

UNIVERSIDADE FEDERAL DE OURO PRETO ESCOLA DE MINAS DEPARTAMENTO DE GEOLOGIA

DISSERTAÇÃO DE MESTRADO

REFINAMENTO DO MÉTODO DE DATAÇÃO U-Pb *IN SITU*

VIA LA-Q-ICP-MS: APLICAÇÃO NO COMPLEXO

ALCALINO POÇOS DE CALDAS - MG

Lynthener Bianca Takenaka

TESE nº 321

Ouro Preto, dezembro de 2014

REFINAMENTO DO MÉTODO DE DATAÇÃO U-Pb IN SITU VIA LA-Q-ICP-MS: APLICAÇÃO NO

COMPLEXO ALCALINO POÇOS DE CALDAS - MG

FUNDAÇÃO UNIVERSIDADE FEDERAL DE OURO PRETO

Reitor

Marcone Jamilson Freitas Souza

Vice-Reitor

Célia Maria Fernandes Nunes

Pró-Reitor de Pesquisa e Pós-Graduação

Valdei Lopes de Araújo

ESCOLA DE MINAS

Diretor

Issamu Endo

Vice-Diretor

José Geraldo Arantes de Azevedo Brito

DEPARTAMENTO DE GEOLOGIA

Chefe

Fernando Flecha de Alkmim

EVOLUÇÃO CRUSTAL E RECURSOS NATURAIS

CONTRIBUIÇÕES ÀS CIÊNCIAS DA TERRA – VOL. 73

DISSERTAÇÃO DE MESTRADO Nº 321

REFINAMENTO DO MÉTODO DE DATAÇÃO U-Pb *IN SITU* VIA LA-Q-ICP-MS: APLICAÇÃO NO COMPLEXO ALCALINO POÇOS DE CALDAS, MG

Lynthener Bianca Takenaka

Orientador Cristiano de Carvalho Lana

Tese apresentada ao Programa de Pós-Graduação em Evolução Crustal e Recursos Naturais do Departamento de Geologia da Escola de Minas da Universidade Federal de Ouro Preto como requisito parcial à obtenção do Título de Mestre em Ciência Naturais, Área de Concentração: Tectônica, Petrogênese e Recursos Minerais

OURO PRETO 2014

Universidade Federal de Ouro Preto – http://www.ufop.br Escola de Minas - http://www.em.ufop.br Departamento de Geologia - http://www.degeo.ufop.br/ Campus Morro do Cruzeiro s/n - Bauxita 35.400-000 Ouro Preto, Minas Gerais Tel. (31) 3559-1600, Fax: (31) 3559-1606

Os direitos de tradução e reprodução reservados.

Nenhuma parte desta publicação poderá ser gravada, armazenada em sistemas eletrônicos, fotocopiada ou reproduzida por meios mecânicos ou eletrônicos ou utilizada sem a observância das normas de direito autoral.

ISSN 85-230-0108-6 Depósito Legal na Biblioteca Nacional Edição 1ª

Catalogação elaborada pela Biblioteca Prof. Luciano Jacques de Moraes do Sistema de Bibliotecas e Informação - SISBIN - Universidade Federal de Ouro Preto

Takenaka, Lynthener Bianca.

T136r Refinamento do método de datação U-Pb in situ via LA-Q-ICP-MS [manuscrito]: aplicação no Complexo Alcalino Poços de Caldas, MG / Lynthener Bianca Takenaka. - 2014.

xxii,131f.: il.: color; grafs; tabs; mapas; Diagramas. (Contribuições às Ciências da Terra, v.73, n.321)

Orientador: Prof. Dr. Cristiano de Carvalho Lana.

Dissertação (Mestrado) - Universidade Federal de Ouro Preto. Escola de Minas. Departamento de Geologia. Programa de Pós-graduação em Evolução Crustal e Recursos Naturais. Área de Concentração: Tectônica, Petrogênese e Recursos Minerais.

1. Tempo geológico. 2. Poços de Caldas (MG). 3. Datação radioativa. I. Lana, Cristiano de Carvalho. II. Universidade Federal de Ouro Preto. III. Titulo.

CDU: 550.93(815.1)

Catalogação < http://www.sisbin.ufop.br>

Ficha de Aprovação

MINISTÉRIO DA EDUCAÇÃO Universidade Federal De Ouro Preto Escola de Minas - Departamento de Geologia Programa de Pós-Graduação em Evolução Crustal e Recursos Naturais ATA DA REUNIÃO DA BANCA EXAMINADORA DA DISSERTAÇÃO DE MESTRADO INTITULADA: "Refinamento do método de datação U-Pb IN-SITU VIA LA-Q-ICP-MS: Aplicação no maciço alcalino Poços de Caldas, MG." APRESENTADA POR : LYNTHENER BIANCA TAKENAKA DE OLIVEIRA 110 13:30 horas do dia 16 de duzin di 2016 DEGED / EM / UPO no auch de ho mis 1010 0 chde con DIP he para Ca lina 30 03 agust Auguno 12 do BANCA EXAMINADORA Prof. Dr. Cristiano Carvalho Lana Presidente Prof. Dr. Miguel A. Stipp Basei Prof. Dr. Ricardo A. Scholz. Ouro Preto, 16 de dezembro de 2014 Campus Universitário Morro do Cruzeiro - S/N - CEP: 35400-000 - Ouro Preto - MG - Brasil Tel.: (0..31) 559.1600 - Fax: (0..31) 559.1606 – e-mail: pgrad@degeo.ufop.br

Dedico a todos que colaboraram para o sucesso deste trabalho.

Agradeço a Deus pela proteção.

Aos meus pais, irmã, namorado e familiares pelo grande apoio emocional.

A CAPES pela bolsa de estudos.

Aos colegas do AIR (Applied Isotope Research Group) e pós-graduação pelo companheirismo.

Aos docentes da pós-graduação, principalmente a professora Gláucia Queiroga e o professor Ricardo Scholz pelo auxílio.

A CPRM – Serviço Geológico do Brasil por permitir e apoiar a conclusão deste trabalho, em especial à equipe da Residência de Porto Velho.

Agradecimentos especiais ao professor Cristiano Lana, meu orientador, pela paciência, dedicação e ensinamentos durante a execução deste trabalho.

AGRADECIMENTOSxi
LISTA DE ILUSTRAÇÕES xv
LISTA DE TABELAS
RESUMO xix
ABSTRACT xxi
CAPÍTULO 1. INTRODUÇÃO1
1.1– Apresentação1
1.2 – Localização e vias de acesso
1.3 – Objetivos e justificativa
1.4 - Metodologia5
CAPÍTULO 2. CONTEXTO GEOLÓGICO7
2.1 – Trabalhos anteriores
2.2 – Geologia regional
CAPÍTULO 3. PRINCÍPIOS DE LA-ICP-MS11
CAPÍTULO 3. PRINCÍPIOS DE LA-ICP-MS
CAPÍTULO 3. PRINCÍPIOS DE LA-ICP-MS
CAPÍTULO 3. PRINCÍPIOS DE LA-ICP-MS
CAPÍTULO 3. PRINCÍPIOS DE LA-ICP-MS 11 3.1 – Revisão bibliográfica 11 3.2 – Instrumentação 14 3.2.1 - Laser 14 3.2.2 – ICP-MS 15
CAPÍTULO 3. PRINCÍPIOS DE LA-ICP-MS
CAPÍTULO 3. PRINCÍPIOS DE LA-ICP-MS 11 3.1 – Revisão bibliográfica 11 3.2 – Instrumentação 14 3.2.1 - Laser 14 3.2.2 – ICP-MS 15 CAPÍTULO 4. RESULTADOS E DISCUSSÃO 19 4.1 - Introduction 19 4.2 - Instrumentation 21 4.2.1 – Sample cell 22 4.2.3 – Gas mixer – The squid 23
CAPÍTULO 3. PRINCÍPIOS DE LA-ICP-MS 11 3.1 – Revisão bibliográfica 11 3.2 – Instrumentação 14 3.2.1 - Laser 14 3.2.2 – ICP-MS 15 CAPÍTULO 4. RESULTADOS E DISCUSSÃO 19 4.1 - Introduction 19 4.2 - Instrumentation 21 4.2.1 – Sample cell 22 4.3 – Data acquisition 23
CAPÍTULO 3. PRINCÍPIOS DE LA-ICP-MS 11 3.1 – Revisão bibliográfica 11 3.2 – Instrumentação 14 3.2.1 - Laser 14 3.2.2 – ICP-MS 15 CAPÍTULO 4. RESULTADOS E DISCUSSÃO 19 4.1 - Introduction 19 4.2 - Instrumentation 21 4.2.1 – Sample cell 22 4.2.3 – Gas mixer – The squid 23 4.4 – Data reduction 24

Sumário

4.6 – Long-term precision and accuracy
4.6.1 – Granitoids
4.7 – The Poços de Caldas Alkaline Complex
4.7.1 – Geological setting
4.7.2 - Results
4.8 – Discussion
4.9 - U-Zr-Mo mineralization in Poços de Caldas Alkaline Complex
4.10 – Summary
4.11–Aknowledgement
CAPÍTULO 5. CONCLUSÕES
Referências Bibliográficas
Apêndices
Anexos

Lista de Ilustrações

Figura 1.1 - Mapa geológico e de localização da área de estudo	4
Figura 3.1 – Desenho esquemático da célula de amostragem de padrões analíticos e amos	tras, e
sistema de mistura de gases	14
Figure 4.1 - Sketch of the cell for standards and sample mounts, and the mixing gas	
system	23
Figure 4.2 - Spectrum of the analysis obtained with and without using the gas mixer (squi	id) for
the GJ-1 standard.	.24
Figure 4.3 - Diagram of counts per seconds extracted from standard GJ-1 during conditio	ns
A to E	29
Figure 4.4 - Concordant ages for zircon standards	32
Figure 4.5 – Weighted mean ages for zircon standards	33
Figure 4.6 – Concordia diagrams for granitoid zircons	34
Figure 4.7 – Poços de Caldas Alkaline Complex in SE Brazil.	.38

Table 4.1 - Operating conditions of the LA-Q-ICP-MS system	22
Table 4.2 - Analytical conditions for optimization tests on GJ-1 and Plešo	vice zircon
standards	
Table 4.3 - Analytical sections with concordia ages obtained for the zircon standard ICP-MS system, their 2σ errors and relative standard deviations for concordia ages previous works	ls in LA-Q- from TIMS 30

Resumo

Há mais de 30 anos os sistemas de LA-ICP-MS apresentam-se como uma ótima solução para a realização de análises isotópicas em diversos minerais e sua zonas individuais de crescimento com alta precisão e boa resolução espacial. Apesar de seus avanços no meio científico, o sistema requer ainda a determinação de parâmetros instrumentais e analíticos para poder gerar dados confiáveis com alta qualidade rotineiramente. Para alcançar estes resultados é essencial que problemas analíticos recorrentes, tais como efeitos de fracionamento de elementos, presença de Pb comum, baixas contagens das massas e baixa estabilidade de sinal, entre outros, sejam amenizados a partir da realização de melhorias nos componentes instrumentais envolvidos.

Em continuação a trabalhos iniciados em 2013, este estudo efetuou uma otimização completa de um sistema de LA-Quadrupolo-ICP-MS através de testes analíticos sistemáticos durante um longo período de tempo. Modificou-se a energia e a frequência do laser, o tamanho do furo realizado nas amostras, o tempo de ablação e as condições de retirada de material e entrada de gases no ICP-MS para observar a variação das taxas de contagens das massas e erros analíticos, além do cálculo dos desvios relativos. Verificações sobre a precisão e a acurácia do equipamento foram executadas em inúmeras análises U-Pb de padrões certificados de zircão (GJ-1, Plešovice, M127, BB9 e 91500) que geraram incertezas 2σ de 1.4 a 8.2 %, e desvios relativos às suas idades TIMS de 0.02 a 0.87 %, que demonstraram que todos os resultados obtidos são satisfatórios quando comparados aos de outras técnicas mais sofisticadas (ICP-MS Mono-coletores e Multi-coletores).

As primeiras aplicações do equipamento previamente otimizado foram em rochas granitoides da porção sul do Cráton São Francisco e em um granitoide Arqueano do Cráton Kaapvaal da África do Sul, onde os dados obtidos foram idênticos (considerando-se os erros analíticos) ao de trabalhos anteriores que utilizaram técnicas mais precisas como TIMS e SHRIMP. Após a conclusão dos testes analíticos, aplicou-se a nova rotina laboratorial em uma rocha proveniente do Complexo Alcalino Poços de Caldas, MG. A amostra de um fonólito hidrotermalizado gerou a primeira idade U-Pb em zircão relativa à ocorrência das mineralizações (U, Zr, Mo) encontradas na porção leste do complexo. A idade concórdia gerada (84 ± 1 Ma) foi interpretada como a época de geração dos veios hidrotermais onde se concentraram as mineralizações e indicou que a intrusão destes veios ocorreu logo após o encaixe das rochas predominantes nesta porção do complexo (fonólitos e tinguaítos).

Com isto demonstrou-se a eficiência do sistema LA-Q-ICP-MS para a resolução de diversos problemas geológicos com boa reprodutibilidade e baixos erros analíticos com custos mais baixos e em menor tempo analítico.

Abstract

LA-ICP-MS systems became a great solution in isotope analysis of minerals and individual growth zones with high precision and good spatial resolution for over 30 years. Besides its evolution in scientific means, the instrument still requires establishment of instrumental and analytical parameters generate high quality reliable data routinely. To reach out these results, frequently problems in the analysis with elemental fractionation, common Pb, low mass counts and signal instability have to be eliminated with a good optimization of instrumental components.

Continuously to previous work started in 2010, this study optimized a LA-Quadrupole-ICP-MS system by executing analytical tests for a long period of time. Modifications in laser conditions, spot diameter, ablation time and the way of carrying material and gases to the ICP-MS was performed in order to observe variations in mass counts and errors rates, in addition calculate relative deviation of concordia ages and correlated errors. To verify precision and accuracy of the equipment, a great number of U-Pb analysis were performed in well known zircon standards (GJ-1, Plešovice, M127, BB9 and 91500) that generated 2σ uncertainties from 1.4 to 8.2 % and relative deviations of TIMS previous ages from 0.02 to 0.87 %, being all the results considered satisfactory when compared to other sophisticated techniques (Monocollectors and Multi-collectors ICP-MS).

The first optimized conditions application were in São Francisco Craton granitoids and in an Archean Kaapvaal Craton granitoid in South Africa, generating identical data (without errors) from previously works that used high precision techniques (TIMS and SHRIMP). After concluding systematic tests, the application was in Poços de Caldas Alkaline Complex rocks. A hydrothermal phonolite generated the first U-Pb zircon age of the mineralization (U, Zr, Mo) from western part of the complex. The concordia age of 84 ± 1 Ma was considered the cristalization age of hydrothermal veins that concentrated the mineralization, moreover this veins were generated right after country rocks (phonolites and tinguaytes) had been embedded.

This could prove the LA-Q-ICP-MS efficiency to solve many geological problems with good reproducibility and small errors, moreover to lower maintenance costs and less analytical time.

CAPÍTULO 1 INTRODUÇÃO

1.1 – APRESENTAÇÃO

Desde a sua difusão no meio científico por Gray (1985), o Espectrômetro de Massa com Ionização Acoplada por Plasma acrescido de um sistema de ablação a laser (LA-ICP-MS) viabiliza determinações in situ muito mais robustas e com baixos limites de detecção nos minerais ricos em elementos como U, Pb, Hf, entre outros. A obtenção de resultados através deste tipo de instrumento é relativamente simples e, além disto, os gastos relativos à manutenção e a produção de análises são muito inferiores aos de outros equipamentos similares. Os sistemas de LA-ICP-MS oferecem diversas vantagens em relação aos outros aparelhos semelhantes, sem perderem em sensibilidade ou resolução espacial, além de possibilitar que as taxas de transferência de material sejam bem mais altas durante as análises, reduzindo assim o tempo analítico gasto com as amostras. Com tais sistemas é possível determinar não somente as idades de cristalização a partir de determinados minerais, mas também diversos outros eventos de abertura de sistema isotópico e gerar informações químicas e isotópicas a respeito de zonas de crescimento. Para tal, existe uma grande variabilidade de métodos que podem ser executados, tais como análises *in situ* de isótopos de Hf e elementos traco em zircão (como em Kinny et al., 1991; Thirlwall & Walder, 1995; Hinton & Upton, 1991), análises de isótopos de B, Sm e Nd, datações por (U/Th)-He em único grão mineral e U-Pb em cristais de zircão detríticos (Rahl et al., 2003). A determinação destes isótopos é essencial para estudos sobre proveniência sedimentar, geoquímica de elementos-traço e minerais pesados e para a obtenção de idades de cristalização (ígnea e metamórfica), hidrotermalismo, entre outras.

Dentre os métodos de datação usuais, o mais difundido entres os pesquisadores é o U-Pb. É possível gerar informações sobre idades de cristalização ígnea e metamorfismo, ou sobre outros possíveis eventos de abertura do sistema isotópico através da medição das razões isotópicas de U e Pb (²⁰⁶Pb/²³⁸U e ²⁰⁷Pb/²³⁵U). Como material analítico para o método U-Pb existe uma grande variedade de minerais com meia-vida considerável como zircão, badeleíta, monazita e titanita que podem ser utilizados nas datações, porém, o mais comumente empregado é o zircão. O mineral está presente na grande maioria das rochas, possui temperatura de fechamento superior a 800 °C, é rico em U e pobre em Pb comum e é também extremamente resistente às ações intempéricas, além de apresentar frequentemente padrões de zoneamento com bordas de recristalização. A partir das análises destes minerais são feitos os cálculos das razões isotópicas que permitem a confecção de gráficos como concórdias, médias relativas, probabilidades, entre outros, que são interpretados dentro um contexto geológico posteriormente.

Apesar dos grandes avanços tecnológicos dos últimos anos, os LA-ICP-MS apresentam algumas dificuldades com relação a seu funcionamento como, por exemplo, a dificuldade de calibração, a atenção exigida na quantificação dos elementos envolvidos nas análises e a realização de padronizações internas durante todas as rodadas analíticas. Além disto, os elementos analisados podem sofrer fracionamento elementar durante os processos de ablação, transporte e ionização, o que pode reduzir significativamente a acurácia das análises. Há ainda a impossibilidade de se corrigir o Pb comum envolvido nas análises baseando-se somente na massa de ²⁰⁴Pb. Para minimizar estes efeitos negativos, diversos estudos anteriores tentaram entender estes processos e eliminá-los, porém a complexidade deles não permitiu que certas correções ocorressem de maneira adequada. A condição ideal para a operação do instrumento ainda não havia sido muito bem estabelecida até o momento e isto exigia que mais testes analíticos fossem realizados para alcançar a sua otimização máxima.

As primeiras tentativas de minimização dos problemas analíticos e instrumentais do LA-ICP-MS da Universidade Federal de Ouro Preto (sistema de laser *New Wave* UP-213 acoplado a um ICP-MS quadrupolo Agilent 7700x) começaram com estudos piloto por Lana *et al.* (2013) e Takenaka (2013). Takenaka (2013) realizou diversas análises em padrões certificados de referência (GJ-1 de Jackson *et al.*, 2004; Plešovice de Sláma *et al.*, 2008, entre outros) e zircões de rochas granitoides do *Greenstone Belt* Barberton na África do Sul e do Quadrilátero Ferrífero no Cráton São Francisco. Em continuação a estes estudos, o presente trabalho realiza uma tentativa de otimização completa deste mesmo sistema de LA-Q-ICP-MS através da realização de rotinas laboratoriais com testes analíticos constituídos por combinações variadas de configurações (instrumentais e analíticas) para estabelecimento de parâmetros. Mesmo pequenas modificações no sistema geral podem produzir mudanças expressivas nas contagens das massas envolvidas, tornando-as maiores ou menores (especialmente para as massas menos abundantes como ²⁰⁶Pb e ²⁰⁷Pb). Outros cuidados como impedir a formação de idades mais precisas, acuradas e com erros analíticos menores.

Para aplicar o sistema completamente otimizado e os seus parâmetros pré-definidos, estabeleceu-se um corpo geológico datado anteriormente por outros métodos (K-Ar, Rb-Sr, entre outros), o Complexo Alcalino Poços de Caldas do Cráton São Francisco, para a obtenção de uma nova idade U-Pb a partir de um fonólito hidrotermalizado encontrado na porção leste do corpo. Isto permitiu demonstrar que as condições ideais de operação podem se aplicar de maneira efetiva não somente em padrões certificados de referência, mas também em materiais geológicos de interesse e fornecer bons resultados com erros analíticos baixos.

1.2 – LOCALIZAÇÃO E VIAS DE ACESSO

A área de estudo está situada no Complexo Alcalino Poços de Caldas, localizado na divisa entre os estados de Minas Gerais e São Paulo (a cerca de 300 km de São Paulo capital e a 461 Km de Belo Horizonte) entre as cidades de Poços de Caldas, Bandeira do Sul, Caldas e Andradas, entre outras (figura 1.1). Apresenta-se na forma de um platô circular com uma área aproximada de 800 km² (diâmetro de aproximadamente 33 km), onde Poços de Caldas é a cidade principal situada na região. A área total da cidade é de 547 km², limitada pelos municípios de Palmeiral, Botelhos e Bandeira do Sul, Caldas, Andradas, Águas da Prata, São Sebastião da Grama, Caconde e Divinolândia.

O Complexo Alcalino Poços de Caldas é um exemplo estrutural clássico de um domo com diques anelares de até 400 m de desnível em relação ao seu interior, surgindo como uma área individualizada composta pelas serras de São Domingos, Selado, Maranhão, Pedra Branca, Forquilha, Caracol, Monte Belo e Serra dos Poços, que forma um grande conjunto de rochas alcalinas.

1.3 – OBJETIVOS E JUSTIFICATIVA

O objetivo principal deste trabalho é a realização de testes sistemáticos no LA-Q-ICP-MS através de mudanças na configuração física do sistema e na forma de condução das análises (variação do fluxo de gases, modificações nas configurações do laser, entre outras) para fornecer as condições máximas de otimização ao instrumento. Sistemas menos sensíveis como os ICP-MS Quadrupolo e os lasers de comprimento de onda de 213 nm exigem o estabelecimento de parâmetros analíticos eficientes e certos cuidados durante as análises para evitar que problemas recorrentes como a perda de sensibilidade e o alto fracionamento de elementos ocorram, o que pode influenciar diretamente na resolução espacial e na qualidade dos resultados.

Espera-se a produção de resultados mais precisos e com menores erros analíticos em um equipamento de baixos custos de manutenção, passíveis de serem utilizados com confiabilidade em trabalhos aplicados a mapeamento geológico, geotectônica, petrogênese, metalogenia, entre outros.

Para documentação e divulgação dos valores de precisão e acurácia do equipamento e das condições ideais de otimização, o estudo produziu um artigo científico que se encontra como capítulo de resultados e discussão deste volume. É importante salientar que há apenas um pequeno acervo bibliográfico sobre o assunto e que poucas universidades brasileiras dominam a técnica de geocronologia por LA-ICP-MS até o momento, justificando a necessidade de se produzirem trabalhos sobre esta metodologia.

1.4 - METODOLOGIA

As etapas efetuadas para a confecção deste trabalho foram:

 Revisão bibliográfica: levantamento do acervo bibliográfico referente às técnicas de LA-ICP-MS e sobre o corpo geológico para adquirir informações a respeito de metodologias anteriores, geologia regional e geocronologia da área de estudo.

- Testes de otimização: utilizando-se a mesma metodologia de Takenaka (2013) para análises U-Pb no LA-Q-ICP-MS efetuou-se uma tentativa de otimização do equipamento por meio da realização de testes analíticos em amostras de diversos padrões certificados de referência durante um longo período de tempo.

Os testes permitiram observar o desempenho das modificações do sistema de ablação a laser (por exemplo, variando-se frequência, diâmetro de furo, tempo de ablação, entre outros) e das configurações físicas do sistema (como por exemplo, utilização do homogeneizador de gases, variação do fluxo de gases He e Ar, entre outros). Além disto, parâmetros instrumentais e analíticos ideais foram estabelecidos para a rotina do equipamento. Mais detalhes sobre a otimização do sistema podem ser verificados no artigo científico¹ incluso neste trabalho.

- Geocronologia do corpo geológico: foram realizadas rodadas analíticas (com o sistema já otimizado) em diversos grãos de zircão, provenientes de rochas da área de estudo relacionadas às mineralizações locais, para geração de idades aparentes, razões isotópicas, médias relativas e seus respectivos gráficos.

- **Confecção do artigo científico:** dados obtidos por Takenaka (2013), pelo presente trabalho e alguns dados complementares fornecidos por outros colaboradores foram utilizados para a elaboração do artigo científico que foi submetido em um jornal internacional¹.

¹Submetido em 28/11/2014 na Journal of South American Earth Sciences. Autores: Lynthener Bianca Takenaka, Cristiano Lana, Ricardo Scholz, Herminio Arias Nalini Jr., Adriana Tropia de Abreu.

CAPÍTULO 2 CONTEXTO GEOLÓGICO

2.1 – TRABALHOS ANTERIORES

Segundo Almeida (1986), a reativação tectônica da Plataforma Sul-Americana começou no final do Permiano e atingiu o seu clímax no Jurássico-Cretáceo, regredindo no Paleógeno. A fragmentação do Gondwana, que desencadeou este processo, está diretamente relacionada ao magmatismo alcalino das bordas das bacias intracratônicas e costeiras, e ao magmatismo basáltico na porção central delas. As intrusões alcalinas são observadas, com relação à sua distribuição geográfica, na forma de uma extensão do lineamento Rio de Janeiro para o interior do continente (Kumar *et al.*, 1977; Sadowski & Dias Neto, 1981; Asmus & Guazelli, 1981; Asmus, 1982) e alguns autores como Windley (1982) as relacionam com a geração de *hotspots* ou a dois alinhamentos distintos (NE-SW e N-NW) cortando a borda da Bacia do Paraná (Schobbenhaus, 1984). Almeida (1991) fez uma analogia entre estas intrusões e o deslocamento da placa Sul-americana. Segundo o autor, a origem do magma alcalino se deu ao longo de uma zona de fraqueza da litosfera por fusão parcial do manto, encaixando assim corpos como o complexo alcalino Poços de Caldas.

As primeiras referências bibliográficas apresentadas sobre o Complexo Alcalino Poços de Caldas foram o trabalho de Derby (1887), que reconheceu na geologia local uma sequência de foiaítos, fonólitos e tufos e também a forma circular do corpo. O autor inferiu ser Paleozoica a idade de geração destas rochas por meio de correlações com rochas da Bacia do Paraná encontradas no entorno do complexo. Machado (1888) e Barbosa (1934) realizaram diversos estudos petrográficos sobre a área, porém o último destes trabalhos foi o que detalhou a petrografia da região com a separação dos litotipos em grupos (como sienitos nefelínicos, gnaisses e arenitos). Barbosa (1936) descreveu sobre aspectos geológicos e recursos minerais relativos ao complexo e inferiu a presença de chaminés vulcânicas secundárias no seu interior.

Ellert (1959) gerou o primeiro mapa geológico do complexo com os principais tipos litológicos e aspectos evolutivos geradores das intrusões. Dutra (1966) foi o primeiro a apresentar dados sobre datações absolutas utilizando o método chumbo-alfa em zircões provenientes de veios de caldasito que cortam o corpo, obtendo uma idade média de 98 Ma. Amaral *et al.* (1967) e Bushee (1971) também geraram dados geocronológicos pelo método K/Ar em rochas do complexo. Outro mapa geológico do local, e também uma mapa cintilométrico com enfoque nas mineralizações radioativas foi produzido pela Comissão Nacional de Energia Nuclear (CNEN) em 1974. Liu *et al.* (1973) geraram dados a partir de

estudos geológicos e estruturais utilizando imagens Landsat que posteriormente seriam utilizadas por Almeida Filho & Paradella (1977) para estudar a chaminé alcalina da intrusão.

2.2 – GEOLOGIA REGIONAL

O Complexo Alcalino Poços de Caldas está situado em um alto topográfico de cotas maiores que 1.400 m que, segundo Ellert (1959), expressam um dique anelar com uma depressão no centro. Possui uma superfície de extensão de cerca de 800 km e representa o maior complexo alcalino conhecido na América do Sul e um dos mais largos do mundo (Woolley, 1987). É constituído, segundo Ellert (1959) e Ulbrich & Ulbrich (1992), principalmente por fonólitos intrusivos e nefelina sienitos, seguidos de lavas fonolíticas e rochas piroclásticas (tufos, aglomerados e brechas). Os principais litotipos encontrados na região são (Almeida Filho & Paradella, 1977):

- Sedimentos: sequência de arenitos com estratificação cruzada intercalados com folhelhos na base. Diques e soleiras de diabásio cortam os sedimentos da parte central do complexo.

- Brechas, tufos e aglomerados vulcânicos: ocorrem em uma larga faixa norte-ocidental que circunda o dique anelar e estão associadas aos arenitos e lavas. As brechas são de origem vulcânica, ou vulcânica com algum tipo de transporte, compostas de fragmentos de arenitos, gnaisses, siltitos e diabásios. Os aglomerados vulcânicos são constituídos de fragmentos de lavas ankaratríticas.

- Rochas efusivas e hipoabissais:

Ankaratritos: correspondentes extrusivos dos nefelina-sienitos encontrados na borda NW-W-SW do complexo. Possuem textura microcristalina (às vezes porfirítica) dispondo-se sobre os sedimentos ou intercalados com tufos e brechas.

Lavas fonolíticas: apresentam-se na porção sul do complexo. Aparecem muito fraturadas e capeando os sedimentos, sem intercalações com tufos e brechas. Sofreram alteração intensa e foram intrudidas posteriormente por tinguaítos.

Tinguaítos e Fonólitos: correspondentes efusivos e hipoabissais dos nefelina-sienitos, que ocorrem em todo o corpo. Possuem composições similares, porém os fonólitos apresentam textura afanítica (às vezes porfirítica) e os tinguaítos apresentam texturas granulares ou sacaroides (Johannsen, 1939). Na porção centro-oeste do complexo o tinguaíto sofreu forte influência das soluções hidrotermais gerando uma rocha potássica (de coloração esbranquiçada) que é índice para mineralização uranífera.

Pseudo-leucita-tinguaíto: é similar ao tinguaíto, porém contém pseudomorfos de leucita e ocorre na borda ocidental do complexo na forma de diques intrusivos.

Analcita-tinguaíto ou analcita-fonólito: tinguaítos com pórfiros de analcita situados na borda W-SW do corpo.

Brechas de tinguaíto: constituídas de fragmentos de tinguaítos, ocorrendo em uma extensa faixa na borda SW do complexo.

- Rochas plutônicas:

Foiaítos: nefelina sienitos de granulação grossa a média, textura traquitoide e muitas vezes intrusivos aos tinguaítos. Ocorrem em uma faixa NE-SW na zona centro-norte do corpo.

Lujaurito e Chibinito: O chibinito é um foiaíto de granulação grossa rico em eudialita. Já o lujarito possui a mesma composição, porém com cristais alongados e orientados paralelamente. Afloram no extremo norte da região.

O complexo foi encaixado em um embasamento cristalino conhecido como cunha de Guaxupé (Ebert & Hasui, 1998), onde as rochas foram submetidas à anatexia local e regional, e às intrusões graníticas no ciclo Brasiliano (Ebert, 1971; Wernick & Artur, 1983; Vasconcellos, 1988). A evolução do complexo, segundo Ellert (1959), começa com o vulcanismo de olivina nefelinitos, lavas fonolíticas e vulcanoclásticas, seguido da subsidência da caldeira e intrusões de nefelina sienitos na forma de diques e estruturas circulares. Por último, ocorreu a intrusão dos nefelina sienitos ricos em eudialita.

As mineralizações zirconíferas presentes na área de estudo foram descritas primeiramente por Derby (1887), porém descrições mais completas sobre as mineralizações de urânio e zircônio (caldasito) foram apresentadas por Frayha (1962) e Kaefer *et al.* (1979). Mesmo com as jazidas praticamente esgotadas em superfície, ainda existem registros de zircônio nas rochas alcalinas e em pequenos veios, sendo as maiores ocorrências de urânio na estrutura anelar centro-leste do corpo. Além disto, ocorrem diversos depósitos de origem supergênica de bauxita, argilas, Zr, Zr-U-Mo, F e Th-REE (-Fe) (Frayha, 1962; Wedow ,1967; Gorsky & Gorsky, 1974; Putzer, 1976; Santos, 1976; Magno Jr., 1985; Fraenkel *et al.*, 1985).

