-103, no entanto, localizada na parte sul do trecho, só atingiu a rocha consistente com 15,20 m de profundidade, provavelmente por estar sobre uma zona de falha.

O substrato rochoso é composto por uma associação de biotita-gnaisses e muscovita-biotita gnaisses granadíferos que incluem intercala-çõe de muscovita-biotita xistos granadíferos, rochas calcissilicáticas, gnaisses calcissilicáticos, calcários, e mais subordinadamente delgadas faixas de quartzitos. Este conjunto rochoso é intrudido por rochas granítico-gnaissicas, de granulação grossa a porfioclastica (‘augen’) e encontra-se recortado por frequentes zonas de falhas (cisalhamento).

Estas rochas são geralmente duras e abrasivas, altamente coerentes quando sãs. O condicionamento estrutural, no entanto, influencia fortemente a alteração do maciço, podendo, nas zonas de falha, determinar espessuras de solos residuais de cerca de 15,00 m. A estabilidade das escavações deve estar também condicionada pelas falhas e fraturas que cortam o substrato.

Estas rochas podem ser usadas como agregado de concreto e em enrocamentos, sem restrições.

Estruturalmente o trecho está incluso na área de domínio das falhas (cisalhamento) do Lineamento Pernambuco. As rochas possuem foliações de mergulhos fortes e verticalizadas com direção geral N60W.

Suas características físicas são: A_2/A_3 (localmente A_3), C_4/C_3 e F_4/F_2.

As sondagens SMC-101, SMC-102 e SMC-103 (MI/DNOS-1984) determinaram a profundidade do nível d'água entre 2,30 m e 4,23 m, respectivamente.
3.5 - TRECHO BARRAGEM TERRA NOVA-ELEVATÓRIA TERRA NOVA

O trecho compreende, em quase sua totalidade, solos aluviais e colúvio-residuais (Desenhos GL-DS-CP-016 a 019). Os primeiros ocorrem ao longo do riochó Sanharó, afluente da margem esquerda do riochó Terra Nova, por cerca de 3000 m de extensão. São solos arenosos-siltosos algo argilosos, finos, coloração acinzentada, de espessuras aflorantes variáveis máximas de 1,20 m (barranco do riochó) e 3,50 m (cacimba), sem que no entanto tenha atingido o substrato rochoso. O perfil geofísico, entretanto, mostra uma espessura provável de solo/aluvión ou de materiais com resposta sísmica de sedimentos de até 9 m.

Os solos colúvio-residuais ocorrem no sítio da Estação Elevatória de Terra Nova (Ver Volume IX.2). Na porção inferior do sítio ocorrem solos arenosos-siltosos, finos, de coloração amarelada e com cascalheira esporádica de quartzo; na parte mais elevada dos solos são arenos-siltos-argilosos, marrom-avermelhados com fragmentos decímetros de rochas graníticas.

Para esse trecho, durante etapa de anteprojeto (MI/DNOS-1984), foi executada uma sondagem mista, próximo à elevatória (SME-01). Nela, o maciço rochoso inalterado foi alcançado com 1,00 m de profundidade.

O substrato rochoso aflorante, na parte sul do trecho do canal, é composto por anfibólio sienito grossseiro (porfírico) e biotita granito gnásico. O sienito é isotrópico a pouco deformado, coloração rosada, não alterado (A₁) e coerente (C₁). O biotita granito gnásico tem coloração cinza, granulação média, orientado (N25/E63SE), não alterado (A₁), coerente (D₁) e muito fraturado (F₄). Ainda, observam-se afloramentos de muscovita-biotita gnásises com vênulas e veios quartzo-feldspáticos (foto 7).

Na porção sul do sítio da Elevatória de Terra Nova ocorre metarenito cinza-esverdeado, de granulação fina, quartzoso, pouco micáceo, foliado (média de E-W/50S), medianamente alterada (A₂), coerente a branda (C₂-C₄) e pouco fraturada (F₂). Na porção intermediária do sítio ocorre anfibólio sienito grossseiro (porfírico), isotrópico a pouco deformado, de coloração rosada e truncado por diques de sienito fino e granito fino (aplito). Sua área de ocorrência é restrita a talvégues de pequenos córregos. Na parte norte, do sítio da elevatória, têm-se anfibólio sienito, róseo, fino a microporofírico, isotrópico a pouco deformado e cortado por diques de espessuras centimétricas a decímetros, de rocha tonalítica. Suas características físicas são: A₁-A₂, C₁-C₂ e F₂-F₃. Esta rocha constitui a parte mais elevada do sítio da elevatória, ocorrendo em suas encostas blocos instáveis de dimensões decímetras a métricas.

No sítio da 1ª opção MIR/SIR para o eixo da barragem Terra Nova, predomina um substrato de rocha granítica, cinza a rósea e propriedades geométricas A₁, C₁ e F₂ (Foto 8).
O substrato rochoso tanto deste trecho do canal como da elevatória, é constituído por rochas duras e abrasivas, fortemente coerente quando sãs. A estabilidade das escavações está condicionada pelas estruturas que afetam o maciço. Estas rochas podem ser utilizadas como agregado de concreto e em enrocamientos de forma restrita.
O trecho situa-se no flanco norte da serra do Livramento, em terreno ondulado. É recoberto, em quase sua totalidade, por solos colúvio-residuais (Desenhos GL-DS-CP-020 a 029), os quais foram subdivididos em dois tipos:

- Solos areno-siltos-argilosos, finos, amarronzados a avermelhados, com recobrimento de esfertos fragmentos de rocha e pórfiros de feldspato alterado. Em poços de inspeção estes solos apresentam uma espessura máxima de 1,50 m.

Os poços de inspeção revelam a presença de solos residuais (alteração de rocha) com espessura máxima de 1,10 m.

Na etapa de anteprojeto (MI/DNOS-1984), foram executados sobre ou próximo ao eixo deste trecho de canal, 9 poços de inspeção (PI-12 a PI-20) e 6 sondagens mistas (SMC-10 a SMC-14 e SMA-06).

Os poços atingiram o topo da rocha alterada com profundidades variando entre 0,70 e 1,30 m. As sondagens mistas SMC-10, SMC-11 e SMC-14 alcançaram o topo da rocha praticamente só com profundidades de 1,30 m, 1,50 m e 2,30 m, respectivamente, as sondagens SMC-12 e SMC-13 com 7,00 e 7,50 m, e a sondagem SMA-06 não atingiu rocha só até 10,80 m.

Estas variações podem estar associadas a estruturas localizadas (falhas, fraturas, etc.) que, em suas faixas de influência podem causar meteorização mais profunda no maciço rochoso.

As sondagens SMC-11, SMC-12 e SMA-06 determinaram a profundidade do nível d’água entre 2,35 m e 5,30 m. Os demais furos estavam secos.

O substrato rochoso é constituído por anfibólio-sienito grosseiro (porfirítico), de coloração acinzentada a rosada, isotrópico, localmente com faixas deformadas, e cortado por dimensões de sienito fino a microporfirítico, aplito (direção geral N10W) e tonalito (Ver Volume IX.2 - Elevatórias). As faixas deformadas mostram direções variando entre N80E a N70W, e mergulhos cujos valores variam de 50° a sub-verticais com caimento para norte.

Estas rochas são duras e abrasivas, fortemente coerentes quando sãs, com coberturas de alteração quase sempre pouco desenvolvidas. Nos trechos influenciados por estruturas (falhas, fraturas, etc.) estas coberturas podem ser mais espessas ($\approx 7,00$ a $\approx 10,00$ m), dada a maior susceptibilidade à meteorização do substrato rochoso.

A estabilidade das escavações é condicionada pelas estruturas, pois o maciço, face à sua litologia, deve ser estável com altos ângulos nos taludes.

Estas rochas podem ser usadas em enrocamentos e como agregado de concreto, de modo irrestrito.
3.7 - AQUEDUTO DE SALGUEIRO

Esta obra esta projetada para ser construída no trecho entre a barragem Terra Nova e a barragem Barra, no sitio onde o Anteprojeto (MI/DNOS, 1984) apontou, também, alternativa de barramento (barragem Salgueiro). Nesse anteprojeto, foram executadas 8 sondagens (SMA-01 a SMA-06).

O local indicado para a fundação (Desenho GL-DS-CP-027), caracterizado, geologicamente, pelas seguintes unidades:

Coberturas (solos) aluviais: Distribuí-se, em estreita faixa, ao longo e margens (plâncte de inundação) do riacho Salgueiro, sendo compostas, preferencialmente, de areias finas argilosas, de tonalidades cinzentas, pouco a medianamente compactas, em parte sobrepostas a areias grossas e nível basal seixoso. Também, exibem associação de sedimentos arenos-argilosos com cascalhos e fragmentos de rochas. As espessuras são variáveis, apresentando, conforme dados bibliográficos e do presente estudo, máximas entre 4 m e 6 m

Coberturas colúvio-aluviais: Encontram-se representadas por solos arenos-argilosos, às vezes com cascalhos e pedregulhos, além de frações silticas bastante variáveis. As tonalidades oscilam de cinzentas a amarronzadas. A granulometria das areias é de fina a grossa.

Tratam-se de sedimentos inconsolidados, em jazimentos de pequenas espessuras (máximas, nos sitios de interdigitação colúvio-aluvial, de 3,00 a 4,00 m).

Solos residuais: Representam, em sua maioria, materiais de alteração de rochas granitóides. Atingem espessuras de até 10,35 m (SMA-01, MI/DNOS - 1984), mas, geralmente, são inferiores a 3,00 m.

Substrato rochoso: É sublinhado por um predominio de rochas granitóides, de granulação média a grossa, duro e fraturado. Subordinadamente, aparecem micaxistos com estreitas lentes de quartzo.

Os níveis de água (NA) e coeficiente de permeabilidade (K) assinalados pelo supracitado anteprojeto, foram:

\[
\begin{align*}
\text{NA} \\
\text{SMA-01} &= 12.70 \text{ m} ; \text{SMA-02} = 4.25 \text{ m} ; \\
\text{SMA-03} &= 4.10 \text{ m} ; \\
\text{SMA-04} &= 5.25 \text{ m} ; \text{SMA-05} = 4.50 \text{ m} ; \\
\text{SMA-06} &= 2.35 \text{ m} .
\end{align*}
\]

\[
\begin{align*}
\text{K} \\
\text{SMA-02} &= \text{de } 4.9 \times 10^{-4} \text{ cm/s a } 1.4 \times 10^{-4} \text{ cm/s} ; \\
\text{SMA-04} &= \text{de } 9.1 \times 10^{-4} \text{ cm/s a } 2.3 \times 10^{-4} \text{ cm/s} ; \\
\text{SMA-06} &= \text{de } 5.7 \times 10^{-4} \text{ cm/s a } 1.1 \times 10^{-4} \text{ cm/s} .
\end{align*}
\]

Quanto aos materiais de empréstimo, terrosos e pêtreos, o problema maior refere-se à falta de bons depósitos de areias lavadas para concreto. Como assinalado anteriormente, os depósitos aluviais são, geralmente, constituídos de areia finas argilosas. Rochas de boas propriedades mecânicas, para obtenção de britas e blocos, afloram em diversos pontos da região, desde as escarpas setentrais da serra do Livramento, terrenos às proximidades sul do local, até o sitio do tracção do aqueduto.

