

REPÚBLICA FEDERATIVA DO BRASIL

MINISTÉRIO DE MINAS E ENERGIA – MME secretaria de geologia, mineração e transformação mineral – sgm

CPRM - SERVIÇO GEOLÓGICO DO BRASIL

PROGRAMA GEOLOGIA DO BRASIL (PGB)

PROJETO AEROGEOFÍSICO CRISTALÂNDIA DO PIAUÍ

RELATÓRIO FINAL DO LEVANTAMENTO E PROCESSAMENTO DOS DADOS MAGNETOMÉTRICOS E GAMAESPECTROMÉTRICOS

VOLUME I

TEXTO TÉCNICO

2009 LASA ENGENHARIA E PROSPECÇÕES SA.

REPÚBLICA FEDERATIVA DO BRASIL

MINISTÉRIO DE MINAS E ENERGIA

Edison Lobão Ministro de Estado

Márcio Pereira Zimmermann Secretário Executivo

Cláudio Scliar Secretário de Geologia, Mineração e Transformação Mineral

CPRM - Serviço Geológico do Brasil

Agamenon Sérgio Lucas Dantas Diretor-Presidente

Fernando Pereira de Carvalho Diretor de Relações Institucionais e Desenvolvimento - DRI

Manoel Barretto da Rocha Neto Diretor de Geologia e Recursos Minerais - DGM

José Ribeiro Mendes Diretor de Hidrologia e Gestão Territorial - DHT

Eduardo Santa Helena da Silva Diretor de Administração e Finanças Interino - DAF

> Inácio de Medeiros Delgado Departamento de Geologia - DEGEO

Maria Laura Vereza de Azevedo Divisão de Geofísica - DIGEOF

Superintendências Regionais

Manfredo Ximenes Ponte Superintendente de Belém

Marcelo de Araújo Vieira Superintendente de Belo Horizonte

Maria Abadia Camargo Superintendente de Goiânia

Marco Antonio de Oliveira Superintendente de Manaus

José Alcides Fonseca Ferreira Superintendente de Porto Alegre

José Wilson de C. Temoteo Superintendente de Recife

Ivanaldo Vieira Gomes da Costa Superintendente de Salvador

José Carlos Garcia Ferreira Superintendente de São Paulo

APRESENTAÇÃO

No início do ano de 2004 o Governo Federal definiu, no *Plano Plurianual 2004/2007(PPA 2004-2007)*, as políticas públicas setoriais dos seus diversos Ministérios por meio dos Programas e respectivas Ações.

No âmbito do Ministério de Minas e Energia e sua Secretaria de Geologia, Mineração e Transformação Mineral (SGM/MME), compete à CPRM – Serviço Geológico do Brasil o planejamento e a execução do *Programa Geologia do Brasil (PGB)*, tendo como uma de suas Ações os *Levantamentos Geofísicos*.

De acordo com o *Programa de Atividades Técnicas 2006 (PAT 2006)*, a CPRM – Serviço Geológico do Brasil, em 03 de Novembro de 2008, celebrou com o Consórcio LASA Engenharia e Prospecções S.A. / PROSPECTORS Aerolevantamentos e Sistemas Ltda, o Contrato nº 064/PR/08 para executar os serviços de aquisição e processamento de dados aeromagnetométricos e aerogamaespectrométricos do *Projeto Aerogeofísico Cristalândia do Piauí*, o qual localiza-se a noroeste do Estado da Bahia, compreendendo também parte do Estado do Piauí, na Região Nordeste do Brasil.

Para a etapa de aquisição de dados foi utilizada uma aeronave de propriedade da LASA Engenharia e Prospecções S.A., o Piper Navajo PA31, prefixo PT-WOT, a qual realizou o projeto no período entre 13.01.2009 e 10.05.2009, totalizando 51.197 km de perfis.

Como bases de operações para a etapa de aquisição de dados foram utilizadas as cidades de Barreiras (BA) e Santa Rita de Cássia (BA). Foi empregado o sistema aeromagnético acoplado a um sensor de vapor de césio montado na cauda (tipo *stinger*) da aeronave e gamaespectrômetro EXPLORANIUM, modelo GR-820, de 256 canais espectrais, bem como o sistema de navegação GPS com receptor de 12 canais da marca Trimble AgGPS-132 "*Realtime*".

Para o recobrimento do projeto foram utilizadas cerca de 176,44 hs de vôo, que resultaram no levantamento efetivo de 51.197 km de perfis aprovados pela Fiscalização da CPRM - Serviço Geológico do Brasil em uma área de 23.830 km². O processamento de dados e a elaboração do Relatório Final foram realizados entre os meses de maio e junho de 2009.

Os produtos finais do Projeto Aerogeofísico Cristalândia do Piauí estão sendo apresentados sob a forma de Relatório Final (4 exemplares), que consiste em texto técnico (Volume I) e Anexos (Volumes II a XV), os quais incluem os seguintes temas apresentados sob a forma de mapas coloridos nas escalas 1:100.000 e 1:250.000, segundo o corte cartográfico ao milionésimo e na escala 1:500.000 em folha única:

□ Escalas 1:100.000 e 1:250.000: Mapas de Contorno do Campo Magnético Total Reduzido do IGRF (Campo Total, Primeira Derivada Vertical e Sinal Analítico) e de Contorno Radiométrico em Concentração de Elementos (Contagem Total, Potássio, Urânio e Tório) e Razões Eu/eTh, eU/K e eTh/K.

□ Escala 1:500.000 (Folha Única): Mapas de Pseudo-Iluminação do Campo Magnético Total Reduzido do IGRF (Campo Total, Primeira Derivada Vertical e Sinal Analítico) e Radiométrico em Concentração de Elementos (Contagem Total, Potássio, Urânio, Tório, Razões eU/eTh, eU/K, eTh/K e Distribuição Ternária de Potássio, Urânio e Tório) e Mapa de Pseudo-Iluminação do Modelo Digital do Terreno.

Complementando os produtos finais, estão sendo também entregues (quatro) coleções de 12 Mapas Digitais de Traço de Linhas de Vôo (escala 1:100.000), bem como dos arquivos digitais referentes aos metadados, dos arquivos XYZ (perfis) e em malhas (*grids*), estes últimos no tamanho de 125 x 125m, ambos no formato *GEOSOFT*, como também arquivos digitais de todos os mapas do projeto nas citadas escalas e o arquivo do texto, figuras e tabelas do Volume I do Relatório Final do Projeto em formato PDF, todos os arquivos gravados em DVD-ROM, exceto o Relatório Final do Projeto, gravado em CD-ROM individual.

RELATÓRIO FINAL DO LEVANTAMENTO E PROCESSAMENTO DOS DADOS MAGNETOMÉTRICOS E GAMAESPECTROMÉTRICOS

PROJETO AEROGEOFÍSICO CRISTALÂNDIA DO PIAUÍ

ÍNDICE DOS VOLUMES

VOLUME I	TEXTO TÉCNICO E ANEXOS
VOLUME II	 ANEXOS – ESCALA: 1:100.000 MAPA DE CONTORNO DO CAMPO MAGNÉTICO TOTAL (REDUZIDO DO IGRF) (Folhas 1 a 12)
VOLUME III	 ANEXOS – ESCALA: 1:100.000 MAPA DE CONTORNO DA 1ª DERIVADA VERTICAL DO CAMPO MAGNÉTICO TOTAL (REDUZIDO DO IGRF) (Folhas 1 a 12)
VOLUME IV	 ANEXOS – ESCALA: 1:100.000 MAPA DE CONTORNO DO SINAL ANALÍTICO DO CAMPO MAGNÉTICO TOTAL (REDUZIDO DO IGRF) (Folhas 1 a 12)
VOLUME V	 ANEXOS – ESCALA: 1:100.000 MAPA DE CONTORNO RADIOMÉTRICO DA TAXA DE EXPOSIÇÃO DO CANAL DE CONTAGEM TOTAL (Folhas 1 a 12)
VOLUME VI	 ANEXOS – ESCALA: 1:100.000 MAPA DE CONTORNO RADIOMÉTRICO DA CONCENTRAÇÃO DE POTÁSSIO (Folhas 1 a 12)
VOLUME VII	 ANEXOS – ESCALA: 1:100.000 MAPA DE CONTORNO RADIOMÉTRICO DA CONCENTRAÇÃO DE URÂNIO (Folhas 1 a 12)
VOLUME VIII	 ANEXOS – ESCALA: 1:100.000 MAPA DE CONTORNO RADIOMÉTRICO DA CONCENTRAÇÃO DE TÓRIO (Folhas 1 a 12)
VOLUME IX	 ANEXOS – ESCALA: 1:100.000 MAPA RADIOMÉTRICO DA RAZÃO URÂNIO/TÓRIO (Folhas 1 a 12)
VOLUME X	 ANEXOS – ESCALA: 1:100.000 MAPA RADIOMÉTRICO DA RAZÃO URÂNIO/POTÁSSIO (Folhas 1 a 12)
VOLUME XI	ANEXOS – ESCALA: 1:100.000 • MAPA RADIOMÉTRICO DA RAZÃO TÓRIO/POTÁSSIO (Folhas 1 a 12)

VOLUME XII	 ANEXOS - ESCALA: 1:250.000 MAPA DE CONTORNO DO CAMPO MAGNÉTICO TOTAL (REDUZIDO DO IGRF) (Folhas I a V) MAPA DE CONTORNO DA 1ª DERIVADA VERTICAL DO CAMPO MAGNÉTICO TOTAL (REDUZIDO DO IGRF) (Folhas I a V) MAPA DE CONTORNO DO SINAL ANALÍTICO DO CAMPO MAGNÉTICO TOTAL (REDUZIDO DO IGRF) (Folhas I a V)
VOLUME XIII	 ANEXOS - ESCALA: 1:250.000 MAPA DE CONTORNO RADIOMÉTRICO DA TAXA DE EXPOSIÇÃO DO CANAL DE CONTAGEM TOTAL (Folhas I a V) MAPA DE CONTORNO RADIOMÉTRICO DA CONCENTRAÇÃO DE POTÁSSIO (Folhas I a V) MAPA DE CONTORNO RADIOMÉTRICO DA CONCENTRAÇÃO DE URÂNIO (Folhas I a V) MAPA DE CONTORNO RADIOMÉTRICO DA CONCENTRAÇÃO DE TÓRIO (Folhas I a V)
VOLUME XIV	 ANEXOS – ESCALA: 1:250.000 MAPA RADIOMÉTRICO DA RAZÃO URÂNIO/TÓRIO (Folhas I a V) MAPA RADIOMÉTRICO DA RAZÃO URÂNIO/POTÁSSIO (Folhas I a V) MAPA RADIOMÉTRICO DA RAZÃO TÓRIO/POTÁSSIO (Folhas I a V)
VOLUME XV	 ANEXOS - ESCALA: 1:500.000 - (Folha Única) MAPA DE PSEUDO-ILUMINAÇÃO DO CAMPO MAGNÉTICO TOTAL (REDUZIDO DO IGRF) MAPA DE PSEUDO-ILUMINAÇÃO DA 1ª DERIVADA VERTICAL DO CAMPO MAGNÉTICO TOTAL (REDUZIDO DO IGRF) MAPA DE PSEUDO-ILUMINAÇÃO DO SINAL ANALÍTICO DO CAMPO MAGNÉTICO TOTAL (REDUZIDO DO IGRF) MAPA DE PSEUDO-ILUMINAÇÃO DO SINAL ANALÍTICO DO CAMPO MAGNÉTICO TOTAL (REDUZIDO DO IGRF) MAPA RADIOMÉTRICO DA TAXA DE EXPOSIÇÃO DO CANAL DE CONTAGEM TOTAL MAPA RADIOMÉTRICO DA CONCENTRAÇÃO DE POTÁSSIO MAPA RADIOMÉTRICO DA CONCENTRAÇÃO DE URÂNIO MAPA RADIOMÉTRICO DA CONCENTRAÇÃO DE TÓRIO MAPA RADIOMÉTRICO DA RAZÃO URÂNIO/TÓRIO MAPA RADIOMÉTRICO DA RAZÃO TÓRIO/POTÁSSIO MAPA RADIOMÉTRICO DA RAZÃO TÓRIO/POTÁSSIO
	E TÓRIO • MAPA DE PSEUDO-ILUMINAÇÃO DO MODELO DIGITAL DO TERRENO

RELATÓRIO FINAL DO LEVANTAMENTO E PROCESSAMENTO DOS DADOS MAGNETOMÉTRICOS E GAMAESPECTROMÉTRICOS

PROJETO AEROGEOFÍSICO CRISTALÂNDIA DO PIAUÍ

VOLUME I - TEXTO TÉCNICO

SUMÁRIO

1. IN	NTRODUÇÃO	1
2. A	AOUISICÃO DE DADOS	4
2.1	Características do Levantamento	1
2.1 2.2	Equinamentos Utilizados	
2.2	21 Aeronave	5
2.	2.2 Aeromagnetômetro	5 5
2. 2	23 Aerogamaespectrômetros	5
2.	24 Sistemas de Aquisição de Dados	
2.	2.5 Sistema de Vídeo	7
2.	2.6 Altímetros	
2.	2.7 Sistema de Navegação e Posicionamento	
2.	.2.8 Magnetômetro Terrestre	8
2.3	Planejamento e Mobilização	8
2.	.3.1 Elaboração do Plano de Vôo	8
2.	.3.2 Estatística das Operações	9
2.	.3.3 Mapa do Projeto de Vôo	11
2.	.3.4 Testes dos Equipamentos	11
2.	.3.5 Cálculo da Resolução dos Cristais Detectores (downward e upward)	21
2.	.3.6 Calibração dos Detectores Downward Looking	
2.	.3.7 Calibração dos Detectores Upward Looking	24
2.4	Compilação de Dados	24
2.5	Equipe Técnica na Base de Operações	25
3. P	PROCESSAMENTO DE DADOS	26
3.1	Fluxo de Processamento	
3.	.1.1 Preparação do Banco de Dados do Levantamento	
3.	.1.2 Processamento dos Dados Magnetométricos	
	3.1.2.1 Correção do Erro de Paralaxe	
	3.1.2.2 Remoção da Variação Magnética Diurna	27
	3.1.2.3 Nivelamento dos Perfis	27
	3.1.2.4 Micronivelamento dos Perfis	
	3.1.2.5 Remoção do IGRF	
3.	.1.3 Processamento dos Dados Gamaespectrométricos	
	3.1.3.1 Correção do Tempo Morto	29
	3.1.3.2 Aplicação de Filtragem	29
	3.1.3.3 Correção do Erro de Paralaxe	29
	3.1.3.4 Cálculo da Altura Efetiva (h _e) de Vôo	29
	3.1.3.5 Remoção do Background da Aeronave e Cósmico	29
	3.1.3.6 Remoção do Background do Radônio	

	3.1.3.7 Estimativa dos Coeficientes <i>Skyshine</i> (a ₁ e a ₂)	
	3.1.3.8 Correção do Efeito <i>Compton</i>	
	3.1.3.9 Correção Altimétrica (Coeficiente de Atenuação Atmosférica)	
	3.1.3.10 Conversão para Concentração de Elementos	
3.	.1.4 Determinação das Razões eU/eTh, eU/K e eTh/K	
3.2	Interpolação e Contorno	
3.3	Arquivo Final de Dados	
3.4	Equipe Envolvida no Processamento dos Dados	
4. C	RONOGRAMA GERAL DAS OPERAÇÕES	
5. P	RODUTOS FINAIS	
5.1	Mapas de Contorno do Campo Magnético Total, da 1ª Derivada Vertical e do Sinal A	Analítico do Campo
Mag	nético Total (reduzidos do IGRF)	
5.2	Mapas Radiométricos das Concentrações de K, eU, eTh e Contagem Total	41
5.3	Mapa Radiométrico Ternário	41
5.4	Mapas das Razões Radiométricas eU/eTh, eU/K e eTh/K	41
5.5	Mapa de Pseudo-Iluminação do Modelo Digital do Terreno	41
5.6	Mapa de Traço de Linhas de Vôo	41
5.7	Relatório Final	42
5.8	Arquivos Digitais Finais	
5.9	Arquivos de Poligonais	45
5.10	Produtos Originais	45
6. P.	ARTICIPAÇÃO DA CPRM – SERVIÇO GEOLÓGICO DO BRASIL	52
7. R	REFERÊNCIAS BIBLIOGRÁFICAS	53

ÍNDICE DOS ANEXOS

ANEXO I - RESUMO DO PROCESSO DE CALIBRAÇÃO DO GAMAESPECTRÔMETRO	54
ANEXO I-a - RESULTADO DOS TESTES DA RESOLUÇÃO DOS CRISTAIS DETECTORES (<i>DOWNWARD</i> e <i>UPWARD</i>)	55
Aeronave: PT-WOT	56
ANEXO I-b - RESULTADO DO TESTE DOS COEFICIENTES DE ESPALHAMENTO COMPTON.	58
Aeronave: PT-WOT	59
ANEXO I-c - DETERMINAÇÃO DOS <i>BACKGROUNDS</i> DA AERONAVE E CÓSMICO	69
Aeronave: PT-WOT	70
ANEXO I-d - DETERMINAÇÃO DAS CONSTANTES DE CALIBRAÇÃO DO RADÔNIO	73
Aeronave: PT-WOT	74
ANEXO I-e - CALIBRAÇÃO DINÂMICA – RESULTADOS DOS TESTES	80
Aeronave: PT-WOT	86
ANEXO I-f - ATENUAÇÃO ATMOSFÉRICA – RESULTADOS DOS TESTES	91
Aeronave: PT-WOT	93
ANEXO II – TESTES CONTRATUAIS	98
Anexo II-a – Teste de Altímetros	98
Teste de Altímetro – PT-WOT	99
Anexo II-b – Compensação Magnética	102
Compensação Magnética – PT-WOT	103
Anexo II-c – Teste de Paralaxe	115
Paralaxe – PT-WOT	116
ANEXO III – QUADROS SINÓPTICOS DAS OPERAÇÕES DE CAMPO	117
ANEXO IV – CONTEÚDO DOS DVDs-ROM	118
ANEXO V – FORMATO DE GRAVAÇÃO DOS DADOS DO PROJETO	122
ANEXO VI – LISTAGEM DAS LINHAS APROVADAS E UTILIZADAS NO PROCESSAMENTO	128

ÍNDICE DAS FIGURAS

Figura 1 - Localização da Área do Projeto Aerogeofísico.	1
Figura 2 - Vértices do Projeto	2
Figura 3 – Aeronave Piper Navajo PA31 – PT-WOT.	5
Figura 4 – Mapa das Linhas de Vôo	9
Figura 5 - Gráfico da Estatística das Operações	10
Figura 6 - Movimentos de Roll, Pitch e Yaw	12
Figura 7 - Fluxograma do Processamento de Dados	36
Figura 8 – Cronograma Geral das Operações	37
Figura 9 – Articulação das Folhas na Escala 1:100.000	39
Figura 10 – Articulação das Folhas na Escala 1:250.000	40
Figura 11 - Mapa Pseudo-Iluminado do Campo Magnético Total (reduzido do IGRF)	46
Figura 12 – Mapa do Sinal Analítico do Campo Magnético Total (reduzido do IGRF)	47
Figura 13 – Mapa Radiométrico da Taxa de Exposição do Canal de Contagem Total	48
Figura 14 – Mapa Radiométrico Ternário (K-U-Th) – (CMY Invertido)	49
Figura 15 – Mapa Radiométrico da Razão Tório/ Potássio	50
Figura 16 – Mapa Pseudo-Iluminado do Modelo Digital do Terreno	51

ÍNDICE DAS TABELAS

Tabela 1 - Coordenadas Geográficas do Projeto.	3
Tabela 2 - Equipamentos Utilizados	4
Tabela 3 - Faixas Energéticas do Gamaespectrômetro e os Canais Correspondentes	6
Tabela 4 - Quilometragem Produzida e Área Levantada	9
Tabela 5 - Estatística das Operações	10
Tabela 6 – Testes de Manobras	12
Tabela 7 – Testes Diários com Amostras Radioativas no Solo	14
Tabela 8 – Testes Diários de Repetibilidade Radioativa	16
Tabela 9 - Concentração dos Tanques de Calibração Transportáveis	22
Tabela 10 – Coeficientes de Espalhamento Compton.	22
Tabela 11 - Background da Aeronave e Cosmic Stripping Ratios.	23
Tabela 12 - Constantes de Calibração do Radônio	
Tabela 13 – Coeficientes Skyshine.	
Tabela 14 – Coeficientes de Atenuação Atmosférica	
Tabela 15 – Coeficientes de Sensibilidade	
Tabela 16 – Valores Mínimos para Cálculo das Razões Radiométricas	
Tabela 17 – Características da Apresentação dos Mapas Aerogeofísicos	
Tabela 18 – Características dos Intervalos de Contorno dos Mapas Aerogeofísicos	
Tabela 19 – Banco de Dados Geosoft (GDB) – Magnetometria	43
Tabela 20 – Banco de Dados Geosoft (GDB) – Gamaespectrometria.	44
Tabela 21 – Banco de Dados Geosoft (GDB) – Gamaespectrometria 256 Canais	45
Tabela 22 – Arquivo de Cruzamentos XYZ – Magnetometria	45

1. INTRODUÇÃO

A área do levantamento aerogeofísico abrange a porção noroeste do Estado da Bahia e parte do Estado do Piauí, localizados na região Nordeste do Brasil, conforme mostra a Figura 1.

Figura 1 - Localização da Área do Projeto Aerogeofísico.

O levantamento aerogeofísico constou do recobrimento de 51.197 km de perfis aeromagnetométricos e aerogamaespectrométricos de alta resolução, com linhas de vôo e controle espaçadas de 500 m e 10 km, respectivamente, orientadas nas direções N-S e E-W. A Figura 2 e a Tabela 1 apresentam as coordenadas geográficas que definem o polígono que envolve a área pesquisada. A altura de vôo foi fixada em 100 m sobre o terreno.

Uma equipe participou do levantamento, utilizando a aeronave Piper Navajo PA31, prefixo PT-WOT tendo realizado seus trabalhos entre 13/01/2009 e 10/05/2009.

Figura 2 - Vértices do Projeto.

		<u> </u>	
VÉRTICE	LATITUDE	LONGITUDE	
1	-09°37'30''	-43°30'00''	
2	-11°00'00''	-43°30'00''	
3	-11°00'00''	-44°45'00''	
4	-11°15'00''	-44°45'00''	
5	-11°15'00''	-45°15'00''	
6	-10°15'00''	-45°15'00''	
7	-10°15'00''	-44°37'30''	
8	-10°00'00''	-44°37'30''	
9	-10°00'00''	-44°30'00''	
10	-09°52'30''	-44°30'00''	
11	-09°52'30''	-44°00'00''	
12	-09°37'30''	-44°00'00''	

Tabala 1	Coordonadaa	Cacaróficas	do Droiato
	- Coordenadas	Geograficas	uo Fioleto.

Para a realização das atividades, foram utilizadas as cidades de Barreiras (BA) e Santa Rita de Cássia (BA) como bases de operações.

A metodologia para a aquisição dos dados seguiu a sistemática descrita adiante. Ao longo dos perfis foram realizadas dez leituras do aeromagnetômetro e uma leitura do gamaespectrômetro por segundo, posicionadas com sistema de observação de satélite GPS, de precisão melhor do que 10 m. Duas estações fixas para controle da variação diurna do campo magnético terrestre foram instaladas nas bases de operações utilizadas durante o levantamento.

As calibrações do sistema detector aerogamaespectrométrico foram realizadas em duas etapas: a primeira, estática, com emprego de fontes padronizadas (tanques de calibração transportáveis ou *transportable calibration pads* para o *background*, potássio, urânio e tório), foi conduzida no aeroporto de Jacarepaguá, Rio de Janeiro (RJ). A calibração dinâmica foi executada na região de Maricá (RJ), sobre a pista de calibração dinâmica (*dynamic calibration range - DCR*) que resultou de levantamento terrestre.