CAPÍTULO 3

PRINCÍPIOS DE LA-ICP-MS

3.1 – REVISÃO BIBLIOGRÁFICA

A pouco mais de 20 anos as análises de amostras sólidas para a concentração de elementos como U, Pb, Th, elementos traço, entre outros vêm sendo aperfeiçoadas no ramo das ciências analíticas. A geocronologia U-Pb em zircão é a técnica mais utilizada pelos pesquisadores para a obtenção de idades nos mais diversos tipos de rochas. As primeiras tentativas de aplicação do método foram realizadas por Faure (1986) com a separação química de elementos em conjunto com o TIMS (*Thermal Ionization Mass Spectrometry*), porém a metodologia exigia muita qualificação técnica, valores de brancos extremamente baixos nos procedimentos químicos e no geral, as análises consumiam muito tempo. Além disto, exigia-se uma seleção de cristais de zircão muito criteriosa, a abrasão do material a ar (Krogh, 1982), a dissolução do zircão por separação química de U e Pb (Krogh, 1973) e por fim as análises destes elementos por TIMS.

Como alternativa para a técnica U-Pb realizada no TIMS, Compston *et al.* (1986) introduziram o SHRIMP (*Sensitive High Resolution Ion MicroProbre*) como instrumento analítico e posteriormente Kober (1987) e Kroner & Todt (1988) desenvolveram um método simples que consistia na evaporação de Pb em zircão a partir de um filamento duplo em conjunto com análises efetuadas no TIMS (obtenção de idades ²⁰⁷Pb/²⁰⁶Pb). Em 1984 ocorreu a comercialização do primeiro ICP-MS para os laboratórios, e então Gray (1985) analisou elementos e isótopos de Pb em granitos através de uma combinação do sistema de laser e do espectrômetros de massa (ICP-MS). A partir deste ano, foi introduzida a técnica de *Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry* (LA-ICP-MS) na comunidade científica.

Jackson *et al.* (1992) demonstraram a grande potencialidade do LA-ICP-MS para análises de elementos traço em amostras geológicas, e posteriormente o instrumento foi utilizado também por Jenner *et al.* (1993) na medição de coeficientes de partição dos elementos traço. Para análises U-Pb *in situ* nos minerais ricos em U com o LA-ICP-MS o trabalho pioneiro foi o de Fryer *et al.* (1993). A amostragem efetuada por ablação a laser seguida de análises em ICP-MS gerou um instrumento relativamente simples e barato, que permitiu a separação de elementos e a produção de razões isotópicas a partir de sólidos de maneira direta (Arrowsmith, 1987; Hager, 1989; Denoyer *et al.*, 1991). Para análises nestes equipamentos, o sistema de laser mais utilizado foi o de 1064 nm de comprimento de onda, com tamanhos de furos de 100 a 150 µm de diâmetro. Este sistema foi posteriormente modificado com o intuito de reduzir problemas relativos à energia do feixe e foco, chegando a furos de 20 a 30 µm de diâmetro (Pearce *et al.*, 1992; Jackson *et al.*, 1992). Fryer *et al.* (1993) utilizaram um destes sistemas modificados de laser (modelo Fisons VG *LaserProbe*), para análises da composição isotópica U-Th-Pb em cristais individuais de zircão com tamanhos de grãos menores que 100 µm, acoplado a um sistema de ICP-MS (sistema chamado de LP-ICP-MS por utilizar o *LaserProbe*.

Feng *et al.* (1993) determinaram razões isotópicas de ²⁰⁷Pb/²⁰⁶Pb em um conjunto de zircões de idade, tamanho e conteúdo de Pb diversos através de um sistema LP-ICP-MS com comprimento de onda de 1064 µm e uma célula de amostragem de quartzo. Neste trabalho, também foi efetuada uma calibração diária do instrumento com a ablação de um material vítreo de referência (NSB 612 e NSB 610 que são correspondentes ao NIST 612 e NIST 610, respectivamente), aumento do tempo de leitura da massa de ²⁰⁷Pb e ajustes na posição da tocha, lentes iônicas e fluxo de gás carregador. Os mesmos autores testaram ainda as melhores condições de operação do laser para fornecer um balanço entre sensibilidade e resolução espacial.

Na aquisição de dados analíticos, as primeiras observações a respeito das modificações de sinal relativas às análises foram realizadas por Arrowsmith (1987), que correlacionou as interferências a perdas de material durante o trajeto até o ICP-MS. O mesmo autor associou o sinal às variações de pulsos de energia, foco e feixe do laser, além das heterogeneidades presentes nos grãos analisados. Segundo Hager (1989) e Ramendik (1990), a variação de sinal pode também estar relacionada com a concentração dos elementos nas amostras e com a energia de atomização, potencial de ionização e massas. Outros parâmetros analíticos estabelecidos foram os tempos de medição de cada uma das massas (tempos de integração), onde Feng *et al.* (1993) realizaram a medição de elementos em um LP-ICP-MS com tempos de integração de 30 ms para as massas de ²⁰⁴Pb, ²⁰⁷Pb e ²⁰⁸Pb e de 10 ms para ²⁰⁶Pb, ²⁰²Hg, ²³²Th e ²³⁸U e também a correção da massa de ²⁰⁴Pb (Pb comum).

Ainda em Feng et al. (1993), o processo analítico total ocorria em 150 s gerando de 15 a 30 conjuntos de razões isotópicas em 5-10 s (para um conjunto de dados, a razão de 206 Pb/ 207 Pb e outras razões isotópicas). O erro estimado para suas amostras era de 3 a 7 % para o 207 Pb, 1% para o 206 Pb e 4% para a razão 206 Pb/ 207 Pb no zircão padrão testado por eles. Com este trabalho, demostrou-se que o LP-ICP-MS podia determinar idades 206 Pb/ 207 Pb em zircões, sendo as idades mais confiáveis as provenientes de zircões límpidos e com histórico de perda de chumbo simples. A técnica, porém, era muito limitada por demandar apenas zircões grandes (maiores que 75 µm) e pela incapacidade de se medirem razões U/Pb para geocronologia.
Li *et al.* (2000) apresentaram então uma nova metodologia de datação U-Pb onde as análises de elementos traço de grãos individuais de zircão utilizavam o LA-ICP-MS como ferramenta. Bleiner & Günther (2001) apresentaram uma célula de amostragem customizada eficiente para a ablação de amostras grandes. Os sistemas de LA-ICP-MS mais antigos utilizavam lasers com um comprimento de onda maior (Nd:YAG, 1064 nm), porém o feixe não era absorvido da maneira adequada pelos minerais. A aplicação do laser UV nos sistemas de LA-ICP-MS, por si só, já resultou em melhorias significativas na resolução espacial, absorção do feixe pelo material, redução do efeito de fracionamento de elementos e a precisão analítica. Günther *et al.* (2000) também inovaram a técnica utilizando um laser de comprimento de onda menor (266 nm de comprimento de onda e frequência quadruplicada) e geradores harmônicos (comprimento de onda de 213 nm e frequência quintuplicada).

Já Telouk *et al.* (2003) utilizaram comprimentos de onda de 157 nm e Gunther *et al.* (1997) de 193 nm que foram produzidos por lasers dos tipos *excimer* e *fem-to-second*, respectivamente. Estes últimos sistemas puderam produzir partículas menores e diminuir os efeitos de fracionamento de elementos, porém o laser de 157 nm, por absorver abundantemente o elemento oxigênio, reduzia muito a sua energia e restringia o seu uso. Os comprimentos de onda de 213 e 193 nm são considerados mais eficientes para os sistemas de laser do que os comprimento de onda de 266 nm em análises geocronológicas (Guillong *et al.*, 2003; Horn *et al.*, 2001) e têm sido muito utilizados atualmente.

Nas geociências, além de análises pontuais em grãos individuais, são também realizadas com grande frequência análises de elementos traço ou para concentração de isótopos a partir de inclusões fluidas/fusão e zoneamentos minerais (Jackson et al., 1992; Fryer et al., 1993, Audetát et al., 1998; Eggins et al. 1998; Günther et al., 1998; Halter et al., 2004; Guillong et al., 2008; Jarvis et al., 1995; Sylvester et al., 1997; Yuan et al., 2004), além das análises de diversos elementos e isótopos em rochas e minerais (Peng et al., 2012; Rusk et al., 2011; Ulbrich et al., 2009; Novotný et al., 2008). Para tais análises, as condições instrumentais, calibração do equipamento, padrões utilizados nas correções, efeitos de matriz, efeitos de fracionamento de elementos e a perda de sensibilidade do equipamento são os fatores que mais afetam os resultados no geral. Jeffries et al. (1996), Longerich et al. (1996) e Figg & Kahr (1997) foram os primeiros a tentar entender e solucionar estes problemas de interferência. Hirata & Nesbitt (1995) aplicaram procedimentos de aumento progressivo da energia do laser utilizando um "foco efetivo" na superfície amostrada durante a ablação (foco constante do laser sobre a amostra) em conjunto com a padronização das análises a partir de um material vítreo de referência. Jeffries et al. (1998), também demonstraram que os lasers de frequência quintopolo e comprimento de onda de 213 nm eram capazes de produzir análises com menores efeitos de fracionamento de elementos.

Recentemente, Lana *et al.* (2013) e Takenaka (2013) efetuaram diversas tentativas de minimização dos problemas analíticos e instrumentais do LA-Q-ICP-MS (Laser *New Wave* UP-213 acoplado a um ICP-MS quadrupolo Agilent 7700x) implantando novas rotinas para datações U-Pb no instrumento. Nos estudos foi utilizada a câmara de baixo volume na célula de amostragem (figura 3.1a) e um misturador de gases para melhor homogeneização da combinação entre material retirado por ablação e gases envolvidos no transporte (figura 3.1b) e, além disto, modificações instrumentais das condições analíticas do ICP-MS e do sistema de laser foram realizadas. Takenaka (2013) chegou a testar a precisão e a acurácia do sistema customizado produzindo sessões analíticas em vários padrões certificados de referência e em rochas granitoides do *Greenstone Belt* Barberton (África do Sul) e do Quadrilátero Ferrífero (Cráton São Francisco).

Figura 3.1- Desenho esquemático da célula de amostragem de padrões analíticos e amostras, e sistema de mistura de gases. Note que a célula (a) possui a forma de gota que maximiza a passagem do fluxo de gases e a limpeza da célula. O gás He é utilizado para transportar o material e é misturado posteriormente ao gás Ar para aprimorar a ionização do material ao entrar no ICP-MS. O misturador de gases (b) é essencial para aumentar a homogeneização da mistura entre material retirado da amostra e gases antes que alcancem o ICP-MS.

3.2 – INSTRUMENTAÇÃO

Análises que utilizam a espectrometria de massas exigem a dissociação e ionização de átomos ou íons livres. A obtenção do material na fração ideal pode ser através de instrumentos acoplados ao ICP-MS tais como os sistemas de laser, que podem atuar como fonte de ablação, vaporização, dissociação e excitação. Um feixe de laser focado na superfície de um sólido acarreta na retirada de uma porção da amostra que é posteriormente transportada por um gás carregador o ICP-MS. Ao alcançar o ICP-MS o material é devidamente atomizado e ionizado, e posteriormente as massas de cada elemento de interesse são separadas e quantificadas por um detector.

3.2.1 - Laser

São dois os tipos de laser (UV) utilizados em análises espectrométricas, os *excimer*, em que ocorrem transições eletrônicas entre as moléculas da amostra onde a natureza da mistura gasosa

que produz o feixe (gás nobre e um átomo de halogênio) determina o comprimento de onda emitido e os de estado sólido, como os de frequência quadruplicada Nd:YAG, em que a luz é emitida por cristais ou materiais vítreos. Suas características mais relevantes são o diâmetro do feixe laser incidente sobre a superfície do alvo, a energia do pulso de laser, o diâmetro da cratera formada, a massa obtida pela ablação. O feixe de laser incidente sobre a amostra é responsável pela ablação das superfícies sólidas expostas. A ablação a laser consiste em uma destruição progressiva e superficial de um material por evaporação, fusão, sublimação, erosão, *sputtering* e explosão e permite que se analise diretamente a amostra sólida sem nenhuma digestão prévia de material.

O sistema de laser utilizado neste estudo foi um Nd:YAG modelo LUV213 (*New Wave Research*/Merchantek) com comprimento de onda de 213 nm. Neste tipo de sistema de laser certos parâmetros podem ser modificados como energia do pulso (por meio de uma variação da voltagem aplicada à lâmpada ou utilizando-se um atenuador de feixes), dimensão e forma do feixe (através de um expansor de feixes). O feixe de laser é focado em uma amostra, através de uma lente objetiva de microscópio que se encontra no interior do sistema, por meio de luz incidente, transmitida ou refletida.

Para efetuar a ablação, a amostra deve estar contida dentro de uma célula de amostragem interligada a uma superfície que permita a sua movimentação nos eixos x, y e z e a um sistema de imageamento para facilitar o ajuste de foco, localização do material e determinação do local de ablação. Esta célula de amostragem possui também uma janela, pela qual o feixe incidente de laser ultrapassa, e está conectada a um tubo por onde o gás He é injetado para transporte de material até o ICP-MS. O modelo de célula de amostragem utilizado neste estudo (figura 3.1a) é o mesmo utilizado por Takenaka (2013) e foi desenvolvido com o intuito de aumentar a eficiência do transporte de material canalizando a mistura entre amostras e gases (canal em forma de gota).

3.2.2 – ICP-MS

São diversos os modelos de espectrômetros de massa comercializados hoje em dia, porém o modelo utilizado por este estudo foi um Q-ICP-MS (*Quadrupole* – Modelo Agilent 7700x), que é o equipamento mais simples dentre os da mesma categoria (MC-ICP-MS – *Multicolector* e SF-ICP-MS – Sector field). As análises efetuadas neste tipo de ICP-MS exigem amostras retiradas na forma de partículas finas (geradas por ablação a laser), tubos injetores de gases e amostras, tocha de plasma de Ar, separador de massas e por fim um detector.

A injeção de amostras no ICP-MS ocorre por meio de um tubo injetor, acrescido de um homogeneizador de gases (chamado de *squid*) (figura 3.1b), interligado ao sistema de ablação a laser e ao ICP-MS (Takenaka, 2013). As amostras injetadas no espectrômetro de massas

passam então por uma tocha, composta de um tubo concêntrico de quartzo, por onde o gás de Ar flui. O plasma de Ar que alimenta a tocha é gerado a partir de campos magnéticos de rádio frequência (RF) induzidos por uma bobina de cobre enrolada na parte superior da tocha. O gás de Ar é ionizado e recebe uma boa quantidade de elétrons a partir de picos de alta voltagem que geram uma descarga no plasma de aproximadamente 10.000 K na entrada e na saída do tubo. A alta temperatura no interior do plasma dissocia, volatiza e atomiza rapidamente a amostra de forma que a maioria dos íons moleculares envolvidos sejam detectados posteriormente. Apesar do gás de Ar ser fracamente ionizado (cerca de 0,1%), o plasma se torna muito eficiente para ionização de amostras pois a maioria dos elementos analisados possuem a sua primeira energia de ionização inferior ao primeiro potencial de ionização do gás de Ar. Os metais são os elementos mais ionizados pela tocha do ICP-MS (>90%), porém os elementos não metálicos são ionizados em menos de 50% com a mesma fonte. Ocorre a geração de interferências isobáricas por meio da recombinação de íons sobrepostos. As interferências podem ser de Ar⁺, Ar²⁺, espécies poliatômicas e óxidos, sendo que a geração de óxidos pode ocorrer através da introdução de ar e impurezas (N⁺, O²⁺, NO²⁺, entre outros) nos gases ou ser proveniente de material erodido dos cones do ICP-MS (isótopos de Ni, Cu, Mo, entre outros).

Após a produção dos íons carregados positivamente no plasma de Ar, eles são direcionados a uma região de interface mantida a vácuo que auxilia no transporte dos íons de maneira eficiente. O vácuo facilita o deslocamento dos íons, evitando colisões com outras partículas provenientes do ar externo, removendo-as do sistema. A interface consiste em uma região composta de dois cones metálicos de níquel (o amostrador e o *skimmer*), onde o primeiro cone acelera as partículas até um orifício e produz um jato na câmara de expansão e o segundo cone extrai uma pequena porção do gás de plasma para o sistema. Os dois possuem orifícios de 0.6 a 1.2 mm por onde os íons atravessam até chegar às lentes iônicas por onde serão guiados até o separador de massas (quadrupolo). Uma vez que os íons são extraídos com sucesso da região de interface, eles são direcionados para uma câmara a vácuo por uma série de lentes eletrostáticas chamadas de lentes iônicas. As lentes focam eletrostaticamente o feixe de íons até o separador de massas e evitam que fótons, particulados e espécies neutras cheguem até o detector.

O feixe de íons que sai das lentes iônicas posteriormente passa por um dispositivo de separação de massas, que permite que os íons de uma determinada razão massa/carga (m/z) atravessem até o detector, filtrando todos os não analitos, interferências isobáricas e íons provenientes da matriz. O dispositivo utilizado para separação das massas neste estudo foi o quadrupolo. Desenvolvido nos anos 80, equivale a aproximadamente 95% de todos os espectrômetros de massa usados hoje em dia. Por ter sido o primeiro separador de massas a ser comercializado é considerado suficientemente maduro e com desempenho alto o suficiente para

realizar análises de elementos traço também. Consiste basicamente de quarto tubos cilíndricos e hiperbólicos de mesmo comprimento e diâmetro (de 8 - 12 cm de comprimento e cerca de 1 cm de diâmetro). Um campo de corrente direta (dc) é posicionado em um dos pares de tubos e outro campo de RF é posicionado no par oposto e então ao passarem os íons de uma determinada massa por estes tubos eles seguem uma determinada trajetória até o detector ou são descartados. Este processo é repetido até que todas as partículas da amostra sejam analisadas pelo quadrupolo.

Ao final do processo, os íons chegam até um detector de íons que os converte em sinal elétrico para realização da leitura dos dados. O modelo utilizado por este estudo possui apenas um detector onde sinal eletrônico recebido e processado pelo sistema de conversão de dados, sendo posteriormente convertido em concentrações de elementos e massas (também calibradas por padronização no ICP-MS).

CAPÍTULO 4

RESULTADOS E DISCUSSÃO

Optimization of the in-situ U-Pb age dating method via LA-Quadrupole-ICP-MS with applications to the timing of U-Zr-Mo mineralization in the Poços de Caldas Alkaline Complex, SE Brazil

Lynthener Bianca Takenaka¹, Cristiano Lana, Ricardo Scholz¹, Herminio Arias Nalini Jr.¹, Adriana Tropia de Abreu¹

Abstract: The high spatial resolution of the LA-ICP-MS systems allows rapid extraction of vital isotopic information from individual growth zones of minerals. Although a number of studies have demonstrated the precision and accuracy of LA-ICP-MS systems for U-Pb geochronology, there has been little about procedures to optimize the U-Pb method. This paper describes in detail the optimization of a relatively inexpensive LA-ICP-MS system consisting of a UV 213 Laser Ablation and a Quadrupole ICP-MS. The results of optimization take into account laser energy, beam diameter, frequency and ICP-MS gas conditions. The optimized conditions were tested for precision and accuracy on a number of well-characterized zircons, commonly used as primary and secondary quality control standards. The acquisition of the U-Pb data is carried out in automated mode (pre-set points) for up to 12 h/day with only minimal operator presence. Individual U–Pb zircon analysis lasts 80 s. The 2σ uncertainties of the standards ranged between 1.4 and 8.2 %, and overall their relative deviations ranged from 0.02 to 0.87 %. The results are comparable with those of LA-MC-ICP-MS and ion-microprobe techniques that use more complex and time-consuming approaches. We have applied this method to obtain ages of numerous granitoid rocks from the southern São Francisco Craton and a well-known Archean granitoid of the Kaapvaal Craton, South Africa. We furthermore provide the first result of U-Pb age dating of U-Zr-Mo mineralization in the Poços de Caldas Alkaline Complex, SE Brazil, with a U-Pb Concordia age of 84 ± 1 Ma for zircon-bearing hydrothermal veins.

Keywords: LA-ICP-MS, Poços de Caldas Alkaline Complex, Zircon, U-Pb method

4.1 - INTRODUCTION

Laser Ablation System (LA) attached to Ion Coupled Plasma Mass Spectrometer (ICP-MS) is a relatively simple and inexpensive combination of instruments that is capable of *in situ* elemental determinations with extremely low detection limits. In geochronology, LA-ICP-MS systems are adequate not only because of affordable maintenance costs, but also because of sensitivity, high spatial

¹ Departamento de Geologia, Universidade Federal de Ouro Preto.

resolution and higher rates of material transference during analysis. Recent advances in gas/solid state laser ablation and in ICP-MS sensitivity has allowed extraction of important isotopes (e.g., Hf, B, Sr, Nd, Pb) and trace element data from individual growth zones of various minerals such as zircon, monazite, titanite, apatite and tourmaline (e.g., Kinny *et al.*, 1991; Hinton & Upton, 1991; Thirlwall & Walder, 1995; Rubato, 2001). Significantly, large datasets can be obtained during very short analytical sessions thanks to improvements in the through put rates of ICP-MS systems and the fast automatization of the laser ablation instruments. Thus, more accurate calibrations and higher spatial resolution (30-20 microns) are the key requirements for improving modern geochronology. On the other hand, less sensitive systems such as Quadrupole ICP-MS (Q-ICP-MS) coupled to 213 (or 266)-nm solid-state lasers have to be systematically optimized, in order to avoid recurring problems such as low sensitivity and high elemental fractionation, which direct influence on the spatial resolution and quality of the analysis.

Despite the lower sensitivity, LA-Q-ICP-MS systems are substantially more accessible (and affordable) than multi/single collector sector-field ICP-MS. They have a wide dynamic range which allows simultaneous U-Pb isotopic and trace element analysis of narrow growth zones of a number of minerals such as zircon, monazite and titanite. A number of studies have demonstrated the accuracy and precision of such instruments for U-Pb geochronology (Jackson *et al.* 2004; Storey *et al.*, 2006). However, information about tuning/optimization/data reduction protocols is often scarce and poorly described. In this paper, we describe the technique and show how a full optimization of the LA-Q-ICP-MS provided optimum results at the end of one year. We note that the slightest modifications in the system can result in higher counts (especially for the less abundant masses like ²⁰⁴Pb+Hg, ²⁰²Hg and ²⁰⁷Pb), prevent high oxide formation (ThO<<1%) and produce low elemental fractionation. After systematic normalization against external standards, the system can give ages with high accuracy and well acceptable analytical errors. The methodology was tested using several well-characterized zircon standards and magmatic zircons from well-known granitoids in Brazil and South Africa.

As an application to our system, we attempted to estimate the timing of hydrothermal fluid circulation and Zr-U-Mo mineralization in the Poços de Caldas (PC) Alkaline Complex, one of the largest alkaline intrusions in South America. The igneous activity in this complex may have started some 89 Ma ago with emplacement of an ankaratrite body (Bushee, 1971) or even earlier, with emplacement of nepheline syenites at ca. 92 Ma (Kawashita *et al.*, 1984). Whole-rock Rb/Sr isochrones (Kawashita *et al.*, 1984) gave ages of 89.8 \pm 2.8 Ma (initial ⁸⁷Sr/⁸⁶Sr ratio of 0.7050 \pm 1) from nepheline syenites and 86.3 \pm 6.0 Ma (i.r., 0.7052 \pm 1) from lujavrites and khibinites. Other Rb-Sr isochrones based on whole-rock samples of a nepheline syenite yielded an age of 74.2 \pm 6.3 Ma (i.r. of 0.70511 \pm 1) (Shea, 1992). K-Ar dating of a number of samples gave a substantially large spread in ages ranging from 89.3 to 54.2 Ma (see review in Ulbrich *et al.*, 2002). The variances between the age dating methods may reflect differences in either emplacement ages, cooling of the rock massif and

subsequent hydrothermal alteration. To date, no previous study has attempted to constrain U-Pb ages for the hydrothermal mineralization in the complex.

The U-Pb method is insensitive to chemical alteration and is thus more adequate to constrain the emplacement age of the complex and the timing of hydrothermal circulation. We provide 34 in situ U-Pb analysis from samples of the eastern portion of the PC Alkaline Complex. These samples came from supergene-enriched deposits of zircon and caldasites located a few kilometers west of the *Osamu Utsumi* uranium mine. The hydrothermal veins affect the main body of phonolites and tinguaytes and reflect the timing of hydrothermal U-Zr-Mo mineralization in the PC complex. The samples yielded abundant, largely translucent zircons that gave highly concordant and Pb-common free isotopic (U-Pb) ages.

4.2 - INSTRUMENTATION

LA-Q-ICP-MS analysis were carried out in a system consisting of an Agilent 7700x mass spectrometer coupled to a laser system LUV213 (New Wave Research/Merchantek, Nd: YAG). The Agilent 7700x ICP-MS is configured for routine analysis with very low concentrations of elements (0.1-2 % relative standard deviations), keeping a wide (9 orders) dynamic range. Such a combination of sensitivity and analytical range is fundamental for handling advanced research applications, such as simultaneous or sequential determination of U-Pb ratios and trace element analysis. Although the lower precision, Quadrupole instruments are the most inexpensive of the ICP-MS family and yet provide sufficient counts of ²⁰⁴Pb+Hg and ²⁰⁷Pb masses for U-Pb applications (see below) in minerals like zircon, monazite and titanite (Fryer *et al.*, 1993; Machado *et al.*, 1996; Jackson *et al.*, 2004; Storey *et al.*, 2006; Lana *et al.*, 2010a; Lana *et al.*, 2010b).

The New Wave 213 nm laser beam offers short pulses of 5 to 20 ns that produce flat craters, ideal for U-Pb geochronology. The laser is also known for its improved absorption by zircon and less transmittance of the laser beam into the underlying epoxy resin, compared to 266 nm lasers (Jackson *et al.*, 2004). The deep UV 213 nm wavelength produces fine particle distribution, reducing problems with the time-dependent U–Pb fraction (during spot ablation) and with the stabilization period of the laser, leading to short warm-up times. We have synchronized the software packages of the laser ablation unit and ICP-MS via a trigger cable in order to automate execution of analytical sequences; hence the data are acquired without the operator presence. Giving that, an individual analysis is produced in less than a minute, a minimum of 40-50 individual dates can be acquired per hour and approximately 200-300 points (with age data) are generated in a day.

The definition of hole diameters for the analysis are dependent on the complexity of the zircon samples. The combination of beam diameter and ablation time generally results in approximately 30-50 ng of removed material. The analysis were performed keeping all parameters constant (from laser and ICP-MS) for standards and samples throughout the run. The laser is kept always focused, thus

reducing any shifts of the laser beam during ablation. The operating conditions (or tuning conditions) of ICP-MS and laser are specified in table 4.1.

ICP-MS	Agilent 7700x
Mass analyzer	Quadrupole
RF Power (W)	1550
Sampler cone	Ni; 1,0 mm
Skimmer cone	Ni; 0,4 mm
Sampling depth (cm)	5
Plasma gas (L min ⁻¹)	15
Auxiliary gas (L min ⁻¹)	1,2
Optional gas (L min ⁻¹)	1
Carrier gas (L min ⁻¹)	1,00 - 1,10
Dwell times (ms)	40, 15, 10, 10, 10, 10, 10
ThO^+/Th^+ (%)	<0,5
Isotopes (m/z)	²⁰⁷ Pb, ²⁰⁶ Pb, ²⁰⁸ Pb, ²³² Th, ²³⁸ U, ²⁹ Si, ²⁰² Hg, ²⁰⁴ Pb+Hg
Laser	New Wave UV 213
Wavelength (nm)	213
Frequency (Hz)	10
Fluency (J/cm ²)	10
Energy (%)	50
Beam type	spot
Beam diameter (µm)	30 - 40
Ablation time (s)	40-50

 Table 4.1- Operating conditions of the LA-Q-ICP-MS system. Plasma and auxiliary gases used for the current analysis was composed of argon, but the carrier gas was composed of helium.

4.2.1 – Sample cell

Standard and sample mounts are placed in a teardrop shaped sample chamber customized at the University of Stellenbosch (Lana *et al.*, 2013) (figure 4.1a). The cell is a modified prototype from that designed by the British Geological Survey, in Nottingham (e.g., Bleiner & Günther, 2001; Horstwood *et al.*, 2003). It has two compartments: one for 1 cm-diameter for standard mounts and one for 2.5 cm-diameter for sample mounts (figure 4.1a). Previous pilot tests showed that this low volume sample chamber has significantly increased signal sensitivity (Lana *et al.*, 2013) with excellent results for the number of counts, signal stability (gas flow) and less wash out time. The chamber has also increased the rising time of the signal at the beginning of each analysis. Thus, the introduction of the low volume cell resulted in time reduction of individual analysis from 140/150 seconds to 60/70

seconds, and consequently there was a 50-60 % increase of zircons analyzed per day (Takenaka, 2013).

Figure 4.1- Sketch of the cell for standards and sample mounts, and the mixing gas system. Note that the cell (a) has a teardrop shape to maximize gas flow and reduce washout time. Helium gas was used for transport of the material and was mixed with Ar gas before the material reach out the ICP-MS. The gas mixer (b) is essential for homogenization of the sample and gases before it enter in the ICP-MS.

4.2.3 – Gas mixer – The squid

In the path between the ablation cell and ICP-MS, the commonly used Y-tube was replaced by a gas mixer in the form of a splitter, with ten PTFE tubes of 3 mm diameter and 80 cm in length (figure 4.1b) for better homogenization of the mixtures. The gas mixer, known as squid, improves the signal stability as can be observed in ICP-MS and Glitter program spectra (figure 4.2). It works as a smoothing device, reducing signal fluctuations produced in sample chambers (small volume chambers) with fast wash out times. Ideally, the squid should retain a fast rise time and washout, but the rise time is generally compromised when long mixing lines are required to completely smooth the signal (figure 4.2). Note in figure 4.2, that the signal produced with the squid has a slightly curved signal rise relative to the signal without the squid. This is because the ablated sample produced in the laser is slightly delayed by the squid before entering the ICP-MS. On the other hand, the squid keeps its short wash out time and produces a strikingly smooth signal that is perfect for counting statistics (it eliminates the noise) and consequently gives better averaged signal counts. The implications are highly significant for error calculations.

4.3 – DATA ACQUISITION

ICP–MS instruments perform readings of mass/charge ratios, making the signal acquisition time-dependent. Each isotope has a specific predetermined integration time (dwell time of 10-40 ms), which guarantees representative measurement of the masses efficiently. In this study, the integration times used were 40 ms for ²⁰⁷Pb, 15 ms to ²⁰⁶Pb and 10 ms to ²⁹Si, ²⁰²Hg, ²⁰⁴Pb+Hg, ²⁰⁸Pb, ²³²Th and ²³⁸U, with a total scan of the masses occurring in 60 s (20 s background/40 s ablation). The relevant isotopic ratios (²⁰⁷Pb/²⁰⁶Pb, ²⁰⁸Pb/²⁰⁶Pb, ²⁰⁸Pb/²³²Th, ²⁰⁶Pb / ²³⁸U and ²⁰⁷Pb/²³⁵U where ²³⁵U is calculated from counts of ²³⁸U by natural abundant reason ²³⁵U = ²³⁸U/137.88) were calculated by the data reduction program Glitter (Van Achterbergh *et al.*, 2001).

Figure 4.2 - Spectrum of the analysis obtained with and without using the gas mixer (squid) for the GJ-1 standard. The gray signal (run 6) was produced with the squid. Note that the spectrum is constant and linear. The black signal (run 5) was produced without the squid. Without the squid the signal is spiky or noisy because argon is not properly homogenized with helium in addition to ablated material.

Moreover, the background values were previously measured for initial analysis of each 20 s and subsequently subtracted from the analysis by the program. For further calibration of the system and minimization of errors and mass fractions, we bracket 7 to 10 analysis of samples between two sets (average of 3 analysis) of standard. The presence of common Pb is carefully monitored against the analysis of standards.

4.4 – DATA REDUCTION

The data reduction was done via the Glitter software (GEMOC Laser ICP-MS Total Trace Element Reduction), which provides an interactive environment for analytic selection of background and sample signals besides enabling a fast, real-time and online data reduction (Van Achterbergh *et al.*, 2001; Jackson *et al.*, 2004). The program calculates the significant isotopic ratios (²⁰⁷Pb/²⁰⁶Pb, ²⁰⁸Pb/²³²Th, ²⁰⁶Pb/²³⁸U and ²⁰⁷Pb/²³⁵U) which are displayed in time-resolved mode. For our laser system, isotopic ratios generated during the first 5 s of each analysis were discarded. The integration window for the remainder of each analysis was chosen so as to maximize concordance and exclude signal segments that were related to zones of Pb loss (*e.g.*, fractures), high common Pb or inheritance.