A fundação deve ser apoiada no substrato rochoso supracitado, onde não foram observados pontos críticos para tratamentos especiais (considerando-se o tipo da obra).
O substrato rochoso é formado em sua maioria por rocha granítica cinza escura, isotrópica sendo localmente milonítica e cortada por diques de microtonalitos com alto mergulho e direção N85E, apresentando como características geotécnicas: A1, C1, F1 (Desenhos GL-DS-CP-028 a 030).

Estas rochas são duras e abrasivas (principalmente as rochas quartzíticas), fortemente coerentes quando sãs, com solos residuais pouco desenvolvidos.

A estabilidade das escavações está condicionada pelas estruturas que afetam o maciço, as sondagens executadas na etapa atual do projeto, no eixo da barragem de Barra, identificaram zonas fortemente cisalhadas e brechadas. Podem ser utilizadas como material de construção, tanto como agregado de concreto como em enrocamentos, sem restrições.

O substrato rochoso é recoberto por solos silto-arenosos amarelos a amarronzados, solos aluvionares e cascalheira de quartzo com fragmentos de granitos ou fragmentos angulosos de quartzitos de no máximo 0,30 m de diâmetro. A espessura máxima do solo atinge 2,0 metros de profundidade, conforme verificado nas margens de um riacho no Sítio Rocinha. Na localidade de Sítio Novo num poço de inspeção foi verificado 0,45 m de espessura de solo coluvial até solo residual (alteração de rocha). Blocos instáveis de granito também fazem parte da cobertura no trecho inicial de Salgueiro.

Na etapa de anteprojeto (MI/DNOS-1984) foram executados sobre ou próximo ao eixo deste trecho de canal, 4 poços de inspeção (PI-401 a PI-404) e 3 sondagens mistas (SMC-401 a SMC-403).

Os poços alcançaram o topo da rocha alterada com profundidade variando entre 0,70 m e 1,30 m. As sondagens SMC-401 e 402 atingiram o maciço praticamente são com as profundidades de 1,85 m e 1,20 m respectivamente, a sondagem SMC-403, mais próxima da barragem de Barra, alcançou rocha com 2,75 m, porém, até o final, apresentou alternâncias de rocha e solo de alteração.

As sondagens SMC-402 e SMC-403 atingiram o nível d’água com 1,76 m e 2,43 m, respectivamente.
O substrato rochoso deste trecho, quando em afloramentos (leito de riacho, margens e interflúvios) por onde passa o sistema adutor principal está representado por granada-muscovita-biotita-quartzo xisto com intercalações de calcisilicáticas (Desenhos GL-DS-CP-031 a 032).

O xisto, em linhas gerais, apresenta-se superficialmente alterado, pouco consistente. Entretanto alguns afloramentos observados em leito de riacho permitem caracterizá-lo, em termos de parâmetros geotécnicos de alteração, coerência e fraturamento, respectivamente, como A2, C2 e F1.

A foliação dominante tem altitude N58W/35SW e o sistema de fraturas principais está nas direções N15W e N05W.

Estas rochas quando sãs, geralmente são coerentes, menos resistentes nos planos de foliação. Quando alteradas, tendem a deslocar ao longo desses planos.

O mergulho da foliação é aproximadamente paralelo à direção do eixo do canal (35°SW), portanto favorável à estabilidade dos taludes das escavações. Esta estabilidade, no entanto, pode ser prejudicada pela associação de fraturas e falhas com a foliação.

Quando submetido, à britagem (agregado de concreto) tendem a produzir fragmentos com formas laminares. Os blocos de desmonte deverão ter forma alongada, podendo romper-se ao longo dos planos de fraqueza durante a compactação em enrocamentos.

A cobertura dessa rocha é formada por cascalhos quartzosos com matriz siltica a arenosa, coloração amarelada, incluindo fragmentos decímetros de xisto, perfazendo um pacote de 0,80 m de espessura máxima.

Na etapa de anteprojeto (MI/DNOS-1984), a alternativa de traçado do eixo do canal investigada por meio de 2 poços de inspecção (PI-405 e PI-406) e uma sondagem mista (SMC-404), está situada a mais de 400 m ao sul do traçado atual. As informações obtidas, dada a distância não são de interesse ao projeto em curso.
O substrato rochoso desse trecho é constituído por dois domínios iotiológicos distintos (Desenhos GL-DS-CP-033 a 035):

- Da continuação do perfil anterior até a estaca 405 constitui-se de granada-muscovita-biotita-quartzo xisto, caracterizado por uma foliação dominante E-W e mergulho de baixo ângulo para o norte. O sistema de fraturas é representado pelas atitudes N70E/45SW; N60W/70NE e E-W/75N.

Quanto aos parâmetros geotécnicos, esses tipos de rochas no trecho em foco, enquadra-se como A2, C2 e F1.

- Da estaca 405 à elevatória Salgueiro o substrato é formado por rocha granítica cinza, grã média; homogênea e isotrópica, com parâmetros geotécnicos que permite enquadrá-lo em A1, C1 e F2.

O sistema de fraturas está representado pelas direções N45E, N80E e N05W, todas de mergulho vertical a subvertical.

Esses xistos são geralmente coerentes quando são, embora pouco resistentes à tração e ao cisalhamento nos planos definidos pela foliação. Nesse trecho, a foliação tem direção de mergulho para norte, perpendicular ao eixo do canal, e portanto, desfavorável, embora com baixo ângulo.

Quando associada a falhas e/ou fraturas, pode produzir zonas de taludes instáveis nas escavações.

O maciço granítico é fortemente coerente, formando taludes estáveis nas escavações, mesmo com altos ângulos.

Quando submetidos à britagem (agregado de concreto) os xistos tendem a formar fragmentos laminares e os granitos, fragmentos cubícos.

Os blocos que poderão ser aplicados em enrocamentos, provenientes do desmonte dos xistos, devem ter forma alongada e os blocos do desmonte dos granitos, forma arredondada ou cúbica.

A cobertura superficial, seguindo o trecho do canal ao longo do rio da Barra, é constituída por um solo aluvial arenó-quartzozo. Ao longo do trecho, cujo substrato é o xisto, a cobertura é formada por um solo arenó-siltoso amarelado com cascalhos e espessura máxima de 1,0 metro (barranco do riocho).

No trecho do substrato granítico, o solo é do tipo colúvio-aluvial, coloração cinza, arenósiltoso com blocos de granito.

Na etapa de anteprojeto (MI/DNOS-1984), foram executados ao longo do eixo do canal, neste trecho, dois poços de inspeção (PI-407 e PI-408) e uma sondagem mista (SMC-405).
Os poços atingiram o topo da rocha alterada com 1,00 a 2,00m de profundidade. A sondagem alcançou o maciço rochoso praticamente são com 3,80 m e o nível d'água com 4,50 m.
Neste trecho (Desenhos GL-DS-CP-035 e 036) o sistema adutor principal contorna a encosta da serra Negreiros que se caracteriza por ser a própria rocha aflorante com blocos instáveis. A rocha é um granito cinza, homogêneo e isotrópico com fraturas esparsadas de mergulho subvertical a vertical e direções N55E, N65W (preenchida por microtonalito) e N80W.

Os parâmetros geotécnicos permitem enquadrar tal rocha como A1, C1 e F1.

Essas rochas são duras e abrasivas, com comportamento estável em escavações, mesmo em taludes com altos ângulos. O principal problema de instabilidade neste trecho, refere-se aos blocos empilhados de grandes dimensões (Ver Volume IX.2 - Elevatórias).

As rochas graníticas podem ser utilizadas sem restrições tanto como agregado de concreto como em enrocamentos.

Na continuação do trecho, após a serra Negreiros até a elevatória Salgueiro, encontra-se uma cobertura superficial formada por um solo residual do granito, caracterizada por uma coloração cinza a amarelada, grã areno-siltosa com espessura de 3,0 m até o fundo do riacho.

Na etapa de anteprojeto (MI/DNOS-1984), foram executados sobre ou próximo ao eixo deste trecho de canal, 3 poços de inspeção (PI-409, PI-410 e PI-411) e duas sondagens mistas (SMC-406 e SMC-408).

Os poços encontraram o topo da rocha alterada com profundidades variando entre 0,80 m e 2,20 m. As sondagens alcançaram o topo do maciço rochoso praticamente são com 4,50 m (SMC-406) e 2,70 m (SMC-408). Os dois furos não atingiram o nível d'água.
Neste trecho desde a Barragem Negreiros até a BR-232 grande parte do sistema adutor acompanha o fundo do vale da drenagem principal. Neste segmento o que se observa é o mesmo granito cinza-claro anterior, variando para tons róseos com propriedades geotécnicas A1, F1, C1 (Desenhos GL-DS-CP-037 a 039).

Os sistemas de fraturas têm suas direções principais N20E, N50E e N65E com mergulhos vertical a subvertical.

Por ter-se um substrato rochoso semelhante ao do trecho anterior (rochas graníticas), o comportamento geomecânico é similar, em termos de escavações e de materiais de construção (agregado e enrocamento).

A cobertura é composta por solo residual cinza a amarelado, arenoso-siltoso a arenoso com espessura de até 1,20 m até a rocha sã.

Na etapa de anteprojeto (MI/DNOS-1984), foi executado próximo ao eixo deste trecho de canal, 1 poço de inspeção (PI-412), que atingiu o topo da rocha alterada com 1,10 m.
3.13 - TRECHO BR-232 - BARRAGEM CERRADO

O trecho é recoberto predominantemente por solos colúvio-eluviais (residuais) de composição silto-arenosa a areno-siltosa, finos, amarronzados a acinzentados, podendo conter grânulos de quartzo e feldspato (principalmente na parte inicial do percurso), sendo muitas vezes capeados por cascalheira de quartzo e fragmentos de rocha (Fotos 9 e 10). A espessura dessa cobertura é variável (0-0,50 m) com o substrato rochosso frequentemente aflorando, sendo que localmente pode ocorrer um pouco maior (0,50 m a 1,0 m). Alguns poços realizados na parte inicial do trecho indicaram espessuras em torno de 0,50 m (E4375:0,50 m; E4410:0,40 m e E4421:0,60 m). O substrato rochosso pode ser dividido em termos de composição litológica, disposição estrutural e de propriedades geomecânicas, em dois domínios (Desenhos GL-DS-CP-039 a 045):

- O primeiro domínio, a partir da BR-232 (em direção a Barragem Cerrado), com extensão de aproximadamente 6500 m, é composto por rochas graníticas grosseiras (Foto 11), de coloração rosada a cinza-esbranquiçada (leucocráticas) com porções onde se destaca uma foliação milonítica de alto ângulo (subverticalizada) com direção E-W, ou uma foliação de mais baixo ângulo de direção NE-SW (mergulhos da ordem de 40-50º para SE). Nessas rochas a intensidade do fraturamento é variável, preferencialmente destacando-se os conjuntos de direções N50E/90 (mais marcantes) e N40/90E.

A permeabilidade dessas rochas está intimamente associadas ao grau de fraturamento.

Quanto as propriedades geomecânicas, essas rochas graníticas são do tipo A1 / A2, C1/ C2, F2.

Nesse domínio também foi observada uma pequena faixa de rocha xistosa com lentes de anfibolito, a aproximadamente 500 m da BR-232.

- O segundo domínio, que se inicia nas proximidades da BR-116 e segue até a Barragem Cerrado, com extensão de aproximadamente 3000 m, é constituído por xistos e filitos (quartzo-muscovita-xistos, sericitita-muscovita-xistos) de granulação fina a média.