O processamento dos dados foi desenvolvido no escritório sede da LASA Engenharia e Prospecções S.A., no Rio de Janeiro, e envolveu a aplicação das rotinas do programa *GEOSOFT Oasis Montaj versão 7.0.1(GEOSOFT,2005)*, utilizado para a compilação das informações coletadas e apresentação dos resultados na forma de mapas nas escalas 1:100.000, 1:250.000 e 1:500.000, arquivos de banco de dados e *grids*.

2. AQUISIÇÃO DE DADOS

2.1 Características do Levantamento

Os parâmetros utilizados para a execução do levantamento são descritos, resumidamente, a seguir:

- Direção das linhas de vôo: N-S
- Espaçamento entre as linhas de vôo: 500 m
- Direção das linhas de controle: E-W
- Espaçamento entre as linhas de controle: 10 km
- Intervalo entre medições geofísicas consecutivas: 0,1 s (magnetômetro) e 1,0 s (espectrômetro)
- Altura média de vôo: 100 m
- Velocidade aproximada de vôo: 280 km/h

2.2 Equipamentos Utilizados

A Tabela 2, a seguir, apresenta os equipamentos utilizados pela aeronave durante a execução do Projeto Aerogeofísico Cristalândia do Piauí.

Prefixo da Aeronave	PT-WOT		
Modelo da Aeronave	Navajo PA31		
Fabricante da Aeronave	Piper		
Aeromagnetômetro	Scintrex CS-2		
Gamaespectrômetro	Exploranium GR-820		
Volume dos Cristais Detectores de Iodeto de Sódio	2.560 pol ³ <i>down</i> e 512 pol ³ <i>up</i>		
Sistema de Navegação	FASDAS		
Sistema de Aquisição GPS	Trimble AgGPS 132 DGPS "Realtime"		
Câmera de Vídeo	Sony DXC-107 A		
Radar Altímetro	Collins ALT-50		
Altímetro Barométrico	Rosemount 1241M		
Magnetômetro Terrestre de Prótons Overhauser	GEM Systems GSM-19		
Sistema de Aquisição	FASDAS		

Tabela 2 - Equipamentos Utilizados.

2.2.1 Aeronave

O levantamento foi efetuado pela aeronave Piper Navajo PA31, prefixo PT-WOT (Figura 3). É uma aeronave a pistão, bimotor, de asa baixa, trem de pouso retrátil, equipada com motores Lycoming de 350 HP que opera na velocidade média de 280 km/h e possui autonomia de 6,3 horas.

Figura 3 – Aeronave Piper Navajo PA31 – PT-WOT.

2.2.2 Aeromagnetômetro

Sistema aeromagnético acoplado a um sensor de vapor de césio montado na cauda (tipo *stinger*) da aeronave. O sinal é recebido através de um pré-amplificador, localizado na base do cone de cauda da aeronave, e enviado ao sistema compensador e integrado aos outros dados pelo sistema de aquisição FASDAS:

Sensor:	Scintrex CS-2
Resolução:	0,001 nT
Faixa:	20.000 - 95.000 nT
Montagem:	Stinger

As leituras do magnetômetro são realizadas a cada 0,1 segundo, o que equivale, para a velocidade de 270 km/h da aeronave, a aproximadamente 7,4 m no terreno.

2.2.3 Aerogamaespectrômetros

Foi utilizado o gamaespectrômetro Exploranium, modelo GR-820, de 256 canais espectrais, onde o espectro de cada um dos cristais detectores é analisado individualmente para determinação precisa dos fotopicos de potássio, urânio e tório. Uma correção linear é aplicada individualmente a cada cristal, mantendo o espectro

permanentemente alinhado. As radiações gama detectadas são somadas e as leituras reduzidas a uma única saída de 256 canais espectrais.

A correspondência entre as janelas dos gamaespectrômetros e as respectivas faixas de energia é mostrada na Tabela 3, a seguir:

Canal Radiométrico	Faixa de Energia (MeV)		Canais Correspondentes	
Contagem Total	0,41	2,81	34	233
Potássio	1,37	1,57	115	131
Urânio	1,66	1,86	139	155
Tório	2,41	2,81	202	233
Cósmico	3,00	∞	256	-

Tabela 3 - Faixas Energéticas do Gamaespectrômetro e os Canais Correspondentes.

As leituras deste equipamento são realizadas a cada segundo, representando medições a intervalos de amostragem de aproximadamente 74 metros no terreno.

Cada sistema detector voltado para baixo (*downward looking*) é constituído por dois conjuntos de cristais de iodeto de sódio (NaI) de 1024 polegadas cúbicas, e um de 512 polegadas cúbicas, totalizando 2.560 polegadas cúbicas.

O sistema detector voltado para cima (*upward looking*) é constituído por dois cristais de 256 polegadas cúbicas, totalizando 512 polegadas cúbicas.

Os detectores *upward looking* monitoram as radiações decorrentes da influência do radônio na faixa energética do canal do urânio (1,66 a 1,86 MeV).

2.2.4 Sistemas de Aquisição de Dados

O computador do sistema de aquisição de dados FASDAS é a principal unidade do sistema aeromagnético instalado a bordo da aeronave. Todos os dados adquiridos são armazenados no disco rígido e posteriormente transferidos para o disco magnético, para efeito de *backup* e transferência dos dados para o computador de processamento.

O formato de gravação relativo aos dados de campo comporta as seguintes informações:

Taxa de Amostragem (Hz)	Parâmetro	Unidade
1	Fiducial	S
1	Número da Linha	-
10	Campo magnético compensado	nT
10	Campo magnético bruto	nT
10	Componente X <i>fluxgate</i>	mV
10	Componente Y <i>fluxgate</i>	mV
10	Componente Z <i>fluxgate</i>	mV
10	Radar altímetro	μV
10	Barômetro	mBar

Faxa de Amostragem (Hz)	Parâmetro	Unidade
10	Temperatura	°C
10	Altura de vôo	ft
10	Altitude barométrica	ft
1	Horário UTC (GPS)	S
1	Latitude (GPS)	Graus decimais
1	Longitude (GPS)	Graus decimais
1	Qualidade da correção GPS	-
1	Número de satélites	-
1	Horizontal Dilution of Precision	-
1	Altitude (GPS)	m
1	Código de erro do gamaespectrômetro	-
1	Número de detectores Down	-
1	Número de detectores Up	-
1	Sample Time	ms
1	Live Time	ms
1	Radiação cósmica	cps
1	Resolução do sistema	-
1	Contagem Total	cps
1	Potássio	cps
1	Urânio	cps
1	Tório	cps
1	Urânio <i>Up</i>	cps
1	256 canais Down	cps
1	256 canais <i>Up</i>	cps

2.2.5 Sistema de Vídeo

A aeronave utiliza-se de sistema de vídeo comercial VHS, modelo Sony DXC-107A, constituído por câmera de alta definição acoplada ao gravador. Um monitor está disponível na cabine para visualização em tempo real. A câmera é instalada em janela especialmente projetada no piso da aeronave para permitir completa visibilidade do terreno, através de lentes de grande angular.

O sistema de aquisição de dados FASDAS possibilita a gravação do número do vôo, número da linha e valores das fiduciais nas imagens de vídeo coletadas.

2.2.6 Altímetros

A altura de vôo da aeronave foi monitorada através do altímetro de radar e do barômetro de precisão incluído no sistema aerogeofísico. O radar altímetro utilizado pela aeronave PT-WOT foi o Collins modelo, ALT-50. Este equipamento apresenta precisão de 5 pés e alcance de 2.500 pés. O barômetro é um transdutor de pressão que registra a altitude de vôo em relação ao nível do mar. A aeronave utilizou o modelo Rosemount 1241M apresentando precisão e alcance equivalentes ao do radar altímetro.

2.2.7 Sistema de Navegação e Posicionamento

A navegação da aeronave foi efetuada por sistema GPS de 12 canais, com receptor Trimble AgGPS 132 DGPS *"Realtime"*. As informações de posicionamento são processadas pelos respectivos sistemas de aquisição de dados e enviadas aos computadores de navegação, ficando disponíveis aos pilotos através de indicadores analógicos e das telas dos computadores.

As coordenadas GPS (latitude/longitude) são armazenadas nos discos rígidos dos sistemas de aquisição de dados e transferidas ao escritório de campo.

A aeronave está equipada com sistema de correção em tempo real (DGPS *real time*), cujas coordenadas são transferidas ao escritório de campo já corrigidas.

2.2.8 Magnetômetro Terrestre

Para controle diário das variações do campo magnético terrestre foram utilizados dois magnetômetros portáteis GEM, modelo GSM-19 de resolução de 0,1 nT e envoltória de ruídos em nível equivalente. As leituras do campo magnético total foram realizadas a intervalos de 3 segundos e armazenadas na memória do próprio equipamento.

O magnetômetro foi instalado no aeroporto de Barreiras (BA) em local de gradiente magnético suave, livre de objetos móveis e de interferência cultural.

Ao término de cada jornada de produção, os arquivos contendo os dados da variação diurna eram transferidos aos computadores instalados nas bases de campo para uso no pré-processamento.

2.3 Planejamento e Mobilização

Nesta fase foram estabelecidas as diretrizes básicas para a execução de todas as etapas envolvidas na operação, quais sejam:

- Seleção das bases de operação, instaladas nas cidades de Barreiras (BA) e Santa Rita de Cássia (BA);
- Obtenção da autorização do aerolevantamento junto ao Ministério da Defesa;
- Preparação do plano de vôo e obtenção dos materiais necessários ao levantamento;
- Ajuste dos equipamentos às especificações contratuais;
- Realização dos testes pré-levantamento previstos contratualmente.

O levantamento recebeu do Ministério da Defesa a autorização nº 214/2008, de 09.12.2008.

2.3.1 Elaboração do Plano de Vôo

Para a cobertura completa da área relativa ao Projeto Aerogeofísico Cristalândia do Piauí, foram programadas 387 linhas de vôo e 19 linhas de controle, totalizando 51.197 km de perfis geofísicos, conforme a Tabela 4 a seguir. A Figura 4 apresenta o arranjo das linhas distribuídas sobre a poligonal envoltória da área.

Tabela 4 - Quilometragem Produzida e Área Levantada.

Área (km²)	Total de Linhas	Total de Linhas de	Total de Linhas de
	de Vôo (km)	Controle (km)	Vôo+Controle (km)
23.830	48.654,28	2.542,72	51.197,00

Figura 4 – Mapa das Linhas de Vôo.

2.3.2 Estatística das Operações

O Projeto Aerogeofísico Cristalândia do Piauí foi executado entre 13/01/2009 e 10/05/2009. Foram gastas cerca de 176,44 horas de vôo produtivo para a aquisição dos dados e testes. A Tabela 5 e o gráfico da Figura 5, a seguir, mostram as estatísticas obtidas durante a fase de aquisição dos dados.

Tabela 5 - Estatística das Operações.

Item	Indicadores do Levantamento	Nº Dias	%
1	Produção	60	50,85%
2	Meteorologia	7	5,93%
3	Manutenção de Aeronave	37	31,36%
4	Tempestade Magnética	0	0,00%
5	Falha de Equipamento	2	1,69%
6	Testes Contratuais	3	2,54%
7	Outros	9	7,63%
	Total*	118	100,00%

* Número de dias despendido pela aeronave.

Figura 5 - Gráfico da Estatística das Operações.

2.3.3 Mapa do Projeto de Vôo

O mapa do projeto de vôo foi obtido por *software* específico (Geonave), calculando as coordenadas UTM do início e fim de cada linha de vôo e de controle, considerando-se os espaçamentos de 500 m para as linhas de vôo e 10.000 m para as linhas de controle.

As coordenadas dos limites da área, assim como dos extremos dos perfis, foram projetadas no sistema cartográfico WGS-84.

2.3.4 Testes dos Equipamentos

a) Teste Altimétrico

Teste conduzido antes do início das operações para calibração do radar altímetro a bordo da aeronave. Neste teste a aeronave realiza passagens consecutivas sobre uma base de altitude conhecida, altitude 100 m voando em alturas entre 300 e 800 pés, tendo como referência as leituras fornecidas pelo barômetro nas passagens sobre a pista. Antes da decolagem o piloto ajusta a indicação da pressão barométrica na cabine da aeronave para aferição do barômetro. Os resultados dos testes encontram-se no Anexo II-a.

b) Compensação Magnética Dinâmica

A base da compensação é a eliminação do ruído induzido pelo movimento da aeronave nas medições do campo magnético terrestre realizadas a bordo. Este ruído é proveniente da complexa assinatura magnética tridimensional da plataforma que, com a mudança de atitude em relação ao vetor campo magnético terrestre, altera a intensidade deste. O ruído é proveniente das magnetizações permanentes, induzidas e dos efeitos da corrente de *Eddy* da plataforma, acrescidos dos efeitos de orientação do sensor propriamente.

O procedimento de compensação consiste na determinação de quatro conjuntos de coeficientes, cada qual determinado para uma das direções de vôo no levantamento.

Os efeitos produzidos em cada uma das direções de vôo são medidos pelos magnetômetros *fluxgate*, instalados no *stinger* de cada aeronave e usados para medir o acoplamento dos três eixos com o *background* do campo magnético na região. Os sensores *fluxgate* são muito sensíveis às mudanças de atitude sendo usados para monitorar acuradamente os efeitos decorrentes de tais mudanças. A resposta de freqüência e amostragem do módulo utilizado para medir os sinais do *fluxgate* é equivalente ao do módulo de processamento do sensor de vapor de césio do magnetômetro da aeronave, havendo, portanto, perfeita sincronia dos eventos nos dois sistemas.

As séries de movimentos, envolvendo as manobras do tipo *Roll, Pitch* e *Yaw* (Figura 6) são conduzidas para cada uma das direções de vôo do levantamento, com o objetivo de variar o acoplamento *fluxgate*/vetor campo, e acumular medições ao longo das diferentes manobras e direções. Estes dados são então processados com técnicas de regressão para determinar um conjunto de coeficientes de compensação do sistema.

Quando o algoritmo de compensação é inicializado com os novos coeficientes introduzidos, seja em tempo real ou via pós-processamento, resultam nos dados magnéticos compensados.

Figura 6 - Movimentos de Roll, Pitch e Yaw.

O sistema FASDAS possui em sua programação *software* especialmente desenvolvido para efetuar os cálculos da compensação magnética *on line*, ou seja, os sistemas recebem os dados enviados pelo magnetômetro *fluxgate* durante as manobras de *Roll*, *Pitch* e *Yaw*, armazenam a equação com a melhor solução de compensação aplicando estes coeficientes obtidos em X, Y e Z, ao valor do campo magnético bruto produzindo, então, o campo magnético compensado, livre dos efeitos de "manobras" que venham a interferir na medida do campo magnético.

c) Determinação dos Coeficientes de Compensação Magnética

As manobras de compensação são conduzidas à altitude de 10.000 pés, em uma área de gradiente magnético suave. Os movimentos *Roll*, *Pitch* e *Yaw* regulam segundo ângulos de 10° a 12° e duração de 30 segundos cada. Cada conjunto de manobras obedece às diferentes direções dos perfis do projeto, de modo que seja efetuado pelo menos um conjunto de manobras para cada rumo.

Para avaliação da qualidade da compensação magnética da aeronave foram realizados os testes do tipo Manobras, antes do início das operações e após cada manutenção efetuada na parte elétrica da aeronave. O desempenho do sistema aeromagnético, determinado pela soma das amplitudes pico a pico dos doze registros, não poderá exceder a 2 nT após a correção da variação diurna. Os resultados obtidos estão resumidos na Tabela 6 a seguir e os resultados completos podem ser consultados no Anexo II-b.

DATA	AZIMUTE	ROLL(nT)	PITCH (nT)	YAW (nT)	TOTAL (nT)
	90°	0,03	0,06	0,05	0,14
14/01/000	180°	0,05	0,06	0,06	0,16
14/01/009	270°	0,04	0,05	0,09	0,18
	360°	0,06	0,05	0,05	0,16
Somatório 0,64					
	90°	0,08	0,07	0,10	0,25
05/02/2000	180°	0,05	0,08	0,09	0,22
03/02/2009	270°	0,04	0,08	0,10	0,21
	360°	0,04	0,04	0,03	0,11
Somatório 0,79					

Tabela 6 – Testes de Manobras.

DATA	AZIMUTE	ROLL(nT)	PITCH (nT)	YAW (nT)	TOTAL (nT)
	90°	0,15	0,10	0,20	0,45
12/02/2000	180°	0,07	0,05	0,04	0,16
13/03/2009	270°	0,16	0,10	0,13	0,39
	360°	0,10	0,10	0,08	0,28
				Somatório	1,28
	90°	0,07	0,08	0,15	0,30
28/02/2000	180°	0,06	0,07	0,03	0,16
28/03/2009	270°	0,07	0,08	0,11	0,26
	360°	0,08	0,10	0,07	0,25
Somatório 0,97					

d) Teste de Paralaxe

O processamento dos dados brutos do magnetômetro de césio pelo sistema de aquisição da aeronave introduz um retardamento de tempo nos dados magnéticos compensados. Uma linha especial de calibração é executada para gravar as informações necessárias para quantificar este intervalo de tempo para que os dados possam ser re-sincronizados.

O processo de calibração consiste em voar uma mesma linha em sentidos opostos cobrindo, idealmente, uma série de anomalias magnéticas bem características e distintas. Em conseqüência, o fator de defasagem é determinado pela análise da separação espacial. A componente que normalmente influencia no comportamento do erro paralaxe, é a posição da antena do receptor GPS.

Quando o erro paralaxe é introduzido pelo sistema de aquisição de dados, uma vez que alguns instrumentos necessitam de um tempo para armazenar os sinais na forma digital, ocorrem então defasagens entre o tempo da amostragem e o tempo da gravação propriamente dito, resultando num valor do paralaxe com sinal oposto ao produzido pela diferença de posição entre a antena GPS e o sensor magnetométrico.

Os dados magnetométricos desta linha voada em sentidos inversos são representados em forma de perfis empilhados. O eixo horizontal dos perfis plotados refere-se às coordenadas geográficas mostrando, assim, a correlação das anomalias corrigidas independentemente do sentido voado. A calibração resultou em um fator de defasagem de 0,3 segundo para a aeronave PT-WOT. O resultado do teste é apresentado no Anexo II-c.

e) Teste com Amostras Radioativas no Solo

Com vistas a controlar o comportamento do desempenho do sistema gamaespectrométrico dos cristais voltados para baixo, testes com amostras de mão de urânio e tório são realizados antes do início e após os vôos operacionais. As amostras são colocadas sobre o mesmo local, próximas aos cristais detectores, com a aeronave estacionada no mesmo local. A Tabela 7 apresenta os resultados desse teste.

Tabela 7 – Testes Diários com Amostras Radioativas no Solo.				
DATA	HORÁRIO	VÔO	TÓRIO	URÂNIO
15/01/09	INICIO	8/0	316,50	164,52
13/01/09	FIM	0/9	311,23	157,17
16/01/00	INICIO	10/11	309,89	160,48
10/01/09	FIM	10711	325,84	162,02
17/01/00	INICIO	10	316,55	161,46
17/01/09	FIM	15	321,34	161,39
18/01/00	INICIO	14/15	340,13	161,74
18/01/09	FIM	14/15	345,52	162,66
10/01/00	INICIO	16	324,85	153,06
19/01/09	FIM	10	331,12	159,89
24/01/00	INICIO	20	332,09	157,38
24/01/09	FIM	20 –	363,31	167,11
29/01/00	INICIO	22 / 22	356,51	166,47
28/01/09	FIM	22/23	351,56	158,80
20/01/00	INICIO	24 27 / 28	357,15	169,81
29/01/09	FIM		355,75	163,19
21/01/00	INICIO		359,50	161,54
51/01/09	FIM		357,73	165,81
01/02/00	INICIO	30	349,16	162,70
01/02/09	FIM		356,71	161,68
04/02/00	INICIO	32 / 33	359,63	159,18
04/02/09	FIM		357,30	163,92
06/02/09	INICIO	35	369,73	165,15
00/02/07	FIM	55	362,00	169,72
07/02/09	INICIO	36	364,09	167,05
01/02/07	FIM	50	352,35	161,26
08/02/09	INICIO	37	352,29	160,72
00/02/07	FIM	51	359,76	167,50
09/02/09	INICIO	38	346,10	159,50
07/02/07	FIM	00	362,53	169,08
12/02/09	INICIO	42 / 43	336,03	169,91
12/02/09	FIM	127 10	367,72	154,46
14/03/09	INICIO	56	301,72	156,62
11/05/07	FIM	60	349,19	147,84
19/03/09	INICIO	57	354,16	140,81
17/05/07	FIM	01	355,99	145,35
20/03/09	INICIO	59	358,32	150,12
	FIM		357,09	145,28
21/03/09	INICIO	60 / 61	361,01	157,69
	FIM		362,69	150,51
22/03/09	INICIO	62 / 63	349,50	164,65
,,,	FIM	02,00	360,69	148,10
23/03/09	INICIO	64 / 65	363,48	166,14
23/03/09	FIM	04/00	364,17	155,70

Tabala 7 Tastas Diárias com Amastras Dadiostivas no Sal

DATA	HORÁRIO	VÔO	TÓRIO	URÂNIO
24/02/00	INICIO	66	361,82	159,29
24/05/09	FIM	00	348,42	141,36
25/02/00	INICIO	(7/6)	362,08	152,56
25/05/09	FIM	0//08	356,46	147,58
28/02/00	INICIO	70	354,13	58,90
28/03/09	FIM	12	358,79	147,49
20/02/00	INICIO	73 / 74	355,35	140,40
29/03/09	FIM		355,54	144,11
30/03/00	INICIO	75 / 76	356,48	161,54
30/03/07	FIM		357,02	146,10
31/03/00	INICIO	77 / 78	357,82	152,75
51/05/07	FIM	11718	359,89	150,05
01/04/09	INICIO	79 / 80	355,14	138,35
01/04/07	FIM	777 00	0,00	0,00
02/04/09	INICIO	81 / 82 -	357,92	150,31
02/04/07	FIM		358,65	145,06
03/04/09	INICIO	84 -	346,96	160,38
03/04/07	FIM		347,97	145,05
07/04/09	INICIO	85 / 86	355,85	152,02
07/01/09	FIM		356,12	145,68
08/04/09	INICIO	87 / 88	344,15	148,78
00/01/09	FIM	07700	365,30	147,75
09/04/09	INICIO	89 / 90	361,56	147,61
	FIM	07770	-	-
10/04/09	INICIO	91/92	352,66	150,90
	FIM	71772	-	-
12/04/09	INICIO	93 / 94	348,94	147,82
12,01,09	FIM	,,,,,	359,66	142,34
13/04/09	INICIO	95 / 96	357,13	151,42
13/01/09	FIM	75770	347,08	144,42
15/04/09	INICIO	97	359,70	145,75
10, 0 ., 05	FIM	2.	357,11	148,08
16/04/09	INICIO	98*	350,97	153,80
	FIM	20	348,51	128,66
17/04/09	INICIO	099 / 100*	344,16	145,46
11,01,05	FIM	0777 100	344,33	129,57
18/04/09	INICIO	101 / 102*	346,39	146,41
20/01/02	FIM	101/102	348,25	133,21
19/04/09	INICIO	103 / 104*	348,47	143,39
	FIM		348,24	132,53
	INICIO		351,89	148,67
20/04/09	FIM	105 / 106*	351,43	133,95
	FIM		348,25	133,21
21/04/09	INICIO	107*	350,87	145,00
21/04/07	FIM	107	340,60	137,44

DATA	HORÁRIO	VÔO	TÓRIO	URÂNIO
26/04/00	INICIO	111*	349,38	142,79
20/04/09	FIM	111	349,73	140,50
27/04/00	INICIO	110 / 112*	345,72	140,76
27/04/09	FIM	112/115*	356,71	135,96
28/04/00	INICIO	114*	346,60	145,59
28/04/09	FIM	114**	-	-
01/05/00	INICIO	115*	350,28	144,45
01/03/09	FIM	115	353,21	131,64
02/05/00	INICIO	116*	347,54	134,23
02/03/09	FIM	110.	-	-
02/05/00	INICIO	117*	352,28	134,46
03/03/09	FIM		345,88	153,37
04/05/00	INICIO	119*	350,47	137,24
04/03/09	FIM	110	350,86	141,00
05/05/00	INICIO	110*	346,26	137,14
03/03/09	FIM	119	356,71	141,33
06/05/00	INICIO	120*	349,16	143,82
00/03/09	FIM	120.	348,09	133,85
08/05/00	INICIO	172*	348,37	138,04
08/03/09	FIM	123*	354,09	134,60
00/05/00	INICIO	124 / 125*	345,73	133,88
09/03/09	FIM	124/123	346,38	135,78
10/05/00	INICIO	126*	348,89	140,32
10/03/09	FIM	120.	350,36	137,80

* Testes realizados no Aeroporto de Santa Rita de Cássia

f) Teste de Repetibilidade Radioativa

Estes testes foram realizados diariamente com a finalidade de verificar a repetibilidade e a consistência das medições dos equipamentos geofísicos, tendo sido registrados na forma digital.