Instrumental mass bias and ablation depth-dependent elemental fractionation were corrected by tying the integration window for the unknown zircon to the identical integration window of the standard zircon GJ-1 (Jackson *et al.*, 2004). Instrumental drift was corrected against the zircon standard using linear interpolative fits. Initial calibrations are based on twelve of more analysis of the standard and secondary standard. Mass bias and drift corrections are based on sets of measured standard ratios that bracket sets of 7 to 10 analysis of unknowns. The measured standard ratios are interpolated and a factor is calculated from the accepted ratios and applied to the bracketed unknowns. Uncertainties in the standard ratio measurements are propagated through this procedure to estimate the standard ratio uncertainties relevant to each unknown ratio measurement. Relative uncertainties estimated for the standard ratios are combined with the unknown ratio uncertainties in quadrature. A further 1 % uncertainty (1 sigma) is assigned to the measured TIMS values of the isotope ratios for the standard and propagated through the analysis error.

Common Pb corrections can be applied in different ways. Our preferred method is by measuring ²⁰²Hg mass to monitor the ²⁰⁴Hg interference on ²⁰⁴Pb (using a ²⁰²Hg/²⁰⁴Hg natural abundance ratio of 4.36). Common Pb corrections are done using the interference and background-corrected ²⁰⁴Pb signal in combination with a model Pb composition of Stacey & Kramers (1975). This is applied to all isotope ratios and is based on raw counts exported from Glitter. However, some attempts to measure ²⁰⁴Pb may be fruitless owing to the overwhelming contribution to the signal from ²⁰⁴Hg (isotopic abundance = 6.87 %) and the best option is to discard analysis with substantial amount of ²⁰⁴Pb+Hg. We note that for more than 80 % of the analysis, the ²⁰⁴Pb counts are often too low (10-30 cps) and the ²⁰⁶Pb/²⁰⁴Pb ratios are too big for any significant common Pb correction. Alternatively, areas of the samples with substantial amount of the ²⁰⁴Pb mass can be plotted in Tera-Wasserburg diagrams. Isotopic ratios, ages and uncertainties (1 σ) are then exported to a text file and diagrams are made with the Isoplot v.3 extension of Excel (Ludwig, 2001).

4.5 – OPTIMIZATION

Numerous tests with different configurations for laser and ICP-MS were performed. Parameters such as laser beam diameter, ablation time, frequency and adding extra parts in the system such as the small volume chamber, gas splitters and homogenizers were tested in order to obtain the best results with higher counts, precision and accuracy. Here we present a short summary of tests carried out from February 2012 to November 2013 (table 4.2).

Overall, the analysis performed with the squid produced similar or sometimes slightly lower counts than those carried out with the single Y tube. Nevertheless, the squid played a major role in the stabilization of the signal which translated into better averaging statistics and lower internal errors for the ratios and consequently more precise and accurate apparent ages.

Tests with 10 Hz laser frequency, 20 and 30 μ m-wide beam and 40 s ablation time gave wellshaped 17 and 25 μ m-diameter craters and very uniform/stable analytical signals (condition A in table 4.2; see also figure 4.3), but undesirable low counts. Keeping the same gas and laser conditions, but changing the beam to 40 μ m-wide, it produced 33 μ m-wide flat craters, stable analytical signal and precise ages (described below) with excellent counting statistics (condition B in table 4.2; see also figure 4.3). For instance, counts per second of ²³⁸U mass in condition B were three to five times higher than those of condition A (table 4.2).

Standard	Conditions	Dun		Time (a)	Deem diameter (um)	In	tensity (cps)
Standard	Conditions	Kun	Frequency (HZ)	1 Ime (s)	Beam diameter (µm)	²⁰⁶ Pb	²⁰⁷ Pb	²³⁸ U
		1	10	40	30	34191	2107	313052
		2	10	40	30	38949	2381	273019
	А	3	10	40	30	26853	1635	350797
		4	10	40	30	14765	1648	161757
		5	10	40	30	14663	1410	183484
GL 1	р	6	10	40	40	46740	2847	661704
GJ-1	Б	7	10	40	40	43969	2699	476785
	C	8	10	50	30	19460	1170	215411
	C	9	10	50	40	29903	1802	371429
	D	10	5	40	30	18757	1364	159988
	D	11	5	40	40	28315	2050	265441
	Е	12	5	50	40	17958	1081	225240
		1	10	40	30	47584	2574	587165
		2	10	40	30	36903	2060	638724
	А	3	10	40	30	34207	1879	816288
		4	10	40	30	17101	1712	331146
		5	10	40	30	16002	1353	351863
Plesovice	В	6	10	40	40	66031	3575	1328983
riesovice	В	7	10	40	40	69753	3917	1837388
	C	8	10	50	30	24653	1327	515623
	C	9	10	50	40	27233	1458	624308
	D	10	5	40	30	17347	1098	289792
	D	11	5	40	40	20729	1327	352195
	Е	12	5	50	40	20070	1073	464649

Table 4.2 - Analytical conditions for optimization tests on GJ-1 and Plešovice zircon standards.

Condition B was proven ideal (giving the Quadrupole performances) for Archean zircons, as the increase in hole size from 30 μ m to 40 μ m resulted in higher counts, primarily for daughters ²⁰⁷Pb and ²⁰⁶Pb, which are more abundant in older zircons relative to the parents ²³⁵U and ²³⁸U (table 4.2).

The precision of the ${}^{207}\text{Pb}/{}^{206}\text{Pb}$ ratios increased substantially once the dwell time of ${}^{207}\text{Pb}$ mass was modified from 30 ns to 40 ns. Unfortunately, the spatial resolution is lost with the 40 µm-wide beam and in some instances, large craters (33 µm-wide) are not suitable for metamorphic rims.

During tests with 10 Hz frequency, 30 µm-wide beam, and higher ablation times of 50 seconds (condition C in table 4.2; see also figure 4.3), we observed a stable signal but some elemental fractionation affected reproducibility of accepted ages from standards. Moreover, the counts were not satisfactorily high for the purpose of this study. The problem with condition C is that each individual analysis takes too long, making it difficult to keep a strong stable signal, without significant downwhole fractionation. Also, low/variable counts do not contribute to the precision.

Tests carried out at 5 Hz, 40 s, and beams of 30 μ m and 40 μ m (condition D in table 4.2; see also figure 4.3), provided very satisfactory analytical signal but with higher analytical errors due to

low counts per second of the ²⁰⁷Pb mass. The measured counts per second were 3 to 4 times lower than those performed in condition B (table 4.2). The last test, with the same frequency of 5 Hz, but for a 50 s ablation (condition E in table 4.2; see also figure 4.3) was very unsatisfactory, because of the unstable signal, high errors, inaccurate ages and very low counts.

4.6 – LONG-TERM PRECISION AND ACCURACY

In the long term, several LA-ICP-MS sessions were dedicated to standard analysis between july of 2010 and november of 2013; twenty sessions were selected to discuss the precision and accuracy of the method here. The precision (on errors) and accuracy (for validation of results) were monitored through alternating measurements between the primary GJ-1 standard zircon and several secondary standards (zircons Plešovice, M127, BB9 and 91500). Accuracy was calculated as the percentage relative to the standard deviation of the measured concordia age and TIMS (accepted) age (analyzed in previous studies).

Our GJ-1 standard zircon (Jackson *et al.*, 2004; Elhlou *et al.*, 2006) is a gem-quality yellowish crystal with no apparent zoning in cathodoluminescence. Table 4.3 shows all concordia ages obtained from sections 1 to 20. The compiled results show concordia ages ranging from 607 \pm 4 Ma to 610.1 \pm 3.8 Ma (with deviations from the accepted age ranging from 0 to 0.35) (table 4.3; figure 4.4a), fairly consistent with the TIMS age of 608 \pm 1 Ma from Jackson *et al.* (2004). The ²⁰⁶Pb/²³⁸U weighted mean from 746 points gave an age of 608.7 \pm 0.47 Ma (figure 4.5a). The relative deviations for individual ratios were 0.1 to 3.0 % (²⁰⁷Pb/²⁰⁶Pb), 0.04 to 2.8 % (²⁰⁶Pb/²³⁸U) and 0.4 to 1.9 % (²⁰⁷Pb/²³⁵U).

Our Plešovice standard comprises round to well-shaped short prismatic crystals of approximately 0.5 cm in length. The concordant ID-TIMS age of 337.17 ± 0.18 Ma (Sláma *et al.*, 2008) is conventionally used as the accepted age for the standard. Our analytical sections for this zircon (sections 1 to 20 of table 4.3; figure 4.4b) provided concordia ages ranging from 337 ± 1.6 Ma to 340 ± 1.3 Ma and a 206 Pb/²³⁸U weighted mean of 337.6 ± 0.4 Ma (303 points; figure 4.5b). Deviations of the concordia ages from the accepted value ranged from 0.02 to 0.35 %. The relative deviations for individual ratios were 0.4 to 6.6 % (207 Pb/ 206 Pb), 0.15 to 2.7 % (206 Pb/ 238 U) and 0.2 to 2.42 % (207 Pb/ 235 U).

The BB9 zircon comes from a secondary placer deposit in the Sri Lankan Highland Complex (Santos *et al.*, 2014). The crystal is light brown, transparent and shows no internal fracture or significant inclusion that can be observed microscopically. The U-Pb ages determined by TIMS are 560 ± 1.4 Ma (206 Pb/ 238 U) and 560 ± 1.21 Ma (207 Pb/ 235 U). Our analysis of this zircon (sections 1 through 6 of table 4.3; figure 4.4c) gave a range of concordia ages from 558 ± 2.4 Ma to 566 ± 4.2 Ma and 2σ uncertainties between 2.4 and 4.7 %. The 206 Pb/ 238 U weighted mean from 59 points gave an age

of 560.8 \pm 1.5 Ma (figure 4.5c). The relative deviations for individual ratios are 0.03 to 1.7 % (206 Pb/ 238 U) and 0.2 to 1.7 % (207 Pb/ 235 U).

The M127 is a homogeneous zircon crystal from Sri Lanka. Some earlier analysis of this standard can be found in Nasdala *et al.* (2008b), but the gemological characteristics of the crystal are still not well described in any previous work. According to Nasdala L. personal communication (2007), TIMS ages for this standard were 526.42 ± 1.9 Ma (²⁰⁷Pb/²⁰⁶Pb), 524.17 ± 1.77 Ma (²⁰⁶Pb/²³⁸U) and 524.6 ± 1.55 Ma (²⁰⁷Pb/²³⁵U) and TIMS concordant age is 524.3 ± 0.92 Ma (Klotzli *et al.*, 2009). The analytical sessions (sections 1 to 13 of table 4.3; figure 4.4d) yielded concordia ages ranging from 520 ± 3.5 to 528 ± 3.2 Ma and 2σ uncertainties between 1.4 to 4.3 %. Relative deviations for the individual ratios were 0.19 to 3.2 % (²⁰⁷Pb/²⁰⁶Pb), 0.1 to 1.0 % (²⁰⁶Pb/²³⁸U) and 0.11 to 3.31 (²⁰⁷Pb/²³⁵U) %. The ²⁰⁶Pb/²³⁸U weighted mean from 179 points gave an age of 525 ± 0.82 Ma (figure 4.5d).

The last reference material used was 91500 zircon (Wiedenbeck *et al.*, 1995), which is from Lake Ontario, Canada and is marked by a dark red color flat faces, well-defined edges and it's highly fractured inside, with no visible inclusion. Previous characterizations provided U-Pb ages by ID-TIMS of 1062.4 ± 0.8 Ma for the ²⁰⁷Pb/²⁰⁶Pb ratio of 1065.4 ± 0.6 Ma for the ²⁰⁶Pb/²³⁸U (Wiedenbeck *et al.*, 1995) ratio and 1063.8 ± 1 Ma for the ²⁰⁷Pb/²³⁵U ratio. The calculated concordia ages from this study (sessions 1 to 10 of table 4.3; figure 4.4e) range from 1062 ± 5.1 Ma and 1070 ± 6.5 Ma. Relative deviations for the individual ratios were 0.04 to 0.41 % (²⁰⁶Pb/²³⁸U), 0.02 to 0.77 % (²⁰⁷Pb/²³⁵U) and 0.06 to 2.22 % (²⁰⁷Pb/²⁰⁶Pb). The ²⁰⁶Pb/²³⁸U weighted mean from 107 points gave an age of 1064.9 ± 2.2 Ma (figure 4.5e).

4.6.1 – Granitoids

Further tests were carried out in four granitoid rocks older than the zircons dated above. This evaluate the ability of the instrument to date zircons much older (>2000Ma) than the standards (300-600 Ma) used for calibration. We chose well-known granitoids previously dated by TIMS that ranged in age from 3200 Ma to 2100 Ma.

Table 4.3 - Analytical sections with concordia ages obtained for the zircon standards in LA-Q-ICP-MS system, their 26 errors and relative standard deviations for concordia ages from TIMS previous works.

			Section 1					Section 2					Section 3		
Standard	=	Age (Ma)	20	MSWD	Deviation	d	Age (Ma)	20	MSWD	Deviation	Ē	Age (Ma)	20	MSWD	Deviation
GJ-1	26	608.1	2,3	1,1	0,02	20	608.9	3,1	0,65	0,15	15	608,8	3,1	0,72	0,13
Plešovice	91	337	2	1,5	0,05	61	337	1,9	4,1	0,05	15	337,2	1,5	0,79	0,01
91500	п	1066	4,9	0,87	0,09	21	1066	4,4	0,95	0,09	16	1069	4,5	0,64	0,37
889	15	560	3,3	1,4	0,19	13	559	2,8	0,68	0,37	9	566	5,7	1,5	0,87
M127	14	525	2,9	1,04	0,12	19	522	3,4	1.7	0,44	9	528	5,2	1,3	0,69
Condand			Section 4					Section 5					Section 6		
Standard	.i	Age (Ma)	20	MSWD	Deviation	'n.	Age (Ma)	20	MSWD	Deviation	'n.	Age (Ma)	20	MSWD	Deviation
GJ-1	20	607,5	3,3	1,5	0,08	п	607,8	3,5	0,36	0,03	37	608,6	2,4	1,6	0,10
Plešovice	18	337,6	2	1,7	0,12	24	338	1,5	1'1	0,24	6	338	3,4	1	0,24
91500	12	1070	9	1,3	0,46	15	1062	5,1	1,04	0,28	6	1068	6,0	1,4	0,28
BB9	4	559	8,1	2,7	0,37	5	564	7,7	2,1	0,51	16	558	3,2	1,6	0,55
M127	52	526	1,6	1,2	0,31	7	523	4,3	0,63	0,25	11	520	4,4	1,5	0,82
Constant of			Section 7					Section 8					Section 9		
Standard	'n	Age (Ma)	20	MSWD	Deviation	'n	Age (Ma)	20	MSWD	Deviation	ų.	Idade (Ma)	20	MSWD	Desvio
GJ-1	12	608,3	3,5	66'0	0,05	25	608,5	3,1	1,7	0,08	20	609,1	2,6	0,63	0,18
Plešovice	10	338,2	2	0.57	0,3	6	338	3,2	1,8	0,25	19	339	2,2	1,5	0,54
91500	æ	1070	6,5	0,83	0,46	8	1064	Π	1,9	0,09	9	1067	6,7	0,27	0,18
BB9		,	,	,			t		1				i	ı	Т
M127	24	528	3,1	1,7	0,69	6	528	3,2	0,54	0,69	6	523	3,3	0,25	0,25
			Section 10					Section 11					Section 12		
Standard	ć	Age (Ma)	20	MSWD	Deviation	÷	Age (Ma)	20	MSWD	Deviation	ć	Age (Ma)	2σ	MSWD	Deviation
GJ-1	19	610	2,7	0,64	0,16	35	609,5	2,6	1,5	0,25	15	609,6	3,1	0,6	0,26
Plešovice	0	339	2,1	1,05	0,54	Ξ	338,5	2,5	0,98	0,39	10	337,5	2,2	1,3	0,09
91500	9	1064	8,2	0,5	0,09		,	,				,			1
BB9					1		ı	ı				ţ	,	1	1
M127	6	524	3,4	0,55	0,06	8	524	5,4	2,2	0,06	6	528	4,5	1,8	0,69
Standard			Section 13					Section 14					Section 15		
nimmerc	u.	Age (Ma)	2σ	MSWD	Deviation	'n.	Age (Ma)	20	MSWD	Deviation	'n.	Age (Ma)	20	MSWD	Deviation
GJ-1	16	609,7	2,8	1,5	0,28	24	609,5	2,7	1,17	0,25	п	607	4	1,2	0,16
Plešovice	30	340	1,5	1,3	0,83	22	339,4	2,3	1,4	0,66	14	339	2,4	1,6	0,54
91500		1	,	,	1		ı		,	1		,	1		1
BB9															
M127	6	523	4,3 5 16	0,45	0,25		6	Control 17				1	Control 10	c	r
Standard			Section 10					Section 1/					SECHOIL 10		
	'n	Age (Ma)	20	MSWD	Deviation	ż	Age (Ma)	20	MSWD	Deviation	÷	Age (Ma)	2σ	MSWD	Deviation
64-1	24	609,5	2,7	1,17	0,19	18	609	3,4	1,5	0,16	18	609,5	3,7	1,8	0,26
Plešovice	14	338	2,6	1,8	0,24	6	337	2,2	1,06	0,05	13	338	2,5	1,6	0,25
91500							,								1
BB9														ı	1
M127		,		,	,		,			,		-			1
Standard			Section 19					Section 20				MSWD:Mean Sq	uares of the We	cighted Deviatio	=
	ż	Age (Ma)	20	MSWD	Deviation	ċ	Age (Ma)	20	MSWD	Deviation		20	: Analytical err	or	
6.1-1	2	608	3,8	1,2	0	17	610,1	3,8	0,42	0,35		п.: Г	Number of Anal	ysis	
Plešovice	6	338	2,1	0,34	0,24	90	338,9	2,6	0,97	0,51					
91500								,	ĩ						
889					,										
M127							х.								

I - Kaap Valey Tonalite – Kaapvaal Craton, South Africa

The Kaap Valley Tonalite is a regionally extensive Archean pluton in the eastern Kaapvaal Craton, South Africa. The pluton consists of various phases with a range of compositions from tonalite to granodiorite (Robb & Anhaeusser, 1983; Anhaeusser & Robb, 1983). However, the pluton seems to be quite homogenous in terms of crystallization ages. Kamo & Davis (1994) dated zircons and monazites from a phase of this pluton and obtained an age of 3227 ± 1 Ma. An age of 3226 ± 14 Ma was obtained by Armstrong *et al.* (1990) via SHRIMP, whereas Tegtmeyer & Kroner (1987) obtained an age 3229 ± 5 Ma via single grain evaporation. In this study, the first analysis of zircons from the Kaap Valley tonalite provided an upper intercept age of 3227.9 ± 4.6 Ma and a lower intercept age of 498 ± 270 Ma (MSWD = 0.58) (figure 4.6a). The subsequent run provided an upper intercept age of 3229.4 ± 5.1 Ma and a lower intercept age of 461 ± 210 Ma (MSWD = 1.5) (figure 4.6b). The average ages calculated for the 206 Pb/ 238 U and 207 Pb/ 235 U ratios were 3199 ± 14 Ma and 3216 ± 6.1 Ma, 3225 ± 18 Ma and 3228 ± 7.6 Ma, and the mean ages of 207 Pb/ 206 Pb ratio were 3227 ± 7 Ma and 3229 ± 11 Ma, respectively.

II - Samambaia Tonalite – Quadrilátero Ferrífero, Brazil

According to Carneiro (1992), the Samambaia Tonalite forms small bodies of a tonalite intrusive phase into the 2900 Ma Alberto Flores gneiss of the Bonfim Complex. The U-Pb age of 2780 \pm 3 Ma was obtained by Carneiro (1992) via TIMS analysis of zircons and titanites, and is considered the time of igneous crystallization of this rock. Our study provided average mean ages of 2785 \pm 12 Ma (²⁰⁷Pb/²⁰⁶Pb), 2777 \pm 14 Ma (²⁰⁶Pb/²³⁸U) and 2781.5 \pm 6.9 Ma (²⁰⁷Pb/²³⁵U) for all concordant points. The same analysis gave a concordia age of 2782.1 \pm 3.7 Ma (figure 4.6c).

III - Moeda Granodiorite - Quadrilátero Ferrífero, Brazil

The granodiorite is part of the same calc-alkaline suite which generated a large volume of potassic granitoids in the southern part of the São Francisco Craton (Romano *et al.*, 2013). These granitoids marked a stabilization of the craton between 2750 Ma and 2600 Ma According to Machado *et al.* (1992) the Moeda Granodiorite can be considered the basement of the overlying Minas supergroup. Most zircons found in samples were milky or white, with a crystallization age of 2721 ± 3 Ma (Machado *et al.*, 1992). Romano *et al.* (2012) recently showed that the granodiorite is a batholith which would consist of more than one phase of potassic granitoids gave ages of 2730 ± 7 Ma, 2723 ± 7 Ma, and a younger age of 2613 ± 6 Ma. In our study, we generated an upper intercept age of 2730.5 ± 6.9 Ma and a lower intercept age of 609 ± 160 Ma (MSWD = 2.2) (figure 4.6d). Average mean ages were found to be 2729 ± 10 Ma for the 207 Pb/ 206 Pb ratio, 2727 ± 13 Ma for the 206 Pb/ 238 U ratio and 2728 ± 6.1 Ma for the 207 Pb/ 235 U ratio. Already, the older concordia age obtained was 2728 ± 3.3 Ma.

Figure 4.4 - Concordant ages for zircon standards: (a) GJ-1 (b) Plešovice (c) BB9 (d) M127 and (e) 91500. The cumulative effect of the large number of points resulted in statistically overestimated errors on the calculated ages. These errors should not be more accurate than the external reproducibility of the analysis (see text and table 4.3 for details).

Figure 4.5 - Weighted mean ages for zircon standards: (a) GJ-1 (b) Plešovice (c) BB9 (d) M127 and (e) 91500. Each diagram contains a large number of points calculated over the optimization period and, therefore, the cumulative effect of the large number of points resulted in statistically overestimated errors on the calculated ages. These errors should not be more accurate than the external reproducibility of the analysis (see text and table 4.3 for details).

Figure 4.6 - Concordia diagrams for granitoid zircons: (a) and (b) for Kaap Valley Tonalite, (C) Samambaia Tonalite, (d) Moeda Granodiorite and (e) Alto Maranhão Pluton.

IV - Alto Maranhão Pluton – Southern Tip of the São Francisco Craton

According to Noce *et al.* (1998), the Alto Maranhão Pluton is a tonalite intrusion in the Greenstone Belt sequences of the Nova Lima Group of the Quadrilátero Ferrifero (Sad *et al.*, 1983).

The zircons found in samples of this rock are pink, euhedral and had conspicuous colors. They gave a TIMS age of 2124 ± 1 Ma (Noce *et al.*, 1998). In this study, we obtained an upper intercept age of 2119 ± 18 Ma, with lower intercept at 591 ± 800 Ma (MSDW = 0.084) (figure 4.6e). Average mean ages from the ratios were 2111 ± 17 Ma (207 Pb/ 206 Pb), 2077 ± 16 Ma (206 Pb/ 238 U) and 2094.2 ± 9.1 Ma (207 Pb/ 235 U).

4.7 – THE POÇOS DE CALDAS ALKALINE COMPLEX

4.7.1 – Geological setting

The PC complex is a ring structure located between São Paulo and Minas Gerais states, in the central part of Mantiqueira Province to the south of the São Francisco Craton (Cordani *et al.*, 2000). It is a 33 km-diameter round chimney of alkaline intrusions, with a surface extent of about 800 km² and estimated depth of 10 to 12 km (figure 4.7a) (Ulbrich & Ulbrich, 1992). The main massif can be considered the largest known alkaline complex of South America and one of the largest in the world (Woolley, 1987).

According to Schorscher & Shea (1992), the petrographic associations of the PC alkaline rocks are potassium-rich phonolites and nepheline syenites, which broadly consist of K-feldspar, nepheline, sodic pyroxene and accessory minerals. The geology of the complex also includes volcanic (breccia, tuff and agglomerate), effusive and hypabyssal (phonolite and tinguayte, respectively), and plutonic (mainly foyaite) rocks in the massif (Fraenkel et al., 1985; Ulbrich & Ulbrich, 1992). Ulbrich & Ulbrich (1992) described a range of rock types that were sequentially emplaced in the following order: 1-tinguaytes, 2-phonolites and 3-syenites, and the last basic to ultrabasic volcanic rocks and dikes (sometimes associated with carbonatite occurrences). According to Ellert (1959), an early volcanism involving olivine nephelinites, phonolite lavas and volcanoclastics gave way to a caldera subsidence and nepheline syenite intrusions forming minor ring dykes and circular structures. The dyke emplacement was followed by the intrusion of eudialyte- bearing nepheline syenites. The complex is marked by large deposits of U, Th and rare-earth elements (REEs) (Schorscher & Shea, 1992) in the form of bauxite, clays, zircon, caldasite, U-Zr-Mo, F and Th-REE (-Fe). Many of these deposits were caused by a late hydrothermal alteration (Frayha, 1962; Wedow, 1967; Gorsky & Gorsky, 1974; Putzer, 1976; Santos, 1976; Magno Jr., 1985, Fraenkel et al., 1985, Ulbrich & Ulbrich, 1992).

4.7.2 - Results

Several samples of a hydrothermally altered phonolyte were collected in the eastern portion of the complex, in a deposit named *Pico do Taquarí* at approximately 6 km northeast from the *Osamu Utsumi* uranium mine (figure 4.7a). The interaction between the country rocks and hydrothermal fluids led to crystallization of large crystals of zircon in a baddeleyite-rich microcrystalline groundmass (figure 4.7b). These hydrothermal systems are found within large alteration zones of the phonolyte, which are observed in and around U-Zr-Mo mines. Field observations showed that these zones are associated with highly fractured, grey to beige-colored altered rock, locally known as "potassic rock" on the account of its high K_2O content. The outcrops are heavily altered due to supergene enrichment, and the exposures were limited to boulders of the dominant phonolyte, that covers more than 60% of the main alkaline complex.

Thin sections shows that the samples consists dominantly of a brown cryptocrystalline groundmass with a number of zircon-filled cavities. The groundmass consists of a Zr rich amorphous phase riddled with baddeleyite microcrystals (figures 4.7b, 4.7c). Zircons grew from the cavity wall forming classic epithermal fracture with filled textures (figures 4.7c, 4.7d). Zircons form large mm- to cm-wide, and are red to yellow translucent crystals dominantly euheadral to subheadral (figure 4.7d). Thirty-three analysis on 12 of these grains gave concordant points with similar 206 Pb/²³⁸U apparent ages in the range of 80 to 91 Ma. These points gave a 206 Pb/²³⁸U weighted mean age of 84.6 ± 1 Ma (figure 7e). An identical concordia age of 84.4 ± 1 Ma was given by 23 of the 33 points (figure 4.7f) and is here interpreted as the crystallization age of the hydrothermal veins that crosscut the phonolites and tinguaytes in the western part of the PC complex.

4.8 - DISCUSSION

Optimization tests using a 213 UV laser ablation system coupled to an Agilent 7700x ICP-MS showed a significant improvement in sensitivity and reproducibility after a series of tests under varied conditions, including gas flow, laser beam diameter, laser energy and ablation time. Analysis with 40 µm beam proved to be the most suitable for low resolutions systems such as Quadrupole ICP-MS. We noted that a longer dwell time of 40 ms for ²⁰⁷Pb mass can sometimes improve counts and drastically improve precision on the ²⁰⁷Pb/²⁰⁶Pb ratios and ages of Late-Proterozoic and Archean zircons. With a 30 µm beam, the counts are lower but very satisfactory; this applies to both Proterozoic and Archean zircons. Expanding the hole size to 50 µm increases the amount of sampled material, but compromises the spatial resolution and therefore may not be suitable for complex zircons.

Changing ablation time from 40 s to 50 s improved slightly the counts, but fractionation increased. Long periods of ablation translated to deeper craters and again loss of spatial resolution deep into the crystals. Thus, the crater depth/diameter ratio is an essential factor for the optimization of the LA-ICP-MS and should be taken into account while performing analysis in our system. This

parameter is determined as a function of ablation time and laser beam size, and it is directly related to the effect of elemental splitting, differential transport of U and Pb masses and during ablation. Increasing this ratio causes the fractionation of elements, which implies undesirable age data.

When reducing the usual frequency of 10 Hz to 5 Hz, regardless of the diameter of the hole, the analytical error becomes extremely high due to much lower counts. Even increasing the ablation time from 40 s to 50 s, with the aim of supplying the least amount of material, the laser still does not supply a sufficient quantity of material to generate satisfactory counts. The analysis performed in these conditions provides a very unstable analytical signal and also very high errors, which prevents their use. Thus, our preferable conditions are 30 μ m, 10 Hz and 40 s of ablation time for Proterozoic zircons and 40 μ m, 10 Hz and 40 s of ablation time for Archean zircons (depending on the zircon internal complexity).

The signal stability is directly linked to gas mixture (He and Ar) and to the material removed by the laser. Compared to the previously used single tube, the squid increased the efficiency of the method by decreasing the dispersion of the spectra. The use of the low-volume chamber significantly increased the sensitivity of the signal obtained during the analysis and improved accuracy. There was a significant reduction in the washing chamber and an increased rise time of the signal at the beginning of the tests, which in turn reduced the total time spent by the apparatus during the analysis and allowed a greater number of tests conducted daily.

High counts per second for all masses investigated here are not the only important goal when it comes to U-Pb geochronology. For most cases, good age data is also dependent on the stability of the laser/ICP-MS during runs. Thus, it is important to see the long term variability of the data. In this study, long term results (using the same conditions) gave adequate reproducibility and acceptable errors for a LA-ICP-MS technique. For instance, the GJ-1 zircon gave concordia age values between 607 ± 4 Ma and 610.1 ± 3.8 Ma, 2 σ uncertainties of 2-4 %, relative deviations from 0.0 to 0.4 % and a relative uncertainty, in general, for the weighted average of isotopic ratios, of 2-4 %. In secondary standards, was obtained for zircon Plešovice a minimum value of 337 ± 1.6 Ma and maximum of 340 \pm 1.3 Ma, 2σ uncertainties from 1.5 to 2.5 %, relative deviations 0.02 to 0.35 % and uncertainties related with the mean ratios of 1.5 to 4%. The standard BB9 zircon generated concordias from 558 \pm 2.4 Ma to a maximum of 566 ± 4.2 Ma, with 2σ uncertainties of 2.4 to 4.7 %, relative deviations from 0.19 to 0.87 % and uncertainties regarding the means of the ratios from 2.7 to 14 %. The standard M127 zircon provided concordia ages of 520 ± 3.5 Ma to 528 ± 3.4 Ma, 2σ uncertainties of 1.4 to 4.3 %, relative deviations 0.06 to 0.82 %, and uncertainties regarding the means of the ratios between 1.4-12 %. Finally, zircon 91500 provided a minimum concordia age of 1062 ± 5.1 Ma and a maximum value of 1070 ± 6.7 Ma, 2σ uncertainties of 4.4 to 8.2 %, relative deviations 0.09 to 0.46 %, and uncertainties of averages ratios of 8.9 to 5 %.

calculated from all analyzed zircons (n=36). f) Concordia diagram for several grains (n=23) of the Poços de Caldas hydrothermal zircons. Note that

the calculated ages are identical and indicate that the zircon mineralization occurred at ca. 84 ± 1 Ma.

4.9 - U-Zr-Mo MINERALIZATION IN POÇOS DE CALDAS ALKALINE COMPLEX

Despite the number of age data accumulated for the PC complex over the last 60 years, there is still a strong disagreement about the emplacement age. Previously studies have pointed out a critical spread in the obtained ages from 54 Ma to 91 Ma (Ulbrich *et al.*, 2002) which in turn cannot be included within one magmatic evolution of an alkaline complex. Textures of these rocks are essentially volcanic and suggest that the emplacement should have taken place within a period of a few million years. A key problem to this spread in ages relates to hydrothermal alteration. Fluid circulation particularly affects the K-Ar and Rb-Sr systems and therefore the accuracy of the published ages may be compromised by isotopic disturbance. According to Ulbrich *et al.* (2002) hydrothermal alteration may have added H₂O and K to the rocks, and leached out mainly Ca and Mg. Loss of radiogenic Ar is also expected to occur during leaching with the result that the whole rock and K-feldspar ages may be too young.