Estruturalmente, de um modo geral, observa-se uma foliação de baixo ângulo com direção NW-SE e mergulhando em torno de 40º para SW. O fraturamento apresenta-se preferencialmente nas direções N60E.
e N40W, normalmente subverticalizados ou de mergulhos fortes. A rocha é pouco porosa com a permeabilidade sendo devida ao fraturamento existente e, quanto as características físicas do material, são do tipo A3/A2, C3/C2, F2.

As rochas graníticas são duras, abrasivas, coerentes e estáveis em escavações, mesmo com taludes de altos ângulos. Podem ser utilizadas como agregado de concreto e em enrocamentos sem restrições.

Os xistos e filitos têm comportamento geomecânico totalmente diverso, com baixa resistência à tração e ao cisalhamento nos planos da foliação, deslocando-se com facilidade quando alterados. Neste trecho de canal, a atitude desta foliação é favorável à estabilidade dos taludes das escavações, pois tem direção do mergulho de 40° para SW, sendo praticamente paralela ao eixo do canal. Estas rochas, quando submetidas à britagem (agregado de concreto) produzem grande quantidade de finos e fragmentos laminares. Os blocos resultantes do desmonte e que podem ser utilizados em enrocamentos, devem ter forma alongada, além de estarem sujeitos à fragmentação durante o processo de compactação.

Na etapa de anteprojeto (MI/DNOS-1984), foram executados obras ou próximo ao eixo deste trecho de canal, 8 poços de inspeção (PI-414 a PI-421) e 6 sondagens mistas (SMC-410 a SMC-413 e SMB-OD e SMB-C da barragem São Miguel).

Os poços encontraram o topo da rocha alterada com profundidade variando entre 0,60 m e 2,15 m. As sondagens alcançaram o topo do maciço rochoso praticamente são com profundidades muito variáveis, entre 1,70 m (SMC-412) e 7,79 m (SMB-OD). Todos os furos atingiram o NA entre 2,00 m e 3,50 m, exceto o SMB-OD, com 6,40 m.
O trecho (Desenhos GL-DS-CP-045 a 046) apresenta uma cobertura colúvio-eluvial (residual) pouco espessa, de coloração amarronzada e composição silto-arenosa. Destaca-se ainda, de forma marcante, um recobrimento de cascalhos por toda a cobertura com muitos blocos de quartzo e xisto. De um modo geral, esses solos colúvio-residuais cascalhosos, apresentam espessuras variando de 0,00 a 0,30 m, sendo que, localmente, podem exibir espessuras maiores. O substrato rochoso é constituído por rochas filíticas e xistosas do Grupo Cachoeirinha, de coloração acinzentada, normalmente aflorando nas drenagens.

Os xistos e os filitos são geralmente pouco resistentes à tração e ao cisalhamento nos planos da foliação, com forte tendência a deslizamentos, quando alterados, resultando em taludes instáveis nas escavações. Neste trecho, a altitude da foliação é favorável, com direção do mergulho para SW, portanto aproximadamente paralela ao eixo do canal. Os sistemas de fraturas subverticais do maciço, pode, quando associado à foliação, causar o desprendimento de blocos.

Estas rochas devem produzir fragmentos laminares e alta percentagem de finos quando submetidos à britagem (agregados de concreto). Os blocos produzidos pelo desmonte (enrocamentos) devem ser alongados com tendências à fragmentação quando compactados.

Na etapa de anteprojeto (MI/DNOS-1984), foram executados sobre ou próximo ao eixo deste trecho de canal, 4 poços de inspeção (PI-26, PI-27, PI-27A, PI-28) e duas sondagens mistas (SMC-25 e SMC-26).

Os poços atingiram o topo da rocha alterada com profundidades entre 1,30 m e 3,20 m. As sondagens alcançaram o topo do maciço rochosso praticamente são com 8,10 m (SMC-25) e 7,00 m (SMC-260). Os dois furos não encontraram o nível d'água.
3.15 - TÉRHO BARRAGEM SAÚVA - BARRAGEM ÁGUA BENTA

O trecho (Desenhos GL-DS-CP-047 a 051) é capeado predominantemente por solos colúvio-eluviais de coloração amarronzada, com espessura média em torno de 0,50 m (foram realizados alguns furos de trado) e composição normalmente areno-siltosa com grânulos e cascalhos (Fotos 12 e 13). O canal também passa, nesse trecho por depósitos aluvionares de coloração acinzentada com espessura de 1,0-2,0 m e composição siltosa a silto-arenosa, com grânulos de quartzo e pedregulhos de quartzo e xisto, como por exemplo nas proximidades da Barragem Saúva. Nas imediações desses depósitos tem-se coberturas colúvio-residuais rasas (Foto 14). Vale ainda ressaltar a presença de muitos blocos instáveis, principalmente de xisto, ao longo do trecho. Na localidade de Severino a 800 m da Barragem Saúva, o trecho cruza aluvão com até 100 m de largura, apresentando 2,75 m de espessura nas margens e 4,75 m na parte central (furo de sonda).

Na etapa de anteprojeto (MI/DNOS-1984), foram executados nas proximidades ou sobre o eixo do canal, neste trecho, 5 poços de inspeção (PI-29, PI-30, PI-32, PI-33 e PI-34) e 3 sondagens mistas (SMC-27, SMC-28 e SMC-29).

Os poços encontraram o topo da rocha alterada com profundidades entre 0,60 m e 1,40m. As sondagens SMC-28 e SMC-29 alcançaram o maciço rochoso praticamente são com 1,55 e 4,12 respectivamente. A sondagem SMC-27, embora tenha atingido o substrato rochoso com 3,35 m, só alcançou rocha coerente com a profundidade de 8,30 m.

A sondagem SMC-28 encontrou o nível d'água com 3,10 m. Os demais furos e poços terminaram secos.

O substrato rochoso aflora em várias partes do trecho, sendo composto por xistos e filitos (Foto b13) acinzentados do Grupo Cachoeirinha. Quanto as estruturas observadas, destaca-se uma foliação ou xistosidade bem marcada com altitude em torno de N40ºW/30ºNE, denotando uma grande fissilidade do material. O fraturamento observado, que confere ao maciço um certo grau de permeabilidade, ocorre preferencialmente nas direções N40ºE e E-W, subverticalizados ou com mergulhos bastante acentuados.

As propriedades geomecânicas observadas predominantemente, são: A0/A4, C3/C4 e F3.

Estas rochas em geral são pouco resistentes à tração e ao caisalhamento ao longo da foliação, com tendência a deslocamentos e taludes instáveis. Neste trecho, o mergulho predominante desta foliação é para NE, com o possível deslocamento perpendicular ao eixo do canal, sendo portanto mais favorável à estabilidade dos taludes. Tal feição pode ser prejudicada por fraturas, que associadas ao deslocamento, podem causar o desprendimento de blocos de grandes dimensões.
Quando submetidos à britagem (agregado de concreto) essas rochas produzem, geralmente, grande quantidade de finos e fragmentos laminares. Os blocos produzidos pelo desmonte e que podem ser utilizados em enrocamentos, devem ter forma alongada, sendo sujeitos à fragmentação durante o processo de compactação.

3.15.1 - AQUEDUTO SEVERINO

Os terrenos apontado para a construção dessa obra (Desenho GL-DS-CP-047) exibe um substrato rochoso onde dominam os xistos finos (baixo grau metamórfico), em grande parte cepeado por solos colúvio-eluviais(residuais) e, subordinadamente, aluviais (calha e margens do rio).

Dados geológico-geotécnicos complementares aos supramencionados (item 4.14), para o trato que abarca o segmento entre as estacas 35 e 57 (Desenho GL-DS-CP-047), podem ser extraídos do Anteprojeto (MI/DNOS, 1984). A consolidação destes com os informes de campo do presente estudo fornecem:

Solos aluviais: Distribuem-se entre as estacas 41 e 48 (aprox. 140 m de largura), com espessura máxima em torno de 5,00 m, sendo composto de areias argilosas, superpondo-se a solos residuais e xistos/filitos alterados.

Solos colúvio-eluviais (residuais): Correspondem a uma cobertura inconsolidada arenos-argilosa, com grânulos e seixos de quartzo e fragmentos de rochas (xisto e filito), facilmente desagregável, com espessura máxima de até 1,45 m. Ainda, encontram-se, associados ao material aluvial, blocos de rochas oriundos das encostas.

Substrato rochoso: É constituído de micaxíster com lentes ("boudins") de quartzo, com superfícies de foliação bem definidas e mergulhando, preferencialmente, para nordeste, associando-se a rochas filíticas. Mostram-se, em subsuperfície, como rocha sã, coerente e de tonalidade cinza.

Conforme os dados da sondagem SMB-C (MI/DNOS, 1984), o N.A. encontra-se à profundidade de 3,5 m (área próxima ao leito do rio).

Quanto a permeabilidade do maciço xistoso, um K variando entre 4,3 x 10⁻⁵ cm/s (primeiros segundos) e 1,3 x 10⁻⁵ cm/s foi determinado pela Noronha-Hidroterra (MI/DNOS, 1984), em ensaio no furo da sondagem SMB-OD.
A exceção de um pequeno trecho, toda esta parte central do canal será escavada sobre colúvio/elúvio raso, localmente com cascalho (estacas E-5433 + 1,58 a E-5455), silto-arenoso a arenoso, cinza amarelado com blocos de biotita-sericita-xisto, de filito e de quartzo (E-5428 a E-5455; E-5473 a E-5498) pode ter até 1 m de espessura como na estaca E-54-30, porém geralmente com < 0,50 m (Desenho GL-DS-CP-052).

A cobertura colúvio/aluvionar ocorre localmente a partir da estaca E-5498 para norte em direcção a área de inundação da Barragem Milagres. É constituído de solo siltoso, localmente com cascalho de quartzo e de filito, cor amarronzada a amarelo e podendo ter espessura de até 1,0 m.

Na etapa de anteprojeto (MI/DNOS-1984), foram executados ao longo do eixo do canal, neste trecho, 2 poços de inspeção (PI-35 e PI-36) e uma sondagem mista (SMC-30).

Os poços atingiram o topo da rocha alterada com profundidades entre 0,70 e 0,80 m. A sondagem alcançou o maciço rochoso praticamente são com 6,00 m. O nível d’água não foi encontrado.

O substrato deste trecho compõe-se de duas litologias, porém de características geotécnicas semelhantes, sendo o início do trecho até próximo a estaca E-5500 um biotita xisto-sericita xisto de foliação 13° a 20° para SE e E, com fratura 40° para NW e NE, A/Aa, C/C, F e, a partir da estaca E-5500, um filito/metassilito (A/Aa, C, F) (Foto 15) e podendo chegar a (A/Aa, C/C, F/F) a foliação mergulhando para 6° a 15° para W e NW, fraturas NE e E e 65° para NE, no final do trecho.

As condições hidrológicas do filito e do xisto de baixo grau metamórficos semelhantes ou seja, pouco porosos mas permeáveis ao longo das fraturas abertas ou preenchidas por materiais de alteração.

Nestas rochas, a foliação representa planos de baixa resistência a ruptura, ocasionando deslocamentos às vezes acentuados e consequente instabilidade nos taludes das escavações.

A atitude da foliação neste trecho é desfavorável quanto à direção do mergulho (aproximadamente perpendicular ao eixo do canal) e favorável quanto aos ângulos (6° a 20°).