Consistem na perfilagem sobre um mesmo segmento de linha, no início e no fim de cada vôo, com extensão mínima de 5 km, ao longo das pistas de pouso dos aeroportos utilizados para as operações, na altura do levantamento (100 m).

Para efeito de avaliação foram comparados os perfis magnetométricos e radiométricos entre os testes iniciais e finais de cada vôo.

Os valores médios em cps, obtidos em cada canal radiométrico, estão relacionados na Tabela 8.

Tabela 6 Testes Diarios de Repetionidade Radioativa.					
TESTE DE REPETIBILIDADE RADIOATIVA (LOW LEVEL) 100m					
Bases: Barreiras (BA) – Santa Rita de Cássia (BA)					
DATA HORÁRIO VÔO TÓRIO URÂNIO					
15/01/09	INICIO	8	58,79	54,48	

Tabela 8 – Testes Diários de Repetibilidade Radioativa.

TESTE DE REPETIBILIDADE RADIOATIVA (LOW LEVEL) 100m Bases: Barreiras (BA) – Santa Rita de Cássia (BA)					
ДАТА	HORÁRIO	VÔO	TÓRIO	URÂNIO	
	FIM	,	60.62	55.34	
	INICIO				
15/01/09	FIM	9	58.01	43.27	
	INICIO		59.16	41.81	
16/01/09	FIM	10	61.85	45,40	
	INICIO				
16/01/09	FIM	11	59.32	46.02	
17/01/09	INICIO	10	57,91	42,98	
	FIM	13	60,27	47.33	
	INICIO		61.19	49.33	
18/01/09	FIM	14	56.51	47.57	
	INICIO			_	
18/01/09	FIM	15	57,43	45,20	
	INICIO		58,19	44,25	
19/01/09	FIM	16	57.10	51.40	
2 4 /0.1 /0.0	INICIO	20	56,30	43,01	
24/01/09	FIM		59,94	52,85	
20/01/00	INICIO	22	58,49	43,86	
28/01/09	FIM		58,42	51,13	
20/01/00	INICIO	22	-	-	
28/01/09	FIM	23	58,45	41,90	
20/01/00	INICIO	24	56,72	51,59	
29/01/09	FIM	24	58,95	48,99	
21/01/00	INICIO	27	59,64	48,75	
31/01/09	FIM	27	55,05	58,63	
21/01/00	INICIO	29	-	-	
51/01/09	FIM	28	56,74	48,16	
01/02/00	INICIO	20	56,76	42,86	
01/02/09	FIM	50	58,96	48,06	
04/02/00	INICIO	20	55,21	49,15	
04/02/09	FIM	52	55,44	43,65	
06/02/00	INICIO	25	58,53	43,97	
00/02/09	FIM	55	53,76	43,66	
07/02/00	INICIO	26	53,99	44,10	
07/02/09	FIM	50	55,81	50,58	
08/02/00	INICIO	37	55,70	48,45	
00/02/09	FIM	51	55,69	51,10	
09/02/09	INICIO	38	60,92	48,58	
07/02/09	FIM		57,93	51,86	
12/02/09	INICIO	42	61,19	58,72	

TESTE DE REPETIBILIDADE RADIOATIVA (LOW LEVEL) 100m Bases: Barreiras (BA) – Santa Rita de Cássia (BA)					
ДАТА	HORÁRIO		TÓRIO	URÂNIO	
	FIM	100	59.36	51.24	
	INICIO		-	-	
12/02/09	FIM	43	55.11	48 50	
	INICIO		58,68	55.02	
14/03/09	FIM	56	59,86	55,14	
	INICIO		45.88	41.00	
19/03/09	FIM	57	46 84	44 35	
	INICIO		45.26	40.67	
20/03/09	FIM	59	47.98	45.05	
	INICIO		46.23	50.30	
21/03/09	FIM	60	47.08	52.89	
	INICIO		-	-	
21/03/09	FIM	61	46.88	47.41	
	INICIO		46.61	62.72	
22/03/09	FIM	62	47.50	62.23	
22/03/09	INICIO	63	-	-	
	FIM		46 32	48.94	
23/03/09	INICIO	64	51 31	81.26	
	FIM		45 31	62.78	
	INICIO	65	-	-	
23/03/09	FIM		47.34	57	
	INICIO		42.39	37.69	
24/03/09	FIM	66	43.90	42.44	
	INICIO		43.49	47.84	
25/03/09	FIM	67	42.61	43.85	
	INICIO		-	-	
25/03/09	FIM	68	43.81	45.61	
	INICIO		43.34	38.26	
28/03/09	FIM	72	44.32	44.26	
	INICIO		41.54	36.22	
29/03/09	FIM	73	40.61	39.24	
	INICIO		-	-	
29/03/09	FIM	74	43.27	42.16	
	INICIO		42,68	47.32	
30/03/09	FIM	75	42.33	44.83	
20/02/02	INICIO			-	
30/03/09	FIM	76	44,47	44,68	
21/02/02	INICIO		43,21	53,68	
31/03/09	FIM		41,97	45,42	
31/03/09	INICIO	78	-	-	

TESTE DE REPETIBILIDADE RADIOATIVA (LOW LEVEL) 100m Bases: Barreiras (BA) – Santa Rita de Cássia (BA)				
DATA	HORÁRIO	vôo	TÓRIO	URÂNIO
	FIM	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	39,88	44,22
01/04/09	INICIO		40,18	37,97
	FIM	- 79	41.35	42.94
	INICIO		44.02	46.70
02/04/09	FIM	81	44.61	46.06
	INICIO		_	
02/04/09	FIM	82	42.92	43.88
	INICIO		44.90	63.00
03/04/09	FIM	84	43.09	45.70
	INICIO		41.05	51.23
07/04/09	FIM	85	40.37	44.06
	INICIO		_	_
07/04/09	FIM	86	39.80	42.16
	INICIO		42.33	42,60
08/04/09	FIM	87	41.91	47.94
	INICIO		-	-
08/04/09	FIM	- 88	44.12	44.13
	INICIO		44.40	40.65
09/04/09	FIM	- 89	44.24	44.85
	INICIO		_	_
10/04/09	FIM	- 90	43,13	48,24
	INICIO		43,13	48,24
10/04/09	FIM	91	_	-
	INICIO		_	_
10/04/09	FIM	92	43,18	55,20
12/04/00	INICIO		41,56	45,
12/04/09	FIM	93	41,62	39,25
12/04/00	INICIO	0.4	-	-
12/04/09	FIM	94	41,55	38,52
12/04/00	INICIO	0.5	40,11	48,65
13/04/09	FIM	95	41,75	46,51
12/04/00	INICIO	0.6	-	-
13/04/09	FIM	96	42,28	42,02
15/04/00	INICIO	07	42,54	44,23
15/04/09	FIM	9/	41,75	42,68
16/04/00	INICIO	00*	43,88	60,83
10/04/09	FIM	98*	28,44	27,04
17/04/00	INICIO	00*	30,21	38,63
1 //04/09	FIM		30,76	28,00
17/04/09	INICIO	100*	-	-

TESTE DE REPETIBILIDADE RADIOATIVA (LOW LEVEL) 100m Bases: Barreiras (BA) – Santa Rita de Cássia (BA)				
DATA	HORÁRIO			URÂNIO
	FIM	100	27.33	25.93
18/04/09	INICIO		30.63	46.88
	FIM	101*	30,50	30.91
	INICIO		-	-
18/04/09	FIM	102*	29.85	31.25
	INICIO		32.88	46 51
19/04/09	FIM	103*	30.42	34.66
	INICIO			-
19/04/09	FIM	104*	30.46	28.83
	INICIO		29.17	42.62
20/04/09	FIM	105*	31.07	32.27
			-	
20/04/09	FIM	106*	31.40	31.34
			31,40	42 71
21/04/09	FIM	107*	30.49	35 39
			28 59	27.86
26/04/09	FIM	111*	26,35	27,00
			30.95	32.13
27/04/09	FIM	112*	27.92	33.92
			-	
27/04/09	FIM	113*	29.06	33 37
			31.38	42.28
28/04/09	FIM	114*	28.95	36.86
			20,75	33.07
01/05/09	FIM	115*	29,57	32.08
			29,57	31,00
02/05/09	FIM	116*	26,09	35.89
			30,00	29.55
03/05/09	FIM	117*	28.76	33 33
			32.01	30.92
04/05/09	FIM	118*	20.00	32.14
			29,99	36.63
05/05/09	FIM	119*	29,28	35,03
			29,35	33 30
06/05/09	FIM	120*	29,45	20,50
			20,30	29,32
08/05/09	FIM	123*	30.50	20,22
			30,39	32 50
09/05/09	FIM	124*	20,55	31.00
09/05/09		125*	27,37	51,00
07/03/07		125		-

TESTE DE REPETIBILIDADE RADIOATIVA (LOW LEVEL) 100m				
Bases: Barreiras (BA) – Santa Rita de Cássia (BA)				
DATA	HORÁRIO	VÔO	TÓRIO	URÂNIO
	FIM		29,50	28,99
10/05/09	INICIO	126*	31,18	32,48
	FIM		28,88	32,87

* Testes realizados no Aeroporto de Santa Rita de Cássia(BA)

2.3.5 Cálculo da Resolução dos Cristais Detectores (downward e upward)

A resolução é a medida da precisão da energia dos raios gama registrados pelo gamaespectrômetro, a qual é representada pelo cálculo matemático em relação a um elemento radioativo de referência.

Para os atuais gamaespectrômetros auto-estabilizados, costuma-se usar o espectro do tório (²⁰⁸Tl) para calcular a resolução dos "cristais detectores voltados para baixo" (*downward looking*), tanto para os cristais individuais (256 pol³) quanto para os "pacotes" ou "caixas" de 1024 pol³ cada, bem como o espectro do césio (¹³⁷Cs) para calcular a resolução dos "cristais detectores voltados para cima" (*upward looking*), tanto para os cristais individuais (256 pol³) quanto para os calcular a resolução dos "cristais detectores voltados para cima" (*upward looking*), tanto para os cristais individuais (256 pol³) quanto para o "pacote" ou "caixa" de 512 pol³ no caso deste projeto.

O procedimento para medir a resolução consiste em determinar as amplitudes a partir do fotopico do tório ou do césio, respectivamente. A largura do pico (medida como número de canais) na metade da amplitude máxima pode ser determinada. Esta largura é definida como *full width at half maximum* ou *FWHM*. A resolução é calculada (GRASTY & MINTY, 1995) como a seguir:

R(%) = 100 x FWHM (canais) canal do fotopico

A resolução também pode ser obtida a partir dos referidos elementos, porém utilizando o cálculo a partir das faixas de energia do espectro em vez do número de canais, conforme a equação a seguir (IAEA, 2003):

R(%) = 100 x FWHM (energia) energia do fotopico

A resolução calculada a partir do tório deve ser menor que 7% e a resolução a partir do césio deve ser menor que 12%. O monitoramento da resolução do cristal e do tubo fotomultiplicador é o melhor procedimento para se manter o controle de qualidade e detectar qualquer tipo de deterioração do sistema gamaespectrométrico. Os valores de resolução obtidos para os três pacotes de cristais detectores *downward looking* (2560 pol³) ficaram abaixo de 7% e para os cristais detectores *upward looking* (512 pol³) ficaram abaixo de 12%, sendo, portanto estes testes aprovados. Os resultados dos testes de resolução encontram-se no Anexo I-a.

2.3.6 Calibração dos Detectores Downward Looking

Foram realizados testes gamaespectrométricos específicos objetivando a calibração dos sistemas detectores da aeronave. Essas calibrações obedeceram a duas etapas distintas:

<u>Calibração estática</u> - Realizada no Aeroporto de Jacarepaguá (RJ). Após a determinação e aprovação dos cálculos da resolução dos cristais detectores *down* e *up* são realizados os testes que visam à determinação dos coeficientes de espalhamento *Compton* do sistema detector. Para tal, 4 (quatro) tanques de calibração transportáveis, constituídos por blocos de concreto com resposta radiométrica para os elementos potássio (⁴⁰K), urânio (²³⁸U), tório (²³²Th) e *background* são empregados. As concentrações dos tanques de calibração transportáveis utilizados, de propriedade da LASA Engenharia e Prospecções S.A., estão indicadas na Tabela 9:

FONTE PADRÃO	K (%)	eU (ppm)	eTh (ppm)
Background	$1{,}41\pm0{,}01$	$0,\!97\pm0,\!03$	$2,\!26~\pm~0,\!10$
Potássio	$8{,}71\pm0{,}09$	$0,\!32\pm0,\!02$	$0,74~\pm~0,10$
Urânio	1,34 ±0,02	$52{,}9\pm1{,}00$	$3,\!40~\pm~0,\!14$
Tório	$1,\!34\pm0,\!02$	$2,\!96\pm0,\!06$	$136,0\pm2,10$

Tabela 9 - Concentração dos Tanques de Calibração Transportáveis.

Para a determinação dos coeficientes de espalhamento *Compton*, a aeronave foi estacionada sobre os tanques de calibração transportáveis que foram seqüencialmente posicionados sob cada pacote detector, aí permanecendo por 10 minutos para acumulação de dados na seguinte ordem: *background*, Th, U, K e *background*. Os dados acumulados foram processados pelo programa PADWIN, fornecido pelo fabricante dos tanques calibradores (EXPLORANIUM), resultando nos valores dos coeficientes *Compton* para cada pacote de detectores de 1.024 polegadas cúbicas e para o total de 2560 polegadas cúbicas. Os valores encontrados para os coeficientes de espalhamento *Compton* estão resumidos na Tabela 10. O Anexo I-b, no final deste relatório, apresenta os resultados dessas calibrações.

Tabela 10 – Coeficientes de Espalhamento Compton.

AERONAVE	DATA	α	β	γ	a	b	g
PT-WOT	07/07/2008	0,2448	0,3974	0,7147	0,97	0,0024	0,0064
		±0,0023	±0,0055	$\pm 0,0078$	±0,0036	±0,0021	$\pm 0,0014$

• <u>Calibração dinâmica</u> Realizada com vistas à determinação dos *backgrounds* da aeronave e cósmico (*cosmic flight*), e identificação dos coeficientes de sensibilidade do detector, com o levantamento de um perfil situado em zona radiometricamente conhecida (*dynamic calibration range DCR*) na altura nominal do levantamento (100 m), bem como a várias alturas com vistas à correção altimétrica. Os referidos testes são comentados a seguir:

a) Vôo Cósmico (Cosmic Flight)

A partir da fórmula da IAEA, 1991, tem-se:

N = a + bC, onde:

N é a contagem (em cps) em determinada janela;

a é o *background* (em cps) da aeronave em determinada janela;

b é a razão entre a contagem em determinada janela e a contagem no canal cósmico;

C é a contagem na janela cósmica.

O vôo cósmico envolveu o recobrimento de perfis sobre o mar, em área distante da costa cerca de 20 km, voando nas altitudes de 3500, 5000, 7000, 8000, 10000, 12000 e 13000 pés, com duração de 15 minutos cada.

A Tabela 11, a seguir, resume os resultados obtidos pela aeronave nos vôos cósmicos. A apresentação dos resultados na forma de tabelas e gráficos encontra-se no Anexo I-c, no final deste relatório.

CANAL	COEFICIENTE	PT-WOT (07/07/08)
Contagom Total	a (cps)	123,4247
Contageni Totai	b	0,5726
Potássio	a (cps)	15,0171
	b	0,0294
Urânio	a (cps)	4,6994
	b	0,0246
Tório	a (cps)	0,3385
	b	0,0337
	a (cps)	1,0188
Utanio <i>upwara</i>	b	0,0049

Tabela 11 - Background da Aeronave e Cosmic Stripping Ratios.

b) Pista de Calibração Dinâmica (Dynamic Calibration Range - DCR):

Este teste envolve uma série de passagens consecutivas sobre a pista de calibração dinâmica definida pela CPRM em Maricá (RJ), com passagens sucessivas nas alturas de 330, 400, 500, 600, 700 e 800 pés e duas passagens adicionais a 330 pés, correspondente à altura padrão do levantamento (100 m). Na seqüência dos perfis também são realizadas passagens sobre o Oceano Atlântico na mesma altura de vôo observada sobre a pista de calibração dinâmica, com vistas à determinação do *background*.

A calibração dinâmica tem por finalidade a correlação entre as medições feitas em terra (com intervalos de 50 m entre estações, com emprego de gamaespectrômetro portátil Exploranium Modelo GR-320), com as leituras registradas pelo sistema detector da aeronave na altura de 100 m (cerca de 330 pés), permitindo a conversão das contagens obtidas a bordo (em cps) para concentrações de potássio, urânio, tório e

contagem total no solo. A sensibilidade do sistema gamaespectrométrico é definida como a razão entre a média dos valores aéreos, medidos na altura nominal do levantamento (100 m), em cps, para os canais de contagem total, K, U e Th, e a média dos valores das estações terrestres (em concentração) para os canais de contagem total, K, eU e eTh (Anexo I-e).

As passagens em várias alturas permitem ainda a determinação dos coeficientes de atenuação atmosférica (μ) do sistema detector da aeronave, os quais são utilizados para a correção altimétrica (Anexo I-f).

2.3.7 Calibração dos Detectores Upward Looking

A calibração dos detectores aerogamaespectrométricos voltados para cima tem por finalidade estabelecer a relação entre as contagens observadas nos canais de contagem total, potássio, urânio e tório, medidas nos detectores normais da aeronave, com aquelas registradas pelo detector *upward*, resultantes da presença de radônio disperso no ar. Tal relação se expressa por um conjunto de coeficientes obtidos a partir de dados de vôos realizados sobre a água, ou a altura elevada, onde não exista qualquer influência de radiações provenientes do solo. Para tanto, foram utilizados os dados dos testes *high level*, ou *background*, onde são registrados perfis diários na altura de 2.500 pés (Anexo I-d).

Outro procedimento associado ao processo de calibração do detector *upward looking* envolve a determinação dos coeficientes *skyshine*. Como tal determinação não prevê a realização de testes específicos, o método utilizado está descrito apenas no Capítulo 3.

2.4 Compilação de Dados

Ao término de cada jornada de produção as informações coletadas eram submetidas ao processamento preliminar, consistindo no seguinte:

a) Transferência das leituras do magnetômetro terrestre para o computador de campo para processamento da variação diurna de acordo com o gradiente fixado no contrato, qual seja: 15 nT 5 min;

b) Leitura dos arquivos dos vôos da aeronave e transferência dos dados coletados para o computador de campo, para fins de verificação da qualidade da gravação e análise dos perfis coletados, no que se refere a desvios na altura de vôo, envoltória de ruídos e desvios de navegação, estabelecidos respectivamente, em: 15 m para mais ou para menos, 0,5 nT e 50 m em relação à linha teórica;

c) Geração das plotagens dos traços das linhas de vôo e de controle, corrigidos diferencialmente, em superposição ao plano de vôo para identificação dos possíveis trechos desviados em mais de 20% do espaçamento teórico (100 m) por mais de 1000 m;

d) Verificação da qualidade da gravação, em vídeo, do trajeto percorrido pela aeronave.

Para o controle da produção, acompanhamento dos trabalhos, plotagem, listagem de dados, compilação dos registros e demais controles foi montado, no escritório de campo, um conjunto de equipamentos de processamento de dados, consistindo em:

- Microcomputadores PC;
- Impressora;
- Sistema de TV/Vídeo VHS/Gravador DVD-Vídeo.

2.5 Equipe Técnica na Base de Operações

Participaram da equipe na fase de aquisição de dados os seguintes técnicos:

Anselmo Pereira Bezerra Filho		
Júlio Cesar Gomes de Oliveira	Coordenadores de Equipe	
Rodrigo Arsolino Pereira		
Nilton César Rodrigues Marques		
Roberto Cláudio Ferreira Araújo	Operadores de Equipamento	
Robson Carlos Ferreira Aráujo	operadores de Equipamento	
Sandro Jorge Rodrigues da S. Sinfrônio		
André de Queiroz Almeida		
Antônio da Silva Cavalcante Júnior		
Elias Vieira de Souza		
Josenilson Aguiar de Souza	Pilotos	
Rubens Peixoto da Silva		
Sérgio Roberto Ribeiro Sauma		
José Antônio Oliveira Nascimento		
Eliziário Ozias	Mecânicos	
Severino José Leal Filho		

3. PROCESSAMENTO DE DADOS

3.1 Fluxo de Processamento

No processamento de dados do Projeto Aerogeofísico Cristalândia do Piauí foi empregado o *software* OASIS MONTAJ versão 7.0 do sistema *GEOSOFT*, além das rotinas de pré-processamento proprietárias, que permitem a exportação do dado binário coletado em vôo para formato ASCII XYZ *GEOSOFT*. A Figura 7 no final do capítulo, mostra o fluxograma de processamento utilizado para o levantamento.

3.1.1 Preparação do Banco de Dados do Levantamento

Os dados brutos gravados em formato binário na aeronave são convertidos diretamente para bancos de dados no formato de GDB's compatíveis com o OASIS MONTAJ, onde estão agrupadas informações de posicionamento corrigidas e todos os demais canais de informação registrados a bordo da aeronave, quais sejam: intensidade total do campo magnético, valores dos canais radiométricos, altura e altitude de vôo, temperatura, etc.

Preparado o banco de dados do tipo XYZ, onde Z corresponde a cada uma das variáveis medidas a bordo da aeronave e XY as coordenadas UTM do ponto em que a medida foi tomada, o processamento é então iniciado com a correção dos dados magnetométricos e radiométricos propriamente.

3.1.2 Processamento dos Dados Magnetométricos

3.1.2.1 Correção do Erro de Paralaxe

O processamento dos dados brutos do magnetômetro de Césio pelo sistema de aquisição da aeronave introduz um retardamento de tempo nos dados magnetométricos compensados, bem como a posição da antena receptora do GPS em relação à posição do sensor magnetométrico, causam uma defasagem entre o valor de posicionamento (X e Y) e o valor do campo que está sendo amostrado num mesmo intervalo de tempo. Sendo assim, uma correção denominada Correção Paralaxe ou Correção de *Lag* deve ser aplicada. Uma linha especial de calibração foi voada para gravar as informações necessárias para quantificar este intervalo de tempo para que os dados pudessem ser resincronizados.

O erro de paralaxe corresponde à defasagem nos tempos de medição do magnetômetro e altímetros com o sistema de posicionamento. Assim, o erro de paralaxe é determinado a partir de uma linha voada em sentidos opostos sobre uma mesma feição magnética anômala reconhecida no terreno. A correção a ser aplicada corresponde ao valor deslocado do tempo de amostragem, de modo a que as duas feições se tornem coincidentes.