Our LA-Q-ICP-MS U-Pb zircon age of 84 ± 1 Ma for the phonolite in the western part of the PC complex is consistent with most of the older ages (>80 Ma) from whole rock Rb-Sr and some K-Ar in minerals such as biotite (Kawashita et al., 1984; Ulbrich et al., 2002). Our U-Pb age is also within error from U-Pb (76 \pm 12 Ma to 82 \pm 11 Ma) ages produced from thorite crystals (Ulbrich *et al.*, 2002). This overlap in ages from hydrothermal zircon-thorite-whole rock indicates that the hydrothermal mineralization took place immediately after the emplacement of the volcanic body of the complex. According to previous studies, hydrothermal alteration and associated mineralization in the PC complex can be compared to those of porphyry copper deposits in granites. The mineralization seems to be a result of both shattering of country rocks followed by extreme boiling fluid circulation in and above the roofs of crystallizing magma chambers. This is followed by cooling through the circulation of hydrothermal cells, mainly composed of supercritical water-rich solutions (e.g., Burnham, 1979; Garda, 1990; Ulbrich & Ulbrich, 1992; Sawkins, 1990). Our U-Pb age is likely to reflect the age of the hydrothermal fluid circulation shortly after the emplacement of the phonolites. The overlapping ages are also consistent with relatively cooling shortly after emplacement. Given the regional extent of the host rock, encompassing much of the central and western part of the circular pipe, it is likely that much of the PC alkaline complex was emplaced shortly before 84 ± 1 Ma ago.

4.10 – SUMMARY

A complete optimization of the LA-Q-ICP-MS system at the Geology Department (DEGEO) from Federal University of Ouro Preto was performed to eliminate problems with sensitivity, low spatial resolution and element fractionation. The improvements on the method were carefully checked through the Concordia and weighted mean ages generated for zircon standards. The 2σ uncertainties of the apparent ages, obtained for a range of standards, ranged between from 1 and 2 %. The relative deviations for individual ratios measured from the GJ-1 and other standards ranged from 0.1 to 7 %

(²⁰⁷Pb/²⁰⁶Pb), 0.04 to 4 % (²⁰⁶Pb/²³⁸U), and 0.07 to 3 % (²⁰⁷Pb/²³⁵U) well within the range of deviations produced by other sophisticated LA-ICP-MS systems such as Sector Field (SF-ICP-MS) and multi-collectors (MC-ICP-MS). The concordia and weighted mean ages obtained for the standards were well into the accepted values with relative deviations ranging from 1 to 2 %.

We tested the reproducibility of the instrument through dating of well-characterized granitoids ranging in age from 2000 Ma to 3200 Ma. These tests gave identical ages within error to previously published TIMS and SHRIMP ages indicating that the method is suited not only for Neoproterozoic and younger zircons but also for Paleoproterozoic and Archean zircons. We also applied our method to constrain the timing of U-Zr-Mo mineralization in the Poços de Caldas Alkaline Complex. Samples from zircon bearing hydrothermal deposits in western part of the complex gave an age of 84 \pm 1 Ma, which is interpreted here as the timing of hydrothermal fluid circulation shortly after the emplacement of the main host rock in the complex.

4.11-AKNOWLEDGEMENT¹

¹We acknowledge financial support from FAPEMIG (RDP0067-10, RDP 00063-10, and APQ03943).

CAPÍTULO 5

CONCLUSÕES

Os testes de otimização realizados por meio de variações nas configurações instrumentais e analíticas do sistema de LA-Q-ICP-MS do Departamento de Geologia da Universidade Federal de Ouro Preto promoveram melhorias significativas no seu desempenho. Foi possível eliminar problemas relativos à perda de sensibilidade e resolução especial, além de evitar que o efeito de fracionamento de elementos afetasse substancialmente os resultados.

Análises desempenhadas com diâmetro de feixe de 40 µm mostraram ser bem adequadas para sistemas com resolução espacial menor como o nosso ICP-MS Quadrupolo. Isto, em conjunto com o aumento do tempo de integração para a massa de ²⁰⁷Pb (40 ms), gerou contagens maiores com uma ótima precisão para as razões de ²⁰⁷Pb/²⁰⁶Pb, refletindo positivamente na obtenção de idades em zircões mais antigos (principalmente Arqueanos). Apesar disto, as análises com diâmetro de feixe de 30 µm foram consideradas as ideais para zircões de todos os tipos (ígneos, metamórficos, sedimentares e hidrotermais) e com idades diversas, já que crateras mais profundas diminuem a resolução espacial do equipamento tornando a datação de zircões complexos inviável.

Ampliações no tempo de ablação das amostras acarretaram em maiores efeitos de fracionamento de elementos e em crateras mais profundas, gerando idades não reprodutíveis ou idades mistas (idades de borda e núcleo dos cristais) devido a perda de resolução espacial do equipamento. Em relação à frequência do laser, uma redução implicou em menores contagens devido a insuficiência de material retirado que não pôde ser suprida pelo aumento do diâmetro do feixe de laser. Menores frequências produziram análises com erros extremamente altos e que não devem ser utilizadas como dados geológicos. A estabilidade do sinal analítico aumentou significativamente com a utilização do homogeneizador de gases (*squid*), que promoveu uma homogeneização adequada entre gases e material amostrado. Já a utilização da câmara de baixo volume forneceu análises mais acuradas em menores tempos analíticos devido à boa canalização do material retirado pelo laser até o ICP-MS, aumentando assim a eficiência do equipamento em relação ao número de pontos analíticos realizados por dia.

Definiu-se que as configurações de laser de 10 Hz de frequência e 40 s de tempo de ablação são as ideais para as amostragens em geral, devendo ocorrer uma variação do diâmetro de furo de 30 µm para zircões Proterozóicos ou mais jovens a 40 µm para zircões Arqueanos, dependendo da complexidade interna do grão analisado. Todas estas análises devem ser efetuadas com a presença do homogeneizador de gases e da câmara de baixo volume para que o sinal obtido seja estável.

As idades concordantes e as médias relativas produzidas com as novas configurações do sistema forneceram (para padrões de zircão) incertezas 2σ entre 1 e 2 % e desvios relativos de razões individuais de 0.1 a 7 % (207 Pb/ 206 Pb), 0.04 a 4% (206 Pb/ 238 U), e 0.07 a 3 % (207 Pb/ 235 U). Todas as idades se encontram dentro dos valores aceitáveis, com seus desvios relativos variando de 1 a 2 %. Estes desvios podem ser considerados bem satisfatórios em relação aos obtidos por outros equipamentos mais sofisticados como os Mono-coletores e Multi-coletores, sendo uma grande vantagem do LA-Q-ICP-MS o baixo custo envolvido na manutenção e na produção de resultados.

Aplicando-se o equipamento otimizado na determinação da época de geração das mineralizações de U-Zr-Mo do Complexo Alcalino Poços de Caldas obteve-se um valor de idade média da razão 206 Pb/²³⁸U de 84.6 ± 1 Ma e uma idade concórdia de 84.4 ± 1 Ma (com precisão e erros analíticos satisfatórios) consistentes com dados provenientes de trabalhos anteriores realizados com métodos distintos (K-Ar em biotita, Rb-Sr rocha total, entre outros). A idade obtida foi inferida como a época de geração dos veios hidrotermais que cortam os fonólitos e tinguaítos do corpo na sua porção leste. A concentração das mineralizações de U-Zr-Mo foi resultado do fraturamento das rochas locais seguido da percolação de fluidos muito quentes dentro e acima da cúpula de cristalização da câmara magmática que foi posteriormente resfriada por soluções ricas em água. O dado gerado (inédito para o método U-Pb em zircão) possui boa qualidade e é passível de ser utilizado nos estudos geológicos mais detalhados sobre as mineralizações de U-Zr-Mo presentes na porção leste do Complexo Alcalino Poços de Caldas.

As melhorias efetuadas no equipamento permitiram a produção de resultados com precisão e acurácia similares à de aparelhos mais robustos e com resolução espacial maior com menores custos e tempo analítico, tornando o LA-Q-ICP-MS um instrumento altamente eficiente para resolução dos mais diversos problemas geológicos.

- Almeida F.F.M.de. 1986. Alguns problemas das relações geológicas entre o Cráton Amazônico e as faixas de dobramentos marginais a leste. In: Simpósio de Geologia do Centro-Oeste, 2, Goiânia, *Anais*, 1: 3-4.
- Almeida F.F.M.de. 1991. O Alinhamento Magmático de Cabo Frio. In: Simpósio de Geologia do Sudeste, 2, São Paulo, *Atas*, 423-428.
- Almeida-filho R. & Paradella W.R. 1977. Estudo do maciço alcalino de Poços de Caldas através da imagens Landsat com ênfase em mineralizações radioativas. São José dos Campos, INPE, 130p.
- Anhaeusser C.R. & Robb L.J. 1983. Geological and geochemical characteristics of the Heerenveen and Mpuluzi batholiths south of the Barberton greenstone belt and preliminary thoughts on their petrogenesis. Special Publication of the Geological Society of South Africa, 9: 131–151.
- Amaral G., Cordani V.G., Kawashita K., Reynolds J.H. 1967. Potassium-argon ages of alkaline rocks from southern Brasil. *Geochimica et Cosmochimica*. *Acta*, 31: 117-142.
- Armstrong R.A., Compston M.J.W., Williams I.S. 1990. The stratigraphy of the 3.5-3.2 Ga Barberton greenstone belt revisited: A zircon ion microprobe study. *Earth and Planetary Science Letters*, 101: 90-106.
- Arrowsmith P. 1987. Laser ablation of solids for elemental analysis by inductively coupled plasma mass spectrometry. *Analytical Chemistry*, 59: 1437-1444.
- Asmus H.E. & Guazelli W. 1981. Descrição sumária das estruturas da margem continental brasileira e das áreas oceânicas adjacentes: hipóteses sobre o tectonismo causador e implicações para os prognósticos do potencial de recursos minerais. In: Asmus H.E. (ed.) Estruturas e tectonismo da margem continental brasileira e suas implicações nos processos sedimentares e na avaliação do potencial de recursos minerais. Rio de Janeiro, Petrobras/Cenpes, Projeto REMAC, 9: 187-269.
- Asmus H.E. 1982. Hipótese sobre a origem dos sistemas de zonas de fratura oceânicas/alinhamentos continentais que ocorrem nas regiões sul e sudeste do Brasil. Rio de Janeiro, Petrobras/Cenpes, Projeto REMAC, 4: 39-73.
- Audétat A., Günther D., Heinrich C.A. 1998. Formation of a magmatic-hydrotermal ore deposit: insights with LA-ICP-MS analysis of fluid inclusions. *Science*, 279: 2091-2094.
- Barbosa O. 1934. Resumo da geologia do Estado de Minas Gerais. Boletim do Serviço Geográfico e Geológico de Minas Gerais, 3: 1-40.
- Barbosa O. 1936. Notas preliminares sobre o Planalto de Poços de Caldas e suas possibilidades econômicas. *Serviço de Fomento da Produção Mineral*, 8: 1-33.
- Bleiner D. & Günther D. 2001. Theoretical Description and Experimental Observation of Aerosol Transport Processes in Laser Ablation Inductively Coupled Plasma Mass Spectrometry. *Journal of Analytical Atomic Spectometry*, 16: 449-456.
- Burnham C.W. 1979. Magmas and hydrothermal fluids. In: Barnes H.L. (ed.) *Geochemistry of Hydrothermal Ore Deposits, Second Edition*, Wiley, 71-136.
- Bushee J. 1971. Geochronological and petrographic studies of alkaline rocks from Southern Brazil. I. Potassium-argon ages of some alkaline rocks from Southern Brazil. II. A geochronological study of the alkaline massif of Poços de Caldas, Brazil. III. Geology and petrography of the lujaurite and nearby rocks, Poços de Caldas, Brazil. University of California, USA, Unpublished PhD Thesis, 143p.
- Carneiro M.A. 1992. O Complexo Metamórfico Bonfim Setentrional (Quadrilátero Ferrífero, Minas Gerais): Litoestratigrafia e evolução geológica de um segmento de crosta continental do Arqueano. Universidade de São Paulo, Brasil, Tese de PhD não publicada, 233p.
- Comissão Nacional de Energia Nuclear (CNEN). 1974. Mapa Geológico do Planalto de Poços de Caldas. Poços de Caldas.
- Cordani U.G., Sato K., Teixeira W., Tassinari C.C.G., Basei M.A.S. 2000. Crustal evolution of the South American plattaform. In: Cordani, U.G., Milani, E.J., Tomas Filho, A., Campos, D.A.

Tectonic Evolution of South America, International Geological Congress, 31, Rio de Janeiro, *Anais*, 19-40.

- Compston W., Kinny P.D., Williams I.S., Foster J.J. 1986. The age and Pb loss behaviour of zircons from the Isua supracrustal belt as determined by ion microprobe. *Earth and Planetary Science Let*ers, 80:71-81.
- Cordani U.G., Sato K., Teixeira W., Tassinari C.C.G., Basei M.A.S. 2000. Crustal Evolution of the South American Plattaform. In: Cordani U.G., Milani E.J., Tomas Filho A., Campos D.A. (Eds.) 2000. Tectonic Evolution South America, International Geology Congress, 31, Rio de Janeiro, 19-40.
- Denoyer E.R., Fredeen K.J., Hager J.W. 1991. Laser solid sampling for inductively coupled plasma mass spectrometry. *Analytical Chemistry*, 62:445.
- Derby O.A. 1887- On nepheline-rocks in Brazil, with special reference to the association of phonolite and foyaite. *Quart. Journal of the Geological Society of London*, 43: 457-473.
- Dutra C.V. 1966. Método chumbo-alfa e idades de zircões do maciço alcalino de Poços de Caldas, Minas Gerais. *Boletim do Instituto de Geologia*, 1: 3-4.
- Ebert H.D. 1971. Os Paraibides entre São João Del Rey (MG) e Itapira (SP) e a bifurcação entre Paraibides e Araxaides. São Paulo, SBG - Núcleo São Paulo, 114p. (Publicação 12).
- Ebert H.D., Hasui Y. 1998. Transpressional tectonics and strain partitioning oblique collision between three plates in the Precambrian of southeast Brazil. In: Holdsworth R.E., Strachan R.A., Dewey J.F. 1998. Continental Transpressional Tectonics. London, Geological Society, 231-52. (Special Publication 135).
- Eggins S., Kinsley L.P.J., Shelley J.G.M. 1998. Deposition and element fractionation processes during atmospheric pressure laser sampling for analysis by ICP-MS. *Applied Surface Science*, 129:278-286.
- Elhlou S., Belousova E., Griffin W.L., Pearson N.J., O'reilly S.Y. 2006. Trace element and isotopic composition of GJ red zircon standard by laser ablation. *Geochimica et Cosmochimica*. Acta, 70:158.
- Ellert R. 1959. Contribuição geológica do maciço alcalino de Poços de Caldas. Universidade de São Paulo, Geologia, 18:1-64. (Boletim da Faculdade de Filosófia, Ciência e Letras 237)
- Faure G. 1986. Principles of Isotope Geology. 2nd edition, New York, John Wiley & Sons, 589p.
- Feng R., Machado N., Ludden J. 1993. Lead geochronology of zircon by Laser Probe-Inductively Coupled Plasma Mass Spectrometry (LP-ICP-MS). *Geochimica et Cosmochimica*. Acta, 57:3479-3486.
- Figg D. & Kahr M.S. 1997. Elemental fractionation of glass using laser ablation inductively coupled plasma mass spectrometry, *Applied Spectroscopy*, 51: 1185-1192.
- Fraenkel M.O., Santos R.C., Lourenço F.E.V.L., Muniz W.S. 1985. Jazida de urânio no planalto de Poços de Caldas, Minas Gerais. In: DNPM (ed.) *Principais Depósitos Minerais do Brasil*, Brasil, 89-103.
- Franco A.O.B., Hackspcher P.C., Godoy D.F., Ribeiro L.F.B., Guedes S. 2005. História térmica do Maciço Alcalino de Poços de Caldas (SP/MG) e adjacências através da análise de datação por Traços de Fissão em apatitas. *Revista Brasileira de Geociências*, 35(3):351-358.
- Frayha R. 1962. Urânio e Tório no Planalto de Poços de Caldas. DNPM, 7p. (Boletim 116)
- Fryer B.J., Jackson S.E., Longerich H.P. 1993. The application of laser ablation microprobeinductively coupled plasma-mass spectrometry (LAM-ICP-MS) to in situ (U)-Pb geochronology. *Chemical Geology*, 109:1-8.
- Gorsky V.A., Gorsky E. 1974. Contribuição à mineralogia e petrografia do planalto de Poços de Caldas. Comissão Nacional de Energia Nuclear (CNEN), 93p. (Boletim 13)
- Gray A.L. 1985. Solid sample introduction by laser ablation for inductively coupled plasma sourcemass spectrometry. *Analyst*, 110: 551–556.

- Guillong M., Horn I., Günther D. 2003. A comparison of 266 nm, 213 nm and 193 nm produced from a single solid state Nd:YAG laser for laser ablation ICP-MS. *Journal of Analytical Atomic Spectometry*, 18: 1224–1230.
- Guillong M., Latkoczy C., Seo J.H. 2008. Determination of sulfur in fluid inclusions by laser ablation ICP-MS. *Journal of Analytical Atomic Spectometry*, 23: 1581–1589.
- Günther D., Audétat A., Frischknecht R., Heinrich C.A. 1998. Quantitative analysis of major, minor and trace elements in fluid inclusions using laser ablation inductively coupled plasma mass spectrometry. *Journal of Analytical Atomic Spectometry*, 13(4): 263-270.
- Günther D., Horn I., Hattendorf B. 2000. Recent trends and developments in laser ablation ICP-mass spectrometry. Fresenius Journal of Analytical Chemistry, 368: 4–14.
- Hager J.W. 1989. Relative elemental responses for laser ablation-inductively coupled plasma mass spectrometry. *Analytical Chemistry*, 61: 1243-1248.
- Hinton R.W. & Upton B.G.J. 1991. The chemistry of zircon: Variations within and between large crystals from syenite and alkali basalt xenoliths. *Geochimica et Cosmochimica*. Acta, 55: 3287-3302.
- Hirata T. & Nesbitt R.W. 1995. U-Pb isotope geochronology of zircon: evaluation of the laser probeinductively coupled plasma mass spectrometry technique. *Geochimica et Cosmochimica*. Acta, 59: 2491-2500.
- Horn I., Guillong M., Günther D. 2001. Wavelength dependant ablation rates for metals and silicate glasses using homogenized laser beam profiles—Implications for LA-ICP-MS. *Applied Surface Science*, 182: 91–102.
- Horstwood M.S.A., Foster G.L., Parrish R.R., Noble S.R., Nowell G.M. 2003. Common-Pb corrected in situ U–Pb accessory mineral geochronology by LA-MC-ICP-MS. *Journal of Analytical Atomic Spectometry*, 18: 837–846.
- Jackson S.E., Longerich H.P., Dunning G.R., Fryer B.J. 1992. The application of laser-ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS) to in situ traceelement determinations in minerals. *Canadian Mineralogist*, 30: 1049-1064.
- Jackson S.E., Pearson N.J., Griffin W.L., Belousova E.A. 2004. The application of laser ablationinductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. *Chemical Geology*, 211: 47–69.
- Jarvis K.E., Williams J.G., Parry S.J. 1995. Quantitative-determination of the platinum-group elements and gold using NiS fire assay with laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). *Chemical Geology*, 124: 37–46
- Jeffries T.E., Pearce N.J.G., Perkins W.T., Raith A. 1996. Chemical Fractionation during infrared and ultraviolet laser ablation inductivel coupled plasma mass spectrometry – Implications for mineral microanalysis. *Analytical Communication*, 33(1): 35-39.
- Jeffries T.E., Jackson S.E., Longerich H.P. 1998. Application of a frequency quintupled Nd-YAG source (Lambda = 213 nm) for laser ablation inductively coupled plasma mass spectrometric analysis of minerals. *Journal of Analytical Atomic Spectometry*, 13: 935-940.
- Jenner G.A., Foley S.F., Jackson S.E., Green T.H., Fryer B.J., Longerich H.P. 1993. Determination of partition coefficients for trace elements in high pressure-temperature experimental run products by laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS). *Geochimica et Cosmochimica. Acta*, 57: 5099-5103.
- Johannsen A. 1939. A descriptive petrography of the igneous rocks. Vol. I: Introduction, textures, classification and glossary. Chicago, University of Chicago Press. 523p.
- Kaefer L.Q. 1979. Projeto Sapucaí: Estado de São Paulo, Rio de Janeiro e Minas Gerais: Relatório final de geologia. DNPM/CPRM, 30-34.
- Kamo S.L. & Davis D.W. 1994. Reassesment of Archean crustal development in the Barberton Mountain Land, South Africa, based on U–Pb dating. *Tectonics*, 13: 167-192.

- Kawashita K., Mahiques M.M., Ulbirich H.H.G.J. 1984. Idades Rb/Sr de nefelina sienitos do anel norte do Maciço Alcalino de Poços de Caldas, MG-SP. In: Congresso Brasileiro de Geologia, 23, Salvador, Anais, 244-245.
- Kinny P.D., Compston W., Williams I.S. 1991. A reconnaissance ion-probe study of hafnium isotopes in zircons, *Geochimica et Cosmochimica*. Acta, 55: 849 59.
- Klotzli U., Klotzli E., Gunes Z., Kosler J. 2009. Accuracy of laser ablation U–Pb zircon dating: results from a test using five different reference zircons. *Geostandards and Geoanalytical Research*, 33: 5–15.
- Kober B. 1987. Single-grain evaporation combined with Pb+ Emitter bedding for 207Pb/206Pb investigations using thermal ion mass spectrometry, and implications for zircon chronology. *Contributions to Mineralogy and Petrography*, 96: 63-71.
- Kröner A. & Todt W. 1988. Single zircon dating containing the maximum age of the Barberton greenstone belt, southern Africa. *Journal of Geophysical Research*, 9: 15329-15337.
- Kumar S., Bodvarsson G., Gudmundur J. 1977. Fractal characteristics of fracture roughness and aperture data. *High Level Radioactive Waste Management Procedements*, 2: 279-84.
- Lana C., Kisters A., Stevens G. 2010a. Exhumation of Mesoarchean TTG gneisses from the middle crust: Insights from the Steynsdorp core complex, Barberton granitoid-greenstone terrain, South Africa. *Geological Society of America Bulletin*, 122: 183-197.
- Lana C., Tohver E., Cawood P. 2010b. Quantifying rates of dome-and-keel formation in the Barberton granitoid-greenstone belt, South Africa. *Precambrian Research*, 177: 199-211.
- Lana C., Alkmim F.F., Armstrong R., Scholz R., Romano R., Nalini H.A. 2013. The ancestry and magmatic evolution of Archaean TTG rocks of the Quadrilátero Ferrífero province, southeast Brazil. *Precambrian Research*, 230: 1-30.
- Li S., Jagoutz E., Chen Y., Li Q. 2000. Sm Nd and Rb Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, Central China. *Geochimica et Cosmochimica Acta*, 64 (6): 1077–1093.
- Liu C.C., Carraro C.C., Yamagata S.K. 1973. Geology of the areas of the Upper São Francisco Basin and Furnas Dam (Brasil) based on interpretation of ERTS-1 imagery. INPE, 49p. (Relatório 395/LAFE).
- Longerich H.P., Jackson, S. E.; Günther, D. 1996. Laser Ablation Inductively Coupled Plasma Mass Spectrometric transient signal data acquisition and analyte concentration calculation. *Journal of Analytical Atomic Spectrometry*, 11: 899-904.
- Ludwig K.R. 2001. Isoplot v.2.2 A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, 53p. (Special Publication 1)
- Machado J. 1888. Beitrag zur Petrographie der suedwestlichen Grenze Minas Gerais und Sao Paulo. *Tschermak's Mineralogische und Petrographische Mitteilungen*, 9: 329- 360.
- Machado N., Noce C.M., Ladeira E.A., Belo O.A. 1992. U–Pb geochronology of Archean magmatism and Proterozoic metamorphism in the Quadrilátero Ferrífero, Southern São Francisco Craton, Brazil. *Geological Society of America Bulletin*, 104: 1221–1227.
- Machado N., Valladares C, Heilbron M., Valeriano C. 1996. U-Pb geochronology of the central Ribeira Belt (Brazil) and implications for the evolution of the Brazilian Orogeny. *Precambrian Research*, 79: 347-361.
- Magno Jr. L.B. 1985. The alkaline district of Poços de Caldas. Poços de Caldas, Nuclebras CIPC internal publication, 15p.
- Nasdala L. 2007, personal comunication. TIMS table with U-Pb concordia ages for M127 zircon standard.
- Nasdala L., Hofmeister W., Norberg N., Mattinson J.M., Corfu F., Dörr W., Kamo S.L., Kennedy A.K., Kronz A., Reiners P.W., Frei D., Košler J., Wan,Y., Götze J., Häger T., Kröner A., Valley J.W. 2008b. Zircon M257 – a homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon. *Geostandard and Geoanalytical Reseach*, 32: 247–265.

- Noce C.M., Machado N., Teixeira W. 1998. U–Pb geochronology of gneisses and granitoids in the Quadrilátero Ferrífero (southern São Francisco craton): age constraints for Archean and Paleoproterozoic magmatism and metamorphism. *Revista Brasileira de Geociências*, 28: 95–102.
- Novotný K., Kaiser J., Galiová M. 2008. Mapping of different structures on large area of granite sample using laser-ablation based analytical techniques, an exploratory study. *Spectrochim Acta Part B*, 63: 1139–1144.
- Pearce N.J.G., Perkins W.T., Abell I., Duller G.A.T., Fuge R. 1992. Mineral microanalysis by laser ablation inductively coupled plasma mass spectrometry. *Journal of Analytical Atomic Spectrometry*, 7: 53-57.
- Peng S., Hu Q., Ewing R.P. 2012. Quantitative 3-D elemental mapping by LA-ICP-MS of a basaltic clast from the Hanford 300 Area, Washington, USA. *Environment Science Technology*, 46: 2025– 2032.
- Rahl J.M., Reiners P.W., Campbell I.H., Nicolescu S., Allen C.M. 2003. Combined single-grain (U-Th)/He and U/Pb dating of detrital zircons from the Navajo Sandstone, Utah. *Geology*, 31: 761– 764.
- Ramendik G.I, 1990. Elemental analysis without standard reference samples: The general aspect and the realization in SSMS and LMS. *Fresenius Journal of Analytical Chemistry*, 337: 772.
- Robb L.J., Anhaeusser C.R., Van Nierop D.A. 1983. The recognition of the Nelspruit batholith north of the Barberton greenstone belt and its significance in terms of Archaean crustal evolution. *Special Publication of the Geological Society of South Africa*, 9: 117–130.
- Romano R., Lana C., Alkmim F.F., Stevens G.S., Armstrong R. 2013. Stabilization of the southern portion of the São Francisco Craton, SE Brazil, through a long-lived period of potassic magmatism. *Precambrian Research*, 224: 143-159.
- Romano R., Lana C., Alkmim F.F., Stevens G. 2012. Stabilisation of the Southern São Francisco Craton through a long lived period of potassic magmatism. *Precambrian Research*, 112.
- Rubato D. 2001. Zircon trace element geochemistry: partitioning with garnet and the link between U– Pb ages and metamorphism. *Chemical Geology*, 184(1): 123-138.
- Rusk B., Koenig A., Lowers H. 2011. Visualizing trace element distribution in quartz using cathodoluminescence, electron microprobe, and laser ablation-inductively coupled plasma-mass spectrometry. *American Mineralogist*, 96: 703–708.
- Sad J.H.G., Pinto C.P., Duarte C.L.1983. Geologia do distrito manganesífero de Conselheiro Lafaiete, MG. In: Simpósio de Geologia de Minas Gerais, 2, *Amiix*, 259p.
- Sadowski G.R. & Dias-neto C.M. 1981. O lineamento sismo-tectônico de Cabo Frio. *Revista Brasileira de Geociências*, 11: 209-212.
- Santos R. 1976. Geology and mining development of the C-09 uranium deposit. LAEA, 28p. (Bulletin 162).
- Santos M.M., Lana C.C., Cipriano R.A.S. 2014. Development of Zircon Standards for U-Pb geochronology by laser ablation. In: South-American Symposium on Isotope Geology, 9, São Paulo, Anais, 296p.
- Sawkins F.J. 1990. The Olympic Dam Cu-U-Au Deposit, South Australia. In: Minerals, Rocks, ando Mountains, Vol. 17. Metal Deposits in Relation to Plate Tectonic, 2nd Edition. Berlin, Springer, 261-264.
- Schobbenhaus C. 1984. Geologia do Brasil, coord.: Texto explicativo do Mapa Geológico do Brasil e da área oceânica adjacente. Minerais. Escala 1:2.500.000. DNPM, 501p.
- Schorscher H.D. & Shea, M.E. 1992. The regional geology of the Poços de Caldas alkaline complex: mineralogy and geochemistry of selected nepheline syenites and phonolites. *Journal of Geochemical Exploration*, 45: 25-51.
- Shea M.E. 1992. Isotopic geochemical characterization of selected nepheline syenites and phonolites from the Poços de Caldas alkaline complex, Minas Gerais, Brazil. *Journal of Geochemical Exploration*, 45: 25-51.

- Sláma J., Košler J., Pedersen R.B. 2007. Behaviour of zircon in high-grade metamorphic rocks evidence from Hf isotopes, trace elements and textural studies. *Contributions to Mineralogy and Petrology*, 154: 335–356.
- Sláma J., Košler J., Condon D.J., Crowley J.L., Gerdes A., Hanchar J.M., Horstwood M.S.A., Morris G.A., Nasdala L., Norberg N., Schaltegger U., Schoene B., Tubrett M.N., Whitehouse M.J. 2008. Plešovice zircon – a new natural reference material for U–Pb and Hf isotopic microanalysis. *Chemical Geology*, 249: 1–35.
- Stacey J.S. & Kramers J.D. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. *Earth and Planetary Science Letters*, 26: 207-221.
- Storey C.D., Jeffries T.E., Smith M. 2006. Common Pb-corrected laser ablation ICP-MS U-Pb systematics and geochronology of titanite. *Chemical Geology*, 227: 37-52.
- Sylvester P.J. & Ghaderi M. 1997. Trace element analysis of scheelite by excimer laser ablationinductively coupled plasma-mass spectrometry (ELA-ICP-MS) using a synthetic silicate glass standard. *Chemical Geology*, 141: 49–65.
- Takenaka L.B. 2013. Otimização da metodologia de datação U-Pb por espectrometria de massas acoplada à ablação a laser (LA-Q-ICP-MS). Departamento de Geologia, Universidade Federal de Ouro Preto, Minas Gerais, Trabalho de Conclusão de Curso, 37p.
- Tegtmeyer A.P. & Kroner A. 1987. U-Pb zircon ages bearing on the nature of early Archean greenstone belt evolution, Barberton Mountain Land, Southern Africa. *Precambrian Research*, 36: 1-20.
- Telouk P., Rose-Koga E.F., Albarede F. 2003. Preliminary results from a New 157 nm laser ablation ICP-MS Instrument: New opportunities in the analysis of solid samples. *Geostandard and Geoanalytical Research*, 27: 5–11.
- Thirlwall M.F. & Walder A.J. 1995. In-situ hafnium isotope ratio analysis of zircon by inductively coupled plasma multiple collector mass spectrometry. *Chemical Geology*, 122: 241-247.
- Ulbrich H.H. & Ulbrich M.N.C. 1992. O Maciço Alcalino de Poços de Caldas, MG-SP: características petrográficas e estruturais. In: Congresso Brasileiro de Geologia, 37, São Paulo, *Anais*, Roteiro de Excursões 5: 64p.
- Ulbrich H.H.G.J., Vlach S.R.F., Ulbrich M.N.C., Kawashita K. 2002. Penecontemporaneous syeniticphonolitic and basic-ultrabasic-carbonatitic rocks at the Poços de Caldas alkaline massif, SE, Brazil: geologic and geochronologic evidence. *Revista Brasileira de Geociências*, 32: 15-26.
- Ulbrich H.H.G.J., Ulbrich M.N.C., Ferreira F.J.F., Alves L.S., Guimarães G.B., Fruchting A. 2009. Levantamentos gamaespectrométricos em granitos diferenciados. I: revisão da metodologia e do comportamento geoquímico dos elementos K, Th e U. *Revista do Instituto de Geociências USP*, 9(1): 33-53.
- Van Achterbergh E., Ryan C.G., Jackson S.E., Griffin W.L. 2001. Data reduction software for LA-ICP-MS: appendix.. In: Canada, Assocication Canada (MAC), 239p. (Short Course Series 29).
- Vasconcellos A.C.B.C. 1988. O Grupo Andrelândia na região de Ouro Fino, MG. Instituto de Geociências, Universidade de São Paulo, São Paulo, Dissertação de Mestrado, 199p.
- Wedow Jr. H. 1967. The Morro do Ferro thorium and rare earth are deposits, Poços de Caldas District, Brazil. USA, U.S. Geological Survey. 34p. (Bulletin, 1185-D).
- Wernick E., Artur A.C. 1983. Evolução policíclica de terrenos arqueanos no leste do Estado de São Paulo e Sul de Minas Gerais. In: Simpósio de Geologia de Minas Gerais, 2, Belo Horizonte, Anais, 3: 50-62.
- Wiedenbeck M., Alle' P., Corfu F., Griffin W.L., Meier M., Oberli F., Von Quadt A., Roddick J.C., Spiegel W. 1995. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analysis. *Geostandard Newsletter*, 19: 1–23.
- Windley B.F. 1982. The Evolving Continents. Chichester, J. Wiley., 526p.
- Woolley A.R. 1987. Alkaline Rocks and Carbonatites of the World. Part 1. North and South America. London, University of Texas Press, 216p.
Yuan H.L., Gao S., Liu X.M. 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. *Geostandard and Geoanalytical Research*, 28: 353–370.