Quando submetidas à britagem (agregado de concreto) estas rochas produzem fragmentos de forma laminar e grandes quantidades de fins. Os blocos obtidos no desmonte devem ter forma alongada e estarem sujeitos à fragmentação quando compactados em enrocamentos.
A partir da área de inundação da Barragem Milagres, o canal será escavado no aluvion do riochão homônimo (planicie aluvionar com largura variando de 100 m, no início até 50 m, próximo a embocadura do Túnel Milagres/Jati), composto de silte e areia com matéria orgânica e pouca argila, o que reflete a sua cor negra a marrom escura. As espessuras da aluvion oscilam de 2,0 a 3,0 m, diminuindo para o intervalo de 1,5 a 2,0 m nas proximidades do Túnel. Na estaca Estaca 5903, observou-se, em novembro/94, água empoçada.

A cobertura das encostas é colúvio/eluviunar, com cascalhos, fragmentos e blocos de xisto e filito, em matriz siltsosa cinza a marrom ocre, com espessuras menores do que 0,50 m (Desenhos GL-DS-CP-052 a 056).

O substrato é de xistos ou filitos (Foto 16), localmente com lentes de filito quartizoso (Estaca 5980) afiorando, de forma generalizada, nas encostas. Classificam-se, em geral, como rochas de propriedades A3, C3, F3, chegando até AJ/As; C5, F5 (Estaca 6155).

Sobre estruturas, a foliação tem mergulho de 13º a 17º para N e NNE, próximo ao início do trecho, mergulho de 35º a 50º para SE e ESE, no restante do canal. As fraturas tem mergulhos fortes a verticalizados para SE e NE.

Estas rochas geralmente rompem-se com facilidade ao longo dos planos de foliação, quando submetidas à tração ou a esforços de cisalhamento, principalmente quando alteradas.

Dada às várias direções do eixo do canal neste trecho, a atitude da foliação, com mergulhos de 35º a 50º para SE e ESE, principalmente quando associada aos fraturamentos, pode ser bastante desfavorável à estabilidade das escavações. Os xistos e filitos, quando submetidos à britagem tendem a se fragmentar com forma laminar, produzindo grande percentagem de finos. Os blocos do desmonte devem ser alongados, com tendência a fragmentação durante a compactação.

Em termos de condições hidrológicas, os principais fraturamentos abertos são os deslocamentos sub-horizontalizados (foliação e "sheeting" verticalizados) que proporcionam boa permeabilidade.

Na etapa de anteprojeto (MI/DNOS-1984), foram executados sobre ou próximo ao eixo deste trecho de canal, 2 poços de inspeção (PI-01 e PI-02) e uma sondagem mista (SMC-08).

Os poços atingiram o topo da rocha alterada com profundidades de 2,10 m (PI-01) e 2,30 m (PI-02). a sondagem alcançou o topo do maciço rochoso praticamente são com 3,60 m e o nível d'água com 1,22 m.
O sítio previsto para a execução do Túnel Milagres-Jati (Desenho GL-DS-TU-01) ostenta um capeamento de solos preferencialmente coluvisais, composto de materiais silto-arenosos (areia fina) e silto-argilosos, com fragmentos de quartzo e rocha (mornente filito), com espessuras dominantes entre 0.30 m e 1.00 m (espessuras maiores - até 2.20 m - são encontradas após a área de desemboque). Sotopostos, encontram-se solos residuais silíticos ou silto-argilosos, de pequenas espessuras.

No início do "perfil" (segmento meridional - antes do emboque), contra-se, por uma extensão de aproximadamente 130 m, um depósito sedimentar onde se associam solos aluviais e coluvisais, atingindo espessura de até 2 m.

Por sua vez, o substrato rochoso, sublinhado, basicamente, por rochas filíticas e xistosas de baixo grau metamórfico (xistos a muscovita, sericita e clorita, com ou sem biotita e granada), com porções subordinadas de estratos arenosos (metarenitos) parcialmente conglomeraticos (metarenitos conglomeráticos em jazimentos lenticulares)(Desenho GL-DS-TU-01).

Em exposições naturais (afloaramentos), essas rochas exibem tonalidades amarelo-ocre a amareloronzada (rocha alterada), marcante laminação (xistosidade ou clivagem finamente espaçada) que propicia um fácil deslocamento em peças de pequenas espessuras (Foto 17 - Apêndice I). Nas rochas filíticas (filitos propriamente ditos, metassillitos e metarenitos finos), as superfícies de clivagem são bastante regulares (quase-planas). Enquanto isto, as bandas mais micáceas (micaxistos) apresentam uma maior irregularidade dessa estrutura planar, especialmente nas frações com veios (geralmente lenticularizados - lentes ou "boudins") de quartzo.

Em subsuperfície, como observado em testemunhos de sondagem (SMT-01)(Fotos 1 a 7 - Apêndice II), a rocha filítica ostenta tonalidade cinza, disseminação de óxido de ferro e intercaiações de xisto com vênulas e veios de quartzo. Também, chega a encerra sulfetos de metais (pirita).

As altitudes de foliação (xistosidade ou clivagem) exibem valores médios entre N10-20E/20-65SE, locamente verticalizadas. Marcam-se, também, sistemas de fraturas N30E/vertical, E-W/vertical e N75W/vertical. Em testemunhos de sondagem, as fraturas oscilam de subhorizontais a subverticais, com paredes lisas e sedosas, geralmente com produtos de alteração.

As propriedades geomecânicas dessas rochas filíticas, em afloramentos, variam entre A2-A5, C1-C5 e F4-F5. Em amostras de subsuperfície, assinala-se, para as mesmas, os indicadores A1 a A3, C1 a C2 e F4 a F5.

O nível d' água detectado no furo da sondagem SMT-01 foi de 8,20 m.
Mesmo reconhecendo, nesta área, a existência de falhas e diversos sistemas de diáclases verticais, o túnel deve atravessar um pacote de filitos preferencialmente sãos (rocha média alterada), localmente mineralizados a sulfetos metálicos, de dureza mediana, coerentes a muito resistentes e muito fraturados.

A tendência média do traço da foliação (N15E) e o eixo do túnel (N30W) fazem, entre si, um ângulo de 45 graus, postura que não é a ideal (considerando-se os valores de mergulhos) mas que não deve causar grandes problemas à feitura da obra. Contudo, em termos geotécnicos, os maiores complicadores encontram-se no alto grau de fraturamento (morcego nos sítios de fraturas abertas e preenchidas por materiais alterados). Essas fraturas, associadas a foliação (superfícies potenciais de fraquezas), podem facilitar, quando as escavações desprendimento de blocos de dimensões variáveis, merecendo tratamento específico.
O riacho dos Porcos, cuja largura da planície aluvionar ultrapassa 100 m em todo o trecho mapeado, exceto nas proximidades da cidade de Pena Forte. Nesta planície assinala-se uma cobertura silto-arenosa com pouca argila amarronzada e acinzentado, em cujo leito meandrante encontra-se um cascalho fino de matriz silto arenosa com grânulos. Próximo às encostas marginais há um misto de cobertura colúvio-aluvionar com cascalho médio a fino que possui ora uma fração mais grosseira da matriz e amarelada, quando o substrato é um arenito, ora uma fração mais fina e marrom, quando o substrato é um filito. A espessura mínima deste aluvio é em torno de 2,5 m e as várias cacimbas no local (estacas E-6342; E-6353, E-6466) dão profundidade de água a 5 m no substrato arenítico e água entre 2 e 4 m de profundidade no substrato filítico (Desenhos GL-DS-CP-057 a 064).

Sobre as encostas há uma cobertura colúvio/eluvionar, geralmente com cascalho e de topo rochoso elevado (≤ 0,30 m) com matriz siltica e também arenosa, de coloração amarelada a marrom, localmente com blocos do substrato.

Neste trecho, ocorrem duas litologias aflorantes, da estaca E-6385 para sul ocorre filito (Fotos 17 a 19) e para norte arenito (Formação Cariri).

O arenito é do tipo grosseiro a conglomerático e com grãos de feldspato. Apresenta-se em termos geotécnicos entre A2 e A4; C3, F3.

Seu acamamento possui mergulho variável de 20° a 30° para NW (Estaca E-6535 e 6540) e de 15° a 30° para NE (estaca E-6546).

Discordantemente sob o arenito e aflorando em todo o trecho a sul da estaca E-6383 está o xisto/filito Cachoeirinha de idade Mesoproterozoica com características A2/A3; C2/C3, F3/F4 e podendo chegar localmente a A4, C4, F4. A foliação mergulha entre 25° e 35° para SE. As fraturas principais são verticalizadas com direção NW ou E-W.

Os filitos são semelhantes aos do trecho anterior, portanto com o mesmo comportamento geomecânico.

Os arenitos, quando silicificados, tendem a ser relativamente estáveis, em escavações. Em caso contrário são facilmente erodíveis e instáveis, por serem brandos e friáveis. Geralmente estes arenitos não se prestam à britagem (esfremam-se) e em enrocamentos, fragmentam-se quando compactados.

Em termos hidrológicos, tanto o colúvio/elúvio quanto o aluvio são permeáveis e porosos. Já o arenito Cariri pode ser poroso e permeável nos trechos mais alterados e conglomeráticos por causa da dissolução do cimento e da lavagem da matriz. O xisto/filito Cachoeirinha não é poroso mas pode ser muito permeável nos trechos mais fraturados no que é auxiliado pelo deslocamento ao longo dos planos de foliação.
Na etapa de anteprojeto (MI/DNOS-1984), foram executados sobre ou próximo ao eixo deste trecho de canal, 4 poços de inspeção (PI-03 a PI-06) e duas sondagens mistas (SMC-06 e SMC-07).
4. ESTUDOS DE ÁREAS DE MATERIAIS DE EMPRÉSTIMO

4.1 - Comentários Gerais

As investigações de campo em jazidas de material de empréstimo resumiram-se na abertura de poços suplementares (poços de consistência) em áreas anteriormente estudadas ou em áreas fotografadas nesta etapa.

Todas as jazidas apresentam ótima facilidade de acesso, face a densa malha viária e o bom estado de conservação em que se encontram.

Os volumes estudados representam uma reserva considerável para as necessidades do projeto.

Estes depósitos consistem de solos colúvio-eluviais e residuais imaturos, originários de alteração de granitóides, gnaises, xistos, quartzitos e filitos.

Os materiais encontrados, em sua maioria, apresentam classificação tático-visual de areia silto-argilosa ou areia argilo-siltosa, ambas com pedregulho.

São utilizados na região para construção de pequenas barragens, estradas e barreiros, prestando-se para emprego de bases e revestimentos de pavimentos.