A equação utilizada é a seguinte:

 $Fc_{(t0)} = Fc_{(t0 \pm Ip)}$, onde:

Fc = Valor do Campo Magnético Total corrigido do erro paralaxe,

t0 = Tempo da Amostragem,

Ip = Valor do Intervalo de Tempo a ser deslocado no banco de dados.

Deve-se observar que não se adiciona nenhum valor ao Campo Magnético e sim desloca-se os valores em relação ao tempo em que foram amostrados os pontos, ou seja, o valor do Campo Magnético após a correção Paralaxe sofre apenas um reposicionamento temporal dentro do banco de dados.

A correção aplicada a todas as amostras coletadas pela aeronave PT-WOT correspondeu a 0,3 segundo. Os resultados dos testes para determinação encontram-se no Anexo II-c, no final deste relatório.

3.1.2.2 Remoção da Variação Magnética Diurna

Os valores obtidos pelo magnetômetro monitor foram inicialmente subtraídos das leituras do campo magnético realizadas a bordo da aeronave, tendo como variável comum a hora de amostragem, fixada com precisão de décimos de segundo. As diferenças encontradas, positivas ou negativas, foram, então, somadas algebricamente ao nível base, definido em 24.287 nT. Os valores resultantes correspondem à intensidade total do campo magnético corrigido da variação diurna.

3.1.2.3 Nivelamento dos Perfis

A aplicação do nivelamento através do *software* OASIS MONTAJ versão 7.0 do sistema *GEOSOFT* consiste, basicamente, no ajuste das linhas de controle com base na média das diferenças (ou diferença de 1^a ordem) com as linhas de vôo. Este procedimento assume que tais diferenças estão distribuídas de forma aleatória, de forma que um *trend* de no máximo 1^a ordem define o desnível entre as linhas de vôo e controle.

O procedimento compreende duas etapas distintas, conforme a seguir:

1° - As linhas de controle são niveladas por aplicação de valores que reduzam as diferenças com as linhas de vôo a valores mínimos. Este procedimento assume que existem cruzamentos suficientes para modelar adequadamente as diferenças de nível entre as linhas de controle;

2° - Após o nivelamento das linhas de controle, todas as linhas de vôo são ajustadas às linhas de controle, de forma que os valores do campo magnético encontrado nos seus cruzamentos sejam equivalentes.

Nesta fase é criada uma Tabela de Interseções que contém as diferenças entre as linhas de controle niveladas e as linhas de vôo nos pontos de cruzamento. Tal procedimento é conduzido pelo comando XLEVEL GX. Estes valores são armazenados no banco de dados e utilizados no cálculo das correções a serem aplicadas às linhas de vôo. Os cruzamentos onde o gradiente magnético excedeu a 2 nT/fiducial (0,025 nT/m) foram descartados pelo programa. Com base neste gradiente, o programa ainda analisou as interseções quanto à sua aplicabilidade, atribuindo peso mais baixo quanto mais alto fosse o gradiente. Deste modo, uma interseção situada em zona de forte gradiente magnético teve pouca ou nenhuma influência no nivelamento.

O OASIS MONTAJ permitiu ainda o exame visual da Tabela de Interseções, possibilitando sua edição manual quando necessário. Por exemplo, a linha nivelada pode ser comparada à sua versão obtida em diferentes estágios do processo.

3.1.2.4 Micronivelamento dos Perfis

Os dados do levantamento foram ainda micronivelados para eliminação de qualquer resíduo de "desnivelamento" que tenha permanecido nos dados. O processo envolveu a geração de dois *grids* auxiliares, resultantes da aplicação de filtros passa-alta tipo *Butterworth* (comprimento de onda da ordem de 4 vezes o espaçamento das linhas de vôo) e cosseno direcional atuando na direção das linhas de vôo e perpendicularmente a elas, seguindo-se, então, a criação de um *grid* final decorrugado, que resultará do somatório dos *grids* produzidos em etapas distintas. Este último, subtraído de um *grid* normal irá, por sua vez, expressar o erro de nivelamento a ser subtraído aos dados prénivelados conforme o procedimento inicial acima.

3.1.2.5 Remoção do IGRF

A remoção do Campo Geomagnético Internacional de Referência (IGRF) obedeceu à rotina incluída no Sistema OASIS MONTAJ que consiste, basicamente, na definição da superfície de tendência que expressa o comportamento do campo geomagnético internacional na área do projeto.

Esta superfície foi definida com base no valor do IGRF, tendo sido considerada a altitude de 700 m, referidos ao ano de 2005 e atualizados para a data de 13/03/2009 (2009,201).

O campo magnético total corrigido para cada um dos pontos amostrados foi obtido pela subtração, ao campo total micronivelado, do valor do IGRF calculado para o ponto. Os valores resultantes são os valores anômalos do campo (campo magnético total reduzido do IGRF).

3.1.3 Processamento dos Dados Gamaespectrométricos

O processamento dos dados gamaespectrométricos obedeceu aos procedimentos recomendados na Seção 4 do Relatório Técnico, Número de Série 323, da Agência Internacional de Energia Atômica, intitulado *Airborne gamma ray spectrometer surveying, 1991*. Foi empregada a rotina contida no sistema de processamento radiométrico OASIS-RPS da *GEOSOFT*.

3.1.3.1 Correção do Tempo Morto

A correção do "tempo morto" consiste na divisão das contagens dos canais radiométricos pelo valor do *live time* registrado pelo aparelho, normalizando, assim, os valores brutos dos canais da contagem total, potássio, urânio, tório e urânio *upward* para contagens por segundo.

3.1.3.2 Aplicação de Filtragem

Este processo se aplica somente aos dados afetados por variações de alta freqüência, quais sejam: dados do radar altímetro, do canal de radiação cósmica e do canal de urânio *up*, utilizado no cálculo da influência do radônio nas medições realizadas.

Dependendo do comportamento dos dados, são aplicados dois tipos de filtragem:

- Filtragem não linear permite a remoção de *spikes* nos dados e a compensação de variações abruptas do radar altímetro;
- Filtragem do tipo passa-baixa reduz o erro estatístico nos dados da radiação cósmica, suaviza o comportamento do radônio. Opcionalmente, é aplicado aos demais canais radiométricos com objetivos específicos, como o cálculo das razões radiométricas.

3.1.3.3 Correção do Erro de Paralaxe

O erro de paralaxe não foi observado nos dados radiométricos, não sendo, assim, necessário sua aplicação.

3.1.3.4 Cálculo da Altura Efetiva (he) de Vôo

A altura de vôo foi ajustada com base na temperatura e pressão ambientais utilizandose da fórmula (IAEA, 2003):

h_e = h (273,15/T+273,15) x (P/1013,25), sendo:

h - altura de vôo medida pelo radar altímetro em metros,

T - temperatura do ar medida em °C,

P - pressão atmosférica em milibar.

A pressão atmosférica é obtida a partir da altitude medida pelo altímetro barométrico.

3.1.3.5 Remoção do Background da Aeronave e Cósmico

O *background* é obtido através do somatório das contribuições do *background* da aeronave e da radiação cósmica em cada uma das janelas do gamaespectrômetro.

O cálculo das contribuições da aeronave e da radiação cósmica é conduzido através da fórmula (IAEA, 1991):

N = a + bC, onde:

N - somatório das duas contribuições (em cps),

a - background da aeronave em cada janela do gamaespectrômetro,

C - canal de radiação cósmica,

b - razão entre a contagem em determinada janela e a contagem no canal cósmico.

Os coeficientes aplicados aos dados (Tabela 11 – *Background* da Aeronave e *Cosmic Stripping Ratios*, item 2.3.6) foram aqueles definidos pelo vôo cósmico sobre o mar, em área distante da costa, cujos gráficos estão indicados no Anexo I-c.

3.1.3.6 Remoção do Background do Radônio

O efeito do *background* do radônio, por sua vez, é determinado a partir das medições realizadas na janela do urânio pelo detector *upward looking*. A expressão que define a parcela de radônio influindo no canal do urânio é a seguinte (IAEA, 1991):

 $U_r = (u - a_1U - a_2Th) + (a_2b_t - b_u) / (a_u - a_1 - a_2a_t)$, onde:

Ur - background do radônio medido no canal downward do urânio,

u - contagem medida no canal *upward* do urânio,

U - contagem medida no canal downward do urânio,

Th - contagem medida no canal downward do tório,

 $a_1, a_2, a_u, a_t, b_u, b_t$ coeficientes de proporcionalidade, sendo que b_u e b_t são zerados e a_1 e a_2 os coeficientes *skyshine*.

As contagens relativas ao urânio, tório e urânio *up* devem ser corrigidas previamente dos efeitos dos *backgrounds* da aeronave e cósmico.

A relação entre as contagens atribuídas ao radônio observadas na janela do urânio, com as demais janelas de canais *downward*, detectadas nos cristais voltados para baixo, pode ser determinada através de regressão linear aplicada sobre um conjunto de dados que reflita as variações decorrentes da presença de radônio nos dados.

O procedimento de cálculo dos coeficientes que expressam a relação entre os detectores (*upward* e *downward*) utiliza as seguintes fórmulas (IAEA, op. cit.):

- $\mathbf{u}_{r} = \mathbf{a}_{u}\mathbf{U}_{r} + \mathbf{b}_{u}$,
- $K_r = a_k U_r + b_k$,
- $T_r = a_t U_r + b_t$,
- $\mathbf{TC}_{\mathbf{r}} = \mathbf{a}_{\mathbf{tc}}\mathbf{U}_{\mathbf{r}} + \mathbf{b}_{\mathbf{tc}}$, onde:

 $\mathbf{u_r}$ é a componente do radônio no urânio *up*, $\mathbf{U_r}$, $\mathbf{K_r}$, $\mathbf{T_r}$ e $\mathbf{TC_r}$ são as contribuições do radônio nas demais janelas associadas ao detector *downward*. Se os componentes dos *backgrounds* da aeronave e cósmico são perfeitamente removidos, as constantes "b's" ($\mathbf{b_u}$, $\mathbf{b_k}$, $\mathbf{b_t}$ e $\mathbf{b_{tc}}$) devem ser zeradas (IAEA, op. cit, p. 27).

No cálculo dos coeficientes \mathbf{a}_{tc} , \mathbf{a}_k , \mathbf{a}_u e \mathbf{a}_t (Tabela 12) foram utilizados os valores calculados a partir dos testes de *high level*. Os gráficos correspondentes a estes cálculos encontram-se no Anexo I-d.

Tabela 12 - Constantes de Calibracao do Ra	adônio.
--	---------

CANAL	COEFICIENTE	PT-WOT
Contagem Total	a _{tc}	13,869
Potássio	$\mathbf{a}_{\mathbf{k}}$	0,784
Urânio <i>up</i>	au	0,149
Tório	a _t	0,088

3.1.3.7 Estimativa dos Coeficientes *Skyshine* (a₁ e a₂)

Estes coeficientes relacionam a contribuição das radiações de urânio e tório provenientes do terreno que influenciam as contagens do urânio no detector *upward*. Admitindo-se que tais contribuições variem linearmente com as contagens destas mesmas radiações nas janelas de urânio e tório, nos detectores voltados para baixo, a estimativa destes coeficientes emprega a expressão geral:

$$\mathbf{u}_{g} = \mathbf{a}_{1} \mathbf{U}_{g} + \mathbf{a}_{2} \mathbf{T}_{g}$$
, onde:

 \mathbf{u}_{g} - contribuição do solo na janela do urânio *up*; \mathbf{U}_{g} - contribuição do solo na janela do urânio *down*; \mathbf{T}_{g} - contribuição do solo na janela do tório *down*; \mathbf{a}_{1} e \mathbf{a}_{2} - constantes de calibração requeridas.

A partir de uma série de valores de \mathbf{u}_g , \mathbf{U}_g e \mathbf{T}_g os fatores de calibração \mathbf{a}_1 e \mathbf{a}_2 podem ser determinados pelo método dos mínimos quadrados. Isso pode ser feito resolvendo as duas equações simultâneas abaixo:

$$a_{1}\sum(U_{g})^{2} + a_{2}\sum U_{g}T_{g} = \sum u_{g}U_{g}$$
$$a_{1}\sum U_{g}T_{g} + a_{2}\sum (T_{g})^{2} \equiv \sum u_{g}T_{g}$$

Esse processo foi efetuado automaticamente utilizando todos os dados do levantamento.

Os valores obtidos no levantamento em pauta estão demonstrados na Tabela 13 abaixo.

COEFICIENTE	PT-WOT
a ₁	0,028
\mathbf{a}_2	0,013

Tabela 13 – Coeficientes Skyshine.

3.1.3.8 Correção do Efeito Compton

É aplicada com objetivo principal de eliminar a influência das radiações atribuídas aos canais de mais alta energia que penetram nos canais de baixa energia, quais sejam: contribuições do tório no urânio e no potássio, assim como a contribuição do urânio no potássio. Nos sistemas de alta resolução, em uso atualmente, são também consideradas as influências de radiações de baixa energia nas janelas de energia mais alta, resultando, desta forma, nos seis coeficientes abaixo:

- α radiações de tório no urânio,
- β radiações de tório no potássio,
- γ radiações de urânio no potássio,
- a radiações de urânio no tório,
- b radiações de potássio no tório,
- g radiações de potássio no urânio.

Os valores adotados para correção do efeito *Compton* são os descritos na Tabela 10 – Coeficientes de Espalhamento *Compton*, apresentada no item 2.3.6. Maior detalhamento deste teste está presente no Anexo I-b.

3.1.3.9 Correção Altimétrica (Coeficiente de Atenuação Atmosférica)

A correção altimétrica tem por objetivo referenciar os valores radiométricos à altura nominal do aerolevantamento (100 m), eliminando falsas anomalias ocasionadas por elevações no terreno.

A atenuação das radiações gama em relação ao afastamento da fonte pode ser expressa matematicamente, de forma aproximada, pela fórmula (IAEA, 1991):

$$N_{\rm H} = N_0 \cdot e^{\mu H}$$
 (1), onde:

 N_H é a radiação à distância H da fonte,

N_o é a radiação na superfície do terreno (H=0),

 μ é o coeficiente de atenuação atmosférica.

Extraindo-se o logaritmo neperiano na relação acima, tem-se:

 $Ln(N_{H}) = -\mu H + Ln(N_{o})$

que é a equação de uma reta de coeficiente angular $-\mu$ e coeficiente linear Ln (N_o). Na determinação dos coeficientes de atenuação atmosférica (μ) para cada um dos canais radiométricos foram utilizados os valores apresentados na Tabela 14 obtidos durante os testes realizados em Maricá (RJ). Os gráficos apresentam a correlação logarítmica entre as contagens e a altura de vôo encontram-se no Anexo I-f.

	μ em m ¹
Canal Radiométrico	PT-WOT
	(17/11/2008)
Contagem Total	-0,0068
Potássio	-0,0089
Urânio	-0,0063
Tório	-0,0066

Tabela 14 –	Coeficientes	de Atenuação	Atmosférica
1 a 0 c 1 a 1	Counciences	uc michuação	Aunosienca.

3.1.3.10 Conversão para Concentração de Elementos

As sensibilidades dos detectores da aeronave PT-WOT para as janelas do potássio, urânio e tório foram determinadas com base nas razões entre as medições efetuadas a bordo (N) e em terra (C), com a aplicação da expressão:

S = N/C, onde:

S corresponde à sensibilidade para cada janela,

N é a média das contagens corrigidas (em cps) para cada canal referente à altura do levantamento (100 m) e situada no trecho de interesse das estações terrestres utilizadas,

C é a média das concentrações para cada canal das estações terrestres de interesse.

A Tabela 15 a seguir, corresponde à sensibilidade dos detectores analisados e tomando por base a altura de vôo de 100 m sobre o terreno.

Canal Radiométrico	SENSIBILIDADE PT-WOT (09/07/2008)	Unidade
Contagem Total	123,42	cps / µR/h CT
Potássio	15,01	cps / %K
Urânio	4,69	cps / ppm eU
Tório	0,33	cps / ppm eTh

Tabela 15 - Coeficientes de Sensibilidade.

Para calcular a "taxa de exposição"(*Exposure Rate*) do canal de contagem total (em μ R/h) utiliza-se a fórmula abaixo (IAEA, 1991):

E = 1,505K + 0,653eU + 0,287eTh, onde:

K, eU e eTh correspondem às concentrações aparentes destes elementos definidas em terra, quando do levantamento da pista de calibração dinâmica. O valor da concentração determinado para o canal de contagem total foi de 13,83 μ R/h.

Os gráficos comparativos dos perfis coletados durante a calibração dinâmica, após a conversão da amostragem para concentração aparente, acompanham o texto descritivo do procedimento de calibração apresentado no Anexo I-e.

3.1.4 Determinação das Razões eU/eTh, eU/K e eTh/K

As razões foram calculadas a partir dos valores radiométricos corrigidos, conforme descrito no item 3.1.3 deste capítulo. Para eliminação de indeterminações, ou incorreções devidas a valores anormalmente baixos, foi convencionada a fixação dos valores mínimos de K, U e Th em 5% da média destes canais na área de levantamento e aplicado também um filtro passa-baixa de 3 amostras. A Tabela 16, a seguir, resume os valores utilizados:

Canal Radiométrico	VALOR MÍNIMO		
K (%)	0,026		
eU (ppm)	0,036		
eTh (ppm)	0,467		

Tabela 16 – Valores Mínimos para Cálculo das Razões Radiométricas.

3.2 Interpolação e Contorno

Para a geração dos *grids* foram utilizadas as rotinas do Oasis Montaj de *minimum curvature* (*RANGRID*) e *bi-directional line gridding* (*BIGRID*). Nos dados radiométricos utilizou-se a mínima curvatura e nos magnetométricos a gridagem bidirecional. Os programas *BIGRID* e *RANGRID* interpolam dados em perfis paralelos com linhas orientadas, usando mínima curvatura (*RANGRID*) e *spline* bicúbico (*BIGRID*) para interpolação de amostras nos pontos do *grid*.

Os mapas de contorno foram elaborados a partir de *grids* regulares, interpolados em malha quadrada, com dimensões de 125 m x 125 m, o que equivale a um quarto do espaçamento entre as linhas de vôo.

3.3 Arquivo Final de Dados

Os dados finais dos perfis do levantamento foram gravados em DVD-ROM, em arquivos ASCII, no formato XYZ e em banco de dados no formato GDB (*GEOSOFT*), contendo as seguintes informações:

- Dados magnetométricos brutos e reduzidos da variação diurna;
- Dados magnetométricos nivelados, reduzidos do IGRF e micronivelados;
- Dados radiométricos brutos e corrigidos e respectivas razões;
- Altura e Altitude do Vôo;
- Posicionamento GPS: Coordenadas UTM, Latitude, Longitude e elevação GPS.

Todos os dados dos cruzamentos entre linhas de vôo e linhas de controle, arquivos digitais em malha quadrada e de plotagem dos mapas apresentados, bem como o presente relatório em formato PDF (*Adobe Acrobat*) foram gravados em DVD-ROM, descrito no item 5 deste relatório.

3.4 Equipe Envolvida no Processamento dos Dados

Participaram dos trabalhos de processamento os seguintes técnicos:

- César Marinho Costa
 Gerente de Processamento de Dados
- Márcio Cisnaldo Geofísico Junior

A direção geral das operações no Projeto Aerogeofísico Cristalândia do Piauí esteve a cargo de Jorge Dagoberto Hildenbrand.

Figura 7 – Fluxograma do Processamento de Dados.

4. CRONOGRAMA GERAL DAS OPERAÇÕES

O levantamento do Projeto Aerogeofísico Cristalândia do Piauí foi executado no período de 13 de Janeiro de 2009 a 10 de maio de 2009. O processamento dos dados e elaboração do Relatório Final tiveram início após o término da fase de aquisição e foram concluídos em junho de 2009.

A Figura 8 fornece o quadro comparativo entre o cronograma previsto e a duração efetiva do projeto.

Ano		2008 2009														
Etapa/Duração (mês)	No	οv	D	ez	Ja	an	F€	əv	М	ar	A	br	М	ai	Ju	ın
Autorização do Ministério da Defesa e AVOEM																
Mobilização																
Aquisição de Dados																
Processamento e Relatório Final	-															

Figura 8 - Cronograma Geral das Operações.

Previsto Realizado

5. **PRODUTOS FINAIS**

Os produtos finais relativos ao Projeto Aerogeofísico Cristalândia do Piauí estão sendo apresentados, na forma de mapas, nas escalas 1:100.000, 1:250.000 e 1:500.000, que seguem em anexo ao presente relatório. Os resultados na forma de mapas são acompanhados dos arquivos digitais finais do levantamento, gravados em DVD-ROM, no formato *GEOSOFT*.

Os mapas foram elaborados de acordo com as especificações do Manual Técnico do DNPM (DNPM, 1985). As informações geofísicas estão superpostas à rede de projeção UTM, traçada com retículas de 8 cm (8 km em 1:100.000, 20 km em 1:250.000 e 40 km em 1:500.000), à rede geográfica, indicada por cruzetas dispostas a cada 10, 15 e 30 minutos, respectivamente, para as escalas 1:100.000, 1:250.000 e 1:500.000, e às informações planimétricas, obtidas dos arquivos digitais das folhas ao milionésimo SC.23 disponíveis no *site* do IBGE (<u>www.ibge.gov.br</u>). Na escala de 1:500.000 os mapas foram elaborados de forma a englobar toda a área do Projeto em uma folha única.

As Figuras 9 e 10 ilustram a articulação das folhas relativas aos mapas apresentados nas escalas 1:100.000 e 1:250.000, respectivamente.

A Tabela 17 apresenta os diversos tipos de mapas apresentados e suas características:

TEMA	PADRÃO (1:100.000)	PADRÃO (1:250.000)	FOLHA ÚNICA
Campo Magnético Total (Reduzido do IGRF)	Contorno, imagem e planimetria	Contorno, imagem e planimetria	Imagem sombreada (pseudo-iluminação) e planimetria
1a.Derivada Vertical do Campo Magnético Total (Reduzido do IGRF)	Contorno, imagem e planimetria	Contorno, imagem e planimetria	Imagem sombreada (pseudo-iluminação) e planimetria
Sinal Analítico do Campo Magnético Total (Reduzido do IGRF)	Contorno, imagem e planimetria	Contorno, imagem e planimetria	Imagem sombreada (pseudo-iluminação) e planimetria
Radiométrico de Contagem Total	Contorno, imagem e planimetria	Contorno, imagem e planimetria	Imagem e planimetria
Radiométrico de Potássio	Contorno, imagem e planimetria	Contorno, imagem e planimetria	Imagem e planimetria
Radiométrico de Urânio	Contorno, imagem e planimetria	Contorno, imagem e planimetria	Imagem e planimetria
Radiométrico de Tório	Contorno, imagem e planimetria	Contorno, imagem e planimetria	Imagem e planimetria
Razão Radiométrica eU/eTh	Imagem e planimetria	Imagem e planimetria	Imagem e planimetria
Razão Radiométrica eU/K	Imagem e planimetria	Imagem e planimetria	Imagem e planimetria
Razão Radiométrica eTh/K	Imagem e planimetria	Imagem e planimetria	Imagem e planimetria
Radiométrico Ternário			Imagem e planimetria
Modelo Digital do Terreno			Imagem sombreada (pseudo-iluminação) e planimetria
Traço de Linhas de Vôo (Digital)	Traço de linhas de vôo e planimetria		

Tabela 17 – Características da Apresentação dos Mapas Aerogeofísicos.