APÊNDICES

APÊNDICE A – Padrão GJ-1

	N 70 N			r	Ida	de Média (Ma)*	F			
Sacão analítico	Nº de	²⁰⁷ Db/ ²⁰⁶ Db	Dogrio volativo	Erro	206 pb /238	Dogrio volotivo	Erro	207 DL /235	Degrie veletive	Erro
clana 35 30um	Ananses 19	FD/ FD	1.00	(20)	603	1.01	3.6	FD/ U 604	1.00	3.8
Clana40 - 40um	14	612	1,00	13	611.3	1,01	31	611.3	1,00	31
clana42 30 um	20	621	1,01	18	610.2	1,02	3.5	612.5	1.02	4
clana37 30 um	17	612	1.01	19	610.1	1.02	3.9	610.5	1.01	4.3
clana51 30 um	24	607	1,00	13	609,9	1,02	2,8	609,1	1.01	2,9
dlana51	11	599	0,98	18	608,8	1,02	4,3	607	1.01	4,1
dlana60	3	620	1.02	31	609.9	1.02	92	611.5	1.02	79
A	16	606	1,02	15	611.9	1,02	3.6	610.5	1,02	3.4
clana 35 30um	19	609	1,00	17	603	1,02	3.6	604	1.00	3.8
			,			,	<i>,</i>		,	<i>,</i>
Clana40 - 40um	14	612	1,01	13	611,3	1,02	3,1	611,3	1,02	3,1
clana42 30 um	20	621	1,02	18	610,2	1,02	3,5	612,5	1,02	4
clana37 30 um	17	612	1,01	19	610,1	1,02	3,9	610,5	1,01	4,3
clana51 30 um	24	607	1,00	13	609,9	1,02	2,8	609,1	1,01	2,9
dlana51	11	599	0,98	18	608,8	1,02	4,3	607	1,01	4,1
dlana60	5	605	0,99	24	614,4	1,02	7,2	611,9	1,02	6,3
B	16	606	1,00	15	611,9	0,99	3,6	610,5	1,01	3,4
7472bb Ferrovia bacao	8	610	1,00	19	607	1,01	8,8	607,6	1,01	8,1
cachoeiradocamargo1	8	620	1,02	19	609,3	1,02	4,4	611,6	1,02	4
cachoeiradocamargo2	11	608	1,00	10	610,7	1,02	4,1	610,1	1,01	5,6
crisa/4598a0 Gonsaio Bacao		611	1,00	19	608,5	1,01	4,0	608,9	1,01	4,1
Sao Goncalo Dacao	0	624	1,05	14	610.9	1,02	3,1	612,0	1,02	21
Kassialaa	13	612	1,00	14	608.9	1,02	5,0 4 2	609.6	1,01	2,1
kassia?	8	613	1,01	13	608.6	1,02	3.9	609.6	1,01	3.5
kassia3a	11	605	0.99	16	608.9	1,01	3.8	608	1,01	34
nadrao GJ-1	9	607	1.00	18	613.6	1.02	44	611.9	1.02	4
7470p27d	8	604	0.99	19	607.1	1.01	4.4	606.5	1.01	4
7470p27f	9	610	1.00	17	608.7	1.01	4.5	608.9	1.01	4
astd10	9	607	1,00	18	613,6	1,02	4,4	611,9	1.02	4
7741	16	609	1,00	11	609,8	1,02	2,8	609,7	1,01	2,5
7741a	13	603	0,99	13	606,9	1,01	3,6	606	1,01	3,2
7742b	18	616	1,01	11	607,8	1,01	3	609,3	1,01	2,6
17B1	15	607	1,00	13	605,8	1,01	3,2	606	1,01	2,8
7716	35	606	1,00	8,6	610,3	1,02	2,3	609,3	1,01	1,9
7716	20	610	1,00	11	609	1,02	2,9	609,1	1,01	2,5
7717	38	609,5	1,00	8,5	610,2	1,02	2,3	610,1	1,01	1,9
7718	37	608,4	1,00	7,7	608,8	1,02	2,1	608,7	1,01	1,8
7719d	20	608	1,00	11	607,6	1,01	3	607,7	1,01	2,5
6449a	12	605	0,99	15	611,1	1,02	3,6	609,4	1,01	3,3
7458	5	602	0,99	34	609	1,02	6,2	607	1,01	5,5
7472bb	8	612	1,01	19	611,6	1,02	4,4	611,6	1,02	4
74/3HD	18	597	0,98	13	611,6	1,02	2,9	608,3	1,01	2,7
a/959	8	602	0,99	18	605	1,01	4,7	604,4	1,00	4
astu11	4	613	1,01	28	606,6	1,01	0,2	608,1	1,01	0
KV4 bwg	10	609	1,00	10	608	1,01	5,7	611.7	1,01	3,2 4.5
SRV16	3 7	609	1,02	24 18	611.4	1,02	4,7	610.7	1,02	4,5
7728 - 57h	15	611	1,00	13	608.2	1,02	3.5	608.7	1,02	3,7
7720 - 576	13	600	1,00	20	600,2	1,01	5,5	600,7	1,01	15
7730 570	12	607	1,00	20 15	609,0	1,02	3.0	608.2	1,01	4,J 2 /
7731 - 36	25	610.2	1,00	9.8	608.4	1.01	2.6	608.8	1,01	5,4 2.2
7732 - 63	11	608	1.00	15	610.1	1.02	43	600.7	1.01	3.6
7733 - 579	15	610	1,00	13	609.6	1.02	35	609,7	1,01	3,0
7767-569	26	608.2	1,00	95	608 3	1,02	2.4	608.2	1 01	2
SE101-63a	11	611	1,00	14	609	1.02	39	609.3	1.01	33
7711d-7708	19	610	1.00	12	609.9	1.02	3	610	1,01	2.6
77669000	20	607	1.00	11	600.7	1.02	62	600.1	1.01	2
//001000	20	007	1,00	11	009,7	1,02	0,5	009,1	1,01	3

 Tabela A.1 – Desvios relativos aos valores de referência das idades médias e aos valores gerados por este estudo para o padrão GJ-1.

*Os valores de referência utilizados nos cálculos de desvio foram de 608,5±0,4 Ma para a razão ²⁰⁷Pb/²⁰⁶Pb, 599,8±1 Ma para a razão ²⁰⁶Pb/²³⁸U e de 601,6±1 Ma para a razão ²⁰⁷Pb/²³⁵U.

Seção analítica		Nº de Análises	Idade concórdia	Erro (2 σ) MSWD
	Valor obtido*		603,4	3,5	0,46
clana 35 30um	Valor de referência**	19	608	1	
	Desvio relativo ao valor de referência		0,992434	211	
	Valor obtido*		611,3	4	1,7
Clana40 - 40um	Valor de referência**	14	608	1	
	Desvio relativo ao valor de referência		1,005427632		
	Valor obtido*		611,1	3,4	0,22
clana42 30 um	Valor de referência**	20	608	1	
	Desvio relativo ao valor de referência		1,005098684		
	Valor obtido*		610,1	3,8	0,42
clana37 30 um	Valor de referência**	17	608	1	
	Desvio relativo ao valor de referência		1,003453947		
					_
	Valor obtido*		609,5	2,7	1,17
clana51 30 um	Valor de referência**	24	608	1	
	Desvio relativo ao valor de referência		1,002467105		
	••••				
	Valor obtido*		-	-	-
dlana 1	Valor de referência**	6	608	1	
	Desvio relativo ao valor de referência		-		

Tabela A.2 – Idades concórdia e seus respectivos desvios relativos ao valor de referência do padrão GJ-1.

* Valor obtido por este estudo.

** Valor obtido por Jackson *et al*. (2004).

Secão analítica		Nº de Análises	Idade concórdia	Erro (2g)	MSWD
~- <u>3</u>	Valor obtido*		607	4	1,2
dlana51	Valor de referência**	11	608	1	
uana 31	Desvio relativo ao valor de referência	11	0,998355	5263	
					_
	Valor obtido*		611,2	3,9	0,67
dlana60A	Valor de referência**	3	608	1	
	Desvio relativo ao valor de referência		1,005263		
					_
	Valor obtido*		611	3,3	1,05
Α	Valor de referência**	16	608	1	
	Desvio relativo ao valor de referência		1,004934211		
	Valor obtido*	19	603,4	3,5	0,46
clana 35 30um	Valor de referência**		608	1	
	Desvio relativo ao valor de referência		0,992434		
					_
	Valor obtido*		611,3	4	1,7
Clana40 - 40um	Valor de referência**	14	608	1	
	Desvio relativo ao valor de referência		1,005427632		
	Valor obtido*		611,1	3,4	0,22
clana42 30 um	Valor de referência**	20	608	1	
	Desvio relativo ao valor de referência		1,005098684		
	Valor obtido*		610,1	3,8	0,42
	Valor de referência**		608	1	

* Valor obtido por este estudo.

Valor obtido por Jackson *et al*. (2004).

clana51 30 um

clana37 30 um

17

24

1,003453947

1,002467105

2,7

1

1,17

**

609,5

608

Desvio relativo ao

valor de referência

Valor obtido*

Valor de referência**

Desvio relativo ao

valor de referência

Seção analítica		Nº de Análises	Idade concórdia	Erro (20)	MSWD
	Valor obtido*		-	-	-
dlana1	Valor de referência**	6	608	1	
	Desvio relativo ao valor de referência		-		
					_
	Valor obtido*		607	4	1,2
dlana51	Valor de referência**	11	608	1	
	Desvio relativo ao valor de referência		0,9983552	63	_
	Valor obtido*		611.7	63	1.7
dlana60B	Valor de referência**	5	608	1	-,.
uanaood	Desvio relativo ao valor de referência	5	1,006085526		
	Valor obtido*		611	3,3	1,05
В	Valor de referência**	16	608	1	
	Desvio relativo ao valor de referência		1,0049342	11	
	Valor obtido*		607,6	6	1,05
7472bb Ferrovia bacao	Valor de referência**	8	608	1	
	Desvio relativo ao valor de referência		0,9993421		
	Valor obtido*		610.7	61	2
	Valor de referêncie**		608	1	2
cachoeiradocamargo1	Desvio relativo ao valor de	8	000	1	
	referência		1,0044407	89	
	Valor obtido*		610,1	5,6	2,1
cachoeiradocamaryo2	Valor de referência**	11	608	1	
	Desvio relativo ao valor de referência		1,003453947		
	Valor obtido*		609,1	6,5	2,1
crisa7459Sao Gonsalo Bacao	Valor de referência**	7	608	1	
	Desvio relativo ao valor de referência		1,0018092	11	

Seção analítica		Nº de Análises	Idade concórdia	Erro (2σ)	MSWD
	Valor obtido*		612,2	8,3	2,2
Sao Goncalo bacao	Valor de referência**	6	608	1	
	Desvio relativo ao valor de referência		1,00690789	95	
					_
	Valor obtido*		610,7	4,5	1,8
bar3 - zircao	Valor de referência**	13	608	1	
	Desvio relativo ao valor de referência		1,00444078	39	
	Valor obtido*		609,2	3,3	1,7
Kassia1aa	Valor de referência**	12	608	1	
	Desvio relativo ao valor de referência		1,00197368		
	Valor obtido*		609	5,5	2,1
kassia2	Valor de referência**	8	608	1	
	Desvio relativo ao valor de referência		1,00164473	37	
	Valor obtido*		607.8	3.5	0.96
	Valor do reforêncio**		608	1	-,, -
kassia3a		11	008	1	
	Desvio relativo ao valor de referência		0,9996710		
	Valor obtido*		615.7	69	1.5
			015,7	0,9	1,5
padrao GJ-1	Valor de referência**	9	608	1	
	Desvio relativo ao valor de referência		1,0126644		
	Valor obtido*		606	5,8	1,8
7470p27d	Valor de referência**	8	608	1	
	Desvio relativo ao valor de referência		0,99671052		
	T7 1 1 14 1 4		<i>c</i> 00 0	-	
	Valor obtido*		608,9	6	2
7470p27f	Valor de referência**	9	608	1	
	Desvio relativo ao valor de referência		1,001480263		

Seção analítica		Nº de Análises	Idade concórdia	Erro (2o)	MSWD
	Valor obtido*		612,2	4	1,5
astd10	Valor de referência**	9	608	1	
	Desvio relativo ao valor de referência		1,00690789	95	
	Valor obtido*		609,7	2,8	1,15
7741	Valor de referência**	16	608	1	
	Desvio relativo ao valor de referência		1,0027960:	53	
	Valor obtido*		605,9	3,2	0,74
7741a	Valor de referência**	13	608	1	
	Desvio relativo ao valor de referência		0,99654603		
	Valar aktida *		600	2.4	15
	valor oblido*	10	009	5,4	1,5
7742ь	Valor de referência**	18	608	1	
	de referência		1,00164473	37	
	Valor obtido*		605.6	3.9	1.8
17D1	Valor de referência**	15	608	1	y -
1/01	Desvio relativo ao valor de referência	15	0,99605263		
					_
	Valor obtido*		609,5	2,6	1,5
7716	Valor de referência**	35	608	1	
	Desvio relativo ao valor de referência		1,00246710	05	
	Valor obtido*		609.1	2.6	0.63
7716	Valor de referência**	20	608	1	- ,
	Desvio relativo ao valor de referência		1,0018092	11	
	Valor obtido*		610,2	2,6	1,5
7717	Valor de referência**	38	608	1	
	Desvio relativo ao valor de referência		1,00361842	21	

Seção analítica		Nº de Análises	Idade concórdia	Erro (2o)	MSWD
	Valor obtido*		608,6	2,4	1,6
7718	Valor de referência**	37	608	1	
	Desvio relativo ao valor de referência		1,0009868	42	
					_
	Valor obtido*		607,5	3,3	1,5
7719d	Valor de referência**	20	608	1	
	Desvio relativo ao valor de referência		0,9991776	32	
	Valor obtido*		610	4,7	1,8
	Valor de referência**		608	1	
6449a		12			
	Desvio relativo ao valor de referência		1,003289474		
	Valor obtido*		606,7	10	2,7
	Valor de referência**	_	608	1	
7458	Desvio relativo ao valor de referência	5	0,9978618	42	
	Valor obtido*		611,6	5,4	1,6
7472bb	Valor de referência**	7	608	1	
	Desvio relativo ao valor de referência		1,005921053		
	Valor obtido*		609,5	3,7	1,8
7473Hb	Valor de referência**	18	608	1	
	Desvio relativo ao valor de referência		1,002467105		
	Valor obtido*		603,4	6	2
a7959	Valor de referência**	8	608	1	
	Desvio relativo ao valor de referência		0,9924342	11	
	Valor obtido*		607,3	5,9	0,69

Takenaka, L. B.	, 2014. Refinamento	do método U-Pb de	e datação <i>in situ</i> vi	a LA-O-ICP-MS
,	,		.3	\ \

astd11

Valor de referência**

Desvio relativo ao valor de

referência

4

608

0,998848684

1

Seção analítica		N° de Análises	Idade concórdia	Erro (2σ)	MSWD
	Valor obtido*		-	-	-
ka-	Valor de referência**	4	608	1	
	Desvio relativo ao valor de referência				
	Valor obtido*		608	3,8	1,2
kv4	Valor de referência**	10	608	1	
	Desvio relativo ao valor de referência		1		
	Valor obtido*		610,9	6,7	1,8
kv8	Valor de referência**	5	608	1	
	Desvio relativo ao valor de referência		1,004769737		
					_
SRY16	Valor obtido*		610,7	5,5	1,6
	Valor de referência**	7	608	1	
	Desvio relativo ao valor de		1,00444078	39	
	referência		,		
	Valor obtido*		_		-
SRY5		6			
	Valor de referência** Desvio relativo ao valor de referência		608 -	1	
					_
	Valor obtido*		608,8	3,1	0,72
7728 - 57b	Valor de referência**	15	608	1	
	Desvio relativo ao valor de referência		1,00131578	39	
	Valor obtido*		609,3	4,6	0,51
7729-57b	Valor de referência**	7	608	1	
	Desvio relativo ao valor de referência		1,00213815		
	Valor obtido*		608,3	3,5	0,99
7730 - 57a	Valor de referência**	12	608	1	
	Desvio relativo ao valor de referência		1,00049342	21	

* Valor obtido por este estudo.

** Valor obtido por Jackson et al. (2004).

Seção analítica		Nº de Análises	Idade concórdia	Erro (2σ)	MSWD
	Valor obtido*		608,5	3,1	1,7
7731 - 36	Valor de referência**	25	608	1	
	Desvio relativo ao valor de referência		1,00082236	58	
	Valor obtido*		609,6	3,7	0,4
7732 - 63	Valor de referência**	11	608	1	
	Desvio relativo ao valor de referência		1,00263157		
7733 - 57a	Valor obtido*		609,6	3,1	0,3
	Valor de referência**	15	608	1	
	Desvio relativo ao valor de referência		1,002631579		
					_
	Valor obtido*		608,1	2,3	1,11
7767-56a	Valor de referência**	26	608	1	
	Desvio relativo ao valor de referência		1,000164474		
					-
	Valor obtido*		609	4,9	2
SE101-63a	Valor de referência**	11	608	1	
	Desvio relativo ao valor de referência		1,00164473	37	
					_
	Valor obtido*		610	2,7	0,64
7711d-7708	Valor de referência**	19	608	1	
	Desvio relativo ao valor de referência		1,0032894	74	
	Valor obtido*		608,9	3,1	0,65
7766feee	Valor de referência**	20	608	1	
	Desvio relativo ao valor de referência		1,00148020	53	

APÊNDICE B – Padrão Plešovice

	_	Idade Média (Ma)*								
	-			Erro			Erro			Erro
Seção analítica	Nº de Análises	²⁰⁷ Pb/ ²⁰⁶ Pb	Desvio relativo	(2σ)	²⁰⁶ Pb/ ²³⁸ U	Desvio relativo	(2 0)	²⁰⁷ Pb/ ²³⁵ U	Desvio relativo	(2o)
clana41	22	360	1,06	13	338,3	1,00	1,9	340,7	1,01	2
Clana40	11	357	1,05	15	343,7	1,02	2	345,4	1,02	2,2
clana51 30um	19	323	0,95	16	339,5	1,01	1,8	337,5	1,00	2,1
dlana1	4	334	0,98	36	336,6	1,00	4,3	335,9	1,00	4,9
dlana51	7	339	1,00	25	346,2	1,03	3,1	345,3	1,02	3,4
dlana41	11	360	1,06	23	338	1,00	2,5	341	1,01	3
7472bb Ferrovia bacao	3	355	1,05	31	336,3	1,00	4,1	338,7	1,00	4,1
cachoeiradocamargo1	9	342	1,01	18	339	1,01	2,4	339,2	1,01	2,3
cachoeiradocamargo2	8	340	1,00	18	339,1	1,01	2,7	339,1	1,01	2,6
crisa7459Sao Gonsalo Bacao	5	340	1,00	24	339,7	1,01	3,1	339,8	1,01	3
Sao Goncalo bacao	6	353	1,04	21	339,2	1,01	3,2	341	1,01	3
bar3 - zircao	10	342	1,01	18	337,4	1,00	2,2	338	1,00	2,4
Kassia1aa	15	331	0,97	15	337,5	1,00	1,5	336,2	1,00	1,7
kassia2	18	357	1,05	15	336,8	1,00	1,6	339,4	1,01	1,8
kassia3a	24	344	1,01	12	338	1,00	1.5	338	1,00	1.6
standard	9	323	0,95	24	340	1,01	2.2	338	1,00	2.9
Α	8	346	1,02	19	339	1,01	2.5	340	1,01	2.5
7470p27f	8	340	1,00	18	339	1,01	2.7	339	1,01	2.6
7741	16	329	0,97	12	337	1,00	1.6	336	1,00	1.6
7741a	13	332	0,98	14	341	1,01	2.1	339.4	1,01	2
7742b	13	338	1,00	13	338.6	1,00	2	338	1,00	1.9
7716	14	340	1,00	13	337.7	1,00	2	338	1,00	1.8
7717	19	342	1,01	12	337	1,00	1.7	337	1,00	1.6
7718	8	346	1,02	17	339	1,01	2.6	340	1,01	2.4
7719d	6	337	0,99	21	337.2	1,00	3	337	1,00	2.8
В	5	362	1,07	23	339	1,01	3.4	342	1,01	3.3
kv4	7	337	0,99	21	339	1,01	2.6	339	1,01	2.6
kv8	9	337	0,99	22	338	1,00	2.1	338	1,00	2.5
SRY16	11	352	1,04	17	340	1,01	2.2	341	1,01	2.2
Table 2 - Day1	9	333	0,98	18	339	1,01	2.4	338	1,00	2.4
Table 2 - Day 2	14	337	0,99	14	339.5	1,01	2	339	1,01	1.9
Table 2 - Day 3	10	341	1,00	19	338	1,00	2.1	339	1,01	2.4
Table 2 - Day 4	9	333	0,98	20	337	1,00	2.2	336	1,00	2.5
Table 2 - DaY 5	10	333	0,98	21	338.4	1,00	2	338	1,00	2.4
Table 2 - Day 6	9	337	0,99	18	338	1,00	2.3	338	1,00	2.3
SRY5	30	346	1,02	10	340	1,01	1.3	340	1,01	1.4
7767-56a	4	346	1,02	25	331	0,98	3.5	333	0,99	3.3

 Tabela B.1 - Desvios relativos aos valores de referência das idades médias e aos valores gerados por este estudo para o padrão Plešovice.

*Os valores de referência utilizados nos cálculos de desvio foram de 339,5±1,9 Ma para a razão ²⁰⁷Pb/²⁰⁶Pb, 337,13±0,37 Ma para a razão ²⁰⁶Pb/²³⁸U e de 337,24±0,32 Ma para a razão ²⁰⁷Pb/²³⁵U.

Tabela B.2 – Idades concórdia e seus respectivos desvios relativos ao valor de referência do padrão Plešovice.

Seção analítica		Nº de Análises	Idade concórdia	Erro (2 σ)	MSWD
	Valor obtido*		339,4	2,3	1,4
clana41	Valor de referência**	22	337,17	0,18	
	Desvio relativo ao valor de referência		1,006613874		
	Valor obtido*		344,1	2	1,11
Clana40	Valor de referência**	11	337,17	0,18	
	Desvio relativo ao valor de referência		1,02055343		
	Valor obtido*		339	2,2	1,5
clana51 30um	Valor de referência**	19	337,17	0,18	
	Desvio relativo ao valor de referência		1,005427529		
 * Valor obtido por este estudo. ** Valor obtido por Sláma <i>et al.</i> (2008) 					

Seção analítica		Nº de Análises	Idade concórdia	Erro (2 σ)	MSWD
	Valor obtido*		336,2	4,3	0,29
dlana1	Valor de referência**	4	337,17	0,18	
	Desvio relativo ao valor de referência		0,99712311	3	
	Valor obtido*		345.6	4.9	2.2
	Valor de		227.17	1,2	2,2
dlana51	referência**	7	337,17	0,18	
	Desvio relativo ao valor de referência		1,025002224		
	Valor obtido*		338,5	2,5	0,98
dlana41	Valor de referência**	11	337,17	0,18	
	Desvio relativo ao valor de referência		1,003944598		
	Valor obtido*		337.4	4	1,6
7470H Francis have	Valor de	2	337,17	0,18	
747200 Ferrovia Dacao	Desvio relativo ao valor de referência	3	1,00068214	3	
	Valor obtido* Valor de		338,9	3,2	1,8
cachoeiradocamargo1	referência**	9	337,17	0,18	
	Desvio relativo ao valor de referência		1,00513094		
	Valor obtido*		338,9	2,6	0,97
cachoeiradocamargo2	Valor de referência**	8	337,17	0,18	
	Desvio relativo ao valor de referência		1,005130943		
	Valor obtido*		339.2	5	2.2
	Valor de	_	337,17	0,18	,-
crisa7459Sao Gonsalo Bacao	Desvio relativo ao valor de referência	5	1,006020702		
	Valor obtido* Valor de		340	5,2	2,4
Sao Goncalo bacao	referência**	6	337,17	0,18	
	Desvio relativo ao valor de referência		1,008393392		
 * Valor obtido por este estudo. ** Valor obtido por Sláma <i>et al.</i> (2008). 					

Seção analítica		Nº de Análises	Idade concórdia	Erro (2 σ)	MSWD	
	Valor obtido*		337,5	2,7	1,3	
bar3 - zircao	Valor de referência**	10	337,17	0,18		
	Desvio relativo ao valor de referência		1,00097873	5		
	Valor obtido*		337,2	1,5	0,79	
Kassia1aa	Valor de referência**	15	337,17	0,18		
	Desvio relativo ao valor de referência		1,00008897	5		
	Valor obtido*		337,6	2	1,7	
kassia2	Valor de referência**	18	337,17	0,18		
	Desvio relativo ao valor de referência		1,001275321			
	Valor obtido*		338	1,5	1,1	
kassia3a	Valor de referência**	24	337,17	0,18		
	Desvio relativo ao valor de referência		1,00246166	6		
	Valor obtido*		340	2,2	0,41	
standard	Valor de referência**	9	337,17	0,18		
	Desvio relativo ao valor de referência		1,008393392			
	Valor obtido*		340	3,1	1,4	
А	Valor de referência**	8	337,17	0,18		
	Desvio relativo ao valor de referência		1,008393392			
	Valor obtido*		339	2,6	0,97	
7470p27f	Valor de referência**	8	337,17	0,18		
	Desvio relativo ao valor de referência		1,005427529			
	Valar aktida*		227	n	15	
	Valor de		337,17	0,18	1,3	
7741	referência** Desvio relativo ao valor de referência	16	0,99949580	3		
* Valor obtido por este estudo. ** Valor obtido por Sláma <i>et al.</i> (2008)						

Seção analítica		Nº de Análises	Idade concórdia	Erro (2 σ)	MSWD	
	Valor obtido*		340	1	0,76	
7741a	Valor de referência**	13	337,17	0,18		
	Desvio relativo ao valor de referência		1,00839339	2		
	Valor obtido*		338	2.5	1,6	
7742b	Valor de referência**	13	337,17	0,18		
	Desvio relativo ao valor de referência		1,00246166	6		
	Valor obtido*		338	2,6	1,8	
7716	Valor de referência**	14	337,17	0,18		
	Desvio relativo ao valor de referência		1,002461666			
	Valor obtido*		337	1.9	1,4	
7717	Valor de referência**	19	337,17	0,18		
	Desvio relativo ao valor de referência		0,99949580	3		
	Valor obtido*		340	4	2,4	
7718	Valor de referência**	8	337,17	0,18		
	Desvio relativo ao valor de referência		1,008393392			
	Valor obtido*		337	2,8	0,6	
7719d	Valor de referência**	6	337,17	0,18		
	Desvio relativo ao valor de referência		0,999495803			
	Valor obtido*		341	6	2,6	
В	Valor de referência**	5	337,17	0,18		
	Desvio relativo ao valor de referência		1,011359255			
	Valor obtido*		338	3,5	1,6	
kv4	Valor de referência**	7	337,17	0,18		
	Desvio relativo ao valor de referência	1,002461666				

Seção analítica		Nº de Análises	Idade concórdia	Erro (2 σ)	MSWD	
	Valor obtido*		338	2,1	0,34	
kv8	Valor de referência**	9	337,17	0,18		
	Desvio relativo ao valor de referência		1,002461666	1,002461666		
	Valor obtido*		341	2,7	1,5	
SRY16	Valor de referência**	11	337,17	0,18		
	Desvio relativo ao valor de referência		1,011359255		_	
	Valor obtido*		338	3.4	2	
Table 2 - Day1	Valor de referência**	9	337,17	0,18		
	Desvio relativo ao valor de referência		1,002461666			
	Valor obtido*		339	2.4	1,6	
Table 2 - Day 2	Valor de referência**	14	337,17	0,18		
	Desvio relativo ao valor de referência		1,005427529			
	Valor obtido*		339	2,1	1,05	
Table 2 - Day 3	Valor de referência**	10	337,17	0,18		
	Desvio relativo ao valor de referência		1,005427529			
	Valor obtido*		337	2,2	1,06	
Table 2 - Day 4	Valor de referência**	9	337,17	0,18		
	Desvio relativo ao valor de referência		0,999495803			
	Valor obtido*		338,2	2	0,57	
Table 2 - DaY 5	Valor de referência**	10	337,17	0,18		
	Desvio relativo ao valor de referência		1,003054839			
	Valor obtido*		338	3.2	1,8	
Table 2 - Day 6	Valor de referência**	9	337,17	0,18		
	Desvio relativo ao valor de referência		1,002461666			
	Valor obtido*		340	1,5	1,3	
SRY5	Valor de referência**	30	337,17	0,18		
	Desvio relativo ao valor de referência		1,008393392			
	Valor obtido*		333	4.7	1.4	
7767-56a	Valor de referência**	4	337,17	0,18	,.	
	Desvio relativo ao valor de referência		0,987632352			
* Valos obtido pos osto ostud-						

APÊNDICE C – BB9

					Idade Mé	dia (Ma)*				
Seção	Nº de		Desvio	Erro		Desvio	Erro		Desvio	Erro
analítica	Análises	²⁰⁷ Pb/ ²⁰⁶ Pb	relativo	(2σ)	²⁰⁶ Pb/ ²³⁸ U	relativo	(2σ)	²⁰⁷ Pb/ ²³⁵ U	relativo	(2σ)
7716	15	564	-	13	560	0,23	3.1	561	0,06	2.7
7719d	13	558	-	13	560	0,23	3.2	559	0,42	2.7
a7959	6	564	-	20	567.6	1,13	5	567	1,01	4.3
kax	4	557	-	23	566	0,84	5.8	565	0,65	4.8
7728 - 57b	5	576	-	22	560	0,23	5.4	563	0,29	4.7
7733 - 57a	6	581	-	21	571	0,23	14	573	0,29	13
7767-56a	16	565	-	12	557	0,76	2.7	558	0,60	2.3

 Tabela C.1 - Desvios relativos aos valores de referência das idades médias e aos valores gerados por este estudo para o padrão BB9.

*Os valores de referência utilizados nos cálculos de desvio foram de 561,28±0,26 Ma para a razão $^{207}\text{Pb}/^{206}\text{Pb}$, 561,35±0,21 Ma para a razão $^{206}\text{Pb}/^{238}\text{U}$ e de 561,1±0,7 Ma para a razão $^{207}\text{Pb}/^{235}\text{U}$.

Tabela C.2 – Idades concórdia e seus re	pectivos desvios relativos ao	valor de referência do	padrão BB9.
---	-------------------------------	------------------------	-------------

Seção analítica		Nº de Análises	Idade concórdia	Erro (2 σ)	MSWD
	Valor obtido*		560	3,3	1,4
7716	Valor de referência**	15	560,4	1,4	
	Desvio relativo ao valor de referência		0,99928622	24	
	Valor obtido*		559	2,8	0,68
7719d	Valor de referência**	13	560,4	1,4	
	Desvio relativo ao valor de referência		0,99750178		
	Valor obtido*		566	5,7	1,5
a7959	Valor de referência**	6	560,4	1,4	
	Desvio relativo ao valor de referência		1,00999286		
	Valor obtido*		559	8.1	2,7
kax	Valor de referência**	4	560,4	1,4	
	Desvio relativo ao valor de referência		0,99750178		
* Valor obtido por este estu	do.				

** Valor obtido por Santos et al. (2014).

Seção analítica		Nº de Análises	Idade concórdia	Erro (2 σ)	MSWD
	Valor obtido*		564	7,7	2,1
7728 - 57b	Valor de referência**	5	560,4	1,4	
	Desvio relativo ao valor de referência		1,00642398		
	Valor obtido*		573	8	2,8
7733 - 57a	Valor de referência**	6	560,4	1,4	
	Desvio relativo ao valor de referência		1,02248394		
	Valor obtido*		558	3.2	1,6
7767-56a	Valor de referência**	16	560,4	1,4	
	Desvio relativo ao valor de referência		0,99571734	5	

* Valor obtido por este estudo.