4.2 - Jazidas Estudadas (Tabela 1 e Desenhos do Volume IX.4a - Tomo IV)

J-141

Área estimada: 320.000 m²
Número de poços: 9
Prof. útil.: 0,30 m
Volume cub. (inf.): 96.000 m³

J-156

Área estimada: 225.000 m²
Número de poços abertos: 7
Prof. média: 0,80 m
Volume cubado (inferido): 180.000 m³

J-169

Área estimada: 555.000 m²
Número de poços: 11
Prof. útil.: 0,350 m
Vol. cub.(inf.): 194.250 m³
M-04

Área estimada: 625.000 m²
Número de poços: 6
Prof. útil.: 0,916 m
Volume cub. (inf.): 572.917 m³

M-03

Área estimada: 795.000 m²
Número de poços: 6
Prof. útil.: 1,142 m
Volume cub. (inf.): 907.890 m³
5. BIBLIOGRAFIA CITADA

<table>
<thead>
<tr>
<th>TABELA 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensaios de Campo e Resultados Analíticos e Volumétricos das Jazidas</td>
</tr>
<tr>
<td>Jazida</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>J-141</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>J-156</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>J-169</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
APÊNDICE 1

Fotografias de Campô
Foto 1 - Granito gnáissico grosseiro (G1) de estrutura ocelar (aspecto parcial listrado), bastante deformado (milonitizado), associado a um granito cinza, de granulação fina e pouco deformado (G2). Local: Trecho do canal entre a elevatória São Francisco e a Barragem Angicos (Estaca 7329). Observa-se foliação de baixo ângulo (± 18°). Propriedades: A_1, C_1, F_1.

Foto 3 - Milonitos e ultramilonitos, intensamente fraturados. Local: Trecho Barragem Maria Preta - Barragem Mari (Estaca 1819). Propriedades: A₂, C₂, F₃. Fraturas: N60°E/65°NW; N20E/75NW; N60W/75°NE; N30W/55NE; N10W/20°SW.
Foto 4 - A exposição rochosa da foto 3 vista de outro ângulo.
Foto 6 - Segmento da paisagem a leste do eixo do canal (proximidades da barragem Mari), onde aparecem, em primeiro plano, uma cobertura coluvional rasa, irregular e cascalhosa, e, no fundo, uma pequena elevação desnuda (milonitos de granítóides). Local: Proximidades da barragem Mari (Estaca 1819).
Foto 7 - Afloramento de muscovita-biotita-gnaisse, com vênulas quartzosos e veios quartzo-feldspáticos (foliação: N70E/55°NW). Local: Trecho do canal entre a barragem Terra Nova e a elevatória Terra Nova (Estaca 175+5,30 m - UTM 461680/9082057). Propriedades: A₃, C₁, F₁.

Foto 8 - Matações de granito fino, cinza a róseo (Granito Terra Nova). Local: proximidades do sitio de 1ª opção MIR/SIR para o eixo da barragem Terra Nova (Estaca 235). Propriedades: A₁, C₁, F₂.
Foto 9 - Cobertura colúvio-residuais relacionadas a xistos e anfibolitos (região Salgueiro, trecho do canal nas proximidades da BR-232). (Estaca 4400).

Foto 10 - Coberturas colúvio-residuais rasas, sobre um substrato de rochas graníticas (A₁, C₁, F₂) frequentemente aflorantes. Local: proximidades da BR-232 (Estaca 4383); na região de Salgueiro.
Foto 11 - Aspecto das coberturas colúvio-residuais rasas com blocos, matacões e afloramentos de rochas graníticas A₀, C₁, F₁. Trecho do canal na região de Salgueiro (BR-232 - Barragem Cerrado - Estaca 4608).

Foto 12 - Aspecto das coberturas colúvio-residuais rasas com cascalho, após a área de inundaçãoda Barragem Sauva (Estaca 0020).
Foto 13 - Trecho do canal após a Barragem Saúva (Estaca 001), mostrando drenagem norte e sul com blocos e afloramentos de filitos (A_3/A_4, C_3/C_4, F_3) e coberturas colúvio-residuais nas encostas.

Foto 14 - Trecho de canal entre as barragens Saúva e Água Benta, na localidade de Formigas (Estaca 44), cruzando depósito aluvionar e coberturas colúvio-residuais rasas (segundo plano).
Foto 15 - Afloramentos de filitos (Grupo Cachoeirinha) com fissilidade bastante notável e baixas propriedades geomecânicas. Local: Canal antes da área de inundação da Barragem Milagres (Estaca 5515). Notar o tipo de cobertura colúvio/solo residual de pequena espessura.

Foto 16 - Trecho da embocadura túnel Milagres/Jati (Estaca 6135) seguindo em aluvião com depósito colúvio-residuais de encosta.
Foto 17 - Aspectos dos filitos (Grupo Cachoeirinha) no sítio de desemboque do túnel Milagres-Jati (próximo a Estaca 6248), com propriedades A₃, C₃/C₄, F₄ e notável fissilidade.

Foto 18 - Área de desemboque do túnel Milagres-Jati (Estaca 6252).
APÊNDICE 2

Fotografias de Testemunhos de Sondagens
Foto 1 - Testemunhos de sondagem do túnel Jati-Milagres (T - túnel).

Foto 2 - Testemunhos de sondagem do túnel Jati-Milagres (T - túnel).
Foto 3 - Testemunhos de sondagem do túnel Jati-Milagres (T - túnel).

Foto 4 - Testemunhos de sondagem do túnel Jati-Milagres (T - túnel).
Foto 5 - Testemunhos de sondagem do túnel Jati-Milagres (T - túnel).

Foto 6 - Testemunhos de sondagem do túnel Jati-Milagres (T - túnel).
Foto 7 - Testemunhos de sondagem do túnel Jati-Milagres (T - túnel).
<table>
<thead>
<tr>
<th>Cota N.A.</th>
<th>Final (m)</th>
<th>Revestimento</th>
<th>Amostra</th>
<th>Gráfico do N° de Golpes/30 cm</th>
<th>Camadas</th>
<th>Classificação</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NW</td>
<td></td>
<td>Inicial Final</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>0,50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6,27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15,59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Obs.: Continua na próxima folha.

Recup. (%)	R.Q.D (%)	% de Recuperação	N° de Fragmentos por metro de manobra
20 | 40 | 60 | 80

Data: 26/11/94

Sondador:

Preparado por: **Eng. Geotécnico**

Visto: **Coord. do Projeto**
<table>
<thead>
<tr>
<th>Cota N.A.</th>
<th>Revestimento</th>
<th>Ensaios de Penetração Dinâmica</th>
<th>Camadas</th>
<th>Classificação</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Nº de Golpes/20 cm</td>
<td>Prof. (m)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amostra</td>
<td>Inicial</td>
<td>Final</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>72</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>82</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>74</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>41</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>77</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>51</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>97</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data: 26/11/94
Sondador:
Preparado por:
Visto:
Eng. Geotécnico:
Coord. do Projeto:

Filho com óxido de ferro disseminado, passando para xisto com veios de quartz e foliação subhorizontal.
<table>
<thead>
<tr>
<th>Cota N.A. Final (m)</th>
<th>Revestimento</th>
<th>N° de Golpes/30 cm</th>
<th>Gráfico do N° de Golpes/30 cm</th>
<th>Prof. (m)</th>
<th>Classificação</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Amostra</td>
<td>Inicial</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Final</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>48</td>
<td>36</td>
<td>10 20 30 40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NW</td>
<td></td>
<td></td>
<td></td>
<td>29,75</td>
<td>Metassiltito e filito.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Filito.</td>
</tr>
<tr>
<td>100</td>
<td>80</td>
<td>84</td>
<td></td>
<td>33,35</td>
<td>Metassiltito com veios de quartzo (até 35,89m) e filito cinza sericitico.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>39,25</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40,89</td>
<td>Filito cinza sericitico.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45,20</td>
<td>Filito cinza sericitico com sulfetos.</td>
</tr>
</tbody>
</table>

Data: 26/11/94
Sondador: Sondagem Rotativa
Preparado por: Eng. Geotécnico
Visto: Coord. do Projeto

Continuação da folha anterior.
<table>
<thead>
<tr>
<th>ALTERAÇÃO</th>
<th>COERÊNCIA</th>
<th>FRATURAMENTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,85 - 1,75</td>
<td>0,85 - 1,75</td>
<td>0,85 - 7,02</td>
</tr>
<tr>
<td>1,75 - 3,13</td>
<td>1,75 - 5,38</td>
<td>7,02 - 8,17</td>
</tr>
<tr>
<td>3,13 - 5,00</td>
<td>5,38 - 28,39</td>
<td>8,17 - 9,67</td>
</tr>
<tr>
<td>5,00 - 5,38</td>
<td>28,39 - 37,65</td>
<td>9,67 - 11,23</td>
</tr>
<tr>
<td>5,38 - 7,02</td>
<td>37,65 - 45,20</td>
<td>11,23 - 12,74</td>
</tr>
<tr>
<td>7,02 - 28,39</td>
<td>A1</td>
<td>12,74 - 14,01</td>
</tr>
<tr>
<td>28,39 - 29,75</td>
<td>A1/2</td>
<td>14,01 - 15,59</td>
</tr>
<tr>
<td>29,75 - 37,65</td>
<td>A2</td>
<td>15,59 - 17,81</td>
</tr>
<tr>
<td>37,65 - 45,20</td>
<td>A1</td>
<td>17,81 - 20,03</td>
</tr>
</tbody>
</table>

DESCRIÇÃO DAS FRATURAS

0,85 - 7,02 - Fraturas subhorizontais e inclinadas de paredes lisas e alteradas.
7,02 - 8,17 - Fraturas inclinadas, paredes lisas e sedosas.
8,17 - 9,67 - Fraturas subverticais e inclinadas, paredes lisas alteradas.
9,67 - 11,23 - Fraturas inclinadas de paredes lisas e alteradas.
11,23 - 15,59 - Fraturas inclinadas e subhorizontais de paredes lisas e alteradas
15,59 - 26,27 - Fraturas inclinadas de paredes lisas e alteradas.
26,27 - 33,55 - Fraturas subhorizontais de paredes lisas e alteradas.
33,55 - 39,25 - Fraturas inclinadas a subhorizontais lisas e alteradas
39,25 - 45,20 - Fraturas inclinadas de paredes lisas e alteradas.
APÊNDICE 4

Boletins de Sondagens Percussivas
<table>
<thead>
<tr>
<th>Cota N.A. (m)</th>
<th>Revestimento</th>
<th>Ensaios de Penetração Dinâmica</th>
<th>Camadas</th>
<th>Classificação</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N° de Golpes/30 cm</td>
<td>Gráfico do N° de Golpes/30 cm</td>
<td>Prof. (m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amostra</td>
<td>Inicial</td>
<td>Final</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inicial</td>
<td>Final</td>
<td>Final</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data:</th>
<th>Recup. (%)</th>
<th>Q'</th>
<th>R.Q.D. (%)</th>
<th>Obs.:</th>
<th>E-30 + 10m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sondador:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preparado por:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Eng. Geotécnico Coord. do Projeto
<table>
<thead>
<tr>
<th>Cota</th>
<th>N.A.</th>
<th>Final</th>
<th>Revestimento</th>
<th>Ensaio de Penetração Dinâmica</th>
<th>Camadas</th>
<th>Classificação</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(m)</td>
<td></td>
<td>N° de Golpes/30 cm</td>
<td>Gráfico do N° de Golpes/30 cm</td>
<td>Prof. (m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Amostra</td>
<td>Inicial</td>
<td>Final</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Material destruído.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4,10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Topo de rocha.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data:</th>
<th>Recup. (%)</th>
<th>Q'</th>
<th>R.Q.D. (%)</th>
<th>Obs.: E-40 + 10m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sondador:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sondagem Rotativa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Preparado por: | Visto:
Eng. Geotécnico | Coord. do Projeto
<table>
<thead>
<tr>
<th>Cota</th>
<th>Revestimento</th>
<th>Ensaio de Penetração Dinâmica</th>
<th>Camadas</th>
<th>Classificação</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N° de Golpes/30 cm</td>
<td>Prof. do N.A. (m)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amostra</td>
<td>Inicial</td>
<td>Final</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gráfico do N° de Golpes/30 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Iniciais</td>
<td></td>
<td>Finais</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 20 30 40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recup. (%)</td>
</tr>
<tr>
<td>20 40 60 80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Obs.:</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-3225 + 10m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sondador:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sondagem Rotativa</td>
</tr>
<tr>
<td>Preparado por:</td>
</tr>
<tr>
<td>Visto:</td>
</tr>
<tr>
<td>Eng. Geotécnico</td>
</tr>
<tr>
<td>Cota</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data:</th>
<th>Recup. (%)</th>
<th>R.Q.D. (%)</th>
<th>% de Recuperação</th>
<th>Obs.: E-3230 + 10m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sondador:</th>
<th>Sondagem Rotativa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Preparado por:</th>
<th>Visto:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Eng. Geotécnico
Coord. do Projeto
<table>
<thead>
<tr>
<th>N.A.</th>
<th>BW</th>
<th>N° de Golpes/30 cm</th>
<th>Gráfico do N° de Golpes/30 cm</th>
<th>Prof. (m)</th>
<th>Classificação</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.A.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Material destruído.</td>
</tr>
<tr>
<td>3.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rocha.</td>
</tr>
</tbody>
</table>