As especificações dos intervalos de contorno utilizados constam da Tabela 18 a seguir:

TEMA	PADRÃO (1:100.000)	PADRÃO (1:250.000)
Campo Magnético Total (Reduzido do IGRF)	5 e 25 nT	5 e 25 nT
1a.Derivada Vertical do Campo Magnético Total (Reduzido do IGRF)	0,01 e 0,05 nT/m	0,05 e 0,25 nT/m
Sinal Analítico do Campo Magnético Total (Reduzido do IGRF)	0,01 e 0,05 nT/m	0,01 e 0,05 nT/m
Radiométrico de Contagem Total	1 e 5 µR/h	1 e 5 µR/h
Radiométrico de Potássio	0,1 e 0,5 %	0,10 e 0,50 %
Radiométrico de Urânio	0,5 e 2,5 ppm	0,02 e 0,10 ppm
Radiométrico de Tório	1 e 5 ppm	2 e 10 ppm

Tabela 18 – Características dos Intervalos de Contorno dos Mapas Aerogeofísicos.

Figura 9 – Articulação das Folhas na Escala 1:100.000.

Figura 10 – Articulação das Folhas na Escala 1:250.000.

5.1 Mapas de Contorno do Campo Magnético Total, da 1ª Derivada Vertical e do Sinal Analítico do Campo Magnético Total (reduzidos do IGRF)

Os mapas magnetométricos, nas escalas 1:100.000 e 1:250.000, foram elaborados na forma de imagem colorida, com traços de contorno superpostos.

Na escala 1:500.000, os mapas magnetométricos foram elaborados na forma de pseudo-iluminação projetada perpendicularmente às estruturas principais definidas pela magnetometria. Foram adotados os ângulos de 45° para azimute e de 45° para inclinação da fonte de iluminação aplicada.

A título de ilustração, os mapas magnetométricos do Campo Total e do Sinal Analítico estão sendo apresentados nas Figuras 11 e 12 respectivamente, com escala reduzida para tamanho A-4.

5.2 Mapas Radiométricos das Concentrações de K, eU, eTh e Contagem Total

Os mapas radiométricos foram elaborados a partir das concentrações aparentes dos canais radiométricos de potássio, urânio, tório e contagem total. Nos mapas de escalas 1:100.000 e 1:250.000 a imagem se superpõe à planimetria básica e às curvas de contorno. Na escala 1:500.000 as curvas de contorno não são apresentadas.

Os valores radiométricos foram convertidos de contagens por segundo (cps) para concentração de elementos (% para K, ppm para eU e eTh e μ R/h para o canal de Contagem Total), com base nos procedimentos especificados no Item 3.1 do Capítulo 3 deste relatório.

O mapa do canal radiométrico de Contagem Total, elaborado em escala reduzida para tamanho A-4, está sendo apresentado na Figura 13.

5.3 Mapa Radiométrico Ternário

Mapa elaborado apenas na escala 1:500.000 (folha única), expressa a razão entre os três canais radiométricos (K,U,Th), cujas variações são indicadas por diferentes matizes de cores. As tonalidades variam entre o vermelho (100% K), azul (100% eU) e verde (100% eTh). A cor branca representa a presença dos três elementos (K, U, Th) e a cor preta ausência dos três citados elementos.

O mapa radiométrico ternário, elaborado em escala reduzida para tamanho A-4, está sendo apresentado na Figura 14.

5.4 Mapas das Razões Radiométricas eU/eTh, eU/K e eTh/K

Os mapas das razões foram elaborados a partir das razões das concentrações dos canais radiométricos de potássio, urânio e tório. Nos mapas de escalas 1:100.000 e 1:250.000 a imagem se superpõe à planimetria básica. As curvas de contorno não são apresentadas em função das grandes amplitudes dos valores o que impossibilitou uma apresentação clara do conjunto contorno/imagem.

O mapa radiométrico da razão tório/potássio está elaborado em escala reduzida para tamanho A-4, sendo apresentado na Figura 15.

5.5 Mapa de Pseudo-Iluminação do Modelo Digital do Terreno

Este mapa, obtido através da subtração dos canais de Altura GPS e Radar Altímetro, está sendo apresentado na escala de 1:500.000 em cores e pseudo-iluminado, com inclinação da fonte de luz de 45° e direção da mesma em 45°, com a planimetria superposta.

O mapa pseudo-iluminado do modelo digital do terreno, também elaborado em escala reduzida para tamanho A-4, está apresentado na Figura 16.

5.6 Mapa de Traço de Linhas de Vôo

Estes mapas apresentam o caminho percorrido ao longo das linhas levantadas. A numeração das linhas é apresentada nas extremidades de cada linha e "*ticks*" a cada 10 fiduciais, sendo numerados a cada 100 fiduciais. Os mapas de traço de linhas de vôo são apresentados somente em escala 1:100.000 na forma digital, não sendo portanto apresentados impressos, não obstante os arquivos de plotagem acompanharem os produtos finais.

5.7 Relatório Final

O relatório final está sendo apresentado em 15 volumes (Volume I - Texto Técnico e demais como Anexos), em 4 (quatro) vias, contendo a descrição das operações conduzidas no Projeto Aerogeofísico Cristalândia do Piauí e dos procedimentos utilizados no levantamento e no processamento dos dados correspondentes, até a elaboração dos mapas finais, conforme descrito anteriormente.

A título de ilustração foi incorporada ao presente relatório a Figura 16 ("Modelo Digital do Terreno"), a qual apresenta os principais acidentes geográficos da área levantada, obtidos a partir dos dados de GPS e radar altímetro registrados pela aeronave.

O texto deste relatório foi elaborado por Márcio Cisnaldo. A revisão e edição final estiveram a cargo de Márcio Marquês e Cesar Marinho e do gerente do contrato da CPRM – Serviço Geológico do Brasil.

5.8 Arquivos Digitais Finais

Os dados obtidos no processamento de dados estão sendo apresentados em 4 (quatro) DVD-ROMs e 1 (um) CD-ROM, acompanhando cada uma das 4 (quatro) vias do Relatório Final. A descrição do conteúdo das informações gravadas nos DVD-ROMs está sendo apresentada no Anexo IV. A descrição detalhada do formato dos arquivos XYZ e do padrão da CPRM (cruzamentos) é apresentada no Anexo V e também nas Tabelas 19,20 e 21.

Os dados digitais dos bancos de dados magnetométrico e gamaespectrométrico da *GEOSOFT* (GDB) são apresentados, respectivamente, nas Tabelas 19,20 e 21.

Os arquivos de malha (*grids*), os bancos de dados, bem como os arquivos XYZ e cruzamentos estão sendo apresentados com as coordenadas métricas na zona UTM 23 (meridiano central 45° WGr). Maiores informações estão expostas no arquivo Leiame.PDF presente em cada disco, bem como no Anexo IV.

Os mapas foram gravados em arquivos de plotagem do tipo HPGL (*Hewlett Packard Graphics Language*) e *GEOSOFT* MAP.

Os *grids* também são apresentados no formato *GEOSOFT*, interpolados em malha quadrada de 125 x 125 m. O método de interpolação utilizado para elaboração dos *grids* da magnetometria foi o spline bi-direcional (*Bigrid*) e para os dados de gamaespectrometria, a mínima curvatura (*Rangrid*).

A listagem fornecida no Anexo VI apresenta as linhas de vôo numeradas de 10010 a 13870 além das linhas de controle numeradas de 19010 a 19190. Todas estas linhas listadas foram voadas e utilizadas no processamento e estão organizadas por ordem crescente de numeração.

O arquivo Metadados, bem como todos os arquivos especificados no contrato, estão sendo apresentados em meio digital (a relação dos DVD-ROMs e do CD-ROM está no Anexo IV).

O texto do presente Relatório Final está gravado no formato PDF Adobe Acrobat, no CD-ROM que acompanha o trabalho.

Campo	Descrição	Unidade
Х	Coordenada UTM Leste	m
Y	Coordenada UTM Norte	m
FIDUCIAL	Fiducial	-
GPSALT	Altitude GPS	m
BARO	Altitude Barométrica	m
ALTURA	Altura de Vôo (Radar Altímetro)	m
MDT	Modelo Digital do Terreno	m
MAGBASE	Campo Magnético da Base Fixa	nT
MAGBRU	Campo Magnético não Compensado	nT
MAGCOM	Campo Magnético Compensado	nT
MAGCOR	Campo Magnético Corrigido da Variação Diurna	nT
MAGNIV	Campo Magnético Total Nivelado Reduzido do IGRF	nT
MAGMIC	Campo Magnético Total Micronivelado	nT
MAGIGRF	Campo Magnético Total Reduzido do IGRF	nT
IGRF	Campo Magnético de Referência (fonte NOAA)	nT
LONGITUDE	Longitude	graus decimais
LATITUDE	Latitude	graus decimais
DATA	Data	ano/mês/dia
HORA	Hora	hh:mm:ss

Tabela 19 – Banco de Dados Geosoft (GDB) – Magnetometria.

Tabela 20 – Banco de Dados Geosoft (GDB) – Gamaespectrometria.

Campo	Descrição	Unidade
Х	Coordenada UTM Leste	m
Y	Coordenada UTM Norte	m
FIDUCIAL	Fiducial	-
GPSALT	Altitude GPS	m
BARO	Altitude Barométrica	m
ALTURA	Altura do Vôo (Radar Altímetro)	m
MDT	Modelo Digital do Terreno	m
СТВ	Contagem Total Bruto	cps
KB	Potássio Bruto	cps
UB	Urânio Bruto	cps
THB	Tório Bruto	cps
UUP	Urânio UP	cps
LIVE_TIME	Tempo de Amostragem	ms
COSMICO	Radiação Cósmica	cps
TEMP	Temperatura	graus Celsius
CTCOR	Contagem Total Corrigido	cps
KCOR	Potássio Corrigido	cps
UCOR	Urânio Corrigido	cps
THCOR	Tório Corrigido	cps
CTEXP	Taxa de Exposição da Contagem Total	μRh
KPERC	Potássio em porcentagem	%
eU	Urânio em ppm	ppm
eTH	Tório em ppm	ppm
THKRAZAO	Razão entre Tório e Potássio	-
UKRAZAO	Razão entre Urânio e Potássio	-
UTHRAZAO	Razão entre Urânio e Tório	-
LONGITUDE	Longitude	graus decimais
LATITUDE	Latitude	graus decimais
DATA	Data	ano/mês/dia
HORA	Hora	hh:mm:ss

Tabela 21 – Banco de Dados Geosoft (GDB) – Gamaespectrometria 256 Canais.

Х	Coordenada UTM Leste	m
Υ	Coordenada UTM Norte	m
FIDUCIAL	Fiducial	-
SpectraD	Vetor Espectro 256 Canais Detector Downward	cps
SpectraU	Vetor Espectro 256 Canais Detector Upward	cps

Tabela 22 – Arquivo de Cruzamentos XYZ – Magnetometria.

Х	Coordenada UTM Leste	m
Y	Coordenada UTM Norte	m
FIDUCIAL	Fiducial	-
GPSALT	Altitude GPS	m
ALTURA	Altura do Vôo (Radar Altímetro)	m
MAGCOR	Campo Magnético Corrigido da Variação Diurna	nT
MAGNIV	Campo Magnético Total Nivelado	nT
RESIDUO	Diferença Aplicada no Cruzamento para Nivelamento	nT
VÔO	Número do Vôo	_

5.9 Arquivos de Poligonais

Estão sendo entregues, também, no formato *Geosoft PLY*, os arquivos correspondentes ao corte das folhas 1:100.000 e 1:250.000. Esses arquivos contemplam os pares cartesianos (X e Y) que definem o polígono relativo ao corte padrão das folhas IBGE. A sintaxe dos arquivos compreende sua codificação, seguida da extensão "ply".

5.10 Produtos Originais

Os originais obtidos no levantamento, tais como fitas de vídeo e fitas originais, contendo dados brutos e os registros analógicos permanecerão sob a guarda e conservação da Lasa Engenharia e Prospecções SA., conforme determina a Portaria N° 637-SC-6/FA-61, do EMFA, de 05.03.1998.

Figura 11 – Mapa Pseudo-Iluminado do Campo Magnético Total (reduzido do IGRF) (Azimute da Fonte Luminosa: 45°; Inclinação: 45°).

Figura 12 – Mapa do Sinal Analítico do Campo Magnético Total (reduzido do IGRF) (Azimute da Fonte Luminosa: 45°; Inclinação: 45°).

Figura 13 – Mapa Radiométrico da Taxa de Exposição do Canal de Contagem Total.

Figura 14 – Mapa Radiométrico Ternário (K-U-Th) – (CMY Invertido).

Figura 15 – Mapa Radiométrico da Razão Tório / Potássio.

Figura 16 – Mapa Pseudo-Iluminado do Modelo Digital do Terreno (Azimute da Fonte Luminosa: 45°; Inclinação: 45°).

6. PARTICIPAÇÃO DA CPRM – SERVIÇO GEOLÓGICO DO BRASIL

Os serviços de aquisição de dados do projeto foram supervisionados pelos fiscais da CPRM:

Paulo Marques Abreu	Geólogo	D1GEOF-RJ
Paulo José Ferreira Gomes	Engenheiro de Minas	SUREG-BA

A revisão e compatibilização geral dos resultados obtidos apresentados no Relatório Final foi executada pelos técnicos da CPRM, Alexandre Lisboa Lago, Paulo Marques Abreu e Ludwig Zellner, com supervisão da gerente do contrato, geóloga Maria Laura Vereza de Azevedo.

7. REFERÊNCIAS BIBLIOGRÁFICAS

- **DNPM. 1985** Manual Técnico de Geologia, Departamento Nacional da Produção Mineral. Brasília, Brasil, 354p.
- **GEOSOFT 2005** Montaj Geophysics Levelling System: Tutorial and User Guide. Toronto, Canada, disponível em http://www.geosoft.com
- GRASTY, R. L. & MINTY, B. R. S. 1995 A guide to the technical specifications for airborne gammaray surveys. AGSO, Australia, 86p.
- **IAEA. 1991 -** Airborne gamma ray spectrometer surveying. International Atomic Energy Agency. Technical Reports Series No. 323. Vienna, Austria, 97p.
- IAEA. 2003 Guidelines for radioelement mapping using gamma ray spectrometry data. International Atomic Energy Agency. TECDOC1363. Vienna, Austria, 173p.

ANEXO I - RESUMO DO PROCESSO DE CALIBRAÇÃO DO GAMAESPECTRÔMETRO

ANEXO I-a - RESULTADO DOS TESTES DA RESOLUÇÃO DOS CRISTAIS DETECTORES (DOWNWARD e UPWARD)

Aeronave: PT-WOT Data da Calibração: 07/07/2008

Foto tirada no dia 7/07/2008 no hangar em Jacarepaguá mostrando a resolução dos cristais do sistema Exploranium GR-820 da aeronave PT-WOT

Spectrometer Calibration Sheet

Flight	_
Base _Rio de Janeiro	
Aircraft _PT-WOT	

Job _____ Client _____ Pilot _____

Date ____07/07/2008______

Area _____ Operator ___Nilton_____

	GR820	BOX A	BOX B	BOX D	ROI	ELEMENT	CHANNEL	STAB
SN	8257	2661	2662	2563	1	TOTAL COUNT	34233	
CAL					2	POTASSIUM	115131	122
ADC	133				3	URANIUM	139155	147
		-			4	THORIUM	202233	218
					8	URANIUM UP	139155	

AMPLIFIER A			AMPLIFIER B			AMPLIFIER C		
XTAL	FWHM (%)	GAIN	XTAL	FWHM (%)	GAIN	XTAL	FWHM (%)	GAIN
A1	5.4	126	B1	5.8	112	D1 UP	9.3	122
A2	5.2	123	B2	5.0	119	D2 UP	8.7	130
A3	5.5	120	B3	5.7	125	D3	4.9	121
A4	5.7	123	B4	5.1	134	D4	5.3	119

TOTAL	DOWN	UP
CANAL	218.1	54.9
FWHM (%)	4.9	9.1

REFERENCE Th < 7%	REFERENCE Cs < 12%
BOX A & B	CRYSTALS (UP) D1 & D2
CRYSTALS (DOWN) D3 & D4	

SPEC201800010.MSD

SAMPLE TEST			INITIAL			
LINE	SAMPLE	FID INITIAL	TIME INITIAL	FID FINAL	TIME FINAL	
11	ТН	714	12:13	834	12:15	
12	U	928	12:16	1048	12:18	
13	BG	1114	12:19	1234	12:21	

SPEC201800011.MSD

SAMPLE TEST			FINAL				
LINE	SAMPLE	FID INITIAL	TIME INITIAL	FID FINAL	TIME FINAL		
21	ТН	23461	18:32	23581	18:34		
22	U	23700	18:36	23820	18:38		
23	BG	23907	18:39	24027	18:41		

ANEXO I-b - RESULTADO DO TESTE DOS COEFICIENTES DE ESPALHAMENTO COMPTON

Aeronave: PT-WOT

Data: 07/07/2008

Resumo das Contagens de Cada Elemento Sobre os Tanques de Calibração Portáteis

Aeronave PT-WOT.

Obs.: Valores corrigidos do live time

Р	acote de Crista (1.024 pol ³)	ais A	ELEMENTOS (cps)			
Num. Linha	Tanque	Tempo (s)	K (média)	U (média)	Th (média)	
BG1	Background	1	303,968	58,607	116,229	
TH1	Tório	1	381,550	111,098	313,651	
U1	Urânio	1	405,653	204,432	124,840	
K1	Potássio	1	548,588	56,862	114,193	

P	acote de Crista (1.024 pol ³)	ais B	E	LEMENTO (cps)	S
Num. Linha	Tanque	Tempo (s)	K (média)	U (média)	Th (media)
BG2	Background	1	318,363	66,149	134,087
TH2	Tório	1	395,045	118,483	325,835
U2	Urânio	1	415,189	202,777	142,899
K2	Potássio	1	548,499	65,836	132,485

Pacote de Cristais D (512 pol ³)			ELEMENTOS (cps)		
Num, Linha	Tanque	Tempo (s)	K U T (média) (média) (mé		Th (media)
BG3	Background	1	178,270	30,869	56,899
TH3	Tório	1	204,854	47,534	114,279
U3	Urânio	1	206,895	72,295	59,317
K3	Potássio	1	242,683	31,103	56,569

Pacote de Crist (1.024 pol ³	ELEMENTOS (Acumulado)			
Tanque	TanqueTempo (s)		U	Th
Background	600	182381	35164	69737
Tório 600		228930	66659	188191
Urânio 600		243392	122659	74904
Potássio 600		329153	34117	68516

Pacote de Cris (1.024 pol ³	ELEMENTOS (Acumulado)			
Tanque	TanqueTempo (s)		K U Th	
Background 600		191018	39689	80452
Tório	600	237027	71090	195501
Urânio 600		249113	121666	85739
Potássio	600	329099	39502	79491

Pacote de Crist (512 pol ³)	ELEMENTOS (Acumulado)			
Tanque	TanqueTempo (s)		U	Th
Background	600	106962	18521	34139
Tório	600	122912	28520	68567
Urânio 600		124137	43377	35590
Potássio	600	145610	18662	33941

Pacotes de Cristai (2.560 pol ³	ELEMENTOS (Acumulado)			
Tanque	Tempo (s)	К	U	Th
Background 600		480360	93374	184328
Tório	600	588869	166269	452259
Urânio 600		616642	287702	196234
Potássio 600		803862	92281	181948

Cópia do arquivo de saída do programa PADWIN com o resultado do Teste sobre os Tanques de Calibração N/S 94 e referente ao pacote de cristais A:

""" CALIBRATION OF KUTH WINDOW COUNTS FROM PAD MEASUREMENTS """							
	PROGRAM PADWI N						
Concentrations of	Transportabl e	Pads					
NUMBER OF PADS =	4						
PAD CONCENTRATI ONS	5:						
PCT	C K	PPM EU	PPM TH	I			
B Pad 1. 410 (K Pad 8. 710 (U Pad 1. 340 (T Pad 1. 340 (. 010) . 090) . 020) 52 . 020) 2	. 97 (. 03) . 32 (. 02) . 90 (1. 00) . 96 (. 06)	2. 26 (. 74 (3. 40 (136. 00 (. 10) . 10) . 14) 2. 10)			
GEOMETRIC CORRECTI	ON FACTORS:						
POTASSI UM URAN	II UM THORI UM	[
1.17 1.1	.7 1.19						
Aeronave PT-WOT Ca WINDOW COUNTS:	nixa A 07/07/2	2008					
TIME (M)	K COUNTS	U COUNTS	TH COUNTS				
B Pad 600.0 K Pad 600.0 U Pad 600.0 T Pad 600.0 1 600.0	182381. 329153. 243392. 228930.	35164. 34117. 122659. 66659.	69737. 68516. 74904. 188191.				
A-MATRIX FROM NONI	LINEAR REGRESS	I ON:					
3. 381E+01 (4. 510E 8. 338E02 (6. 301E0 4. 008E02 (9. 079E0	201) 1. 991E 22) 2. 801E+(22) 1. 335E0	+00 (4.613E02) 00 (5.548E02) 1 (1.342E02)) 5. 682E01 3. 509E01 (1. 474E+00 ((1. 324E02) (6. 970E03) (2. 402E02)			
INVERSE A-MATRIX:							
2.964E02 (3.973E0 7.905E04 (7.027E04 7.343E04 (1.840E03	04) 2. 077E02 1) 3. 617E01 3) 3. 220E02	(3. 654E04) (7. 125E03) (2. 908E03)	6. 481E03 (2. 0 8. 579E02 (2. 1 6. 863E01 (1. 1	050E04) 34E03) 13E02)			
WINDOW SENSITIVITIES FOR SMALL SOURCES:							
K SENSITIVITY (A11) = 3.381E+01 (4.510E-01) COUNTS/ M PER PCT K							
U SENSITIVITY (A2	(22) = 2.801E+0	0 (5.548E-02)	COUNTS/ M PH	ER PPM EU			
TH SENSITIVITY (A3	(33) = 1.474E+0	0 (2.402E-02)	COUNTS/ M PH	ER PPM TH			

WINDOW SENSITIVITIES FOR INFINITE SOURCES:

K SENSITIVITY (A11) = 3.955E+01 (5.277E-01) COUNTS/ M PER PCT K
U SENSITIVITY (A22) = 3.277E+00 (6.491E-02) COUNTS/ M PER PPM EU
TH SENSITIVITY (A33) = 1.754E+00 (2.858E-02) COUNTS/ M PER PPM TH
STRI PPI NG RATI OS:
TH INTO U (ALPHA = A23/A33): 2380 (0031)
TH INTO K (BETA = A13/A33): 3854 (0068)
U INTO K (GAMMA = $A12/A22$): 7110 (0097)
U INTO TH (A = $A32/A22$): . 0477 (. 0047)
K INTO TH (B = $A31/A11$): . 0012 (. 0027)
K INTO U (G = $A21/A11$): . 0025 (. 0019)
BACKGROUND COUNT RATES:
K WINDOW : 2.531E+02 (1.157E+00) COUNTS/M
U WINDOW : 5.498E+01 (4.104E-01) COUNTS/M
TH WINDOW: 1.127E+02 (5.824E-01) COUNTS/M
NUMBERS IN PARENTHESES ARE ESTIMATED STANDARD DEVIATIONS

Cópia do arquivo de saída do programa PADWIN com o resultado do Teste sobre o Tanque de Calibração N/S 94 e referente ao pacote de cristais B:

""" CALIBRATION OF KUTH WINDOW COUNTS FROM PAD MEASUREMENTS """					
PROGRAM PADWI N					
Concentrations of Transportable Pads					
NUMBER OF PADS = 4					
PAD CONCENTRATIONS:					
PCT K PPM EU PPM TH					
B Pad1. 410 (.010).97 (.03)2. 26 (.10)K Pad8. 710 (.090).32 (.02).74 (.10)U Pad1. 340 (.020)52. 90 (1.00)3. 40 (.14)T Pad1. 340 (.020)2. 96 (.06)136. 00 (2. 10)					
GEOMETRIC CORRECTION FACTORS:					
POTASSI UM URANI UM THORI UM					
1. 17 1. 17 1. 19					
Aeronave PT-WOT Caixa B - 07/07/2008					
WI NDOW COUNTS:					
TIME (M) K COUNTS U COUNTS TH COUNTS					
B Pad 600.0 191018. 39689. 80452. K Pad 600.0 329099. 39502. 79491. U Pad 600.0 249113. 121666. 85739. T Pad 600.0 237027. 71090. 195501. 1 1 1 1 1 1					
A-MATRIX FROM NONLINEAR REGRESSION:					
3. 181E+01(4. 286E-01)1. 895E+00(4. 450E-02)5. 618E-01(1. 312E-02)2. 643E-01(6. 694E-02)2. 624E+00(5. 220E-02)3. 524E-01(7. 063E-03)9. 103E-02(9. 671E-02)1. 384E-01(1. 419E-02)1. 432E+00(2. 343E-02)					
INVERSE A-MATRIX:					
3. 164E-02 (4. 289E-04)2. 249E-02 (4. 062E-04)6. 880E-03 (2. 236E-04)2. 956E-03 (8. 531E-04)3. 883E-01 (7. 681E-03)9. 441E-02 (2. 356E-03)1. 726E-03 (2. 146E-03)3. 610E-02 (3. 391E-03)7. 080E-01 (1. 153E-02)					
WINDOW SENSITIVITIES FOR SMALL SOURCES:					
K SENSITIVITY (A11) = 3. 181E+01 (4. 286E-01) COUNTS/ M PER PCT K					
U SENSITIVITY (A22) = 2.624E+00 (5.220E-02) COUNTS/ M PER PPM EU					
TH SENSITIVITY (A33) = 1.432E+00 (2.343E-02) COUNTS/ M PER PPM TH					
WINDOW SENSITIVITIES FOR INFINITE SOURCES:					

K SENSITIVITY (A11) = 3.722E+01 (5.015E-01) COUNTS/ M PER PCT K U SENSITIVITY (A22) = 3.070E+00 (6.107E-02) COUNTS/ M PER PPM EU TH SENSITIVITY (A33) = 1.704E+00 (2.789E-02) COUNTS/ M PER PPM TH STRIPPING RATIOS: TH INTO U (ALPHA = A23/A33): . . 2461 (. 0033) TH INTO K (BETA = A13/A33): . . 3924 (. . 0070) U INTO K (GAMMA = A12/A22): . . 7223 (. . 0103) = A32/A22: . 0527 (. 0053) U INTO TH (A K INTO TH (B = A31/A11): .0029 (.0030) K INTO U (G = A21/A11): .0083 (.0021) BACKGROUND COUNT RATES: K WINDOW : 2.704E+02 (1.146E+00) COUNTS/M U WINDOW : 6. 243E+01 (4. 318E-01) COUNTS/M TH WINDOW : 1.306E+02 (6.192E-01) COUNTS/M NUMBERS IN PARENTHESES ARE ESTIMATED STANDARD DEVIATIONS

Cópia do arquivo de saída do programa PADWIN com o resultado do Teste sobre o Tanque de Calibração N/S 94 e referente ao pacote de cristais D:

""" CALIBRATION OF KUTH WINDOW COUNTS FROM PAD MEASUREMENTS """ PROCRAM PADWIN					
FROGRAM FADWIN					
Concentrations of Transportable Pads					
NUMBER OF PADS = 4					
PAD CONCENTRATIONS:					
PCT K PPM EU PPM TH					
B Pad 1. 410 (.010) .97 (.03) 2. 26 (.10) K Pad 8. 710 (.090) .32 (.02) .74 (.10) U Pad 1. 340 (.020) 52. 90 (1.00) 3. 40 (.14) T Pad 1. 340 (.020) 2. 96 (.06) 136. 00 (2. 10)					
GEOMETRIC CORRECTION FACTORS:					
POTASSI UM URANI UM THORI UM					
1. 17 1. 17 1. 19					
Aeronave PT-WOT Caixa D - 07/07/2008					
WINDOW COUNTS:					
TIME (M) K COUNTS U COUNTS TH COUNTS					
B Pad 600. 0 106962. 18521. 34139. K Pad 600. 0 145610. 18662. 33941. U Pad 600. 0 124137. 43377. 35590. T Pad 600. 0 122912. 28520. 68567.					
A-MATRIX FROM NONLINEAR REGRESSION:					
8. 914E+00 (1. 603E-01)5. 590E-01 (1. 923E-02)1. 951E-01 (6. 821E-03)1. 265E-01 (4. 484E-02)7. 954E-01 (1. 729E-02)1. 128E-01 (3. 243E-03)4. 733E-02 (6. 089E-02)3. 723E-02 (8. 633E-03)4. 285E-01 (7. 815E-03)					
INVERSE A-MATRIX:					
1. 135E-01(2. 087E-03)7. 827E-02(2. 387E-03)3. 105E-02(1. 554E-03)1. 647E-02(6. 814E-03)1. 284E+00(2. 760E-02)3. 307E-01(1. 073E-02)1. 110E-02(1. 613E-02)1. 029E-01(2. 251E-02)2. 366E+00(4. 216E-02)					
WINDOW SENSITIVITIES FOR SMALL SOURCES:					
K SENSITIVITY (A11) = 8.914E+00 (1.603E-01) COUNTS/ M PER PCT K					
U SENSITIVITY (A22) = 7.954E-01 (1.729E-02) COUNTS/ M PER PPM EU					
TH SENSITIVITY (A33) = 4.285E-01 (7.815E-03) COUNTS/ M PER PPM TH					
WINDOW SENSITIVITIES FOR INFINITE SOURCES:					

K SENSITIVITY (A11) = 1.043E+01 (1.876E-01) COUNTS/ M PER PCT K U SENSITIVITY (A22) = 9.307E-01 (2.023E-02) COUNTS/ M PER PPM EU TH SENSITIVITY (A33) = 5.099E-01 (9.300E-03) COUNTS/ M PER PPM TH STRIPPING RATIOS: TH INTO U (ALPHA = A23/A33): . . 2633 (. . 0068) TH INTO K (BETA = A13/A33): . . 4553 (. .0148) U INTO K (GAMMA = A12/A22): . . 7027 (. . 0212) = A32/A22: . 0468 (. 0108) U INTO TH (A K INTO TH (B = A31/A11): .0053 (.0068) K INTO U (G = A21/A11): .0142 (.0050) BACKGROUND COUNT RATES: K WINDOW : 1.647E+02 (7.102E-01) COUNTS/M U WINDOW : 2.966E+01 (2.856E-01) COUNTS/M TH WINDOW : 5.583E+01 (3.885E-01) COUNTS/M NUMBERS IN PARENTHESES ARE ESTIMATED STANDARD DEVIATIONS

Cópia do arquivo de saída do programa PADWIN com o resultado do Teste sobre o Tanque de Calibração N/S 94 e referente aos pacotes de cristais A+B+D:

""" CALIBRATION OF KUTH WINDOW COUNTS FROM PAD MEASUREMENTS """ PROGRAM PADWIN Concentrations of Transportable Pads NUMBER OF PADS = 4 PAD CONCENTRATIONS: PCT K PPM EU PPM TH **B** Pad .97 (. 03) 2.26 (. 10) 1.410 (. 010) 8.710 Ç . 32 (. 10) . 090) . 74 (K Pad .02)52.90 (3.40 (. 020) . 14) U Pad 1.340 (1.00) T Pad 1.340 (.020)2.96 (. 06) 136.00 (2.10) GEOMETRIC CORRECTION FACTORS: POTASSI UM URANI UM THORI UM 1.19 1.17 1.17 Aeronave PT-WOT Caixa A+B+D - 07/07/2008 WINDOW COUNTS: **K** COUNTS TH COUNTS TIME (M) **U COUNTS B** Pad 600.0 480360. 93374. 184328. K Pad 600.0 803862. 92281. 181948. U Pad 600.0 616642. 287702. 196234. 588869. 166269. 452259. Т Pad 600.0 1 A-MATRIX FROM NONLINEAR REGRESSION: 7. 453E+01 (9. 618E-01) 4. 742E-01 (1. 063E-01) 1. 784E-01 (1. 548E-01) 4. 445E+00 (9. 760E-02) 6. 220E+00 (1. 215E-01) 1. 325E+00 (2. 751E-02) 8. 161E-01 (1. 473E-02) 3. 092E-01 (2. 349E-02) 3. 334E+00 (5. 336E-02) **INVERSE A-MATRIX:** 1. 348E-02 (1. 744E-04) 9. 487E-03 (1. 505E-04) 3. 037E-03 (7. 888E-05) 9. 449E-04 (2. 400E-04) 6. 340E-04 (6. 281E-04) 3. 962E-02 (9. 222E-04) 3. 037E-01 (4. 850E-03) 1.634E-01 (3.178E-03) 1. 464E-02 (1. 026E-03) WINDOW SENSITIVITIES FOR SMALL SOURCES: K SENSITIVITY (A11) = 7.453E+01 (9.618E-01) COUNTS/ M PER PCT K U SENSITIVITY (A22) = 6. 220E+00 (1. 215E-01) COUNTS/ M PER PPM EU TH SENSITIVITY (A33) = 3. 334E+00 (5. 336E-02) COUNTS/ M PER PPM TH WINDOW SENSITIVITIES FOR INFINITE SOURCES:

K SENSITIVITY (A11) = 8. $720E+01$ (1. 125	E+00) COUNTS/ M PER PCT K
U SENSITIVITY (A22) = $7.277E+00$ (1.422)	E-01) COUNTS/ M PER PPM EU
TH SENSITIVITY (A33) = $3.968E+00$ (6.349)	E-02) COUNTS/ M PER PPM TH
STRIPPING RATIOS:	
TH INTO U (ALPHA = A23/A33): .2448 (. 0023)
TH INTO K (BETA = A13/A33): 3974 (. 0055)
U INTO K (GAMMA = $A12/A22$): 7147 (. 0078)
U INTO TH (A = $A32/A22$): .0497 (. 0036)
K INTO TH (B = $A31/A11$): .0024 (. 0021)
K INTO U (G = $A21/A11$): .0064 (. 0014)
BACKGROUND COUNT RATES: K WI NDOW : 6.882E+02 (2.170E+00) COUNT U WI NDOW : 1.471E+02 (6.967E-01) COUNT TH WI NDOW : 2.991E+02 (9.944E-01) COUNT	ITS/M ITS/M ITS/M
NUMBERS IN PARENTHESES ARE ESTIMATED ST.	CANDARD DEVI ATI ONS

RE	RESULTADO				
Coeficiente	Valor Obtido em 7/07/2008				
α	0,2448±0,0023				
β	0,3974±0,0055				
γ	0,7147±0,0078				
a	0,0497±0,0036				
b	0,0024±0,0021				
g	0,0064±0,0014				

Coeficientes de Espalhamento Compton

ANEXO I-c - DETERMINAÇÃO DOS BACKGROUNDS DA AERONAVE E CÓSMICO

Aeronave: PT-WOT

RESULTADO DO VÔO CÓSMICO DA AERONAVE PIPER NAVAJO PA31 – PT-WOT. (Vol. Pacote de Cristais: 2.560 pol³)

Altitude (m)	Cósmico (cps)	CT (cps)	K (cps)	U (cps)	Th (cps)	Uup (cps)
1150,90*	239,738	333,693	25,224	15,971	10,049	3,015
1623,20*	290,428	345,034	26,409	15,802	11,629	3,036
2260,70	384,685	340,874	25,853	14,266	14,666	2,975
2537,10	435,613	376,227	28,481	15,396	16,931	3,057
3195,20	587,167	459,416	32,113	19,057	22,477	3,866
3839,00	789,823	575,380	38,257	24,221	30,065	4,886

Realizado no litoral do município de Maricá/RJ em 9 de Julho de 2008

*Altitudes excluídas dos cálculos com vistas a obtenção de melhor ajuste dos coeficientes

	RESULTADO						
CANAL	<i>Background</i> Aeronave	<i>Stripping</i> Cósmico					
СТ	123,4247	0,5726					
K	15,0171	0,0294					
U	4,6994	0,0246					
Th	0,3385	0,0337					
Uup	1,0188	0,0049					

ANEXO I-d - DETERMINAÇÃO DAS CONSTANTES DE CALIBRAÇÃO DO RADÔNIO

Aeronave: PT-WOT

Vôo	Contagem Total	Potássio	Urânio	Tório	Urânio <i>Upward</i>	Cósmico
8	353,34	28,22	15,98	13,18	3,08	265,46
	418,21	31,80	21,35	12,52	3,63	252,22
9	-	-	-	-	-	-
	360,21	27,90	16,42	12,07	3,28	256,41
10	362,52	28,47	16,96	13,82	2,83	257,00
	420,72	30,67	21,35	14,30	3,78	268,00
11	-	-	-	-	-	-
	477,08	34,59	24,81	14,19	4,01	271,00
13	418,55	31,50	20,02	12,49	3,56	248,00
	464,81	34,39	23,60	15,07	4,08	263,00
14	395,37	30,58	18,14	14,43	3,35	256,00
	512,29	35,68	26,95	14,91	4,85	264,00
15	-	-	-	-	-	-
	470,60	33,34	23,79	13,97	4,34	268,00
16	388,99	30,21	17,29	12,59	3,02	247,00
	530,08	37,32	29,01	13,10	4,60	239,00
20	448,97	34,27	21,39	12,60	3,76	238,00
	503,29	36,39	26,86	13,55	4,22	255,00
22	399,69	29,72	18,47	14,51	3,30	263,00
	439,77	31.90	22.77	12.60	4.09	245.00
23	-	-	-	-	-	-
	405.46	28.86	19.93	13.80	3.44	258.00
24	337.08	26.74	14.69	12.66	2.57	267.00
	350.68	25.69	16.67	12.08	3.10	237.00
27	390.34	29.74	18.01	12.42	2.80	269.00
	520,39	35,83	29,08	13,17	5,19	267,00
28	-	-	-	-	-	-
	416,07	29,48	21,74	13,04	3,84	273,00
30	469,59	33,08	22,52	14,53	3,94	272,00
	474,33	33,07	24,53	12,82	4,04	269,00
32	324,57	25,58	14,86	12,44	2,97	269,00
	365,88	27,95	18,10	12,45	2,97	250,00
35	357,57	28,42	16,77	12,86	3,16	294,00
	473,42	34,18	25,39	12,56	4,38	262,00
36	390,91	29,63	18,45	12,58	3,19	271,00
	448,08	33,15	23,11	12,78	3,62	262,00
37	373,71	29,73	16,88	13,43	2,80	270,00
	456,00	33,55	24,23	12,22	4,14	261,00
38	383,49	29,44	18,24	12,64	3,18	297,00
	474,07	35,13	25,85	12,58	4,31	268,00
42	389,67	29,46	18,67	12,58	3,86	293,00
	435,93	32,67	22,47	12,48	3,95	275,00
43	-	-	-	-	-	-
	451,50	34,34	22,64	12,49	3,71	260,00
56	448,57	32,37	22,96	13,20	4,00	289,00
	580,56	39,19	30,95	14,71	5,28	261,00
57	412,85	32,12	20,64	13,03	3,39	284,00

Vôo	Contagem Total	Potássio	Urânio	Tório	Urânio <i>Upward</i>	Cósmico
	413,69	32,13	20,66	12,37	3,81	263,00
59	407,59	31,22	18,32	13,93	3,04	266,00
	395,72	30,58	19,38	12,72	3,65	271,00
60	452,87	32,11	23,10	13,86	4,27	273,00
	479,26	35,15	25,96	12,53	4,19	273,00
61	-	-	-	-	-	-
	493,79	36,50	26,50	13,52	4,79	253,00
62	522,08		25,24	13,98	4,55	249,00
	558,93	40,59	33,42	12,93	5,63	266,00
63	-	-	-	-	-	-
	423,01	32,93	21,93	12,23	3,78	271,00
64	447,38	34,22	23,43	12,88	3,66	261,00
	455,90	34,45	23,59	12,24	4,17	269,00
65	-	-	-	-	-	-
	535,96	39,76	31,18	12,91	4,78	275,00
66	323,25	27,04	15,28	11,88	2,94	274,00
	372,44	30,87	18,85	12,03	3,30	268,00
67	331,96	27,34	15,77	11,89	3,16	270,00
	434,41	32,21	23,40	12,55	4,35	269,00
68	-	-	-	-	-	-
	458,65	36,36	24,16	11,85	4,77	273,00
72	400,77	31,16	19,67	12,08	3,47	277,00
	449,96	34,68	24,00	12,41	4,41	267,00
73	343,75	27,85	15,61	11,69	2,70	285,00
	432,05	32,46	22,53	12,26	4,11	264,00
74	-	-	-	-	-	-
	442,83	32,92	23,08	12,22	4,06	269,00
75	389,68	30,32	19,10	12,14	3,49	269,00
	460,98	35,29	24,76	12,90	4,82	265,00
76	-	-	-	-	-	-
	473,19	34,87	25,19	12,24	4,20	268,00
77	366,77	29,36	17,99	11,31	3,12	267,00
	517,72	36,65	29,05	13,01	5,27	264,00
78	-	-	-	-	-	-
	493,04	36,13	28,19	13,06	4,77	277,00
79	342,20	26,90	16,16	11,91	3,11	275,00
	430,55	32,87	21,98	12,70	4,49	270,00
80	-	-	-	-	-	-
	417,86	30,72	22,61	12,01	4,09	261,00
81	342,01	27,81	14,72	12,58	2,86	264,00
	471,78	35,65	25,34	12,00	4,48	256,00
82	-	-	-	-	-	-
	404,30	29,55	20,95	12,21	3,71	273,00
84	408,23	31,27	19,81	12,98	3,64	268,00
	458,76	33,67	25,35	11,35	4,64	266,00
85	387,16	29,47	19,43	11.90	3,63	267.00
	433,14	31,18	22,77	12,54	3,90	270,00
86	-	-	-	-	-	-
	406,47	30,67	20,76	12,04	3,76	267,00

Vôo	Contagem Total	Potássio	Urânio	Tório	Urânio <i>Upward</i>	Cósmico
87	364,34	28,44	17,57	11,78	3,44	268,00
	491,37	35,81	27,33	12,00	4,79	267,00
88	-	-	-	-	-	-
	438,52	31,83	23,17	11,56	4,29	262,00
89	358,13	27,89	17,11	11,67	3,59	271,00
	395,51	30,67	20,84	11,48	3,70	268,00
90	-	-	-	-	-	-
	394,98	30,12	20,95	11,60	4,01	273,00
91	361,04	27,57	16,76	11,37	3,57	268,00
	415,60	30,99	22,39	11,87	4,40	268,00
92	-	-	-	-	-	-
	437,43	32,46	23,52	12,33	4,52	272,00
93	324,18	26,11	14,76	11,62	2,79	270,00
	361,56	27,58	17,65	11,36	3,45	270,00
94	-	-	-	-	-	-
	367,00	28,67	18,06	11,82	3,52	278,00
95	325,61	26,20	14,80	11,88	2,76	269,00
	327,45	26,99	15,28	11,39	3,04	273,00
96	-	-	-	-	-	-
	320,39	25,94	15,20	10,83	2,95	261,00
97	403,92	28,88	20,97	12,16	3,61	272,00
	347,54	26,10	17,02	11,33	3,15	270,00
98	364,00	28,24	17,40	12,39	3,76	271,00
	412,64	31,37	21,24	12,73	3,65	266,00
99	312,66	25,88	13,85	11,63	2,44	270,00
	308,92	25,11	14,16	11,73	2,69	271,00
100	-	-	-	-	-	-
	321,51	25,00	15,04	11,75	2,89	274,00
101	343,48	27,30	16,42	12,34	3,04	281,00
	357,34	27,84	17,57	11,97	3,53	276,00
102	-	-	-	-	-	-
	372,01	29,67	18,60	11,57	3,59	271,98
103	366,99	28,55	18,00	12,34	3,26	271,00
	401,90	29,72	20,47	12,39	3,81	275,00
104	-	-	-	-	-	-
	377,51	28,87	18,44	12,36	3,67	277,00
105	324,89	26,56	15,59	11,78	2,86	276,00
	395,72	30,23	20,62	12,48	3,33	274,00
106	-	-		-		-
	388,77	29,61	19,71	11,37	3,74	270,70
107	369,16	27,07	18,68	12,90	3,61	277,00
	405,42	30,47	20,40	12,24	3,57	272,00
111	308,78	24,34	13,57	11,05	2,58	276,00
	354,56	27,84	17,10	12,12	3,07	279,00
112	313,92	24,94	14,40	11,24	2,94	276,00
	438,77	33,43	22,97	12,49	4,00	270,00
113	-	-	-	-	-	-
	437,89	31,36	23,26	12,72	4,28	280,77
114	375,42	28,49	19,07	11,36	3,94	280,00

Vôo	Contagem Total	Potássio	Urânio	Tório	Urânio <i>Upward</i>	Cósmico
	357,78	28,05	17,13	11,85	3,14	279,00
115	350,25	27,40	16,61	11,64	3,31	277,00
	386,92	29,71	19,78	12,40	3,92	268,00
116	408,47	31,30	20,57	12,04	3,78	283,78
	462,64	34,52	24,61	13,24	4,26	273,07
117	374,37	29,86	17,45	12,35	2,80	276,00
	428,54	32,60	21,72	12,05	4,08	280,00
118	394,84	29,38	19,83	12,94	3,51	281,00
	386,13	30,22	19,42	12,14	3,39	276,00
119	400,95	30,92	19,61	12,32	3,66	273,00
	451,80	34,61	23,87	12,65	4,27	278,00
120	340,64	26,94	16,31	11,92	2,97	275,00
	372,18	29,86	17,87	12,50	3,33	276,00
123	350,72	28,04	16,47	11,64	2,82	276,00
	344,36	27,78	16,49	11,99	3,18	276,00
124	296,83	25,23	12,47	12,54	2,50	271,00
	391,42	30,27	19,91	12,84	3,60	272,00
125	-	-	-	-	-	-
	399,38	31,21	19,96	12,74	3,82	272,00
126	335,44	26,60	15,67	11,85	2,99	282,00
	412,75	30,60	21,39	12,25	3,93	282,00

CANAL	COEFICIENTE	VALOR OBTIDO
Contagem Total	a _{tc}	13,869
Potássio	a _k	0,7846
Urânio upward	au	0,149
Tório	a _t	0,088

ANEXO I-e - CALIBRAÇÃO DINÂMICA – RESULTADOS DOS TESTES

CÁLCULO DAS TAXAS DE CONCENTRAÇÃO DOS RADIOELEMENTOS

POTÁSSIO, URÂNIO E TÓRIO

SUMÁRIO

1 - Considerações Gerais

2 - Levantamento Terrestre

3 - Levantamento Aéreo

4 - Conversão para Concentração de Elementos

Índice das Figuras, Quadros, Tabela e Mapa

Figura 1 Figura 2 Figura 3	 Gamaespectrômetro Portátil GR-320 Coleta de Dados Terrestres na Pista de Calibração Dinâmica Calibração Dinâmica – Perfil Comparativo – Contagem Total
Quadro 1	- Resultado Estatístico do Levantamento Terrestre na Pista de Calibração
Quadro 2	- Resultado Estatístico do Levantamento Terrestre na Lagoa de Maricá
Quadro 3	- Resultado Estatístico do Levantamento Aéreo Sobre a Pista de Calibração
Quadro 4	 Resultado Estatístico do Levantamento Terrestre na Pista de Calibração após a Correção do Background
Quadro 5	- Coeficientes de Sensibilidade
Tabela 1	- Listagem dos Valores das Leituras do Levantamento Terrestre
Mapa 1	- Localização das Estações Terrestres Sobre a Pista de Calibração Dinâmica

1 Considerações Gerais

Para a conversão dos dados aerogamaespectrométricos, medidos em contagens por segundo (cps), para concentração de elementos para K (em %), eU e eTh (em ppm) e o canal de contagem total em taxa de exposição (em μ R/h) são utilizadas técnicas de calibração para os sistemas gamaespectrométricos aéreo e terrestre transferidas por consultores especialistas canadenses a técnicos da CPRM, da Comissão Nacional de Energia Nuclear (CNEN) e das empresas de levantamento aerogeofísico, reunidos em um *workshop* patrocinado pela CPRM, em conjunto com o *Geological Survey of Canada*, em junho de 1997.