** Valor obtido por Santos et al. (2014).

APÊNDICE D – M127

Tabela D.1 - Desvios relativos aos valores de referência das idades médias e aos valores gerados por esteestudo para o padrão M127.

					Idade M	lédia (Ma)*				
	_		Desvio	Erro		Desvio	Erro		Desvio	Erro
Seção analítica	Nº de Análises	²⁰⁷ Pb/ ²⁰⁶ Pb	relativo	(2σ)	²⁰⁶ Pb/ ²³⁸ U	relativo	(2σ)	207 Pb/ 235 U	relativo	(2σ)
clana42 30um	3	518	1,60	64	528	0,73	8.2	526	0,27	12
clana37 30um	9	540	2,58	25	522	0,41	4.4	525	0,08	4.8
clana51 30um	14	525	0,27	16	525.6	0,27	3	525	0,08	2.9
dlana60	11	515	2,17	15	523	0,22	4.1	521	0,69	3.5
А	19	522	0,84	13	523	0,22	2.7	522	0,50	2.6
В	24	535	1,63	10	527	0,54	2.6	528	0,65	2.3
С	7	525	0,27	26	523	0,22	4.4	523	0,30	4.8
astd11	6	540	2,58	23	527	0,54	4.3	529	0,84	4.3
Table 2 - DAY 1	8	538	2,20	18	527	0,54	3.7	529	0,84	3.3
Table 2 - Day 2	9	524	0,46	17	529	0,92	3.6	528	0,65	3.2
Table 2 - Day 3	8	515	2,17	20	527	0,54	3.6	526	0,27	3.8
Table 2 - Day 4	9	509	3,31	22	528	0,73	3.3	525	0,08	3.9
Table 2 - Day 5	9	533	1,25	18	523	0,22	3.6	524	0,11	3.4
Table 2 - Day 6	9	523	0,65	18	523	0,22	3.5	523	0,30	3.4
SRY5	52	525	0,27	7.5	526	0,35	1.4	526	0,27	1.4
Test 2	4	527	0,11	35	529	0,92	5.2	528	0,65	6.2

*Os valores de referência utilizados nos cálculos de desvio foram de 526.42 ± 1.9 Ma para a razão 207 Pb/ 206 Pb, 524.17 ± 1.77 Ma para a razão 206 Pb/ 238 U e de 524.6 ± 1.55 Ma para a razão 207 Pb/ 235 U.

Seção analítica		Nº de Análises	Idade concórdia	Erro (2 σ)	MSWD	
	Valor obtido*		528	8,1	0,39	
clana42 30um	Valor de referência**	3	524,35	0,92		
	Desvio relativo ao valor de referência		1,0069609	99		
	Valor obtido*		523	4,3	0,63	
clana37 30um	Valor de referência**	9	524,35	0,92		
	Desvio relativo ao valor de referência		0,9974253	84		
	Valor obtido*		525	2,9	1,04	
clana51 30um	Valor de referência**	14	524,35	0,92		
	Desvio relativo ao valor de referência		1,0012396	53		
	Valor obtido*		520	4,4	1,5	
dlana60	Valor de referência**	11	524,35	0,92		
	Desvio relativo ao valor de referência		0,9917040	14		
	Valor obtido*		552,4	3.4	1,7	
Α	Valor de referência**	19	524,35	0,92		
	Desvio relativo ao valor de referência		1,0534948	03		
	Valor obtido*		528	3.1	1,7	
В	Valor de referência**	24	524,35	0,92		
	Desvio relativo ao valor de referência		1,0069609	1,006960999		
	Valor obtido*		523	4,3	0,63	
С	Valor de referência**	7	524,35	0,92		
	Desvio relativo ao valor de referência		0,9974253			
	Valor obtido*		528	5,2	1,3	
astd11	Valor de referência**	6	524,35	0,92		
* 1/1	Desvio relativo ao valor de referência		1,0069609	99		
** Valor obtido por este ** Valor obtido por Klo	tzli <i>et al</i> . (2009).					

Tabela D.2 – Idades concórdia e seus respectivos desvios relativos ao valor de referência do padrão M127.

Seção analítica		Nº de Análises	Idade concórdia	Erro (2 σ)	MSWD
	Valor obtido*		528	4,5	1,8
Table 2 - DAY 1	Valor de referência**	8	524,35	0,92	
	Desvio relativo ao valor de referência		1,0069609	99	
	Valor obtido*		528	4,5	1,8
Table 2 - Day 2	Valor de referência**	9	524,35	0,92	
	Desvio relativo ao valor de referência		1,0069609	99	
	Valor obtido*		524	5.4	2,2
Table 2 - Day 3	Valor de referência**	8	524,35	0,92	
	Desvio relativo ao valor de referência		0,9993325	07	
	Valor obtido*		528	3,2	0,52
Table 2 - Day 4	Valor de referência**	9	524,35	0,92	
	Desvio relativo ao valor de referência		1,0069609	99	
	Valor obtido*		524	3,4	0,55
Table 2 - Day 5	Valor de referência**	9	524,35	0,92	
	Desvio relativo ao valor de referência		0,9993325	07	
	Valor obtido*		523	3,3	0,25
Table 2 - Day 6	Valor de referência**	9	524,35	0,92	
	Desvio relativo ao valor de referência		0,9974253	84	
	Valor obtido*		526	1,6	1,2
SRY5	Valor de referência**	52	524,35	0,92	
	Desvio relativo ao valor de referência		1,0031467	53	
	Valor obtido*		528	5,1	1
Test 2	Valor de referência**	4	524,35	0,92	
	Desvio relativo ao valor de referência		1,0069609	99	

APÊNDICE E – 91500

					Idade Mé	dia (Ma)*				
Seção analítica	Nº de Análises	²⁰⁷ Pb/ ²⁰⁶ Pb	Des vio relativo	Erro (2σ)	²⁰⁶ Pb/ ²³⁸ U	Desvio relativo	Erro (2σ)	²⁰⁷ Pb/ ²³⁵ U	Desvio relativo	Erro (2σ)
7716	9	1078	1,47	16	1061	0,41	7.4	1067	0,30	5.5
7718	11	1070	0,72	14	1064	0,13	6.4	1066	0,21	4.8
7473Hb	15	1054	0,79	16	1065	0,04	5.8	1062.4	0,13	5
a7959	21	1070	0,72	13	1065	0,04	5.2	1066	0,21	4.2
7728 - 57b	8	1083	1,94	19	1063	0,23	8.1	1069	0,49	6.5
7729 - 57b	4	1086	2,22	25	1066	0,06	12	1072	0,77	8.9
7730 - 57a	6	1063	0,06	24	1064	0,13	9.8	1064	0,02	8.2
7731 - 36	12	1077	1,37	14	1066	0,06	6.5	1069	0,49	4.9
7732 - 63	4	1058	0,41	24	1065	0,04	12	1063	0,08	8.8
7733 - 57a	8	1070	0,72	19	1063	0,23	8.4	1065	0,11	6.7
SE101-63a	6	1063	0,06	20	1070	0,43	9	1068	0,39	6.7
7766feee	16	1074	1,09	11	1066	0,06	5.6	1069	0,49	4.3

Tabela E.1 - Desvios relativos aos valores de referência das idades médias e aos valores gerados por esteestudo para o padrão 91500.

*Os valores de referência utilizados nos cálculos de desvio foram de 1062,4±0,8Ma para a razão ²⁰⁷Pb/²⁰⁶Pb, 1065,4±0,6 Ma para a razão ²⁰⁶Pb/²³⁸U e de 1063,8±1 Ma para a razão ²⁰⁷Pb/²³⁵U.

Tabela E.2 – Idades concórdia e seus respectivos desvios relativos ao valor de referência do padrão 91500.

Seção analítica		Nº de Análises	Idade concórdia	Erro (2 o)) MSWD
	Valor obtido*		1068	6	1,4
7716	Valor de referência**	9	1065	0,8	
	Desvio relativo ao valor de referência		1,0028169	01	
	Valor obtido*		1066	4,9	0,87
7718	Valor de referência**	11	1065	0,8	
	Desvio relativo ao valor de referência		1,0009389	67	
	Valor obtido*		1062	5,1	1,04
7473Hb	Valor de referência**	15	1065	0,8	
	Desvio relativo ao valor de referência		0,9971830	99	
	Valor obtido*		1066	4,4	0,95
a7959	Valor de referência**	21	1065	0,8	
	Desvio relativo ao valor de referência		1,0009389	67	
* Valor obtido por es ** Valor obtido por V	ste estudo. Wiedenbeck <i>et al.</i> (1995).				

Seção analítica		Nº de Análises	Idade concórdia	Erro (2 σ)	MSWD
	Valor obtido*		1070	6,5	0,83
7728 - 57b	Valor de referência**	8	1065	0,8	
	Desvio relativo ao valor de referência		1,0046948	36	
	Valor obtido*		1074	8,6	0,98
7729 - 57b	Valor de referência**	4	1065	0,8	
	Desvio relativo ao valor de referência		1,0084507	04	
	Valor obtido*		1064	8,2	0,5
7730 - 57a	Valor de referência**	6	1065	0,8	
	Desvio relativo ao valor de referência		0,9990610	33	
	Valor obtido*		1070	6	1,3
7731 - 36	Valor de referência**	12	1065	0,8	
	Desvio relativo ao valor de referência		1,0046948	36	
	Valor obtido*		1061	8,2	0,46
7732 - 63	Valor de referência**	4	1065	0,8	
	Desvio relativo ao valor de referência		0,9962441	31	
	Valor obtido*		1064	11	1,9
7733 - 57a	Valor de referência**	8	1065	0,8	
	Desvio relativo ao valor de referência		0,9990610	33	
	Valor obtido*		1067	6,7	0,27
SE101-63a	Valor de referência**	6	1065	0,8	
	Desvio relativo ao valor de referência		1,0018779	34	
	Valor obtido*		1069	4,5	0,64
7766feee	Valor de referência**	16	1065	0,8	
	Desvio relativo ao valor de referência		1,0037558	69	

* Valor obtido por este estudo.** Valor obtido por Wiedenbeck *et al.* (1995).

ANEXOS

ANEXO I - DADOS ANALÍTICOS DO PADRÃO DE ZIRCÃO GJ-1

						GJ-1							
		Razão	Erro (1 σ)	Razão	Erro (1 σ)	Razão	Erro (1 σ)	Idade	Erro (1 σ)	Idade	Erro (1 o)	Idade	Erro (1 σ)
Seção analítica	N° do ponto	207 P	b/ ²⁰⁶ Pb	206 P	$b^{238}U$	$^{207}\mathbf{P}$	$b^{235}U$	207	Pb/ ²⁰⁶ Pb	206	Pb/ ²³⁸ U	$^{207}\mathrm{P}$	$b^{235}U$
	1	0,06122	0,00143	0,0983	0,00151	0,82834	0,01958	647	49	604	6	613	11
	2	0,06045	0,00094	0,09905	0,00132	0,82504	0,01384	620	33	609	8	611	8
	б	0,06001	0,00113	0,09941	0,0014	0,82222	0,01612	604	40	611	8	609	6
	4	0,06025	0,00135	0,09833	0,00138	0,81642	0,01802	612	48	605	8	606	10
	S	0,06049	0,00103	0,0979	0,00129	0,81612	0,0144	621	36	602	8	606	8
	9	0,0602	0,00082	0,09834	0,0013	0,81578	0,0126	611	29	605	8	606	7
	7	0,05946	0,00088	0,09951	0,00132	0,81541	0,0132	584	32	612	8	606	7
	8	0,06116	0,00093	0,09657	0,00127	0,81377	0,01336	645	32	594	7	605	7
	6	0,05973	0,00127	0,09866	0,00137	0,81217	0,01723	594	45	607	8	604	10
clana 35 30um	10	0,05981	0,00109	0,09856	0,00148	0,81214	0,0162	597	39	606	6	604	6
	11	0,06003	0,00092	0,09813	0,00134	0,81178	0,01375	605	33	603	8	604	8
	12	0,05966	0,00093	0,09871	0,00133	0,81156	0,01376	591	34	607	8	603	8
	13	0,05987	0,0011	0,09819	0,00142	0,80925	0,01589	599	39	604	8	602	6
	14	0,06006	0,00103	0,09776	0,00129	0,80894	0,01437	606	37	601	8	602	8
	15	0,05984	0,00118	0,0979	0,00137	0,80768	0,01621	598	42	602	8	601	6
	16	0,06075	0,000	0,09634	0,00127	0,80639	0,01298	630	31	593	L	600	7
	17	0,06	0,00096	0,0975	0,00133	0,80615	0,01403	604	34	600	8	009	8
	18	0,05952	0,00143	0,0979	0,0014	0,80274	0,01894	586	51	602	8	598	11
	19	0,06009	0,00122	0,09677	0,00131	0,80151	0,01629	607	43	595	8	598	6
	1	0,06106	0,00074	0,09949	0,00101	0,83728	0,01107	641	26	611	9	618	9
	2	0,06037	0,00067	0,10058	0,001	0,837	0,0104	617	24	618	9	618	9
	б	0,06119	0,0006	0,09916	0,00098	0,83618	0,00957	646	21	610	9	617	S
	4	0,05928	0,00068	0,10116	0,00099	0,82682	0,01034	577	25	621	9	612	9
	5	0,05934	0,00077	0,10066	0,00108	0,82454	0,01179	580	28	618	9	611	7
	9	0,05935	0,00063	0,10077	0,00099	0,8245	0,00985	580	23	619	9	611	5
Cloud Annu	7	0,0594	0,00082	0,10061	0,00103	0,82407	0,01187	582	30	618	9	610	7
Clauged - 4000	8	0,06024	0,00058	0,09929	0,00098	0,82367	0,00932	612	21	610	9	610	5
	6	0,06041	0,00061	0,0988	0,00097	0,82285	0,00948	618	22	607	9	610	5
	10	0,05992	0,00071	0,09955	0,00097	0,82261	0,01041	601	25	612	9	610	9
	11	0,06064	0,00069	0,09837	0,001	0,82257	0,01057	626	24	605	9	610	9
	12	0,05999	0,00064	0,09946	0,00101	0,82224	0,01006	603	23	611	9	609	9
	13	0,06061	0,00071	0,0983	0,00095	0,82148	0,01035	625	25	605	9	609	9
	14	0,06109	0,00078	0,09672	0,00101	0,81458	0,01136	643	27	595	9	605	9

						GJ-1							
		Razão	Erro (1 σ)	Razão	Erro (1 σ)	Razão	Erro (1 σ)	Idade	Erro (1 0)	Idade	Erro (1 σ)	Idade	Erro (1 σ)
Seção analítica	N° do ponto	²⁰⁷ P	b/ ²⁰⁶ Pb	²⁰⁶ P	$b^{238}U$	²⁰⁷ P	b/ ²³⁵ U	$^{207}\mathrm{F}$	$\mathbf{b}^{206}\mathbf{Pb}$	206]	06/ ²³⁸ U	207]	b/ ²³⁵ U
	1	0,06029	0,00104	0,09927	0,00132	0,82411	0,0149	614	37	610	8	610	8
	2	0,06039	0,00085	0,09822	0,00126	0,81773	0,01261	617	30	604	7	607	7
	б	0,06083	0,00082	0,09977	0,00126	0,83686	0,01244	633	29	613	7	617	7
	4	0,06098	0,00099	0,09894	0,00125	0,83185	0,01416	639	35	608	7	615	8
	5	0,06057	0,00084	0,09916	0,0013	0,82845	0,01275	624	30	610	8	613	7
	9	0,06027	0,00084	0,09979	0,00128	0,82954	0,01273	613	30	613	7	613	7
	7	0,06085	0,0013	0,09868	0,00142	0,82686	0,0183	634	45	607	8	612	10
	8	0,06036	0,00097	0,099	0,00125	0,8239	0,01388	617	34	609	7	610	8
	6	0,06036	0,00105	0,0997	0,00125	0,82975	0,01476	617	37	613	7	614	8
min 02 07 and a	10	0,06064	0,00122	0,09942	0,00137	0,83127	0,01725	626	43	611	8	614	10
CIALIA42 JU UILI	11	0,05995	0,00105	0,09922	0,00127	0,82004	0,01478	602	37	610	7	608	8
	12	0,06069	0,00108	0,09956	0,00129	0,83311	0,01536	628	38	612	8	615	6
	13	0,06067	0,00111	0,09921	0,00129	0,82987	0,01566	627	39	610	∞	614	6
	14	0,06035	0,00142	0,09978	0,00132	0,83053	0,01906	616	50	613	8	614	11
	15	0,05979	0,00138	0,10029	0,00133	0,82701	0,01859	596	49	616	∞	612	10
	16	0,06061	0,00143	0,09864	0,00132	0,8245	0,01894	625	50	606	8	611	11
	17	0,06043	0,00138	0,09946	0,00134	0,82866	0,01877	619	49	611	∞	613	10
	18	0,06024	0,00243	0,09971	0,00172	0,82812	0,03176	612	85	613	10	613	18
	19	0,06138	0,00214	0,09847	0,00151	0,83583	0,02673	653	73	605	6	617	15
	20	0,0601	0,00201	0,09953	0,00148	0,82584	0,02556	607	71	612	6	611	14
	1	0,06073	0,00112	0,1004	0,00132	0,84079	0,01577	630	39	617	8	620	6
	2	0,06059	0,00112	0,09969	0,00134	0,83279	0,0158	625	40	613	8	615	9
	б	0,0608	0,00118	0,09894	0,0015	0,82937	0,01722	632	41	608	6	613	10
	4	0,06113	0,00098	0,09831	0,00131	0,82855	0,01425	644	34	605	8	613	8
	S	0,05959	0,00116	0,10072	0,00152	0,82607	0,01713	589	42	619	6	611	10
	9	0,06074	0,00117	0,09864	0,0013	0,82601	0,01597	630	41	606	8	611	9
	7	0,0602	0,00167	0,09944	0,00167	0,8256	0,02297	611	59	611	10	611	13
	8	0,06094	0,00122	0,09817	0,00133	0,82488	0,01666	637	42	604	8	611	9
clana37 30 um	6	0,05968	0,00109	0,10018	0,00133	0,82433	0,01539	593	38	615	8	611	6
	10	0,06001	0,00111	0,09962	0,00135	0,82429	0,01568	604	39	612	8	610	6
	11	0,06077	0,00107	0,09831	0,00135	0,82409	0,01529	631	38	605	∞	610	6
	12	0,06043	0,00106	0,09887	0,00132	0,8238	0,01499	619	37	608	8	610	8
	13	0,0599	0,00094	0,09973	0,00132	0,82352	0,0139	600	33	613	8	610	8
	14	0,05972	0,00095	0,09983	0,00132	0,82234	0,01398	594	34	613	∞	609	8
	15	0,05968	0,00109	0,09924	0,00133	0,81662	0,01533	592	39	610	8	606	9
	16	0,05959	0,00157	0,09882	0,00144	0,8118	0,0206	589	56	608	8	604	12
	17	0.0594	0,00095	0,09894	0,00132	0,81054	0,01392	582	34	608	8	603	8

						GJ-1							
		Razão	Erro (1 σ)	Razão	Erro (1 σ)	Razão	Erro (1 σ)	Idade	Erro (1 σ)	Idade	Erro (1 0)	Idade	Erro (1 σ)
Seção analítica	N° do ponto	207 Pt	0/ ²⁰⁶ Pb	²⁰⁶ PJ	√ ²³⁸ U	$^{207}\mathbf{P}$	$b^{235}U$	$^{207}\mathrm{Pb}$	/ ²⁰⁶ Pb	²⁰⁶ F	b/ ²³⁸ U	207 I	₀b/ ²³⁵ U
	1	0,06006	0,00091	0,10334	0,00124	0,8556	0,01317	606	32	634	7	628	7
	2	0,06194	0,00086	0,09778	0,00116	0,83486	0,01205	672	30	601	7	616	7
	б	0,05984	0,00088	0,10113	0,00119	0,83433	0,01246	598	32	621	7	616	7
	4	0,06028	0,00089	0,10024	0,00119	0,83302	0,01254	614	32	616	7	615	7
	5	0,06032	0,00096	0,09958	0,00118	0,82803	0,01315	615	34	612	7	613	7
	9	0,05953	0,00081	0,10043	0,00117	0,82411	0,01157	586	29	617	7	610	9
	7	0,05939	0,00111	0,10064	0,0012	0,82408	0,01492	581	40	618	7	610	8
	8	0,06094	0,00093	0,09791	0,00115	0,82241	0,0126	637	33	602	7	609	7
	6	0,05989	0,00089	0,09957	0,00111	0,82189	0,01194	600	32	612	9	609	7
	10	0,0599	0,000	0,09947	0,00118	0,82154	0,01252	600	32	611	7	609	7
	11	0,0604	0,00083	0,09855	0,00116	0,82049	0,01166	618	29	606	7	608	7
olono£1 30 mm	12	0,06029	0,00092	0,09869	0,00115	0,82026	0,01253	614	33	607	7	608	7
TIM AC TOPIE	13	0,05956	0,0008	0,09985	0,00116	0,81965	0,01142	588	29	614	7	608	9
	14	0,06045	0,00092	0,09834	0,00117	0,81954	0,01263	620	33	605	7	608	7
	15	0,06012	0,00078	0,09875	0,00117	0,81828	0,01123	608	28	607	7	607	9
	16	0,06068	0,00093	0,09777	0,00114	0,81784	0,01253	628	33	601	7	607	7
	17	0,06056	0,00111	0,09795	0,00118	0,81783	0,01468	624	39	602	7	607	8
	18	0,05922	0,00093	0,10014	0,00116	0,81746	0,01275	575	34	615	7	607	7
	19	0,05975	0,00096	0,09923	0,00111	0,8174	0,01267	594	35	610	9	607	7
	20	0,05964	0,00119	0,09932	0,00119	0,81681	0,01559	591	43	610	7	606	6
	21	0,05979	0,00085	0,099	0,00116	0,81596	0,01183	595	31	609	7	606	7
	22	0,05983	0,00092	0,09857	0,00124	0,81303	0,01304	598	33	606	7	604	7
	23	0,05993	0,0009	0,09838	0,00117	0,81297	0,01236	601	32	605	7	604	7
	24	0,05931	0,00093	0,09747	0,00125	0,79705	0,01308	579	34	600	7	595	7
	1	0,06078	0,000	0,09844	0,00118	0,8245	0,01255	632	32	605	7	611	7
	2	0,06055	0,00104	0,09861	0,00123	0,82286	0,01429	623	37	606	7	610	8
	ю	0,06047	0,00096	0,09857	0,00115	0,82118	0,0129	621	34	606	7	609	7
	4	0,05957	0,00082	0,1	0,00124	0,82113	0,01214	588	29	614	7	609	7
	5	0,05987	0,00076	0,09939	0,00123	0,82029	0,01147	599	27	611	7	608	9
dlana51	9	0,05991	0,00077	0,09921	0,00121	0,81923	0,01141	600	27	610	7	608	9
	7	0,06054	0,00076	0,0981	0,00122	0,81866	0,01142	623	27	603	7	607	9
	8	0,05934	0,0008	0,09986	0,00126	0,81679	0,01209	580	29	614	7	606	7
	6	0,05974	0,00079	0,09918	0,00123	0,81662	0,01182	594	29	610	7	606	7
	10	0,05997	0,00078	0,09869	0,00124	0,81591	0,01175	602	28	607	7	606	7
	11	0,05856	0,00075	0,09968	0,00124	0,80471	0,01145	551	28	613	7	600	9

1 2 2	Erro (1 6)	$\mathbf{b}^{235}\mathbf{U}$	7	7	7	7	7	7	7	7	7	7	7	9	7	9	7	7	9	7	8	11	8	6	10	8	7	7	7	10	6	8	8	6	8	6	7	8	11	6
	Idade	²⁰⁷ F	615	613	607	623	619	615	613	611	610	610	610	609	609	609	608	608	608	603	602	613	611	609	606	606	606	606	605	604	604	604	603	602	602	601	600	600	598	598
r S	Erro (1 6)	$b/^{238}$ U	×	8	8	7	7	7	7	8	7	7	7	7	7	7	7	7	7	7	7	6	8	8	×	8	8	∞	7	×	6	8	8	8	∞	∞	7	8	8	8
	Idade	206 PI	614	608	608	622	611	617	611	610	610	612	615	608	614	609	624	607	612	605	605	604	609	611	605	602	605	612	594	607	606	603	607	604	601	602	593	600	602	595
2 2 1	Erro (1 6)	$\sqrt{^{206}} Pb$	27	27	26	29	29	34	28	30	31	30	28	28	30	28	30	29	29	31	36	49	33	40	48	36	29	32	32	45	39	33	34	39	37	42	31	34	51	43
,	Idade	$^{207}\mathrm{Pb}$	623	633	604	624	649	605	622	615	614	604	591	616	593	607	551	612	594	598	590	647	620	604	612	621	611	584	645	594	597	605	591	599	606	598	630	604	586	607
2	Erro (1 σ)	/ ²³⁵ U	0,01249	0,01241	0,01203	0,01227	0,01195	0,01327	0,01173	0,01264	0,01212	0,01196	0,01177	0,01146	0,01213	0,01149	0,01208	0,01167	0,01164	0,01214	0,01337	0,01958	0,01384	0,01612	0,01802	0,0144	0,0126	0,0132	0,01336	0,01723	0,0162	0,01375	0,01376	0,01589	0,01437	0,01621	0,01298	0,01403	0,01894	0,01629
GJ-1	Kazao	207 Pb	0,83312	0,82849	0,81753	0,84629	0,83974	0,83162	0,82958	0,8249	0,82428	0,82359	0,82258	0,82222	0,82211	0,82119	0,82067	0,82056	0,8205	0,81148	0,80857	0,82834	0,82504	0,82222	0,81642	0,81612	0,81578	0,81541	0,81377	0,81217	0,81214	0,81178	0,81156	0,80925	0,80894	0,80768	0,80639	0,80615	0,80274	0,80151
2	Erro (1 6)	²³⁸ U	0,00134	0,00134	0,00137	0,00124	0,00121	0,00121	0,00121	0,00129	0,00118	0,00121	0,00125	0,0012	0,0012	0,0012	0,00124	0,00121	0,0012	0,0012	0,00119	0,00151	0,00132	0,0014	0,00138	0,00129	0,0013	0,00132	0,00127	0,00137	0,00148	0,00134	0,00133	0,00142	0,00129	0,00137	0,00127	0,00133	0,0014	0,00131
×	Kazao	^{206}Pb	0,09994	0,09891	0,09884	0,10134	0,09941	0,10051	0,09946	0,09925	0,09917	0,09954	0,10003	0,09882	0,09988	0,09913	0,10167	0,0988	0,09962	0,09834	0,09841	0,0983	0,09905	0,09941	0,09833	0,0979	0,09834	0,09951	0,09657	0,09866	0,09856	0,09813	0,09871	0,09819	0,09776	0,0979	0,09634	0,0975	0,0979	0,09677
2	Erro (1 6)	06 Pb	0,00078	0,00077	0,00071	0,00083	0,00082	0,00096	0,0008	0,00085	0,00086	0,00083	0,00079	0,00078	0,00085	0,00079	0,00082	0,0008	0,00081	0,00086	0,00099	0,00143	0,00094	0,00113	0,00135	0,00103	0,00082	0,00088	0,00093	0,00127	0,00109	0,00092	0,00093	0,0011	0,00103	0,00118	0,0009	0,00096	0,00143	0,00122
ž	Kazao	$^{207}\mathrm{Pb/}^{2}$	0,06055	0,06082	0,06002	0,06057	0,06127	0,06004	0,0605	0,06031	0,0603	0,06001	0,05965	0,06035	0,05971	0,06008	0,05855	0,06023	0,05974	0,05985	0,05963	0,06122	0,06045	0,06001	0,06025	0,06049	0,0602	0,05946	0,06116	0,05973	0,05981	0,06003	0,05966	0,05987	0,06006	0,05984	0,06075	0,06	0,05952	0,06009
		° do ponto	1	2	ю	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	1	7	3	4	5	9	7	œ	9	10	11	12	13	14	15	16	17	18	19
		Seção analítica N		dlana60A									•	V																	clana 35 30um									

						GJ-1							
		Razão	Erro (1 σ)	Razão	Erro (1 0)	Razão	Erro (1 σ)	Idade	Erro (1 σ)	Idade	Erro (1 σ)	Idade	Erro (1 o)
Seção analítica	N° do ponto	207 Pt	y∕ ²⁰⁶ Pb	²⁰⁶ P	$b^{238}U$	$^{207}\mathrm{P}$	b/ ²³⁵ U	207 ₁	Pb/ ²⁰⁶ Pb	206	Pb/ ²³⁸ U	207]	Pb/ ²³⁵ U
	1	0,06106	0,00074	0,09949	0,00101	0,83728	0,01107	641	26	611	9	618	6
	2	0,06037	0,00067	0,10058	0,001	0,837	0,0104	617	24	618	9	618	9
	ю	0,06119	0,0006	0,09916	0,00098	0,83618	0,00957	646	21	610	9	617	5
	4	0,05928	0,00068	0,10116	0,00099	0,82682	0,01034	577	25	621	9	612	9
	5	0,05934	0,00077	0,10066	0,00108	0,82454	0,01179	580	28	618	9	611	7
	9	0,05935	0,00063	0,10077	0,00099	0,8245	0,00985	580	23	619	9	611	5
Clane40 40	7	0,0594	0,00082	0,10061	0,00103	0,82407	0,01187	582	30	618	9	610	7
Clauaty - 40uu	8	0,06024	0,00058	0,09929	0,00098	0,82367	0,00932	612	21	610	9	610	5
	6	0,06041	0,00061	0,0988	0,00097	0,82285	0,00948	618	22	607	9	610	5
	10	0,05992	0,00071	0,09955	0,00097	0,82261	0,01041	601	25	612	9	610	9
	11	0,06064	0,00069	0,09837	0,001	0,82257	0,01057	626	24	605	9	610	9
	12	0,05999	0,00064	0,09946	0,00101	0,82224	0,01006	603	23	611	9	609	9
	13	0,06061	0,00071	0,0983	0,00095	0,82148	0,01035	625	25	605	9	609	9
	14	0,06109	0,00078	0,09672	0,00101	0,81458	0,01136	643	27	595	9	605	9
	1	0,06029	0,00104	0,09927	0,00132	0,82411	0,0149	614	37	610	8	610	8
	2	0,06039	0,00085	0,09822	0,00126	0,81773	0,01261	617	30	604	7	607	7
	б	0,06083	0,00082	0,09977	0,00126	0,83686	0,01244	633	29	613	7	617	7
	4	0,06098	0,00099	0,09894	0,00125	0,83185	0,01416	639	35	608	7	615	8
	5	0,06057	0,00084	0,09916	0,0013	0,82845	0,01275	624	30	610	8	613	7
	9	0,06027	0,00084	0,09979	0,00128	0,82954	0,01273	613	30	613	7	613	7
	7	0,06085	0,0013	0,09868	0,00142	0,82686	0,0183	634	45	607	8	612	10
	×	0,06036	0,00097	0,099	0,00125	0,8239	0,01388	617	34	609	7	610	8
	6	0,06036	0,00105	0,0997	0,00125	0,82975	0,01476	617	37	613	7	614	8
alono/13 20	10	0,06064	0,00122	0,09942	0,00137	0,83127	0,01725	626	43	611	8	614	10
cialia42 Ju ull	11	0,05995	0,00105	0,09922	0,00127	0,82004	0,01478	602	37	610	7	608	8
	12	0,06069	0,00108	0,09956	0,00129	0,83311	0,01536	628	38	612	8	615	6
	13	0,06067	0,00111	0,09921	0,00129	0,82987	0,01566	627	39	610	8	614	6
	14	0,06035	0,00142	0,09978	0,00132	0,83053	0,01906	616	50	613	8	614	11
	15	0,05979	0,00138	0,10029	0,00133	0,82701	0,01859	596	49	616	8	612	10
	16	0,06061	0,00143	0,09864	0,00132	0,8245	0,01894	625	50	606	8	611	11
	17	0,06043	0,00138	0,09946	0,00134	0,82866	0,01877	619	49	611	8	613	10
	18	0,06024	0,00243	0,09971	0,00172	0,82812	0,03176	612	85	613	10	613	18
	19	0,06138	0,00214	0,09847	0,00151	0,83583	0,02673	653	73	605	6	617	15
	20	0,0601	0,00201	0,09953	0,00148	0,82584	0,02556	607	71	612	6	611	14