Data: 18/11/9

Sondador: Luis Antonio

Sondagem Rotativa

Recup. (%)

R.O.D. (%)

<table>
<thead>
<tr>
<th>20</th>
<th>40</th>
<th>60</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>% de Recuperação</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N</th>
<th>N° de Fragmentos por metro de manobra</th>
</tr>
</thead>
</table>

Obs.: E-42 + 10m

Preparado por:

Visto:

Eng. Geotécnico

Coord. do Projeto
<table>
<thead>
<tr>
<th>Cota N.A. (m)</th>
<th>Revestimento</th>
<th>Camadas</th>
<th>Classificação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Material destruído.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4,45</td>
<td></td>
<td>Rocha sil.</td>
</tr>
</tbody>
</table>

Data: 18/11/94
Sondador: Luis Antonio

Preparado por: Visto:
Eng. Geotécnico Coord. do Projeto

Obs.: E-45 + 10m
APÊNDICE 5

Boletins de Poços de Inspeção
<table>
<thead>
<tr>
<th>INTERVALO</th>
<th>ESPESURA (m)</th>
<th>LITOLOGIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00 - 0,35</td>
<td>0,35</td>
<td>Perdeguinhos e silt argilo-arenoso, de cor amarelada.</td>
</tr>
<tr>
<td>0,35 - 0,45</td>
<td>0,10</td>
<td>Rocha decomposta (granito).</td>
</tr>
</tbody>
</table>

OBSERAÇÕES
E-3218
Litologia

<table>
<thead>
<tr>
<th>INTERVALO DE (m)</th>
<th>ATÉ (m)</th>
<th>ESPESSURA (m)</th>
<th>LITOLOGIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00</td>
<td>1,35</td>
<td>1,35</td>
<td>Perdegulhos e sítio argilo-arenoso, de cor amarelada.</td>
</tr>
<tr>
<td>1,35</td>
<td>1,45</td>
<td>0,10</td>
<td>Rocha decomposta (granito).</td>
</tr>
</tbody>
</table>

Observações: E-3222
<table>
<thead>
<tr>
<th>INTERVALO</th>
<th>DE (m)</th>
<th>ATÉ (m)</th>
<th>ESPESURA (m)</th>
<th>LITOLOGIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00</td>
<td>0,40</td>
<td>0,40</td>
<td></td>
<td>Sílice argilo-arenoso, com pedregulhos, de cor avermelhada.</td>
</tr>
<tr>
<td>0,40</td>
<td>0,50</td>
<td>0,10</td>
<td></td>
<td>Rocha decomposta, de cor estranqueçada.</td>
</tr>
</tbody>
</table>

OBSERAÇÕES: E-3241 + 10m

DESCRITO POR: SONDADOR

ESC. VERTICAL: 1:10
Transposição

Pêlo

<table>
<thead>
<tr>
<th>Estudo</th>
<th>Município</th>
<th>Local</th>
<th>Poço</th>
<th>Profundidade</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE</td>
<td>Salgueiro</td>
<td></td>
<td>PIA-01</td>
<td>0,80M</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intervalo</th>
<th>Espessura (m)</th>
<th>Litologia</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00</td>
<td>0,70</td>
<td>Silte argila-arenoso, de cor amarelada, com pedrequis.</td>
</tr>
<tr>
<td>0,70</td>
<td>0,80</td>
<td>Micristo decomposto, de cor amarelada.</td>
</tr>
</tbody>
</table>

Observações:

E-36
Poço executado pela GEONORTE

Descrição por:

Sondador:

Esc. Vertical: 110
<table>
<thead>
<tr>
<th>INTERVALO DE (M)</th>
<th>ATÉ (M)</th>
<th>ESPESURA (M)</th>
<th>LITOGOGIA</th>
<th>PERÍFIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00</td>
<td>0,55</td>
<td>0,55</td>
<td>Silte argilo-arenoso, de cor amarela, com pedregulhos.</td>
<td></td>
</tr>
<tr>
<td>0,55</td>
<td>0,65</td>
<td>0,10</td>
<td>Micaústo decomposto, de cor amarela.</td>
<td></td>
</tr>
</tbody>
</table>

OBSERVAÇÕES

E-50
Pôlo executado pela GEONORTE

DESCRITO POR:
SONDADOR
ESC. VERTICAL

FOLHA 1:10
APÊNDICE 6

Boletins de Poços, Ensaios de Campo, Ensaios de Caracterização, Curva Granulométrica e Croqui de Localização
<table>
<thead>
<tr>
<th>DE (M)</th>
<th>ATÉ (M)</th>
<th>LITÓLOGIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00</td>
<td>0,30</td>
<td>Soto argila-arenoso, avermelhado, com calhaus (fragmentos de migmatito).</td>
</tr>
<tr>
<td>0,30</td>
<td>0,60</td>
<td>Rocha intemperizada.</td>
</tr>
</tbody>
</table>

OBSERVAÇÕES
Poço seco. Superfície horizontalizada e cobertura vegetal.

DESCRITO POR: Marcelo Medeiros
SONDADOR:
ESC. VERTICAL: 1:20
<table>
<thead>
<tr>
<th>POÇO</th>
<th>PROF. (m)</th>
<th>γ_s “in situ” (g/cm3)</th>
<th>h nat (%)</th>
<th>γ_g (g/cm3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>0,00-0,30</td>
<td>1,585</td>
<td>4,1</td>
<td>2,572</td>
</tr>
</tbody>
</table>

Legenda

γ_s “in situ” = densidade aparente seca “in situ”
h nat = umidade natural
γ_g = densidade específica real
<table>
<thead>
<tr>
<th>POÇO</th>
<th>AMOSTRA</th>
<th>GRANULOMETRIA (% QUE PASSA)</th>
<th>PLASTICIDADE (%)</th>
<th>COMPACTAÇÃO</th>
<th>CLASSIFICAÇÃO (USC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3/8"</td>
<td>Nº 4</td>
<td>Nº 10</td>
<td>Nº 40</td>
</tr>
<tr>
<td>01</td>
<td>0,00-0,30</td>
<td>100</td>
<td>99</td>
<td>96</td>
<td>74</td>
</tr>
</tbody>
</table>
Derivação de águas do Rio São Francisco para regiões semi-áridas dos Estados de Pernambuco, Ceará, Paraíba e Rio Grande do Norte.

CURVA GRANULOMÉTRICA

CPRM Companhia de Pesquisa de Recursos Minerais
Residência de Fortaleza

Obra:..
Trecho: RIO SÃO FRANCISCO/JATI
Jazida: J-141

ARGILA
0,001
SILTE
0,01
FINE
MEDIDA
GROSSA
AREIA
DIÂMETRO DAS PARTICULAS EM mm

0,001
0,01
0,1
1
10
20
30
40
50
60
70
80
90
100

PASSE
10
20
30
40
50
60
70
80
90
100

PORTAGEM
0,001
0,01
0,1
1
10
20
30
40
50
60
70
80
90
100

RETIDA
COMPANHIA DE PESQUISA DE RECURSOS MINerais - CPRM
GROQUI DE LOCALIZAÇÃO DE POÇOS

DERIVAÇÃO DE ÁGUA S DO RIO SÃO FRANCISCO PARA REGIÕES SEMI-ÁRIDAS
DOS ESTADOS DE PERNAMBUCO, CEARÁ, PARAÍBA E RIO GRANDE DO NORTE

Obra:
Jazida:
J - 141

Poços escavados
- CPRM
- Noronha/Hidroterra
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00</td>
<td>1,30</td>
<td>1,30</td>
<td></td>
<td>Silte areno-argiloso avermelhado e pedregulhos.</td>
</tr>
<tr>
<td>1,30</td>
<td>1,50</td>
<td>0,20</td>
<td></td>
<td>Areia e cascalhos claros.</td>
</tr>
<tr>
<td>1,50</td>
<td>1,60</td>
<td>0,10</td>
<td></td>
<td>Croníssulo cárstico, de cor escura. Solo residual imaturo.</td>
</tr>
</tbody>
</table>

Observações:
- Poço seco
- UTM - 466523
- 9084390

Detalhamento:
- **MUN: JATOBÁI**
- **Furo:** P-01
- **Profundidade:** 1,60 M

Descrição:
- **Epifânio**
- **Sondador**
- **ESC. VERTICAL:** 1:20

Folha:
- **PROJETO:** TRANSPosição
- **MUN**: TERRA NOVA
- **ESTADO**: PE
- **SOMA**: MIR
- **SONA**: POÇO
- **obra:** CANAL
- **Nº:** J-156

Início: 2/11
Term: 3/11
<table>
<thead>
<tr>
<th>INTERVALO</th>
<th>DE (m)</th>
<th>ATÉ (m)</th>
<th>ESPESURA (m)</th>
<th>LITOLOGIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00</td>
<td>0,60</td>
<td>0,60</td>
<td></td>
<td>Silte areno-argiloso avermelhado, ferruginoso e pedregulhos.</td>
</tr>
<tr>
<td>0,60</td>
<td>0,70</td>
<td>0,10</td>
<td></td>
<td>Chatoce mioáceo, alterado, de cor escura. Solo residual imaturo.</td>
</tr>
</tbody>
</table>

OBSERAÇÕES
Poço seco

DESCRITO POR:
EPIFÂNIO

SCUDADOR:

ESC. VERTICAL:
1:20
<table>
<thead>
<tr>
<th>INTERVALO</th>
<th>ESPESSURA (m)</th>
<th>LITOLOGIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00 - 0,30</td>
<td>0,30</td>
<td>Silta arenosa-argilosa avermelhado e pedregulho.</td>
</tr>
<tr>
<td>0,30 - 0,40</td>
<td>0,10</td>
<td>Cnaisso micáceo, alterado. Solo residual Imaturo.</td>
</tr>
</tbody>
</table>

Observações:
- Poço seco
- CL - argilas inorgânicas de baixa plasticidade

Descrição por: EPIFÂNIO

Sonhador:

Escala Vertical: 1:20
<table>
<thead>
<tr>
<th>POÇO</th>
<th>PROF. (m)</th>
<th>γ_s “in situ” (g/cm3)</th>
<th>$%_{nat}$</th>
<th>γ_g (g/cm3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>0,00-1,10</td>
<td>1,798</td>
<td>2,0</td>
<td>2,472</td>
</tr>
<tr>
<td></td>
<td>1,10-1,30</td>
<td>1,743</td>
<td>2,5</td>
<td>2,596</td>
</tr>
<tr>
<td>02</td>
<td>0,00</td>
<td>1,743</td>
<td>1,5</td>
<td>2,607</td>
</tr>
<tr>
<td></td>
<td>0,60</td>
<td>1,698</td>
<td>2,0</td>
<td>2,493</td>
</tr>
<tr>
<td>03</td>
<td>0,00</td>
<td>1,713</td>
<td>1,5</td>
<td>2,472</td>
</tr>
<tr>
<td></td>
<td>0,30</td>
<td>1,703</td>
<td>2,5</td>
<td>2,563</td>
</tr>
</tbody>
</table>

Legenda

γ_s “in situ” = densidade aparente seca “in situ”
$\%_{nat}$ = umidade natural
γ_g = densidade específica real
<table>
<thead>
<tr>
<th>POÇO</th>
<th>AMOSTRA</th>
<th>GRANULOMETRIA (% QUE PASSA)</th>
<th>PLASTICIDADE (%)</th>
<th>COMPACTAÇÃO</th>
<th>CLASSIFICAÇÃO (USC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3/8" Nº 4 Nº 10 Nº 40 Nº 200</td>
<td>LL LP IP</td>
<td>HOT(%)</td>
<td>γ_{max} (g/cm³)</td>
</tr>
<tr>
<td>01</td>
<td>0,00-1,10</td>
<td>57 41 23 22 13</td>
<td>NL NP NP</td>
<td>9,9</td>
<td>1,840</td>
</tr>
<tr>
<td></td>
<td>1,10-1,30</td>
<td>64 52 48 42 12</td>
<td>NL NP NP</td>
<td>10,2</td>
<td>1,830</td>
</tr>
<tr>
<td>02</td>
<td>0,00</td>
<td>100 99 96 81 30</td>
<td>24 18 6</td>
<td>10,1</td>
<td>1,970</td>
</tr>
<tr>
<td></td>
<td>0,60</td>
<td>74 63 47 39 12</td>
<td>NL NP NP</td>
<td>11,0</td>
<td>1,910</td>
</tr>
<tr>
<td>03</td>
<td>0,00</td>
<td>95 92 90 85 46</td>
<td>25 18 7</td>
<td>14,2</td>
<td>1,795</td>
</tr>
<tr>
<td></td>
<td>0,30</td>
<td>79 65 53 40 17</td>
<td>NL NP NP</td>
<td>10,9</td>
<td>1,825</td>
</tr>
</tbody>
</table>
Derivação de águas do Rio São Francisco para regiões semi-áridas dos Estados de Pernambuco, Ceará, Paraíba e Rio Grande do Norte.

CURVA GRANULOMÉTRICA

Obra:
Trecho: RIO SÃO FRANCISCO/JATI
Jazida: J-156

CPRM Companhia de Pesquisa de Recursos Minerais
Residência de Fortaleza

MIR

SIR
COMPANHIA DE PESQUISA DE RECURSOS MINERAIS - CPRM
CROQUI DE LOCALIZAÇÃO DE POÇOS

DERIVAÇÃO DE ÁGUAS DO RIO SÃO FRANCISCO PARA REGIÕES SEMI-ÁRIDAS
DOS ESTADOS DE PERNAMBUCO, CEARÁ, PARAÍBA E RIO GRANDE DO NORTE

OBRA:

JAZIDA: J - 156

N

450m
500m

1 P-01
2
3
4 P-03

Poços escavados
■ CPRM
□ Noronha/Hidroterra

Eixo da barragem Terra Nova
<table>
<thead>
<tr>
<th>INTERVALO</th>
<th>ESPESURA (M)</th>
<th>LITOGRAFIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00</td>
<td>0,35</td>
<td>Solo argilo-siltoso, pouco arenoso, de cor creme.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rocha xistosa intemperizada.</td>
</tr>
</tbody>
</table>

OBSERVAÇÕES

Poço seco
Encosta pouco inclinada

DESCRIPO POR: Marcelo Medeiros

SONDADOR:

ESC. VERTICAL: 1:20
<table>
<thead>
<tr>
<th>POÇO</th>
<th>PROF. (m)</th>
<th>(\gamma_s) "in situ" (g/cm(^3))</th>
<th>(h_{nat}) (%)</th>
<th>(\gamma_g) (g/cm(^3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>0,00-0,30</td>
<td>1,636</td>
<td>2,1</td>
<td>2,553</td>
</tr>
</tbody>
</table>

Legenda

\(\gamma_s \) "in situ" = densidade aparente seca "in situ"
\(h_{nat} \) = umidade natural
\(\gamma_g \) = densidade específica real
<table>
<thead>
<tr>
<th>POÇO</th>
<th>AMOSTRA</th>
<th>GRANULOMETRIA (% QUE PASSA)</th>
<th>PLASTICIDADE (%)</th>
<th>COMPACTAÇÃO</th>
<th>CLASSIFICAÇÃO (USC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3/8''</td>
<td>Nº 4</td>
<td>Nº 10</td>
<td>Nº 40</td>
</tr>
<tr>
<td>01</td>
<td>0,00-0,30</td>
<td>97</td>
<td>96</td>
<td>94</td>
<td>83</td>
</tr>
</tbody>
</table>
CURVA GRANULOMÉTRICA

Derivação de águas do Rio São Francisco para regiões semi-árido das Estados de Pernambuco, Ceará, Paraíba e Rio Grande do Norte.

DIÂMETRO DAS PARTICULAS EM MM

CPRM Companhia de Pesquisa de Recursos Minerais
Residência de Fortaleza

MIR

SIR

Obra:
Trecho: RIO SÃO FRANCISCO/JATI
Jazida: j-169
<table>
<thead>
<tr>
<th>MIR</th>
<th>SIR</th>
<th>OBRA:</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPANHIA DE PESQUISA DE RECURSOS MINERAIS - CPRM</td>
<td>CROQUI DE LOCALIZAÇÃO DE POÇOS</td>
<td>DERIVAÇÃO DE ÁGUA DO RIO SÃO FRANCISCO PARA REGIÕES SEMI-ÁRIDAS DOS ESTADOS DE PERNAMBUCO, CEARÁ, PARAÍBA E RIO GRANDE DO NORTE</td>
</tr>
</tbody>
</table>

JAZIDA:

| N | 9.098.038 mN |

Diagrama:

- 800 m
- 1.100 m
- 9.097.000 mN
- 470.000 mN

Peços escavados:
- CPRM
- Noronha/Hidrotechra
<table>
<thead>
<tr>
<th>INTERVALO</th>
<th>ESPISSURA</th>
<th>LITOGOGIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00 - 1,60</td>
<td>1,60</td>
<td>Areia aglomerada, de coloração creme, com calhaços de quartzo achatados e subarredondados de até 20 cm de diâmetro.</td>
</tr>
<tr>
<td>1,60 - 1,90</td>
<td>0,30</td>
<td>Areia grossa, esbranquiçada, com selhos (calhaços) de quartzo.</td>
</tr>
</tbody>
</table>

Observações
Poco seco, encerrado ainda no horizonte areno-cascalhoso
Superfície horizontalizada, coberta por calhaços
O local pesquisado representa um paleocanal.

Descrito por: Marcelo Medeiros
Sonhador:
Esc. Vertical: 1:20
Folha:
<table>
<thead>
<tr>
<th>INTERVALO</th>
<th>ESPESSURA</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE (M)</td>
<td>ATÉ (M)</td>
</tr>
<tr>
<td>0,00</td>
<td>1,20</td>
</tr>
</tbody>
</table>

- Areia sílica-arigitoso, de cor creme, com calhaus (seios de quartzo achatados e subarredondados), com até 20cm de diâmetro.

Observações:
- Poço seco
- Superfície horizontalizada, coberta por calhaus
- O local pesquisado representa um paleocanal.
- O poço foi paralisado porque o material encontrado não interessava aos objetivos do projeto.

Descrição por: Marcelo Medeiros
esc. vertical 1:20
<table>
<thead>
<tr>
<th>INTERVALO</th>
<th>ESPESURA</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE (M)</td>
<td>ATÉ (M)</td>
</tr>
<tr>
<td>0,00</td>
<td>1,20</td>
</tr>
</tbody>
</table>

Litologia:
Areal silico-cálculo, de cor cinca, com calhaus (seios de quartzo achatados e subarredondados), com até 15cm de diâmetro.

Observações:
Poço seco
Superfície horizontalizada, coberta por calhaus
O local pesquisado representa um palaeocanal.
O poço foi paralisado porque o material encontrado não interessa aos objetivos do projeto.

Descrição por: Marcelo Medeiros
Sondador
Esc. Vertical: 1:20
<table>
<thead>
<tr>
<th>INTERVALO DE (M)</th>
<th>ATÉ (M)</th>
<th>ESPESSURA (M)</th>
<th>LITOGRAFIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00</td>
<td>0,75</td>
<td>0,75</td>
<td>Argila avermelhada com cristais de feldspato interpelada.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rocha interpelada (granito).</td>
</tr>
</tbody>
</table>

OBSERVAÇÕES
Poço seco
Superfície pouco inclinada

DESIGNADO POR: Marcelo Medeiros

ESCALA VERTICAL: 1:20
LITOGIA

Areia argilosa, de coloração creme, com calhaus.

Areia com calhaus (tostos de quartzo subarredondados).

Rocha quartzo-feldspática de coloração branca.