A conversão dos dados aerogamaespectrométricos de contagens por segundo (cps) para concentração de elementos exige a utilização de uma "pista de calibração dinâmica" (*Dynamic Calibration Range – DCR*), para obtenção dos coeficientes de sensibilidade (contagens por segundo / unidade de concentração), bem como para a determinação dos coeficientes de atenuação atmosférica (μ), empregados na correção altimétrica dos canais radiométricos.

Os sistemas gamaespectrométricos, tanto aéreo quanto portátil terrestre, devem ser calibrados aproximadamente a cada 12 meses.

2 Levantamento Terrestre

Na coleta de dados ao longo da pista de calibração é utilizado um gamaespectrômetro portátil EXPLORANIUM, modelo GR-320, 256 canais, com detector de iodeto de sódio ativado a tálio NaI(TI), medindo 76x76mm com resolução melhor que 8,5% para fotopico de Cs-137 (662 keV), como mostra a Figura 1. As medidas foram armazenadas na memória interna do equipamento, bem como anotadas pelo operador em planilha apropriada.

Figura 1 - Gamaespectrômetro Portátil EXPLORANIUM GR-320.

Cerca de 70 estações são registradas ao longo da linha de calibração. Para efeito da remoção do *background* atmosférico da região, são feitas medidas sobre a água, utilizando para isto a Lagoa de Maricá, nas proximidades da linha de calibração. A Figura 2 ilustra a coleta de dados terrestres. Os Quadros 1 e 2 resumem os resultados obtidos no levantamento terrestre.

Figura 2 – Coleta de Dados Terrestres sobre a Pista de Calibração Dinâmica.

Os resultados apresentados a seguir, referem-se à calibração do sistema instalado na aeronave PT-WOT, efetuada em 08/07/2008, na Pista de Calibração Dinâmica de Maricá, RJ:

Aeronave	Data da Calibração
PT-WOT	8/07/2008

Ouadro 1	– Resultado	Estatístico	do Le	evantamento	Terrestre na	Pista de	Calibração
Quadito 1	itebultuuo	Lotationeo	uo Lo	, and an an an a	rene nu	I Ibtu ut	Culloluçuo.

Aeronave	ESTATÍSTICA	CT(*) (µR/h)	K (%)	eU (ppm)	eTh (ppm)	CT (cpm)	K (cpm)	U (cpm)	Th (cpm)
	Nº de Amostras: 69								
PT-WOT	MÉDIA	13,62	2,09	2,40	31,05	3685,93	670,14	189,39	264,83
	DESVIO PADRÃO	3,54	0,77	0,92	9,42	987,23	198,71	50,68	80,31
	ERRO NA MÉDIA(1)	0,43	0,09	0,11	1,13	118,85	23,92	6,10	9,67
	INCERTEZA (%) (2)	0,03	0,04	0,05	0,04				

• (*) Valor obtido através da expressão:

- E = 1,505K + 0,653eU + 0,287eTh
- $E = Taxa de Exposição (\mu R/h)$
- (1) Erro na média = Desvio Padrão (Número de Estações)^{$\frac{1}{2}$}
- (2) Incerteza = Erro na Média Média
- cpm = contagem por minuto

Quadro 2 - Resultado Estatístico do Levantamento Terrestre na Lagoa de Maricá (background).

Aeronave	ESTATÍSTICA	CT (µR/h)	K (%)	eU (ppm)	eTh (ppm)	CT (cpm)	K (cpm)	U (cpm)	Th (cpm)
	Nº de Amostras: 8								
PT-WOT	MÉDIA	0,18	0,01*	0,47*	0,63	99,29	17,29	5,43	6,14
	DESVIO PADRÃO	0,19	0,04	0,22	0,63	14,26	4,89	3,10	2,91
	ERRO NA MÉDIA(1)	0,07	0,01	0,08	0,24	5,39	1,85	1,17	1,10
	INCERTEZA (%) (2)	0,39	0,00	0,00	0,38				

* Valores considerados como zero para efeito do cálculo de remoção de background

3 Levantamento Aéreo

Foi utilizado na aeronave o gamaespectrômetro EXPLORANIUM GR-820, com cristais detectores de NaI com 2.560 pol³ *down* e 512 pol³ *up*. Foram realizadas 8 passagens sobre a pista de calibração e mar, nas seguintes altitudes: 330, 400, 500, 600, 700 e 800 pés. A razão pela qual foram voadas linhas em várias altitudes foi o aproveitamento dos dados para calcular também os coeficientes de atenuação atmosférica (*attenuation coefficients*), os quais são utilizados para a correção altimétrica dos dados radiométricos.

4 Conversão para Concentração de Elementos

A sensibilidade dos detectores da aeronave para as janelas de potássio, urânio e tório foi determinada com base na razão entre as medidas efetuadas a bordo (N) e em terra (C), com a aplicação da seguinte expressão:

S = N / C, onde:

S corresponde à sensibilidade para cada janela,

N é a média das contagens corrigidas (em cps) para cada canal referente à altura do levantamento (100 m) e situada no trecho de interesse das estações utilizadas,

C é a média das concentrações para cada canal das estações terrestres de interesse. Foram utilizados os dados aéreos relativos à primeira passagem na altura de 100 m sobre a pista de calibração, correspondente ao intervalo de 50 metros entre as estações terrestres consideradas para efeito do cálculo da média dos elementos K, U, e Th (do Marco 0 até a estaca 7N).

Para cálculo da "taxa de exposição" (*Exposure rate*) do canal de contagem total é utilizada a fórmula abaixo (IAEA, 1991):

E = 1,505 K% + 0,653 eU + 0,287 eTh, onde:

E é o símbolo para *Exposure rate*, K%, eU e eTh correspondem às concentrações médias destes elementos determinadas em terra na pista de calibração dinâmica, após a redução do *background* medido na lagoa de Maricá.

Os dados estatísticos e os resultados da calibração dinâmica são resumidos nos Quadros 3, 4 e 5, a seguir:

Quadro 3 - Resultado Estatístico do Levantamento Aéreo Sobre a Pista de Calibração.

AERONAVE	ESTATÍSTICA *	CT (cps)	K (cps)	U (cps)	Th (cps)
PT-WOT	MÉDIA	2675,09	140,10	26,55	133,80
	DESVIO PADRÃO	248,11	29,25	10,16	19,09
	ERRO NA MÉDIA	21,35	2,55	0,88	1,66
	INCERTEZA (%)	0,01	0,02	0,03	0,01

* tempo morto, background, stripping e atenuação corrigidos

Quadro 4 – Resultado Estatístico do Levantamento Terrestre na Pista de Calibração após a Correção do *Background*.

Aeronave	ESTATÍSTICA	CT (µR/h)	K (%)	eU (ppm)	eTh (ppm)	CT (cpm)	K (cpm)	U (cpm)	Th (cpm)
	MÉDIA	13,44	2,09	2,40	30,42	3586,64	687,43	194,82	258,69
DT WOT	DESVIO PADRÃO	3,54	0,77	0,92	9,42	987,23	198,71	50,68	80,31
PI-WOI	ERRO NA MÉDIA(1)	0,43	0,09	0,11	1,13	118,85	23,92	6,10	9,67
	INCERTEZA (%) (2)	0,03	0,04	0,05	0,04				

Quadro 5 - Coeficientes de Sensibilidade.

	SENSIBILIDADE (S)								
AERONAVE	CT (cps_uR/h)	\mathbf{K}	\mathbf{U}	Th (cps / ppm)					
		(cps / 70)		(cps/ppm)					
РТ-ЮОТ	199,04	67,03	11,06	4,40					

As Figuras a seguir apresentam os perfis comparativos dos levantamentos aéreo e terrestre.

Aeronave: PT-WOT

Calibração Dinâmica - Perfil Comparativo - Contagem Total

Calibração Dinâmica - Perfil Comparativo - Potássio

Calibração Dinâmica - Perfil Comparativo - Urânio

Calibração Dinâmica - Perfil Comparativo - Tório

TABELA 1 - LISTAGEM DAS LEITURAS DO LEVANTAMENTO TERRESTRE PISTA DE CALIBRAÇÃO DINÂMICA – 08/07/2008 DADOS BRUTOS

Estação	Estaca	UTM LESTE (m)	UTM NORTE (m)	CT (µR/h)	K (%)	eU (ppm)	eTh (ppm)	CT (cpm)	K (cpm)	U (cpm)	Th (cpm)
1	Marco 0	711014.4	7461820.2	15.8	1.8	5.0	34.4	4093	687	256	298
2		711035.0	7461863.0	13.5	0.5	2.0	39.9	3598	401	224	341
3		711055.3	7461893,4	14,4	0,9	3.2	38,1	3758	481	237	327
4		711093,1	7461945,2	20,7	2,0	2,2	56,7	5437	799	305	483
5	Estaca 1S	711119,3	7461984,9	20,4	2,5	2,8	51,6	5470	879	292	441
6		711134,3	7462040,0	17,9	2,3	2,5	44,5	5049	806	253	380
7		711169,2	7462085,7	19,8	2,9	2,8	47,4	5344	920	274	405
8		711198,1	7462113,0	17,1	3,0	1,7	39,9	4638	891	218	341
9	Estaca 2S	711227,2	7462155,7	18,2	3,0	2,1	42,8	4863	913	239	365
10		711244,5	7462170,8	16,8	2,7	1,9	39,9	4543	843	220	340
11		711273,9	7462241,2	18,9	2,5	4,8	41,8	4882	853	285	360
12		711300,0	7462271,6	17,3	2,9	3,9	36,2	4733	891	243	311
13	Estaca 3S	711323,4	7462314,3	13,4	2,1	1,2	32,8	3745	651	175	280
14		711361,2	7462369,2	12,9	2,5	2,0	27,3	3746	740	165	234
15		711375,7	7462387,4	13,6	2,5	1,4	31,0	3853	737	170	265
16		711416,5	7462445,3	10,7	1,3	2,8	24,1	2882	444	164	207
17	Estaca 4S	711442,7	7462488,0	13,7	2,1	2,5	30,9	3743	669	191	265
18		711469,0	7462530,7	13,4	2,7	2,7	26,5	3585	758	174	228
19		711495,1	7462567,3	14,5	2,0	2,9	33,4	3756	659	210	287
20		711521,4	7462613,1	13,4	2,1	2,9	29,0	3789	693	190	250
21	Estaca 5S	711556,4	7462668,0	18,5	2,5	2,6	45,6	4963	846	262	390
22		711585,5	7462710,6	15,8	3,6	2,9	29,6	4467	987	193	255
23		711600,3	7462753,5	12,9	2,1	1,9	29,6	3526	653	173	253
24		711632,3	7462796,1	12,6	2,3	1,7	27,9	3449	700	162	238
25	Estaca 6S	711655,6	7462832,7	14,5	2,7	4,2	26,9	4051	805	206	233
26		711673,1	7462863,3	13,7	2,0	2,6	31,3	3658	631	195	269
27		711696,4	7462896,8	12,0	1,8	1,6	28,7	3334	558	163	245
28		711731,2	7462939,4	15,1	2,5	4,2	30,0	4125	783	219	259
29	Estaca 7S	711772,0	7463003,4	15,2	2,5	3,0	33,1	4146	771	212	284
30		711801,1	7463046,1	12,7	2,3	1,7	28,2	3734	700	163	241
31		711827,3	7463085,7	15,5	3,0	1,5	34,8	4279	860	189	297
32	T	711847,7	7463116,2	14,6	2,5	2,3	32,4	4109	776	194	277
33	Estaca 8S	711876,9	7463165,0	17,0	3,0	2,2	38,6	1195	900	221	330
34		711906,0	7463207,7	15,9	2,9	1,1	37,8	4492	881	198	322
35		711940,9	7463262,6	15,4	2,5	3,5	32,6	4385	819	219	281
36		/12001,5	/463314,0	16,3	2,7	2,4	37,3	4580	847	220	319
37	Estaca 9S	712005,1	/463366,3	15,3	2,5	3,4	32,5	4384	818	217	279
38		/12043,0	/463424,2	15,2	3,0	3,2	29,9	4361	916	201	257
39		/120/5,1	/463476,1	16,4	3,0	2,1	36,6	4612	906	211	313
40		/12089,6	/463497,4	13,0	2,3	2,0	28,7	3773	734	172	246

Estação	Estaca	UTM LESTE (m)	UTM NORTE (m)	CT (µR/h)	K (%)	eU (ppm)	eTh (ppm)	CT (cpm)	K (cpm)	U (cpm)	Th (cpm)
41	Estaca 10S	712104,2	7463521,8	14,3	2,7	1,3	32,7	4080	810	178	279
42		712130,6	7463552,2	18,6	2,9	2,0	45,0	5175	927	248	384
43		712139,1	7463573,6	14,3	2,5	1,6	33,2	4204	755	185	283
44		712191,0	7463612,9	17,4	2,9	2,2	40,3	4775	897	229	344
45	Estaca 13S	712389,7	7463957,8	15,4	2,9	3,2	31,3	4287	836	206	269
46		712415,8	7463994,4	15,6	2,1	2,4	37,8	4111	736	221	323
47		712448,0	7464052,4	12,6	1,1	1,1	35,7	3225	457	186	304
48		712485,9	7464110,3	10,5	0,5	1,3	30,9	2788	299	169	264
49	Estaca 1N	712520,4	7464134,4	10,6	0,5	1,8	30,1	2727	337	174	257
50		712555,1	7464170,9	8,7	1,1	2,3	19,2	2331	368	133	166
51		712832,8	7464662,4	9,8	2,3	1,2	19,2	2860	620	113	164
52		712878,2	7464643,3	12,0	2,1	3,1	23,8	3301	661	170	205
53	Estaca 4N	712861,9	7464701,9	8,2	0,7	2,1	20,1	2303	317	134	173
54		712902,4	7464744,5	13,6	3,0	2,6	25,6	3951	847	168	220
55		712931,3	7464774,8	8,5	0,7	2,0	21,5	2407	322	138	184
56		712946,2	7464817,7	6,2	0,9	0,8	15,0	1784	277	85	128
57	Estaca 5N	712949,6	7464854,6	13,0	2,0	3,7	26,3	3340	620	192	227
58		713004,3	7464893,8	12,6	1,8	2,9	27,9	3558	606	185	240
59		713036,1	7464924,1	9,8	1,6	1,7	21,8	2800	483	133	187
60		713059,4	7464960,7	7,6	1,4	1,9	14,7	2147	408	104	127
61	Estaca 6N	713080,3	7465028,1	12,1	1,4	3,9	25,8	3188	536	195	223
62		713103,9	7465086,2	11,1	1,4	2,5	25,5	3017	491	167	219
63		713096,1	7465138,6	4,7	1,3	0,6	8,1	1464	324	49	69
64		713110,7	7465166,1	5,9	1,8	1,4	8,1	1785	468	65	70
65	Estaca 7N	713119,8	7465199,9	10,0	2,0	2,2	19,4	2794	555	132	167
66		713131,6	7465230,5	6,0	0,9	1,8	12,0	1641	280	90	103
67		713137,9	7465273,4	14,6	1,6	3,4	34,9	3188	538	180	215
68		713158,5	7465319,3	9,0	1,4	2,0	19,3	2459	462	128	166
69	Estaca 8N	713182,2	7465380,5	13,6	0,5	3,4	37,0	3509	397	236	317
1	*	722932,3	7461387,0	-0,2	0,0	-0,6	0,7	95	-23	-9	6
2	*	722932,3	7461387,0	-0,2	/0,1	-0,6	1,2	89	-25	-6	9
3	*	722932,3	7461387,0	0,0	0,0	-0,2	0,4	97	-17	-2	3
4	*	722929,5	7461390,1	-0,1	0,0	-0,4	0,6	98	-14	-5	4
5	*	722929,5	7461390,1	-0,5	0,0	-0,5	/0,6	82	-16	-6	4
6	*	722929,5	7461390,1	0,1	0,0	-0,2	0,8	126	-12	-1	6
7	*	722929,5	7461390,1	-0,1	0,0	-0,8	1,3	108	-14	-9	11
8	*	722932,3	7461387,0	-0,2	0,0	-0,6	0,7	95	-23	-9	6

*Background na Lagoa de Maricá

cpm= Contagem por minuto; ppm = parte por milhão.

Mapa 1 - Localização das Estações Terrestres Sobre a Pista de Calibração Dinâmica

ANEXO I-f - ATENUAÇÃO ATMOSFÉRICA – RESULTADOS DOS TESTES

1 - Cálculo das Constantes de Atenuação Atmosférica

Durante os vôos sobre a pista de calibração dinâmica (*dynamic calibration range – DCR*) realizados em 08/07/2008 nas proximidades de Maricá (RJ), objetivando a determinação dos coeficientes de sensibilidade para converter os dados aerogamaespectrométricos, medidos em contagens por segundo (cps), para concentração de elementos (% K, ppm para eU e eTh e μ R/h para o canal de contagem total), também são realizados vôos em diversas alturas (de 330 a 800 pés com intervalo de 100 pés) sobre a mencionada pista de calibração objetivando a correção altimétrica dos dados radiométricos através da determinação dos coeficientes de atenuação atmosférica (μ) dos radioelementos potássio, urânio e tório, bem como para o canal de contagem total.

A correção altimétrica tem por objetivo referenciar os valores radiométricos à altura nominal do aerolevantamento (100m), eliminando falsas anomalias ocasionadas por elevações no terreno.

A atenuação das radiações gama em relação ao afastamento da fonte pode ser expressa matematicamente, de forma aproximada, pela equação (IAEA, 1991):

 $N_{\rm H} = N_0 \cdot e^{-\mu H}$ (1), onde:

 $\mathbf{N}_{\mathbf{H}}$ é a radiação à distância H da fonte,

 N_0 é a radiação na superfície do terreno (H=0),

 $\mu~$ é o coeficiente de atenuação atmosférica.

Extraindo-se o logaritmo neperiano na relação acima, tem-se:

 $\ln (N_{\rm H}) = -\mu H + \ln (N_0)$

que é a equação de uma reta de coeficiente angular $-\mu$ e coeficiente linear $\ln(N_0)$. Na determinação dos coeficientes de atenuação atmosférica (μ) para cada um dos canais radiométricos são efetuadas regressões lineares dos logaritmos neperianos dos valores radiométricos ln (N_H) em relação às alturas de vôo (de 330, 400, 500, 600, 700 e 800 pés) sobre a "pista de calibração dinâmica" (*dynamic calibration range - DCR*) situada no distrito de Inoã, Município de Maricá (RJ).

A aplicação da correção altimétrica é feita conforme mostrado a seguir:

Fazendo na equação (1) $\mathbf{H} = \mathbf{H}_{100} = 100 \text{ m}$ (altura nominal do levantamento) tem-se:

 $N_{100} = N_0 \cdot e^{-\mu H}_{100}$ (2)

Dividindo-se (2) por (1), obtém-se:

 $N_{100} = N_{H} \cdot e^{-\mu(H_{100} - H)}$ (3)

onde:

- N_{100} é a taxa de contagem normalizada para a altura do levantamento (100m) para um determinado canal;
- N_H é a taxa de contagem corrigida dos *backgrounds* da aeronave, cósmico e do radônio, bem como do efeito do espalhamento Compton;
- μ é o coeficiente de atenuação atmosférica para determinado canal;
- H_{100} é a altura nominal de vôo (100m);
- **H** é a altura medida.

A seguir são apresentados os resultados dos testes de atenuação atmosférica da aeronave que participou do Projeto Aerogeofísico Cristalândia do Piauí.

Aeronave: PT-WOT

Data da Calibração: 08/07/2008

Tabela 1a – Médias Terra, Água e Terra-Água.											
	MÉDIAS SO	OBRE A TE	RRA*								
ALTURA	СТ	K	U	Th							
(pés)	(cps)	(cps)	(cps)	(cps)							
330	3030,904	253,422	83,637	140,719							
331	3072,462	256,459	85,390	144,665							
332	3002,212	251,383	86,071	138,563							
400	2315,298	188,176	68,232	103,429							
500	2147,427	171,281	62,996	96,247							
600	1985,629	154,755	59,370	89,218							
700	1413,489	106,391	49,206	60,956							
800	968,115	74,649	36,641	40,956							
	•		•								
MÉDIAS SOBRE A ÁGUA*											
ALTURA	СТ	K	Th								
(pés)	(cps)	(cps)	(cps)	(cps)							
330	364,313	32,566	18,703	7,568							
331	371,447	31,210	19,210	8,008							
332	367,015	30,069	19,595	7,645							
400	361,649	28,476	18,757	7,483							
500	354,246	28,670	18,629	7,381							
600	344,880	27,921	17,721	8,189							
700	342,459	26,962	16,595	7,629							
800	342,565	27,062	17,187	7,982							
		,									
N	MEDIAS 7	ΓERRA-A	GUA*								
ALTURA	CT	K	U	Th							
(pés)	(cps)	(cps)	(cps)	(cps)							
330	2666,591	220,856	64,934	133,151							
331	2701,015	225,249	66,180	136,657							
332	2635,197	221,314	66,476	130,918							
400	1953,649	159,700	49,475	95,946							
500	1793,181	142,611	44,367	88,866							
600	1640,749	126,834	41,649	81,029							
700	1071,030	79,429	32,611	53,327							
800	625,550	47,587	19,454	32,974							

* Valores corrigidos do Tempo Morto

A Tabela 1b apresenta os valores radiométricos nas diferentes altitudes, com as seguintes correções aplicadas:

- Tempo Morto
- Background
- Espalhamento Compton

LINHA	Altura Efetiva (m)	TC (cps)	K (cps)	U (cps)	Th (cps)
330	99,30	2666,591	139,160	25,971	133,151
331	97,97	2701,015	141,847	26,264	136,657
332	105,09	2635,197	138,739	27,917	130,918
400	141,62	1953,649	97,037	19,324	95,946
500	154,29	1793,181	85,350	15,916	88,866
600	172,06	1640,749	73,092	14,991	81,029
700	227,46	1071,030	38,523	13,679	53,327
800	314,67	625,550	22,020	6,502	32,974

Tabela 1b – Cálculo dos Coeficientes de Atenuação Atmosférica.

A Tabela 1c apresenta o logaritmo neperiano dos valores da Tabela 1b:

				,	
LINHA	Altura Efetiva (m)	ln TC (cps)	ln K (cps)	ln U (cps)	ln Th (cps)
330	99,30	7,889	4,936	3,257	4,891
331	97,97	7,901	4,955	3,268	4,917
332	105,09	7,877	4,933	3,329	4,875
400	141,62	7,577	4,575	2,961	4,564
500	154,29	7,492	4,447	2,767	4,487
600	172,06	7,403	4,292	2,707	4,395
700	227,46	6,976	3,651	2,616	3,976
800	314,67	6,439	3,092	1,872	3,496

Tabela 1c - Cálculo dos Coeficientes de Atenuação Atmosférica.

Os valores de μ obtidos são correspondentes aos coeficientes angulares das equações das retas obtidas pelos gráficos das figuras 1a, 1b, 1c e 1d, conforme mostra o quadro 1, a seguir:

Canal Radiométrico	μ em m ⁻¹	
Contagem Total	-0,0068	
Potássio	-0,0089	
Urânio	-0,0063	
Tório	-0,0066	

Quadro 1 - Coeficientes de Atenuação Atmosférica.