						GJ-1							
		Razão	Erro (1 σ)	Razão	Erro (1 σ)	Razão	Erro (1 σ)	Idade	Erro (1 J)	Idade	Erro (1 σ)	Idade	Erro (1 o)
Seção analítica	N° do ponto	²⁰⁷ PI	b/ ²⁰⁶ Pb	²⁰⁶ P	$b^{238}U$	²⁰⁷ P	$b^{235}U$	207 Pb/ ²	²⁰⁶ Pb	²⁰⁶ P,	$b^{238}U$	207	•b/ ²³⁵ U
	1	0,06073	0,00112	0,1004	0,00132	0,84079	0,01577	630	39	617	∞	620	6
	2	0,06059	0,00112	0,09969	0,00134	0,83279	0,0158	625	40	613	8	615	6
	ю	0,0608	0,00118	0,09894	0,0015	0,82937	0,01722	632	41	608	6	613	10
	4	0,06113	0,00098	0,09831	0,00131	0,82855	0,01425	644	34	605	8	613	8
	5	0,05959	0,00116	0,10072	0,00152	0,82607	0,01713	589	42	619	6	611	10
	9	0,06074	0,00117	0,09864	0,0013	0,82601	0,01597	630	41	606	8	611	6
	7	0,0602	0,00167	0,09944	0,00167	0,8256	0,02297	611	59	611	10	611	13
	8	0,06094	0,00122	0,09817	0,00133	0,82488	0,01666	637	42	604	8	611	6
clana37 30 um	6	0,05968	0,00109	0,10018	0,00133	0,82433	0,01539	593	38	615	8	611	6
	10	0,06001	0,00111	0,09962	0,00135	0,82429	0,01568	604	39	612	8	610	6
	11	0,06077	0,00107	0,09831	0,00135	0,82409	0,01529	631	38	605	8	610	6
	12	0,06043	0,00106	0,09887	0,00132	0,8238	0,01499	619	37	608	8	610	8
	13	0,0599	0,00094	0,09973	0,00132	0,82352	0,0139	600	33	613	8	610	8
	14	0,05972	0,00095	0,09983	0,00132	0,82234	0,01398	594	34	613	œ	609	8
	15	0,05968	0,00109	0,09924	0,00133	0,81662	0,01533	592	39	610	8	606	6
	16	0,05959	0,00157	0,09882	0,00144	0,8118	0,0206	589	56	608	8	604	12
	17	0,0594	0,00095	0,09894	0,00132	0,81054	0,01392	582	34	608	8	603	8
	1	0,06006	0,00091	0,10334	0,00124	0,8556	0,01317	606	32	634	7	628	7
	2	0,06194	0,00086	0,09778	0,00116	0,83486	0,01205	672	30	601	7	616	7
	3	0,05984	0,00088	0,10113	0,00119	0,83433	0,01246	598	32	621	7	616	7
	4	0,06028	0,00089	0,10024	0,00119	0,83302	0,01254	614	32	616	7	615	7
	5	0,06032	0,00096	0,09958	0,00118	0,82803	0,01315	615	34	612	7	613	7
	9	0,05953	0,00081	0,10043	0,00117	0,82411	0,01157	586	29	617	7	610	9
	7	0,05939	0,00111	0,10064	0,0012	0,82408	0,01492	581	40	618	7	610	8
	8	0,06094	0,00093	0,09791	0,00115	0,82241	0,0126	637	33	602	7	609	7
	6	0,05989	0,00089	0,09957	0,00111	0,82189	0,01194	600	32	612	9	609	7
	10	0,0599	0,000	0,09947	0,00118	0,82154	0,01252	600	32	611	7	609	7
	11	0,0604	0,00083	0,09855	0,00116	0,82049	0,01166	618	29	606	7	608	7
clano51 30 um	12	0,06029	0,00092	0,09869	0,00115	0,82026	0,01253	614	33	607	7	608	7
TIM OC TONIAN	13	0,05956	0,0008	0,09985	0,00116	0,81965	0,01142	588	29	614	7	608	9
	14	0,06045	0,00092	0,09834	0,00117	0,81954	0,01263	620	33	605	7	608	7
	15	0,06012	0,00078	0,09875	0,00117	0,81828	0,01123	608	28	607	7	607	9
	16	0,06068	0,00093	0,09777	0,00114	0,81784	0,01253	628	33	601	7	607	7
	17	0,06056	0,00111	0,09795	0,00118	0,81783	0,01468	624	39	602	7	607	8
	18	0,05922	0,00093	0,10014	0,00116	0,81746	0,01275	575	34	615	7	607	7
	19	0,05975	0,00096	0,09923	0,00111	0,8174	0,01267	594	35	610	9	607	7
	20	0,05964	0,00119	0,09932	0,00119	0,81681	0,01559	591	43	610	7	606	6
	21	0,05979	0,00085	0,099	0,00116	0,81596	0,01183	595	31	609	7	606	7
	22	0,05983	0,00092	0,09857	0,00124	0,81303	0,01304	598	33	606	7	604	7
	23	0,05993	0,0009	0,09838	0,00117	0,81297	0,01236	601	32	605	7	604	7
	24	0,05931	0,00093	0,09747	0,00125	0,79705	0,01308	579	34	600	7	595	7

						GJ-1							
		Razão	Erro (1 σ)	Razão	Erro (1 0)	Razão	Erro (1 σ)	Idade	Erro (1 o)	Idade	Erro (1 σ)	Idade	Erro (1 o)
Seção analítica	N° do ponto	²⁰⁷ PI	b/ ²⁰⁶ Pb	²⁰⁶ P	$b^{238}U$	207 P	b/ ²³⁵ U	207]	Pb/ ²⁰⁶ Pb	206	$Pb/^{238}U$	207]	$Pb^{235}U$
	1	0,06078	0,000	0,09844	0,00118	0,8245	0,01255	632	32	605	7	611	7
	2	0,06055	0,00104	0,09861	0,00123	0,82286	0,01429	623	37	606	7	610	8
	3	0,06047	0,00096	0,09857	0,00115	0,82118	0,0129	621	34	606	7	609	7
	4	0,05957	0,00082	0,1	0,00124	0,82113	0,01214	588	29	614	7	609	7
	5	0,05987	0,00076	0,09939	0,00123	0,82029	0,01147	599	27	611	7	608	9
dlana51	9	0,05991	0,00077	0,09921	0,00121	0,81923	0,01141	600	27	610	7	608	9
	7	0,06054	0,00076	0,0981	0,00122	0,81866	0,01142	623	27	603	7	607	9
	8	0,05934	0,0008	0,09986	0,00126	0,81679	0,01209	580	29	614	7	606	7
	6	0,05974	0,00079	0,09918	0,00123	0,81662	0,01182	594	29	610	7	606	7
	10	0,05997	0,00078	0,09869	0,00124	0,81591	0,01175	602	28	607	7	606	7
	11	0,05856	0,00075	0,09968	0,00124	0,80471	0,01145	551	28	613	7	600	9
	1	0,05946	0,0008	0,10177	0,00152	0,83431	0,01398	584	29	625	6	616	8
	2	0,06055	0,00078	0,09994	0,00134	0,83312	0,01249	623	27	614	8	615	7
dlana60B	3	0,06082	0,00077	0,09891	0,00134	0,82849	0,01241	633	27	608	8	613	7
	4	0,05928	0,00078	0,10092	0,00136	0,82343	0,01252	577	28	620	8	610	7
	5	0,06002	0,00071	0,09884	0,00137	0,81753	0,01203	604	26	608	8	607	7
	1	0,06057	0,00083	0,10134	0,00124	0,84629	0,01227	624	29	622	7	623	7
	5	0,06127	0,00082	0,09941	0,00121	0,83974	0,01195	649	29	611	7	619	7
	ω	0,06004	0,00096	0,10051	0,00121	0,83162	0,01327	605	34	617	7	615	7
	4	0,0605	0,0008	0,09946	0,00121	0,82958	0,01173	622	28	611	7	613	7
	5	0,06031	0,00085	0,09925	0,00129	0,8249	0,01264	615	30	610	8	611	7
	9	0,0603	0,00086	0,09917	0,00118	0,82428	0,01212	614	31	610	7	610	7
	7	0,06001	0,00083	0,09954	0,00121	0,82359	0,01196	604	30	612	7	610	7
2	8	0,05965	0,00079	0,10003	0,00125	0,82258	0,01177	591	28	615	7	610	7
9	6	0,06035	0,00078	0,09882	0,0012	0,82222	0,01146	616	28	608	7	609	9
	10	0,05971	0,00085	0,09988	0,0012	0,82211	0,01213	593	30	614	7	609	7
	11	0,06008	0,00079	0,09913	0,0012	0,82119	0,01149	607	28	609	7	609	9
	12	0,05855	0,00082	0,10167	0,00124	0,82067	0,01208	551	30	624	7	608	7
	13	0,06023	0,0008	0,0988	0,00121	0,82056	0,01167	612	29	607	7	608	7
	14	0,05974	0,00081	0,09962	0,0012	0,8205	0,01164	594	29	612	7	608	9
	15	0,05985	0,00086	0,09834	0,0012	0,81148	0,01214	598	31	605	7	603	7
	16	0,05963	0,00099	0,09841	0,00119	0,80857	0,01337	590	36	605	7	602	8

						GJ-1							
		Razão	Erro (1 σ)	Razão	Erro (1 o)	Razão	Erro (1 σ)	Idade	Erro (1 o)	Idade	Erro (1 σ)	Idade	Erro (1 σ)
Seção analítica	N° do ponto	207 Pt	$\gamma^{206} Pb$	²⁰⁶ P,	b^{238} U	207 F	$b^{235}U$	207 I	Pb/ ²⁰⁶ Pb	206]	$Pb/^{238}U$	207]	$P_{\rm b}/^{235}U$
	1	0,06038	0,00071	0,10117	0,00109	0,84235	0,01003	617,1	25,02	621,3	6,4	620,4	5,53
	2	0,06052	0,00074	0,1008	0,00106	0,84123	0,01024	622,2	26,31	619, 1	6,24	619,8	5,65
	3	0,0594	0,00076	0,09928	0,00104	0,81313	0,01017	581,9	27,56	610,2	6,12	604,2	5,69
7472bb Ferrovia	4	0,05974	0,00079	0,09631	0,00101	0,79327	0,0101	594,2	28,5	592,8	5,94	593	5,72
bacao	5	0,05985	0,00073	0,09806	0,00105	0,80924	0,00988	598,1	26,11	603,1	6,18	602	5,54
	9	0,06032	0,00071	0,09928	0,00109	0,82564	0,01004	615,2	25,33	610,2	6,4	611,2	5,58
	7	0,06045	0,00071	0,09645	0,00105	0,80378	0,0097	619,6	25,18	593,6	6,19	599	5,46
	8	0,06051	0,00074	0,09895	0,00105	0,82568	0,01008	622	26,29	608,3	6,16	611,2	5,6
	1	0,05977	0,00071	0,10009	0,00109	0,82464	0,00998	594,9	25,91	615	6,37	610,6	5,55
	2	0,05997	0,00075	0,09868	0,00108	0,81605	0,01027	602,6	26,78	606,7	6,32	605,8	5,74
	3	0,05999	0,00073	0,09783	0,00106	0,80908	0,0099	603,4	25,95	601,7	6,21	601,9	5,56
cachoeiradocamarg	4	0,0604	0,00072	0,09981	0,00108	0,83097	0,01008	618	25,63	613,3	6,32	614,2	5,59
01	5	0,06043	0,00072	0,10113	0,00109	0,84219	0,01014	618,9	25,37	621	6,38	620,4	5,59
	9	0,06056	0,00081	0,09781	0,00103	0,8165	0,01059	623,7	28,65	601, 6	6,04	606, 1	5,92
	7	0,0611	0,00077	0,09832	0,00107	0,82834	0,01047	642,8	26,83	604,5	6,29	612,7	5,82
	8	0,06142	0,00075	0,09961	0,0011	0,84351	0,01045	653,9	25,85	612,1	6,42	621,1	5,75
	1	0,05938	0,00071	0,10088	0,00118	0,82589	0,01072	581,1	25,8	619,6	6,93	611,3	5,96
	2	0,05942	0,00072	0,09894	0,00117	0,81052	0,01063	582,6	26,09	608, 2	6,84	602,7	5,96
	ŝ	0,05951	0,00071	0,09876	0,00116	0,81016	0,01052	585,8	25,85	607,1	6,79	602,5	5,9
	4	0,05963	0,00075	0,09962	0,00118	0,81924	0,01104	590,2	26,96	612,2	6,93	607,6	6,16
memorphismen	5	0,0599	0,00071	0,10009	0,00118	0,82636	0,01065	599,9	25,35	614,9	6,92	611,6	5,92
cacilite autocalilarg	9	0,06019	0,00072	0,09788	0,00115	0,8122	0,01055	610,6	25,74	602	6,74	603,7	5,91
	7	0,06036	0,00071	0,1011	0,00118	0,84109	0,01078	616,5	25,29	620,9	6,92	619,7	5,95
	8	0,06048	0,00074	0,09883	0,00117	0,82424	0,01091	620,9	26,26	607,6	6,84	610,4	6,07
	9	0,06051	0,00072	0,09983	0,00117	0,83256	0,01075	621,7	25,49	613,4	6,86	615	5,96
	10	0,0606	0,00081	0,09786	0,00111	0,81744	0,01111	625, 1	28,44	601, 8	6,52	606, 6	6,2
	11	0,06128	0,0007	0,0996	0,00117	0,84117	0,01059	649	24,51	612,1	6,84	619,8	5,84
	1	0,06073	0,00075	0,09878	0,00102	0,82702	0,00996	629,9	26,53	607,3	5,97	612	5,54
	2	0,06048	0,00072	0,09909	0,00102	0,82625	0,00971	620,7	25,65	609, 1	9	611,5	5,4
crica7450Sa0	ŝ	0,06025	0,00072	0,09904	0,00103	0,82277	0,00964	612,6	25,54	608,8	6,01	609,6	5,37
Gonsalo Bacao	4	0,06049	0,00069	0,09861	0,00104	0,82229	0,00941	621,3	24,39	606,3	6,1	609,3	5,24
	5	0,0609	0,00069	0,09792	0,00103	0,82202	0,00942	635,9	24,35	602,2	6,07	609,2	5,25
	9	0,05928	0,00073	0,0998	0,00103	0,81555	0,0098	577,4	26,66	613,3	6,02	605, 6	5,48
	7	0,05928	0,0007	0,0997	0,00104	0,81493	0,00951	577,5	25,33	612,7	6,11	605,2	5,32

						GJ-1							
		Razão	Erro (1 o)	Razão	Erro (1 0)	Razão	Erro (1 c)	Idade	Erro (1 5)	Idade	Erro (1 σ)	Idade	Erro (1 0)
Seção analítica	N° do ponto	$^{207}\mathrm{Pb}$	√ ²⁰⁶ Pb	²⁰⁶ P	b/ ²³⁸ U	$^{207}\mathrm{P}$	$b^{235}U$	207	Pb/ ²⁰⁶ Pb	$^{206}\mathrm{P}$	b/ ²³⁸ U	$^{207}\mathrm{P}$	$b^{235}U$
	1	0,05968	0,00071	0,0999	0,00118	0,82242	0,01065	591,9	25,65	613,8	6,89	609,4	5,93
	2	0,06005	0,00077	0,09875	0,00121	0,81711	0,01143	605,3	27,35	607,1	7,12	606,4	6,39
Can Concolo haceo	3	0,06036	0,0008	0,09878	0,00118	0,82144	0,01152	616,5	28,27	607,2	6,92	608,9	6,42
Day Guildan Daran	4	0,0609	0,00073	0,09829	0,00116	0,82539	0,01075	635,5	25,57	604,4	6,82	611,1	5,98
	5	0,06094	0,00074	0,10024	0,00119	0,8421	0,01111	637,1	25,83	615,8	7	620,3	6,13
	9	0,06147	0,00075	0,0991	0,00118	0,83978	0,01115	655,9	25,92	609,1	6,94	619	6,15
	1	0,0611	0,0007	0,09895	0,00111	0,83353	0,01013	642,7	24,36	608,3	6,53	615,6	5,61
	2	0,06047	0,00071	0,09953	0,00114	0,82991	0,01046	620,5	25,13	611,7	6,69	613,6	5,81
	б	0,06072	0,00066	0,09902	0,00105	0,82886	0,00931	629,2	23,38	608,7	6,18	613	5,17
	4	0,06059	0,00069	0,09913	0,00111	0,82804	0,01001	624,7	24,29	609,3	6,52	612,5	5,56
	5	0,06056	0,00065	0,09909	0,00106	0,82727	0,00927	623,6	23,11	609,1	6,23	612,1	5,15
	9	0,05987	0,00068	0,09957	0,00112	0,82187	0,00993	598,8	24,36	611,9	6,55	609,1	5,54
bar3 - zircao	7	0,05969	0,0007	0,09984	0,00115	0,82162	0,01042	592,8	24,81	613,5	6,73	609	5,81
	8	0,0594	0,00068	0,10027	0,00111	0,82114	0,00983	581,9	24,56	616	6,5	608,7	5,48
	6	0,05941	0,00073	0,09857	0,00111	0,80744	0,01029	582,3	26,31	606,1	6,49	601	5,78
	10	0,05967	0,00076	0,09839	0,0011	0,80941	0,0106	591,7	27,4	605	6,48	602,1	5,95
	11	0,05969	0,00076	0,09981	0,00112	0,82141	0,01079	592,9	26,91	613,3	6,59	608,8	6,01
	12	0,05991	0,00073	0,09972	0,00112	0,82368	0,01049	600,4	26,31	612,8	6,56	610,1	5,84
	13	0,06021	0,00082	0,10021	0,00114	0,83184	0,01149	611,2	29,12	615,6	6,68	614,6	6,37
	1	0,06016	0,00075	0,10071	0,00082	0,83586	0,0088	609,3	26,58	618,5	4,81	616,9	4,87
	2	0,06081	0,00078	0,10069	0,00067	0,84424	0,00802	632,6	27,26	618,4	3,91	621,5	4,42
	б	0,05964	0,00072	0,10012	0,00074	0,82317	0,00785	590,7	25,9	615,1	4,34	609,8	4,37
	4	0,06022	0,00069	0,09988	0,00066	0,8291	0,0069	611,4	24,73	613,7	3,89	613,1	3,83
	5	0,06024	0,00069	0,09905	0,00065	0,82246	0,00681	612,2	24,73	608,8	3,82	609,4	3,79
Vassia1aa	9	0,06004	0,00067	0,09864	0,00066	0,81619	0,00661	605,1	24,12	606,4	3,9	605,9	3,69
1743514144	7	0,06056	0,00071	0,09808	0,00074	0,81898	0,00751	623,7	24,99	603,2	4,32	607,5	4,19
	8	0,06103	0,00073	0,09785	0,00071	0,82314	0,00769	640,1	25,6	601,8	4,18	609,8	4,28
	6	0,06014	0,00069	0,0978	0,00066	0,81084	0,00684	608, 6	24,75	601,5	3,89	602,9	3,83
	10	0,06034	0,00071	0,09779	0,00078	0,81358	0,0079	615,9	25,33	601,4	4,57	604,5	4,42
	11	0,05986	0,00079	0,09864	0,00107	0,81386	0,01067	598,4	28,32	606,5	6,27	604,6	5,97
	12	0,05991	0,00068	0,10001	0,00108	0,82586	0,00963	600,2	24,32	614,5	6,34	611,3	5,36

						GJ-1							
		Razão	Erro (1 c)	Razão	Erro (1 c)	Razão	Erro (1 0)	Idade	Erro (1 c)	Idade	Erro (1 0)	Idade	Erro (1 c)
Seção analítica	N° do ponto	207 P	b/ ²⁰⁶ Pb	²⁰⁶ P;	b/ ²³⁸ U	207 P	b/ ²³⁵ U	$^{207}\mathrm{F}$	$\mathbf{b}^{206}\mathbf{Pb}$	206 F	b/ ²³⁸ U	²⁰⁷ H	b/ ²³⁵ U
	1	0,0615	0,00075	0,09857	0,00096	0,83579	0,00959	656,9	26,01	606	5,66	616,8	5,3
	2	0,06057	0,00075	0,09996	0,00099	0,83469	0,00975	624	26,52	614,2	5,77	616,2	5,4
	3	0,06028	0,00069	0,09954	0,00094	0,82736	0,00874	613,8	24,67	611,7	5,48	612,1	4,86
Lacaio	4	0,06011	0,00073	0,09918	0,00097	0,822	0,00942	607,6	26,19	609,6	5,68	609,2	5,25
kassia 2	5	0,05981	0,00068	0,09931	0,00092	0,81886	0,0085	596,6	24,55	610,4	5,39	607,4	4,74
	9	0,06079	0,00072	0,09755	0,0009	0,8177	0,00874	632	25,28	600,1	5,28	606,8	4,88
	7	0,05936	0,00071	0,09975	0,00094	0,81646	0,00896	580,4	25,71	612,9	5,54	606,1	5,01
	8	0,05989	0,00069	0,09846	0,00092	0,81306	0,00862	599,7	24,87	605,4	5,41	604,2	4,83
	1	0,06057	0,00084	0,10038	0,00119	0,83704	0,01186	623,9	29,55	616,7	6,94	617,5	6,56
	2	0,06022	0,00075	0,10046	0,00115	0,83395	0,01086	611,7	26,72	617,1	6,74	615,8	6,01
	33	0,06007	0,00068	0,10006	0,00107	0,8283	0,00961	606, 1	24,37	614,8	6,28	612,7	5,34
	4	0,06097	0,00078	0,09794	0,00106	0,82319	0,0105	638,3	27,2	602,3	6,23	609,8	5,85
	5	0,06006	0,00067	0,09944	0,00107	0,82302	0,00942	605,9	23,89	611,1	6,25	609,7	5,25
kassia3a	9	0,05992	0,00069	0,09947	0,00107	0,82152	0,00972	600,6	24,88	611,3	6,29	608,9	5,42
	7	0,05998	0,00072	0,09852	0,00107	0,81482	0,00998	602,9	25,75	605,7	6,3	605,2	5,59
	8	0,05966	0,0008	0,09881	0,00105	0,81248	0,01064	591,4	28,88	607,4	6,16	603,8	5,96
	6	0,05954	0,00069	0,09894	0,00107	0,812	0,00968	586,8	25,08	608,2	6,28	603, 6	5,42
	10	0,05962	0,00072	0,09841	0,00107	0,80897	0,00993	589,9	25,8	605,1	6,29	601,9	5,57
	11	0,05999	0,00077	0,09777	0,00104	0,80808	0,01033	603,3	27,7	601,3	6,14	601, 4	5,8
	1	0,06059	0,00077	0,10151	0,00115	0,84792	0,01116	624,9	27,16	623,2	6,72	623,5	6,13
	2	0,05956	0,00073	0,10004	0,00112	0,82147	0,01042	587,7	26,22	614,7	6,56	608.9	5,81
	3	0,05941	0,00073	0,09857	0,00111	0,80744	0,01029	582,3	26,31	606,1	6,49	601	5,78
	4	0,06075	0,00072	0,10013	0,00113	0,83871	0,01053	630,5	25,47	615,2	6,62	618,4	5,82
padrao GJ-1	5	0,06089	0,00074	0,10047	0,00113	0,84337	0,01071	635,3	26,03	617,1	6,61	621	5,9
	9	0,05991	0,00073	0,09972	0,00112	0,82368	0,01049	600,4	26,31	612,8	6,56	610, 1	5,84
	7	0,05967	0,00076	0,09839	0,0011	0,80941	0,0106	591,7	27,4	605	6,48	602,1	5,95
	8	0,05969	0,00076	0,09981	0,00112	0,82141	0,01079	592,9	26,91	613,3	6,59	608,8	6,01
	6	0,06021	0,00082	0,10021	0,00114	0,83184	0,01149	611,2	29,12	615,6	6,68	614,6	6,37
						GJ-1							
-----------------	-------------	-------------	----------------------	------------------	---------------------	--------------------	---------------------	-------	-------------------------------	-------	---------------------	------------------	-----------------------------
		Razão	Erro (1 c)	Razão	Erro (1 c)	Razão	Erro (1 c)	Idade	Erro (1 5)	Idade	Erro (1 5)	Idade	Erro (1 5)
Seção analítica	N° do ponto	207 PI	b/ ²⁰⁶ Pb	²⁰⁶ P	b/ ²³⁸ U	$^{207}\mathrm{P}$	b/ ²³⁵ U	207I	$\mathbf{b}^{206}\mathbf{Pb}$	206 F	b/ ²³⁸ U	²⁰⁷ F	${}^{\rm b}/{}^{235}{ m U}$
	1	0,0591	0,00072	0,09886	0,00107	0,80554	0,00998	570,8	26,41	607,7	6,31	600	5,61
	2	0,05933	0,00072	0,09872	0,00107	0,80732	0,00987	579,1	26,04	606,9	6,26	600,9	5,55
	ю	0,05977	0,00071	0,10009	0,00109	0,82464	0,00998	594,9	25,91	615	6,37	610,6	5,55
PLCMULVL	4	0,05997	0,00075	0,09868	0,00108	0,81605	0,01027	602,6	26,78	606,7	6,32	605,8	5,74
n/7dn/+/	5	0,05999	0,00073	0,09783	0,00106	0,80908	0,0099	603,4	25,95	601,7	6,21	601,9	5,56
	9	0,0604	0,00072	0,09981	0,00108	0,83097	0,01008	618	25,63	613,3	6,32	614,2	5,59
	Г	0,06056	0,00081	0,09781	0,00103	0,8165	0,01059	623,7	28,65	601,6	6,04	606,1	5,92
	8	0,0611	0,00077	0,09832	0,00107	0,82834	0,01047	642,8	26,83	604,5	6,29	612,7	5,82
	1	0,05942	0,00072	0,09894	0,00117	0,81052	0,01063	582,6	26,09	608,2	6,84	602,7	5,96
	2	0,05951	0,00071	0,09876	0,00116	0,81016	0,01052	585,8	25,85	607,1	6,79	602,5	5,9
	ω	0,05963	0,00075	0,09962	0,00118	0,81924	0,01104	590,2	26,96	612,2	6,93	607,6	6,16
	4	0,0599	0,00071	0,10009	0,00118	0,82636	0,01065	599,9	25,35	614,9	6,92	611,6	5,92
7470p27f	5	0,06019	0,00072	0,09788	0,00115	0,8122	0,01055	610,6	25,74	602	6,74	603,7	5,91
	9	0,06048	0,00074	0,09883	0,00117	0,82424	0,01091	620,9	26,26	607,6	6,84	610,4	6,07
	L	0,06051	0,00072	0,09983	0,00117	0,83256	0,01075	621,7	25,49	613,4	6,86	615	5,96
	8	0,0606	0,00081	0,09786	0,00111	0,81744	0,01111	625,1	28,44	601,8	6,52	606,6	6,2
	6	0,06128	0,0007	0,0996	0,00117	0,84117	0,01059	649	24,51	612,1	6,84	619,8	5,84
	1	0,06059	0,00077	0,10151	0,00115	0,84792	0,01116	624,9	27,16	623,2	6,72	623,5	6,13
	2	0,05956	0,00073	0,10004	0,00112	0,82147	0,01042	587,7	26,22	614,7	6,56	608,9	5,81
	ω	0,05941	0,00073	0,09857	0,00111	0,80744	0,01029	582,3	26,31	606,1	6,49	601	5,78
	4	0,06075	0,00072	0,10013	0,00113	0,83871	0,01053	630,5	25,47	615,2	6,62	618,4	5,82
astd10	5	0,06089	0,00074	0,10047	0,00113	0,84337	0,01071	635,3	26,03	617,1	6,61	621	5,9
	9	0,05991	0,00073	0,09972	0,00112	0,82368	0,01049	600,4	26,31	612,8	6,56	610,1	5,84
	7	0,05967	0,00076	0,09839	0,0011	0,80941	0,0106	591,7	27,4	605	6,48	602,1	5,95
	8	0,05969	0,00076	0,09981	0,00112	0,82141	0,01079	592,9	26,91	613,3	6,59	608,8	6,01
	6	0,06021	0,00082	0,10021	0,00114	0,83184	0,01149	611,2	29,12	615,6	6,68	614,6	6,37

						GJ-1							
		Razão	Erro (1 c)	Razão	Erro (1 c)	Razão	Erro (1 0)	Idade	Erro (1 0)	Idade	Erro (1 c)	Idade	Erro (1 σ)
Seção analítica	N° do ponto	²⁰⁷ PI	o∕ ²⁰⁶ Pb	$^{206}\mathrm{P}$	$b^{238}U$	$^{207}\mathrm{P}$	$b^{235}U$	²⁰⁷ I	b/ ²⁰⁶ Pb	206]	b/ ²³⁸ U	207]	∂b/ ²³⁵ U
	1	0,06049	0,00059	0,10065	0,00096	0,83941	0,00893	621,2	20,95	618,2	5,62	618,8	4,93
	2	0,06047	0,00063	0,1	0,00096	0,83367	0,00924	620,3	22,16	614,4	5,63	615,6	5,12
	33	0,06054	0,00061	0,09959	0,00095	0,83123	0,00907	622,8	21,69	612	5,59	614,3	5,03
	4	0,05979	0,00061	0,10046	0,00098	0,82811	0,00916	595,3	22,47	617,1	5,73	612,6	5,09
	5	0,06084	0,00063	0,09865	0,00095	0,82747	0,00914	633,5	21,99	606,5	5,56	612,2	5,08
	9	0,06015	0,00062	0,09961	0,00096	0,82609	0,00914	609	22,15	612,1	5,61	611,4	5,08
	7	0,05989	0,00057	0,10001	0,00097	0,82589	0,00872	599,8	20,49	614,5	5,66	611,3	4,85
1777	8	0,06004	0,00061	0,09968	0,00097	0,82518	0,00911	605	21,76	612,6	5,68	610,9	5,07
1+//	6	0,06056	0,0006	0,09855	0,00094	0,82286	0,00885	623,7	21,3	605,9	5,52	609,6	4,93
	10	0,06002	0,00062	0,09914	0,00095	0,82033	0,00909	604,2	22,21	609,3	5,58	608,2	5,07
	11	0,05978	0,00063	0,09931	0,00096	0,8185	0,00918	595,1	23,1	610,4	5,61	607,2	5,13
	12	0,06011	0,00062	0,09856	0,00095	0,81677	0,00909	607,4	22,32	606	5,56	606,2	5,08
	13	0,06015	0,00062	0,09831	0,00094	0,81531	0,00905	608,9	22,25	604,5	5,54	605,4	5,06
	14	0,05922	0,00062	0,09983	0,00096	0,8151	0,00916	575,3	22,73	613,4	5,63	605,3	5,13
	15	0,06044	0,00062	0,09776	0,00094	0,81466	0,00894	619,5	21,86	601,2	5,5	605,1	5
	16	0,06004	0,00062	0,09763	0,00094	0,80815	0,00896	604,9	22,22	600,5	5,51	601,4	5,03
	1	0,06053	0,0007	0,09789	0,0011	0,8168	0,01037	622,5	24,64	602	6,44	606,3	5,79
	2	0,05986	0,00069	0,09811	0,0011	0,80957	0,0103	598,4	24,85	603,3	6,44	602,2	5,78
	3	0,0599	0,00066	0,09846	0,00112	0,81316	0,0102	600,1	23,83	605,4	6,55	604,2	5,71
	4	0,05977	0,00068	0,099	0,00111	0,81581	0,01029	595	25,03	608,5	6,49	605,7	5,76
	5	0,06008	0,00069	0,09921	0,00111	0,8217	0,01037	606,5	24,56	609,7	6,49	609	5,78
	9	0,06049	0,00069	0,09833	0,0011	0,81998	0,01036	621,1	24,48	604,6	6,46	608	5,78
7741a	7	0,05933	0,00068	0,09828	0,0011	0,80386	0,01016	579,3	24,66	604,3	6,45	599	5,72
	8	0,06027	0,00066	0,09864	0,00111	0,81955	0,01019	613,2	23,52	606,4	6,54	607,8	5,68
	6	0,0604	0,00066	0,1001	0,00112	0,83355	0,01025	618	23,29	615	6,58	615,6	5,68
	10	0,05974	0,00069	0,09823	0,0011	0,80896	0,01023	594,1	24,73	604	6,44	601,9	5,74
	11	0,05992	0,00065	0,09921	0,00111	0,81954	0,01011	600,7	23,44	609,8	6,53	607,8	5,64
	12	0,05973	0,0006	0,09927	0,00109	0,81743	0,00943	593,9	21,63	610, 1	6,37	606,6	5,27
	13	0,05973	0,00068	0,0987	0,00112	0,81275	0,01031	593,9	24,27	606,8	6,56	604	5,78