Observações: Poço seco

Descrição por: Marcelo Medeiros

Sonheador

Escala vertical: 1:20
<table>
<thead>
<tr>
<th>INTERVALO</th>
<th>ESPESURA (M)</th>
<th>LITOLOGIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00 - 0.50</td>
<td>0.50</td>
<td>Areia grossa com coroa (seixos de quartzo subarredondados), de cor avermelhada.</td>
</tr>
<tr>
<td>0.50 - 0.80</td>
<td>0.30</td>
<td>Argila areia-silícosa com coroa (seixos arredondados), de cor creme.</td>
</tr>
<tr>
<td>0.80 - 1.00</td>
<td>0.20</td>
<td>Argila creme, com cristais de feldspato interpenetrado.</td>
</tr>
</tbody>
</table>

Rocha interpenetrada (granito).
<table>
<thead>
<tr>
<th>POÇO</th>
<th>PROF. (m)</th>
<th>γs "in situ" (g/cm³)</th>
<th>h nat (%)</th>
<th>γg (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>0,00-1,90</td>
<td>1,822</td>
<td>1,0</td>
<td>2,476</td>
</tr>
<tr>
<td>02</td>
<td>0,00-1,00</td>
<td>N.D.</td>
<td>N.D.</td>
<td>2,512</td>
</tr>
<tr>
<td>03</td>
<td>0,00-1,20</td>
<td>N.D.</td>
<td>N.D.</td>
<td>2,482</td>
</tr>
<tr>
<td>04</td>
<td>0,00-0,75</td>
<td>1,747</td>
<td>1,5</td>
<td>2,602</td>
</tr>
<tr>
<td>05</td>
<td>0,00-0,80</td>
<td>1,720</td>
<td>1,0</td>
<td>2,645</td>
</tr>
<tr>
<td>06</td>
<td>0,00-0,35</td>
<td>1,822</td>
<td>2,0</td>
<td>2,597</td>
</tr>
<tr>
<td></td>
<td>0,35-0,95</td>
<td>1,670</td>
<td>1,5</td>
<td>2,583</td>
</tr>
</tbody>
</table>

Legenda

γs "in situ" = densidade aparente seca "in situ"

h nat = umidade natural

γg = densidade específica real

N.D = não determinado
<table>
<thead>
<tr>
<th>POÇO</th>
<th>AMOSTRA</th>
<th>GRANULOMETRIA (% QUE PASSA)</th>
<th>PLASTICIDADE (%)</th>
<th>COMPACTAÇÃO</th>
<th>CLASSIFICAÇÃO (USC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3/8"</td>
<td>Nº 4</td>
<td>Nº 10</td>
<td>Nº 40</td>
</tr>
<tr>
<td>01</td>
<td>0,00-1,90</td>
<td>78</td>
<td>52</td>
<td>40</td>
<td>36</td>
</tr>
<tr>
<td>02</td>
<td>0,00-1,20</td>
<td>63</td>
<td>40</td>
<td>32</td>
<td>28</td>
</tr>
<tr>
<td>03</td>
<td>0,00-1,20</td>
<td>57</td>
<td>23</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>04</td>
<td>0,00-0,75</td>
<td>62</td>
<td>42</td>
<td>32</td>
<td>20</td>
</tr>
<tr>
<td>05</td>
<td>0,00-0,80</td>
<td>90</td>
<td>81</td>
<td>69</td>
<td>53</td>
</tr>
<tr>
<td>06</td>
<td>0,00-0,35</td>
<td>95</td>
<td>94</td>
<td>87</td>
<td>65</td>
</tr>
<tr>
<td>0,35-0,95</td>
<td>87</td>
<td>74</td>
<td>65</td>
<td>51</td>
<td>37</td>
</tr>
</tbody>
</table>
Derivação de águas do Rio São Francisco para regiões semi-áridas dos Estados de Pernambuco, Ceará, Paraíba e Rio Grande do Norte.

CURVA GRANULOMÉTRICA

Obra:

Trecho: RIO SÃO FRANCISCO/JATI

Jazida: J.- M.03
DERIVAÇÃO DE ÁGUAS DO RIO SÃO FRANCISCO PARA REGIÕES SEMIÁRIDAS DOS ESTADOS DE PERNAMBUCO, CEARÁ, PARAÍBA E RIO GRANDE DO NORTE

MIR
SIR

COMPAHIA DE PESQUISA DE RECURSOS MINERAIS - CPRM
CROQUI DE LOCALIZAÇÃO DE POÇOS

OBRA: CANAL
JAZIDA: J. M - 03

Poços escavados
CPRM
<table>
<thead>
<tr>
<th>DE (M)</th>
<th>ATÉ (M)</th>
<th>ESPESSURA (M)</th>
<th>LITOLOGIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00</td>
<td>0,20</td>
<td>0,20</td>
<td>Solo orgânico, argiloso, castanho escuro.</td>
</tr>
<tr>
<td>0,20</td>
<td>0,40</td>
<td>0,20</td>
<td>Argila castanha avermelhada, com eventuais caídas de quartzo.</td>
</tr>
<tr>
<td>0,40</td>
<td>0,60</td>
<td>0,20</td>
<td>Argila castanha avermelhada com cristais de feldspato cañilizado.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rocha interpenetrada (granito).</td>
</tr>
</tbody>
</table>

OBSERAÇÕES

DESCRITO POR: Marcelo Medeiros

SONDADOR

ESC. VERTICAL: 1:20
<table>
<thead>
<tr>
<th>INTERVALO</th>
<th>ESPESURA (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00</td>
<td>0,40</td>
</tr>
<tr>
<td>0,40</td>
<td>0,60</td>
</tr>
</tbody>
</table>

LITOLOGIA

- Argila castanha, com eventuais seixos angulosos de quartzo.
- Argila castanha com cristais interpenetados de feldspato.
- Rocha interpenetizada (granito).

OBSERVAÇÕES

DESCRITO POR: Marcelo Medeiros
SONDADE: ESC. VERTICAL 1:20
<table>
<thead>
<tr>
<th>INTERVALO</th>
<th>ESPESSURA (M)</th>
<th>LITOLOGIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00</td>
<td>0,30</td>
<td>Sólo argiloso, de coloração creme, com raízes e calhaus.</td>
</tr>
<tr>
<td>0,30</td>
<td>0,50</td>
<td>Argila creme clara, com cristais de feldspato caulinitado.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rocha intemperizada (velo quartizo-feldspático).</td>
</tr>
</tbody>
</table>

Observações: Poço seco

Descrição Por: Marcelo Medeiros

Sondador:

Escala Vertical: 1:20
<table>
<thead>
<tr>
<th>INTERVALO</th>
<th>DE (M)</th>
<th>AÉ (M)</th>
<th>ESPESURA (M)</th>
<th>LITOLOGIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00</td>
<td>1,00</td>
<td>1,00</td>
<td></td>
<td>Argila arenosa com calhaus (seios subarredondados) de quartzo, de cor creme.</td>
</tr>
<tr>
<td>1,00</td>
<td>1,30</td>
<td>0,30</td>
<td></td>
<td>Argila arenosa-silicosa, de cor creme, com manchas estranquiçadas.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rocha Intemperizada (granitóide).</td>
</tr>
</tbody>
</table>

OBSERAÇÕES: Poço seco
Superfície plana
Material aluvionar/colluvionar

DESCRITO POR: Marcelo Medeiros
SONDADOR
ESC. VERTICAL: 1:20
<table>
<thead>
<tr>
<th>DE (M)</th>
<th>ATÉ (M)</th>
<th>ESPESSURA (M)</th>
<th>LITOLOGIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00</td>
<td>0,25</td>
<td>0,25</td>
<td>Argila silica-arenosa, de coloração cinza escura.</td>
</tr>
<tr>
<td>0,25</td>
<td>0,60</td>
<td>0,35</td>
<td>Laterita pouco argilosa, de coloração castanha.</td>
</tr>
<tr>
<td>0,60</td>
<td>1,00</td>
<td>0,40</td>
<td>Argila areo-silosa com núcleos de laterita, de coloração castanha.</td>
</tr>
<tr>
<td>1,00</td>
<td>1,20</td>
<td>0,20</td>
<td>Argila areo-silosa de coloração creme.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rocha intercalada (rolo?)</td>
</tr>
</tbody>
</table>

OBSERAÇÕES
- Poço seco
- Superfície plana
- Material eluviolar

DESCRITO POR: Marcelo Medeiros

SONDADOR

ESC. VERTICAL 1:20
<table>
<thead>
<tr>
<th>INTERVALO DE (M)</th>
<th>ATÉ (M)</th>
<th>ESPESURA (M)</th>
<th>LITOLOGIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00</td>
<td>0,25</td>
<td>0,25</td>
<td>Argila de cor creme, com eventuais fragmentos de calhaus (setos de quartzo).</td>
</tr>
<tr>
<td>0,25</td>
<td>0,70</td>
<td>0,45</td>
<td>Argila areno-siltosa, de coloração creme.</td>
</tr>
<tr>
<td>0,70</td>
<td>0,90</td>
<td>0,20</td>
<td>Argila areno-siltosa, de coloração cinza clara.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rocha intemperizada (granito?).</td>
</tr>
</tbody>
</table>

OBSERVAÇÕES

- Poço seco
- Superfície suavemente ondulada
- Material eluviolar

DESCRITO POR: Marcelo Medeiros

SONDADOR

ESC. VERTICAL: 1:20
<table>
<thead>
<tr>
<th>POÇO</th>
<th>PROF. (m)</th>
<th>γs “in situ” (g/cm³)</th>
<th>h nat (%)</th>
<th>γg (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>0,00-0,60</td>
<td>1,601</td>
<td>1,5</td>
<td>2,409</td>
</tr>
<tr>
<td>02</td>
<td>0,00-0,60</td>
<td>N.D.</td>
<td>N.D.</td>
<td>2,548</td>
</tr>
<tr>
<td>03</td>
<td>0,00-0,45</td>
<td>1,648</td>
<td>1,2</td>
<td>2,525</td>
</tr>
<tr>
<td>04</td>
<td>0,00-0,80</td>
<td>N.D.</td>
<td>N.D.</td>
<td>2,482</td>
</tr>
<tr>
<td></td>
<td>0,80-1,30</td>
<td>N.D.</td>
<td>N.D.</td>
<td>2,592</td>
</tr>
<tr>
<td>05</td>
<td>0,00-1,15</td>
<td>1,625</td>
<td>1,2</td>
<td>2,538</td>
</tr>
<tr>
<td>06</td>
<td>0,00-0,85</td>
<td>1,582</td>
<td>1,5</td>
<td>2,601</td>
</tr>
</tbody>
</table>

Legenda

- γs “in situ” = densidade aparente seca “in situ”
- h nat = umidade natural
- γg = densidade específica real
- N.D = não determinado
<table>
<thead>
<tr>
<th>POÇO</th>
<th>AMOSTRA</th>
<th>GRANULOMETRIA (% QUE PASSA)</th>
<th>PLASTICIDADE (%)</th>
<th>COMPACTAÇÃO</th>
<th>CLASSIFICAÇÃO (USC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3/8" Nº 4 Nº 10 Nº 40 Nº 200 LL LP IP HOT(%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>0,00-0,60</td>
<td>50 21 14 12 8</td>
<td>NL NP NP 10,5</td>
<td>1,880</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>0,00-0,60</td>
<td>78 65 59 47 32</td>
<td>27 15 12 12,8</td>
<td>1,850</td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>0,00-0,45</td>
<td>81 63 47 36 21</td>
<td>NL NP NP 11,5</td>
<td>1,925</td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>0,00-0,80</td>
<td>60 35 26 24 19</td>
<td>29 18 11 15,3</td>
<td>1,805</td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>0,80-1,30</td>
<td>87 64 43 27 22</td>
<td>NL NP NP 12,0</td>
<td>1,810</td>
<td></td>
</tr>
<tr>
<td>06</td>
<td>0,00-1,15</td>
<td>89 58 39 30 17</td>
<td>NL NP NP 11,9</td>
<td>1,940</td>
<td></td>
</tr>
<tr>
<td>07</td>
<td>0,00-0,85</td>
<td>80 65 45 34 20</td>
<td>NL NP NP 11,0</td>
<td>1,900</td>
<td></td>
</tr>
<tr>
<td>Argila</td>
<td>Silte</td>
<td>Fina</td>
<td>Média</td>
<td>Grosso</td>
<td>Areia</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>0,001</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>0,1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>0,85</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Derivação de águas do Rio São Francisco para regiões semi-áridas dos Estados de Pernambuco, Ceará, Paraíba e Rio Grande do Norte.

CURVA GRANULOMÉTRICA

Obra: RIO SÃO FRANCISCO/JATI
Jazida: 1 - M 04

CPRM - Companhia de Pesquisa de Recursos Minerais
Residência de Fortaleza

<table>
<thead>
<tr>
<th>Data</th>
<th>Des.</th>
<th>Visto</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Esc.</th>
<th>Aprov.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>