Figura 1a - Coeficiente de Atenuação - Contagem Total

Figura 1c - Coeficiente de Atenuação - Urânio

Figura 1d - Coeficiente de Atenuação - Tório

ANEXO II – TESTES CONTRATUAIS

Anexo II-a – Teste de Altímetros

Teste de Altímetro – PT-WOT

Projeto	28060
Aeronave	PT-WOT
Base	Barreiras - BA
Data	14/01/09
Vôo	7

Altitude da Pista: 746 m (medida Rotaer) ALTURA = Altura Teórica ALTITUDE = Altura teórica somada com a altitude da Pista

Linha	ALTURA (m)	ALTITUDE (m)	GPSHT (m)	RADAR (m)	BARO (m)
300	91,44	837,44	843,90	95,82	870,44
400	121,92	867,92	875,80	134,32	899,60
500	152,40	898,40	917,50	169,34	940,66
600	182,88	928,88	945,80	199,86	967,19
700	213,36	959,36	978,80	232,51	997,97
800	243,84	989,84	1014,70	268,74	1032,37

Anexo II-b – Compensação Magnética

Compensação Magnética – PT-WOT

Nº Job	28060
Base	Barreiras - BA
Aeronave	PT-WOT
Data	14/01/09
№ Vôo	7

SENSOR 1					
№ da Linha	Azimute	ROLL (nT)	PITCH (nT)	YAW (nT)	FOM (nT)
91	90°	0,03	0,06	0,05	0,14
181	180°	0,05	0,05	0,06	0,16
271	270°	0,04	0,05	0,09	0,18
361	360°	0,06	0,05	0,05	0,16
				TOTAL	0,64

- TFU1 Campo Magnético Total não compensado
- TFC1 Campo Magnético Total compensado
- HPU1 Filtro passa-alta (2 seg) sobre o Campo Magnético Total não compensado
- HP1C Filtro passa-alta (2 seg) sobre o Campo Magnético Total compensado
- FluxgateX Componente X da Fluxgate
- FluxgateY Componente Y da Fluxgate
- FluxgateZ Componente Z da Fluxgate

Nº Job	28060
Base	Barreiras - BA
Aeronave	PT-WOT
Data	05/02/09
№ Vôo	34

SENSOR 1					
№ da Linha	Azimute	ROLL (nT)	PITCH (nT)	YAW (nT)	FOM (nT)
91	90°	0,08	0,07	0,10	0,25
181	180°	0,05	0,08	0,09	0,22
271	270°	0,04	0,07	0,10	0,21
361	360°	0,04	0,04	0,03	0,11
				TOTAL	0.79

TFU1 - Campo Magnético Total não compensado

TFC1 – Campo Magnético Total compensado

HPU1 – Filtro passa-alta (2 seg) sobre o Campo Magnético Total não compensado

HP1C – Filtro passa-alta (2 seg) sobre o Campo Magnético Total compensado

FluxgateX – Componente X da Fluxgate

FluxgateY – Componente Y da Fluxgate

FluxgateZ – Componente Z da Fluxgate

N⁰ Job	28060
Base	Barreiras - BA
Aeronave	PT-WOT
Data	13/03/09
№ Vôo	53

SENSOR 1					
№ da Linha	Azimute	ROLL (nT)	PITCH (nT)	YAW (nT)	FOM (nT)
91	90°	0,15	0,10	0,20	0,45
181	180°	0,07	0,05	0,04	0,16
271	270°	0,16	0,10	0,13	0,39
361	360°	0,10	0,10	0,08	0,28
				TOTAL	1.28

TFU1 - Campo Magnético Total não compensado

TFC1 – Campo Magnético Total compensado

HPU1 – Filtro passa-alta (2 seg) sobre o Campo Magnético Total não compensado

HP1C – Filtro passa-alta (2 seg) sobre o Campo Magnético Total compensado

FluxgateX – Componente X da Fluxgate

FluxgateY – Componente Y da Fluxgate

FluxgateZ – Componente Z da Fluxgate

Nº Job	28060
Base	Barreiras - BA
Aeronave	PT-WOT
Data	28/03/09
Nº Vôo	71

SENSOR 1	-	-			
№ da Linha	Azimute	ROLL (nT)	PITCH (nT)	YAW (nT)	FOM (nT)
91	90°	0,07	0,08	0,15	0,30
181	180°	0,06	0,07	0,03	0,16
271	270°	0,07	0,08	0,11	0,26
361	360°	0,08	0,10	0,07	0,25
				TOTAL	0,97

Posição do sensor: Horizontal 23°

TFU1 - Campo Magnético Total não compensado

TFC1 – Campo Magnético Total compensado

- HPU1 Filtro passa-alta (2 seg) sobre o Campo Magnético Total não compensado
- HP1C Filtro passa-alta (2 seg) sobre o Campo Magnético Total compensado

FluxgateX – Componente X da Fluxgate

FluxgateY – Componente Y da Fluxgate FluxgateZ – Componente Z da Fluxgate

Anexo II-c – Teste de Paralaxe

Paralaxe – PT-WOT

Projeto	28060
Base	Barreiras-BA
Aeronave	PT-WOT
Data	14/01/2009
Vôo	006

ANEXO III – QUADROS SINÓPTICOS DAS OPERAÇÕES DE CAMPO

ANEXO IV – CONTEÚDO DOS DVD-ROMs

Este arquivo apresenta a relação do conteúdo dos arquivos digitais que compõem o acervo do Projeto Aerogeofísico Cristalândia do Piauí.

Um total de 2 DVD-ROMs e 1 CD-ROM compõem a totalidade dos arquivos conforme descrito abaixo:

Mídia	Conteúdo
CD#01	- Relatório Final
DVD#01	- Banco de Dados <i>Geosoft</i>
	- Grids
	- Arquivos XYZ
	- Metadados do Projeto
DVD#02	- Arquivos de Mapas Geosoft
	- Arquivos de Plotagem HPGL
	- Arquivos com as Articulações da Folhas 1:100.000 e 1:250.000 (PDF)
	- Arquivos de Poligonais das Folhas 1:100.000 e 1:250.000 Geosoft PLY

Estrutura dos Arquivos de Mapas:

• A codificação para os arquivos de mapas é apresentada a seguir, onde o asterisco presente refere-se a codificação das folhas:

1089_*_1DV = 1ª Derivada Vertical do Campo Magnético Total (Reduzido do IGRF) 1089_*_Mag = Campo Magnético Total (Reduzido do IGRF) 1089_*_Sinal = Sinal Analítico do Campo Magnético Total (Reduzido do IGRF) 1089_*_MDT = Modelo Digital do Terreno 1089_*_CT = Contagem Total (μR/h) 1089_*_EV = Potássio (%) 1089_*_eU = Urânio (ppm) 1089_*_eTh = Tório (ppm) 1089_*_ThKRAZAO = Razão Tório/Potássio 1089_*_UThRAZAO = Razão Urânio/Tório 1089_*_UKRAZAO = Razão Urânio/Potássio 1089_*_TERNÁRIO = Ternário (K/U/Th)

1089_*_PATH = Traços das Linhas de Vôo

Exemplos:

1089_SC23XCV_Mag.MAP – *Geosoft* MAP da Folha SC.23-X-C-V Escala 1:100.000 do Campo Magnético Total (Reduzido IGRF)

1089_SC23ZA_Sinal.MAP – *Geosoft* MAP da Folha SC.23-Z-A Escala 1:250.000 do Sinal Analítico do Campo Magnético Total (Reduzido IGRF)

1089_ThK_500.MAP – Geosoft MAP da Folha Única na Escala 1:500.000 da Razão Tório/Potássio

Observações:

- A codificação para os arquivos PRN segue a mesma regra utilizada para os arquivos de Mapas Geosoft (*.MAP)
- A sigla HPGL significa: *Hewlett/Packard Graphics Language* ©.
- O prefixo 1089 em todos os arquivos corresponde ao nº do projeto na Base Aero da CPRM.

Relação dos Arquivos georeferenciados a zona UTM 23 (Meridiano Central 45º WGr).

1		
Arquivo	Conteúdo	Unidade
1089_Mag.grd	Campo Magnético Total (Reduzido IGRF)	nT
1089_1DV.grd	1ª Derivada Vertical do Campo Magnético Total	nT/m
1089_Sinal.grd	Sinal Analítico do Campo Magnético Total	nT/m
1089_CT.grd	Taxa de Exposição da Contagem Total	μR/h
1089_Kperc.grd	Concentração de Potássio	%
1089_eU.grd	Concentração de Urânio	ppm
1089_eTh.grd	Concentração de Tório	ppm
1089_ThKRAZAO.grd	Razão Tório/Potássio	-
1089_UKRAZAO.grd	Razão Urânio/Potássio	-
1089_UThRAZAO.grd	Razão Urânio/Tório	-
1089_MDT.grd	Modelo Digital do Terreno	m

Arquivos de GRIDS:

Arquivos de Banco de Dados GDB:

Arquivo	Conteúdo
1089_GamaLine.gdb	Banco de dados de gamaespectrometria com as linhas de vôo
1089_GamaTie.gdb	Banco de dados de gamaespectrometria com as linhas de controle
1089_MagLine.gdb	Banco de dados de magnetometria com as linhas de vôo
1089_MagTie.gdb	Banco de dados de magnetometria com as linhas de controle
1089_Gama256.gdb	Banco de dados de gamaespectrometria com os 256 canais up e down.

Arquivos de Banco de Dados XYZ :

Arquivo	Conteúdo
1089_GamaLine.XYZ	Gamaespectrometria Linhas de Vôo
1089_GamaTie.XYZ	Gamaespectrometria Linhas de Controle
1089_MagLine.XYZ	Magnetometria Linhas de Vôo
1089_MagTie.XYZ	Magnetometria Linhas de Controle

Arquivos de Cruzamentos:

Arquivo	Conteúdo
1089_Cruzamentos.XYZ	Cruzamentos do Nivelamento Magnetométrico

Arquivo	Conteúdo
SC.23-X-C-V	Polígono referente à folha SC.23-X-C-V
SC.23-X-C-VI	Polígono referente à folha SC.23-X-C-VI
SC.23-Y-B-III	Polígono referente à folha SC.23-Y-B-III
SC.23-Z-A-I	Polígono referente à folha SC.23-Z-A-I
SC.23-Z-A-II	Polígono referente à folha SC.23-Z-A-II
SC.23-Z-A-III	Polígono referente à folha SC.23-Z-A-III
SC.23-Y-B-VI	Polígono referente à folha SC.23-Y-B-VI
SC.23-Z-A-IV	Polígono referente à folha SC.23-Z-A-IV
SC.23-Z-A-V	Polígono referente à folha SC.23-Z-A-V
SC.23-Z-A-VI	Polígono referente à folha SC.23-Z-A-VI
SC.23-Y-D-III	Polígono referente à folha SC.23-Y-D-III
SC.23-Z-C-I	Polígono referente à folha SC.23-Z-C-I
SC.23-X-C	Polígono referente à folha SC.23-X-C
SC.23-Y-B	Polígono referente à folha SC.23-Y-B
SC.23-Z-A	Polígono referente à folha SC.23-Z-A
SC.23-Y-D	Polígono referente à folha SC.23-Y-D
SC.23-Z-C	Polígono referente à folha SC.23-Z-C

Arquivos de Poligonais :

A descrição dos campos nos arquivos de Banco de Dados (GDB e XYZ), bem como a dos arquivos de perfis e cruzamentos, encontra-se no texto do Relatório Final e no Anexo V.

ANEXO V – FORMATO DE GRAVAÇÃO DOS DADOS DO PROJETO

ANEXO VI – LISTAGEM DAS LINHAS APROVADAS E UTILIZADAS NO PROCESSAMENTO

Linha	Vôo	Fiducial	Fiducial
		Inicial	Final
10010	10	1995	3474
10021	10	10337	10992
10022	10	11686	12461
10030	11	2119	3609
10040	13	2341	3814
10050	13	3979	5434
10060	13	5601	6665
10061	15	8303	8724
10070	13	7167	8226
10071	15	7429	7857
10080	14	3874	5299
10090	14	11338	12799
10100	15	2545	4013
10110	15	4172	5650
10120	15	5825	7265
10130	15	8851	10314
10140	16	4453	5898
10150	23	2245	3711
10160	23	3890	5349
10170	24	4673	6154
10180	24	6313	7727
10190	24	7894	9362
10200	27	2246	3744
10210	27	4115	5419
10211	32	8038	8204
10220	27	5631	7116
10230	27	7314	8784
10240	27	8971	9653
10241	32	6445	7245
10250	27	10645	12108
10260	28	1880	3384
10270	28	3608	5061
10280	30	4029	5466
10290	30	5677	7111
10300	32	4778	6254
10310	32	8400	9867
10320	32	10069	11591
10330	32	11786	13212
10340	33	2216	3016
10341	37	9739	10388
10350	35	4765	6196

Linha	V/A -	Fiducial	Fiducial
	V 00	Inicial Fir	Final
10360	35	6369	7852
10370	35	8000	9457
10380	35	9625	11086
10390	35	11243	12696
10400	35	12854	14299
10410	36	6144	7557
10420	36	7738	9186
10430	36	9346	10796
10440	36	10995	11905
10441	37	10887	11414
10450	37	4721	6168
10460	37	6378	7901
10470	37	8032	9501
10480	38	2351	3814
10490	38	3983	5522
10500	38	5713	7186
10510	38	7399	8939
10520	42	2597	4066
10530	42	4285	4836
10531	42	5560	6467
10540	42	6639	8098
10550	42	8559	10009
10560	43	2605	4108
10570	43	4282	5210
10571	43	5922	6437
10580	43	6621	8112
10590	43	8502	9909
10600	57	2331	3771
10610	56	2350	3819
10620	56	3982	5472
10630	56	5645	7116
10640	56	7299	8789
10650	57	3948	5445
10660	57	5620	7076
10670	57	7278	8774
10680	59	2001	3432
10690	59	3630	5066
10700	59	5209	6639
10710	59	6816	8248
10720	59	8383	9801
10730	59	9919	11292

Linha	Vôo	Fiducial	Fiducial
Linna		Inicial	Final
10740	60	2376	3858
10750	60	5366	6191
10751	60	4035	4745
10760	60	6386	7812
10770	60	8121	9610
10780	60	9778	11211
10790	60	11360	12785
10800	61	1996	3458
10810	61	3636	5126
10820	61	5300	6784
10830	61	6926	8332
10840	61	8484	9922
10850	61	11797	12192
10851	61	10096	11148
10860	62	2216	3673
10870	62	3856	5366
10880	62	5551	7001
10890	62	7186	8642
10900	62	8765	10205
10910	62	10372	11863
10920	63	1991	3433
10930	63	3634	5094
10940	63	5275	6707
10950	63	6893	8373
10960	63	8514	9966
10970	63	10150	11577
10980	64	2362	3797
10990	64	4022	5468
11000	64	5644	7058
11010	64	7205	8634
11020	64	8823	10253
11030	64	10469	11923
11040	65	2292	3762
11050	65	3967	5411
11060	65	5584	7029
11070	65	7182	8612
11080	66	1997	3459
11090	16	10780	12268
11100	20	2043	3504
11110	22	6008	7496
11120	22	11810	13267
11130	66	3634	4731
11140	66	4875	5971
11150	66	6113	7187
11160	67	2290	3369

Linha	Vôo	Fiducial	Fiducial
		Inicial	Final
11170	67	3552	4671
11180	67	4864	5933
11190	67	6214	7308
11200	67	7461	8534
11210	67	8691	9785
11220	67	9957	11036
11230	67	11277	12365
11240	68	2301	3384
11250	68	3618	4582
11251	68	5228	5390
11260	68	5556	6634
11270	68	7262	8331
11280	68	8456	9535
11290	68	9670	10742
11300	72	4532	5620
11310	72	5761	6857
11320	72	6997	8087
11330	72	8201	9298
11340	72	9430	10524
11350	72	10648	11719
11360	72	11859	12934
11370	72	13065	14119
11380	73	2382	3827
11390	73	3959	5399
11400	73	5554	6979
11410	73	7134	8565
11420	74	3090	4551
11430	74	4693	6129
11440	74	6298	7740
11450	74	7873	9307
11460	75	2231	3681
11470	75	3819	5273
11480	75	5431	6845
11330	72	8201	9298
11340	72	9430	10524
11350	72	10648	11719
11360	72	11859	12934
11490	75	6991	8439
11500	75	8566	10008
11510	75	10150	11609
11520	75	11901	12708
11521	76	4862	5512
11530	75	12974	13783
11531	76	3766	4418
11540	76	2159	3602

T inho	Vâo	Fiducial	Fiducial
Linna	V 00	Inicial	Final
11550	76	5612	7052
11560	76	7187	8637
11570	76	8796	10227
11580	77	2193	3605
11590	77	3756	5206
11600	77	5408	6851
11610	77	7002	8461
11620	77	8602	10021
11630	77	10161	11607
11640	77	11760	12566
11641	78	5299	5953
11650	77	12712	13516
11651	78	4257	4880
11660	78	2329	4020
11670	78	6245	7854
11680	78	7999	9679
11690	78	9836	11408
11700	79	4568	6261
11710	79	6332	7973
11720	79	8041	9722
11730	79	9798	11412
11740	79	11474	13120
11750	81	3493	5090
11760	79	13199	14780
11770	81	5207	6847
11780	81	7007	8594
11790	81	8757	10411
11800	82	2496	4126
11810	82	4217	5919
11820	82	6006	7632
11830	82	7718	9407
11840	84	2457	3514
11841	86	5227	5801
11850	84	3702	4612
11851	86	4125	4836
11860	85	4326	5980
11870	85	6050	7761
11880	85	7824	9498
11890	85	9555	11202
11900	85	11261	12865
11910	85	12927	13230
11911	88	2623	4027
11920	86	2400	4049
11930	86	5893	7509
11940	86	7566	9274

Linha	T 7 ^	Fiducial	Fiducial
	V 00	Inicial Fina	Final
11950	86	9370	10961
11960	87	2422	4077
11970	87	4196	5888
11980	85	13710	14775
11981	88	4601	5187
11990	85	14831	16435
12000	85	16497	18124
12010	87	5959	7601
12010	87	5959	7601
12020	87	7698	9388
12030	87	9475	11092
12040	87	11206	12892
12050	87	12984	14612
12060	87	14720	16360
12070	88	5303	6974
12080	88	7169	8867
12090	88	9062	10725
12100	88	10875	12543
12110	88	12695	14358
12120	89	4079	4771
12121	97	5216	6204
12130	94	2655	4278
12140	94	4409	6135
12150	89	5886	7545
12160	80	12117	13696
12170	80	10380	12009
12180	80	8647	10238
12190	80	6805	8492
12200	89	7728	9374
12210	89	9550	11244
12220	89	11396	13044
12230	89	13191	14853
12240	80	4977	6584
12250	80	3155	4821
12260	89	15014	16623
12270	89	16767	18445
12280	90	2909	4536
12290	90	4617	6290
12300	90	6365	8010
12310	90	8100	9751
12320	90	9825	11425
12330	90	11528	13153
12340	91	2836	4491
12350	91	4586	6169
12360	91	6248	7898

Linha	Vâo	Fiducial	Fiducial
Linna	V 00	Inicial Final	Final
12370	91	7970	9540
12380	91	9607	11237
12390	91	11306	12873
12400	92	2548	3496
12401	97	6748	7452
12410	93	2778	4406
12420	93	4483	6176
12430	93	6253	7895
12440	93	7957	9630
12450	93	9684	11326
12460	93	11384	13031
12470	93	13088	14726
12480	93	14793	16423
12490	94	6432	8079
12500	94	8221	9937
12510	94	10023	11646
12520	94	11735	13387
12530	95	4047	5716
12540	95	5820	7509
12550	95	7623	9315
12560	95	9420	11083
12570	95	11193	12859
12580	95	12959	14624
12590	96	2568	4225
12600	92	4423	6065
12610	96	4387	6093
12620	96	6233	7881
12630	96	8018	9664
12640	96	9797	11436
12650	96	11590	13217
12660	97	3103	4823
12670	97	7774	9440
12680	97	9571	11256
12690	97	11422	13073
12700	98	3369	5012
12710	98	5186	6794
12720	98	7156	8635
12721	98	13970	14151
12730	98	8764	10360
12740	98	10512	12131
12750	98	12248	13844
12760	100	1153	3098
12770	100	3198	3465
12771	100	3705	5138
12772	100	4610	4876

Linha	Vâc	Fiducial	Fiducial
	V 00	Inicial	Final
12780	100	5259	7219
12790	100	7315	9260
12800	100	9351	11288
12810	100	11398	13335
12820	102	1281	3254
12830	102	3376	5395
12840	102	5513	7485
12850	102	7625	9621
12860	102	9759	11755
12870	102	11862	13881
12880	102	13991	15970
12890	102	16070	18050
12900	104	1194	3137
12910	104	3224	5203
12920	104	5314	7275
12930	104	7384	9356
12940	104	9436	11365
12950	104	11469	13404
12960	105	1776	3728
12970	105	3852	5815
12980	105	5932	7877
12990	105	8005	9955
13001	105	10081	12034
13010	105	12159	14093
13020	105	14197	16142
13030	105	16222	18141
13040	106	1332	3398
13050	106	3538	5599
13060	106	5711	7770
13070	106	7904	9948
13080	106	10061	12023
13090	106	12138	14096
13100	107	2027	4045
13110	107	5962	8079
13120	107	8235	10263
13130	107	10396	12499
13140	107	12595	14595
13150	107	14694	16784
13160	111	2059	4046
13170	111	4201	6204
13180	111	6403	8368
13190	111	8498	10522
13200	112	2139	4224
13210	112	4367	6368
13220	112	6519	8461

Linha	Vâo	Fiducial	Fiducial
	V 00	Inicial	Final
13230	112	8615	10609
13240	113	1604	3579
13250	113	3730	5746
13260	113	5889	7837
13270	113	7987	9994
13280	114	1680	2791
13281	115	12321	13213
13290	115	1783	3768
13300	115	3891	5883
13310	115	6012	8005
13320	115	8144	10113
13330	115	10245	12214
13340	116	1843	3796
13350	116	3920	5962
13360	116	6103	8042
13370	116	8193	10219
13380	116	10355	12277
13390	116	12408	14391
13400	117	1778	3736
13410	117	3889	5887
13420	118	2201	4155
13430	118	4335	6337
13440	119	1774	3726
13450	119	3898	5900
13460	120	2079	4066
13470	120	4206	6215
13480	120	6368	8400
13490	120	8540	10519
13500	126	9839	11920
13510	126	6646	8801
13520	126	4280	6510
13530	126	1973	4130
13540	125	8138	10129
13550	125	6030	7998
13560	125	3920	5869
13570	125	1805	3774
13580	124	12567	14513
13590	124	10482	12435
13600	124	8360	10327
13610	124	6266	8225
13620	124	4117	6116
13630	124	1954	3888
13640	123	12692	14663
13650	123	10631	12545
13660	123	8492	10504

Linha	Vôo	Fiducial	Fiducial
		Inicial	Final
13670	123	6375	8332
13680	123	4165	6204
13690	123	1996	3997
13700	103	12688	14638
13710	103	10612	12590
13720	103	8543	10503
13730	103	6470	8448
13740	103	4374	6342
13750	103	2194	4176
13760	101	12244	14225
13770	101	10206	12114
13780	101	8084	10114
13790	101	6057	7973
13800	101	3949	5961
13810	101	1878	3783
13820	99	12683	14649
13830	99	10602	12553
13840	99	8528	10494
13850	99	6460	8410
13860	99	4306	6318
13870	24	14082	16021
19010	8	2274	2999
19020	8	3302	4060
19030	8	4243	4960
19040	8	5165	7676
19050	8	8055	10466
19060	9	2638	5139
19070	9	5497	7964
19080	10	4198	6772
19090	10	6993	9395
19100	14	5756	8348
19110	14	8539	10949
19120	16	6148	8764
19130	16	8954	10540
19140	20	3840	5447
19150	22	8095	9650
19160	22	9870	11216
19170	24	11289	12064
19180	24	12262	12951
19190	24	13155	13921