						GJ-1							
		Razão	Erro (1 σ)	Razão	Erro (1 0)	Razão	Erro (1 o)	Idade	Erro (1 0)	Idade	Erro (1 σ)	Idade	Erro (1 σ)
Seção analítica	N° do ponto	²⁰⁷ PI	$b^{206}Pb$	²⁰⁶ Pl	$b/^{238}$ U	207 P.	$b^{235}U$	²⁰⁷ F	^{206}Pb	206 _I	2 ³⁸ U	207 F	$b^{235}U$
	1	0,06064	0,00074	0,10006	0,00108	0,8365	0,0106	626,6	26	614,7	6,34	617,2	5,86
	2	0,06018	0,00066	0,0998	0,00108	0,82806	0,00992	610,1	23,55	613,2	6,35	612,5	5,51
	ę	0,05943	0,00065	0,09964	0,00108	0,81638	0,00979	582,9	23,68	612,3	6,35	606	5,47
	4	0,0591	0,00065	0,09963	0,00108	0,81167	0,00976	570,6	23,68	612,2	6,35	603,4	5,47
	5	0,06021	0,00066	0,09932	0,00108	0,82443	0,00989	611,2	23,56	610,4	6,34	610,5	5,51
	9	0,06028	0,00066	0,09914	0,00108	0,82393	0,00988	613,6	23,57	609,4	6,32	610,2	5,5
	7	0,0609	0,00066	0,09908	0,00108	0,83188	0,0099	635,7	23,22	609	6,31	614,7	5,49
	8	0,06096	0,00066	0,09904	0,00109	0,83239	0,00999	637,9	23,24	608,8	6,37	614,9	5,54
ACVLL	6	0,06054	0,00066	0,09891	0,00107	0,82554	0,00989	623	23,49	608	6,3	611,1	5,5
07411	10	0,06035	0,00066	0,09879	0,00108	0,82203	0,00986	616,3	23,31	607,3	6,35	609,2	5,5
	11	0,06045	0,00069	0,09859	0,00105	0,82166	0,0099	619,7	24,5	606,2	6,14	609	5,52
	12	0,06062	0,00067	0,09861	0,00107	0,82411	0,00988	625,8	23,5	606,2	6,29	610,3	5,5
	13	0,0604	0,00065	0,09855	0,00109	0,82064	0,00984	617,9	23,03	605,9	6,38	608,4	5,49
	14	0,06037	0,00066	0,09839	0,00107	0,81885	0,00977	616,7	23,35	605	6,27	607,4	5,45
	15	0,06061	0,00067	0,09836	0,00107	0,82192	0,00987	625,4	23,53	604,8	6,29	609, 1	5,5
	16	0,05988	0,00065	0,09819	0,00107	0,81067	0,00968	599,4	23,43	603,8	6,26	602,8	5,43
	17	0,06024	0,00066	0,09809	0,00107	0,81471	0,00978	612,4	23,6	603,2	6,26	605, 1	5,47
	18	0,06087	0,00066	0,09759	0,00107	0,81895	0,00985	634,6	23,2	600,3	6,31	607,5	5,5
	-	0,06027	0,00066	0,09966	0,00106	0,82812	0,0092	613,5	23,53	612,4	6,19	612,6	5,11
	2	0,06088	0,0008	0,09857	0,0011	0,82712	0,0109	635,1	28,04	606, 1	6,46	612	6,06
	б	0,06001	0,00073	0,09978	0,00105	0,82478	0,00986	603,8	26,18	613,1	6,13	610,7	5,48
	4	0,0591	0,00066	0,10066	0,00109	0,81994	0,00945	570,7	23,97	618,3	6,39	608	5,27
	5	0,06055	0,00069	0,09818	0,00106	0,81944	0,00948	623,4	24,28	603,7	6,23	607,7	5,29
	9	0,05963	0,00075	0,09953	0,0011	0,81765	0,01042	590,3	27,13	611,7	6,48	606,7	5,82
	7	0,06018	0,00069	0,09846	0,00108	0,8167	0,0096	610,2	24,56	605,4	6,32	606,2	5,36
17 B 1	8	0,05979	0,00065	0,09893	0,00105	0,81522	0,00897	595,3	23,91	608, 1	6,14	605,4	5,02
	6	0,06061	0,00073	0,09755	0,00106	0,81504	0,00987	625,6	25,76	600,1	6,21	605,3	5,52
	10	0,05994	0,00068	0,09844	0,00106	0,81334	0,00937	601,3	24,26	605,3	6,24	604,3	5,25
	11	0,06016	0,0007	0,09812	0,001	0,81329	0,00923	609,2	25,03	603,4	5,9	604,3	5,17
	12	0,06031	0,00068	0,09746	0,00106	0,81011	0,0094	614,6	24,32	599,5	6,22	602,5	5,27
	13	0,06063	0,00069	0,09687	0,00106	0,80952	0,00949	626,2	24,45	596	6,22	602,2	5,33
	14	0,05996	0,00067	0,09783	0,00105	0,80862	0,00922	602,1	24,04	601,7	6,17	601,7	5,17
	15	0,05968	0,00078	0,09801	0,00112	0,80575	0,01075	592,7	27,53	602,7	6,57	600, 1	6,05

	Erro (1 o)	•b/ ²³⁵ U	5,41	5,41	5,4	5,4	5,4	5,66	5,39	5,38	5,41	5,51	5,37	5,51	5,35	5,36	5,38	6,02	5,31	5,7	5,67	5,58	5,37	5,94	5,65	5,3	5,34	5,31	5,34	6,46	5,35	5,31	5,31	6,55
	Idade	207 I	617,9	617,9	617,8	617,1	617	616,3	613,6	613,2	611,8	611,1	610,8	610,5	610,1	609,4	609,4	609,3	609,2	608,8	608,8	608,1	607,6	607,5	606,1	605,5	605	604,9	604,8	602,8	602,5	601,3	601,2	596,5
	Erro (1 0)	₀/ ²³⁸ U	6,48	6,49	6,5	6,49	6,45	6,52	6,48	6,45	6,46	6,49	6,47	6,57	6,42	6,41	6,53	6,67	6,44	6,76	6,7	6,69	6,42	6,26	6,18	6,34	6,42	6,33	6,49	7,11	6,41	6,32	6,36	6,41
	Idade	²⁰⁶ PI	615,7	617,2	619,6	617,5	614,4	611,3	616,2	614,2	611,7	611,6	606,5	612,6	607,3	610,5	612,9	612,2	614,9	608, 1	612,9	607,3	609,7	608	606,7	605,4	605	603,8	612,7	607,3	607,1	600,3	600	610,2
	Erro (1 σ)	/ ²⁰⁶ Pb	23,57	23,57	23,63	23,59	23,59	24,82	23,69	23,65	23,77	24,32	23,26	24,07	23,34	23,71	23,48	27,08	23,52	24,25	24,38	23,81	23,77	28,17	26,7	23,53	23,5	23,56	23,57	28,22	23,89	23,66	23,44	32,23
	Idade	$^{207}\mathrm{Pb}$	625,9	620,4	611,1	615,9	626,6	635	604, 1	609,5	612,4	609,1	626,7	602,5	620,8	605,1	596,4	598,7	588,2	611,7	593,6	611	599,9	605,5	603,5	606,3	605,5	608,9	575,3	586,1	585,1	605,2	605,8	545,2
	Erro (1 0)	/ ²³⁵ U	0,0098	0,00979	0,00978	0,00977	0,00977	0,01022	0,00972	0,0097	0,00973	0,0099	0,00965	0,00991	0,00961	0,00962	0,00966	0,01081	0,00953	0,01023	0,01018	0,01	0,00962	0,01064	0,01011	0,00948	0,00955	0,00948	0,00953	0,01152	0,00953	0,00946	0,00945	0,01161
GJ-1	Razão	207 Pb	0,83773	0,8377	0,83748	0,83638	0,83612	0,83493	0,83004	0,82918	0,8268	0,82544	0,82495	0,82432	0,82368	0,82236	0,82236	0,8223	0,82207	0,82142	0,82127	0,82005	0,81918	0,81896	0,81647	0,81552	0,8146	0,81431	0,81412	0,81062	0,81004	0,80796	0,80773	0,79944
	Erro (1 0)	²³⁸ U	0,00111	0,00111	0,00111	0,00111	0,0011	0,00111	0,00111	0,0011	0,0011	0,00111	0,0011	0,00112	0,00109	0,00109	0,00111	0,00114	0,0011	0,00115	0,00114	0,00114	0,0011	0,00107	0,00105	0,00108	0,00109	0,00108	0,00111	0,00121	0,00109	0,00108	0,00108	0,00109
	Razão	²⁰⁶ Pb/	0,10022	0,10047	0,10089	0,10052	0,1	0,09946	0,10031	0,09996	0,09953	0,09952	0,09866	0,09969	0,09878	0,09934	0,09974	0,09962	0,10008	0,09893	0,09975	0,09879	0,09919	0,09891	0,09868	0,09846	0,09839	0,0982	0,09971	0,09879	0,09875	0,0976	0,09754	0,09928
	Erro (1 0)	⁰⁶ Pb	0,00067	0,00067	0,00066	0,00066	0,00067	0,00071	0,00066	0,00066	0,00067	0,00068	0,00066	0,00067	0,00066	0,00066	0,00065	0,00076	0,00065	0,00068	0,00068	0,00067	0,00066	0,00079	0,00075	0,00066	0,00066	0,00066	0,00065	0,00078	0,00066	0,00066	0,00066	0,00087
	Razão	$^{207}\mathrm{Pb/}^2$	0,06062	0,06047	0,06021	0,06034	0,06064	0,06088	0,06002	0,06016	0,06024	0,06015	0,06065	0,05997	0,06048	0,06004	0,0598	0,05987	0,05958	0,06023	0,05972	0,06021	0,0599	0,06005	0,06	0,06008	0,06005	0,06015	0,05922	0,05952	0,05949	0,06004	0,06006	0,05841
		V° do ponto	1	2	ю	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
		Seção analítica N																7117	01//															

2	Erro (1 g) Ph/ ²³⁵ []		N, N V, L	7.07	5,45	5,68	5,45	5,46	5,43	5,43	5,6	5,64	5,55	5,48	5,49	5,65	5,47	5,82	2,61	5,49 5,45	C4,C	5.47	5.45	5,42	5,46	5,29	5,41	5,43	5,41	5,41	5,44	5,59	5,39 5 30	60,0 747	5.44	5,49	5,47	5,35	5,47	4, 1 4, 1	5,43	5,37	5,63	5,91 5,27	5.26	00'C	5,47 5,37	5.43	5.37	
;	Idade 207		614,8 614,6	6113 6113	610	608,8	608,8	607,5	607,1	604,4	603,9	614,6	613,2	611,5	609,6	609,4	608,4	607,8	606,6 202.0	605,9 604 5	c, 1 00	618.9	616.6	616,5	615,1	614,8	614,8	613	612,8	612,8	612	611,9	611,2	610.5	610.4	610	609,9	609,1	608,6	607,9	607,3	607,1	606,6	606,6 204.2	606,3 606.3	002 G	605.8	605.7	605.3),))))
2	<u>538</u> 11 γ ²³⁸ 11	0 %	6,57	0,5,6 6,58	6,57	6,55	6,5	6,51	6,52	6,46	6,47	6,66	6,6	6,6	6,59	6,53	6,57	6,56	0,50	6,53 6 5 5	CC'D	6.56	6,63	6,59	6,58	6,53	6,58	6,59	6,51	6,52	6,51	6,37	6,47 6 40	0,40 7,70	6.51	6,49	6,48	6,56	6,43	6,47	6,48	6,51	6,28	6,46 7 1	6,41 6,47	0,47 6,44	0,444 6.47	6.42	6,45	2
	1dade ²⁰⁶ pi	5	612,3	613.7	613,5	610,5	606,1	606,8	607,8	602,2	604,3	615,6	609,9	610,6	609,2	607,4	607,2	605,7	609,8	608,4 606 1	000,1	617	623.2	620	613,5	612	618,8	620	612,9	613,6	612	614,7	607,3	615.6	612.3	610,1	609,5	611,6	603,9	609	608,9	605,8	606,7	607,6 206 5	C,08C	601,/	606.8	603.2	604.2	
2	Erro (Ισ) V ²⁰⁶ Ph	v ru	23,65 25.05	CD,C2 73.7	23,67	25,24	23,64	23,78	23,63	23,73	24,96	24,41	23,84	23,53	23,7	24,85	23,62	25,93	25,1	24,16 22.72	61,62	23.6	23.15	23,45	23,41	22,75	23,41	23,7	23,52	23,53	23,69	25,53	23,37	24,33	23.82	24,16	24,04	23,11	24,03	23,68	23,87	23,25	26,04	27,16	23,11 22,17	71,02	23.5	23.92	23.49	į
	1dade ²⁰⁷ Ph		624	602 3	597.1	602,4	618,8	610	604,4	612,7	602,2	611,1	625,6	614,9	611,4	617	612,8	615,8	594,5	596,7	0,070	625.9	593	603,6	621,2	625,5	600,1	587,7	612,7	609,9	612	601,3	626	592.6	603.2	609,4	611,4	599,7	626	604,2	601,3	612,1	606,3	602,9	643,6 202 4	4,020 608 6	600 4	615.3	600 7	
3	Erro (1 σ) ν ²³⁵ ΓΙ		0,00992	0.00083	0,00979	0,01019	0,00978	0,00978	0,00972	0,00971	0,00999	0,01017	0,00999	0,00985	0,00986	0,01013	0,00981	0,01044	0,01005	0,00983	0,000/4	0.00992	0.00984	0,0098	0,00985	0,00954	0,00976	0,00979	0,00975	0,00975	0,00978	0,01005	0,0097	0.0098	0,00978	0,00986	0,00983	0,00959	0,00982	0,00968	0,00972	0,00962	0,01007	0,01058	0,0096	0400,0	0,0096	0.00971	0000	
GJ-1	Kazao ²⁰⁷ pi		0,83214	0,82583	0,82346	0,82142	0,8213	0,81898	0,81823	0,81353	0,81257	0,83185	0,82925	0,82628	0,82286	0,82248	0,82064	0,81961	0,81/44	0,81616	0001000	0.83958	0.83541	0,83515	0,83276	0,83217	0,83208	0,82898	0,82851	0,82848	0,82709	0,82688	0,82573	0.8244	0.82417	0,82342	0,82339	0,82181	0,82097	0,8198	0,81859	0,81824	0,81742	0,8174	0,81692	0,010/9 0 81617	0,0101/ 0,816	0.81583	0.91504	
3	Erro (1 σ) / ²³⁸ 11	0	0,00112	0,00112	0,00112	0,00112	0,00111	0,00111	0,00111	0,0011	0,0011	0,00114	0,00112	0,00113	0,00112	0,00111	0,00112	0,00112	0,00112	0,00111	71100'0	0.00112	0.00113	0,00113	0,00112	0,00111	0,00112	0,00113	0,00111	0,00111	0,00111	0,00109	0,0011	0.00108	0.00111	0,00111	0,0011	0,00112	0,0011	0,0011	0,00111	0,00111	0,00107	0,0011	0,00109	0,0011	0,0011	0.00109	0.0011	
3 \$	Kazao ²⁰⁶ Ph		0,09964	0.00080	0,09984	0,09934	0,09858	0,0987	0,09887	0,09793	0,09828	0,1002	0,09922	0,09936	0,09911	0,09881	0,09878	0,09852	0,09921	0,09897	00060,0	0.10045	0,10151	0,10096	0,09985	0,09958	0,10075	0,10095	0,09974	0,09986	0,0996	0,10005	0,0988	0.1002	0,09965	0,09927	0,09917	0,09953	0,09821	0,09907	0,09906	0,09853	0,09868	0,09884	0,09694	0,07/04 0.09843	0.0987	0.09808		07060
3	Erro (Ισ) ²⁰⁶ Ph	LD	0,00067	0,00066	0,00066	0,0007	0,00067	0,00067	0,00066	0,00067	0,0007	0,00069	0,00068	0,00066	0,00067	0,0007	0,00066	0,00073	0,00069	0,00067	0,00000	0.00067	0.00066	0,00066	0,00066	0,00064	0,00065	0,00066	0,00066	0,00066	0,00067	0,00071	0,00066	0.00069	0.00067	0,00068	0,00068	0,00064	0,00068	0,00066	0,00067	0,00065	0,00073	0,00076	0,00066	0,00068	0,00066	0.00067	0.00066	
2	Kazao ²⁰⁷ Ph/	EUV	0,06057	0.05997	0,05982	0,05997	0,06043	0,06018	0,06002	0,06025	0,05996	0,06021	0,06061	0,06032	0,06022	0,06037	0,06026	0,06034	0,05976	0,05981	00660°0	0.06062	0.0597	0,06	0,06049	0,06061	0,0599	0,05956	0,06025	0,06018	0,06023	0,05994	0,06063	0.05968	0.05999	0,06016	0,06022	0,05989	0,06063	0,06002	0,05994	0,06024	0,06008	0,05998	0,06112	0,06014	0,00014	0.06033	0.06017	
	N° do ponto		- (1 (1	14	5	9	7	8	6	10	11	12	13	14	15	16	17	81	91	70	-	0	ιm	4	ŝ	9	7	8	6	10	11	12	61 41	15	16	17	18	19	20	21	22	23	24	07	07	- x c	29	100	
	Seção analítica										9122	01//																									1.1.1.1													

						G.L-1							
		Razão	Erro (1 c)	Razão	Erro (1 c)	Razão	Erro (1 0)	Idade	Erro (1 c)	Idade	Erro (1 c)	Idade	Erro (1 c)
Seção analítica	N° do ponto	²⁰⁷ Pt	0/ ²⁰⁶ Pb	²⁰⁶ P	b/ ²³⁸ U	²⁰⁷ P	b/ ²³⁵ U	$^{207}\mathrm{F}$	b/ ²⁰⁶ Pb	206]	06/ ²³⁸ U	207]	b/ ²³⁵ U
	1	0,06095	0,00066	0,0992	0,00109	0,83361	0,00961	637,4	23,16	609,7	6,38	615,6	5,32
	2	0,06014	0,00066	0,10052	0,00111	0,83355	0,00969	608,7	23,45	617,5	6,49	615,6	5,36
	3	0,06022	0,00065	0,1002	0,0011	0,83189	0,00959	611,4	23,18	615,6	6,46	614,7	5,31
	4	0,06075	0,00067	0,0993	0,00113	0,83165	0,01001	630,3	23,71	610,3	6,61	614,5	5,55
	5	0,06022	0,00066	0,10009	0,00111	0,83102	0,00969	611,3	23,46	615	6,48	614,2	5,37
	9	0,0606	0,00066	0,09935	0,00109	0,83006	0,0096	625	23,27	610,6	6,4	613,6	5,33
	7	0,06083	0,00066	0,09895	0,00111	0,82988	0,00973	633,3	23,25	608, 2	6,49	613,5	5,4
	8	0,06069	0,00068	0,09912	0,00111	0,82942	0,00993	628,3	23,83	609, 2	6,53	613,3	5,51
	6	0,06027	0,00065	0,09973	0,00109	0,82863	0,00953	613,2	23,3	612,8	6,39	612,9	5,29
	10	0,06053	0,00066	0,09908	0,00108	0,82681	0,00951	622,5	23,29	609	6,34	611,8	5,28
	11	0,06027	0,00066	0,09949	0,0011	0,82668	0,00971	613,2	23,62	611,4	6,47	611,8	5,4
	12	0,06063	0,00068	0,09864	0,00111	0,82458	0,00988	626,2	23,87	606, 4	6,5	610,6	5,5
	13	0,05987	0,00066	0,09986	0,00111	0,82437	0,00969	598,9	23,67	613,6	6,49	610,5	5,39
	14	0,06032	0,00066	0,09898	0,0011	0,82321	0,00968	615,1	23,61	608, 4	6,45	609,8	5,39
	15	0,06055	0,00065	0,09851	0,00109	0,82238	0,00947	623,3	23,04	605,7	6,38	609,4	5,27
	16	0,05981	0,00065	0,09961	0,00109	0,82146	0,0095	596,9	23,41	612,1	6,41	608,9	5,3
	17	0,06006	0,00066	0,09917	0,00109	0,8212	0,0095	605,7	23,44	609,6	6,38	608, 7	5,3
	18	0,05971	0,00065	0,0996	0,00109	0,81994	0,00942	593,4	23,11	612,1	6,37	608	5,26
7718	19	0,06031	0,00066	0,09859	0,0011	0,81983	0,00962	614,8	23,3	606, 1	6,48	608	5,37
	20	0,06014	0,00066	0,09885	0,0011	0,81958	0,00964	608,5	23,62	607,6	6,44	607,8	5,38
	21	0,05984	0,00065	0,09933	0,0011	0,81952	0,00955	597,8	23,49	610,5	6,44	607,8	5,33
	22	0,06009	0,00065	0,09892	0,0011	0,81951	0,00957	606,7	23,3	608, 1	6,46	607,8	5,34
	23	0,05946	0,00065	0,09989	0,0011	0,81896	0,00948	584,2	23,46	613,8	6,44	607,5	5,29
	24	0,06008	0,00065	0,09877	0,00109	0,81809	0,00944	606,4	23,23	607,2	6,38	607	5,27
	25	0,05993	0,00066	0,0989	0,0011	0,81722	0,00961	601,2	23,65	601,9	6,45	606,5	5,37
	26	0,05965	0,00067	0,09937	0,00112	0,81717	0,00979	590,8	24	610,7	6,55	606,5	5,47
	27	0,06007	0,00066	0,09863	0,00108	0,81682	0,00946	606	23,45	606,4	6,35	606,3	5,29
	28	0,06031	0,00066	0,09818	0,0011	0,81638	0,00964	614,6	23,62	603,7	6,43	606	5,39
	29	0,06005	0,00066	0,09852	0,0011	0,81564	0,00965	605,2	23,73	605,7	6,45	605, 6	5,4
	30	0,06028	0,00065	0,09806	0,00108	0,81493	0,0094	613,6	23,18	603	6,34	605,2	5,26
	31	0,06	0,00065	0,09846	0,00108	0,81454	0,00939	603,7	23,29	605,4	6,34	605	5,25
	32	0,05957	0,00066	0,09906	0,00111	0,81362	0,00972	587,9	24,02	608.9	6,51	604,5	5,44
	33	0,05995	0,00065	0,09822	0,00107	0,81175	0,00935	601, 6	23,45	604	6,29	603,4	5,24
	34	0,05962	0,00066	0,09873	0,00111	0,8116	0,00965	589,8	23,83	607	6,48	603,4	5,41
	35	0,05953	0,00066	0,09881	0,00111	0,8111	0,00965	586,7	23,87	607,5	6,49	603,1	5,41
	36	0,05996	0,00065	0,098	0,0011	0,8101	0,00957	602	23,45	602,7	6,47	602,5	5,37
	37	0.0597	0,00065	0,09836	0.00108	0,80961	0,00937	593,2	23.07	604.8	6,34	602.2	5.26

						GJ-1							
		Razão	Erro (1 0)	Razão	Erro (1 o)	Razão	Erro (1 o)	Idade	Erro (1 s)	Idade	Erro (1 σ)	Idade	Erro (1 0)
Seção analítica	N° do ponto	207 Pt	√ ²⁰⁶ Pb	²⁰⁶ P,	b/ ²³⁸ U	207 PI	b/ ²³⁵ U	207]	Pb/ ²⁰⁶ Pb	206 F	$b/^{238}U$	$^{207}\mathbf{P}$	b/ ²³⁵ U
	1	0,06021	0,00067	0,09981	0,0011	0,82858	0,00972	611,2	23,72	613,3	6,46	612,8	5,4
	2	0,06042	0,00067	0,09931	0,00109	0,82725	0,00967	618,5	23,7	610,4	6,41	612,1	5,37
	3	0,06052	0,00067	0,09911	0,00112	0,82697	0,00994	622,1	23,86	609,2	6,56	611,9	5,52
	4	0,06026	0,00067	0,09945	0,0011	0,82631	0,00968	613	23,67	611,2	6,44	611,6	5,38
	5	0,0603	0,00067	0,09932	0,00112	0,82574	0,00991	614,2	23,85	610,4	6,58	611,2	5,51
	9	0,06031	0,00069	0,09901	0,00107	0,8232	0,00967	614,7	24,39	608, 6	6,29	609,8	5,39
	7	0,06019	0,00068	0,09915	0,00116	0,82297	0,01021	610,6	24,1	609,5	6,78	609,7	5,69
	8	0,06037	0,00069	0,09882	0,00117	0,82259	0,0105	616,9	24,61	607,5	6,87	609,5	5,85
	6	0,06051	0,0007	0,09859	0,00119	0,82259	0,01072	622	24,83	606, 1	6,97	609,5	5,97
77104	10	0,0605	0,0008	0,09845	0,00125	0,82127	0,01207	621,4	28,26	605,3	7,36	608,8	6,73
nct //	11	0,06064	0,0008	0,09824	0,00127	0,82127	0,01216	626,3	28,27	604, 1	7,43	608,8	6,78
	12	0,05995	0,00066	0,09916	0,0011	0,81968	0,00969	601,8	23,81	609,5	6,47	607,9	5,41
	13	0,05936	0,00068	0,10007	0,00108	0,81894	0,00965	580,3	24,6	614,8	6,35	607,5	5,39
	14	0,06045	0,00067	0,09811	0,00109	0,81772	0,00966	619,8	23,75	603,3	6,4	606,8	5,4
	15	0,06002	0,00069	0,09849	0,00117	0,81511	0,01046	604,4	24,71	605,5	6,88	605,3	5,85
	16	0,05956	0,00069	0,09918	0,0012	0,81445	0,01064	587,5	25,02	609, 6	7,01	604,9	5,95
	17	0,0605	0,00068	0,09761	0,00113	0,81424	0,0101	621,5	24,2	600,4	6,65	604,8	5,65
	18	0,0598	0,00068	0,09863	0,00107	0,81314	0,00956	596,2	24,42	606,4	6,28	604,2	5,35
	19	0,06002	0,00074	0,09697	0,00118	0,80251	0,01089	604,3	26,28	596,6	6,95	598,2	6,14
	20	0,05869	0,00068	0,09852	0,00119	0,79721	0,0104	555,5	24,93	605,8	7,01	595,3	5,87
	1	0,05919	0,00083	0,10017	0,00105	0,81699	0,01095	574	30,26	615,4	6,16	606,4	6,12
	2	0,05944	0,00072	0,09905	0,00108	0,81147	0,00995	583,3	25,95	608,8	6,32	603,3	5,58
	ω	0,05948	0,00076	0,09826	0,00104	0,80578	0,01012	584,8	27,54	604,2	6,11	600, 1	5,69
	4	0,05968	0,00074	0,10092	0,00108	0,83012	0,01022	592	26,52	619,8	6,34	613,7	5,67
	5	0,05982	0,00077	0,10062	0,00107	0,82961	0,01052	597,1	27,78	618	6,24	613,4	5,84
6440a	9	0,05984	0,00071	0,09907	0,00109	0,81688	0,01	597,7	25,57	608,9	6,39	606,3	5,59
87440	7	0,06005	0,00074	0,09961	0,00106	0,82439	0,01011	605,2	26,48	612,1	6,23	610,5	5,63
	8	0,06017	0,00073	0,09949	0,00108	0,82508	0,01013	609,6	26,06	611,4	6,31	610,9	5,63
	9	0,06025	0,00075	0,09884	0,00105	0,8208	0,01014	612,6	26,81	607,6	6,17	608,5	5,66
	10	0,06033	0,00071	0,09825	0,00108	0,81675	0,00993	615,4	25,37	604, 1	6,31	606,2	5,55
	11	0,06033	0,00073	0,10084	0,00108	0,83846	0,01019	615,5	26,02	619,3	6,32	618,3	5,63
	12	0,06151	0,00074	0,09812	0,00107	0,83179	0,01014	657,2	25,45	603,4	6,27	614,6	5,62

						GJ-1							
		Razão	Erro (1 c)	Razão	Erro (1 c)	Razão	Erro (1 c)	Idade	Erro (1 0)	Idade	Erro (1 0)	Idade	Erro (1 0)
Seção analítica	N° do ponto	207 P	$\mathbf{b}^{206}\mathbf{Pb}$	206 P	$b^{238}U$	207 _F	$\mathrm{pb}^{235}\mathrm{U}$	207	Pb/ ²⁰⁶ Pb	206 J	0b/ ²³⁸ U	207	0b/ ²³⁵ U
	1	0,05883	0,0007	0,09962	0,00118	0,80837	0,0105	561	25,74	612,2	6,91	601,5	5,9
	2	0,05968	0,00071	0,0999	0,00118	0,82242	0,01065	591,9	25,65	613,8	6,89	609,4	5,93
7458	ŝ	0,06005	0,00077	0,09875	0,00121	0,81711	0,01143	605,3	27,35	607,1	7,12	606,4	6,39
	4	0,06036	0,0008	0,09878	0,00118	0,82144	0,01152	616,5	28,27	607,2	6,92	608,9	6,42
	5	0,0609	0,00073	0,09829	0,00116	0,82539	0,01075	635,5	25,57	604,4	6,82	611,1	5,98
		0,05985	0,00073	0,09806	0,00105	0,80924	0,00988	598,1	26,11	603,1	6,18	602	5,54
	2	0,06125	0,00078	0,09864	0,00104	0,83306	0,01038	648	27,23	606,4	6,08	615,3	5,75
	3	0,06051	0,00074	0,09895	0,00105	0,82568	0,01008	622	26,29	608,3	6,16	611,2	5,6
440777	4	0,06032	0,00071	0,09928	0,00109	0,82564	0,01004	615,2	25,33	610,2	6,4	611,2	5,58
14/200	5	0,0594	0,00076	0,09928	0,00104	0,81313	0,01017	581,9	27,56	610,2	6,12	604,2	5,69
	9	0,05953	0,00077	0,10009	0,00109	0,82153	0,01061	586,4	27,9	615	6,36	608,9	5,91
	7	0,06052	0,00074	0,1008	0,00106	0,84123	0,01024	622,2	26,31	619,1	6,24	619,8	5,65
	8	0,06038	0,00071	0,10117	0,00109	0,84235	0,01003	617,1	25,02	621,3	6,4	620,4	5,53
	-	0,05989	0,00074	0,0985	0,00105	0,81299	0,00991	599,7	26,43	605,6	6,17	604,1	5,55
	2	0,0601	0,00075	0,09852	0,00103	0,81606	0,00999	607,2	26,92	605,7	6,07	605,9	5,59
	ю	0,06066	0,00075	0,09851	0,00104	0,82378	0,01003	627,1	26,55	605,7	6,11	610,2	5,58
	4	0,06049	0,00076	0,09882	0,00105	0,8241	0,01013	621	26,78	607,5	6,15	610,3	5,64
	5	0,0601	0,00077	0,09902	0,00105	0,82053	0,0102	607,2	27,31	608,7	6,15	608,3	5,69
	9	0,06062	0,00075	0,09928	0,00105	0,82968	0,01009	625,9	26,51	610,2	6,16	613,4	5,6
	7	0,06007	0,00073	0,09935	0,00107	0,82242	0,00993	606	25,92	610,6	6,25	609,4	5,53
	8	0,06042	0,00075	0,09942	0,00106	0,82808	0,01016	618,5	26,73	611	6,2	612,5	5,65
7/73116	6	0,05927	0,00077	0,09949	0,00105	0,81301	0,01023	577	27,81	611,4	6,18	604, 1	5,73
	10	0,06026	0,00076	0,09957	0,00106	0,82709	0,0102	612,8	26,94	611,9	6,19	612	5,67
	11	0,05952	0,00075	0,09977	0,00106	0,81873	0,01011	586,3	27,15	613,1	6,2	607,3	5,65
	12	0,05909	0,00075	0,09991	0,00107	0,81423	0,01015	570,6	27,33	613,9	6,26	604,8	5,68
	13	0,05996	0,00074	0,10004	0,00106	0,82693	0,01004	602,2	26,52	614,7	6,2	611,9	5,58
	14	0,05862	0,00073	0,10008	0,00106	0,80863	0,00992	552,9	26,99	614,9	6,22	601,7	5,57
	15	0,05857	0,00081	0,10016	0,00103	0,80843	0,01056	551	29,73	615,3	6,06	601, 6	5,93
	16	0,05954	0,00074	0,10026	0,00107	0,82281	0,01009	586,8	26,79	615,9	6,24	609,6	5,62
	17	0,05992	0,00076	0,10034	0,00107	0,82915	0,01032	600,9	27,16	616,4	6,27	613,1	5,73
	18	0,05933	0,0008	0,1004	0,00104	0,82099	0,01062	579,4	29,08	616,7	6,12	608, 6	5,92

						GJ-1							
		Razão	Erro (1 0)	Razão	Erro (1 c)	Razão	Erro (1 c)	Idade	Erro (1 c)	Idade	Erro (1 c)	Idade	Erro (1 c)
Seção analítica	N° do ponto	$^{207}\mathbf{P}$	$\mathbf{b}^{206}\mathbf{Pb}$	²⁰⁶ P;	$b^{238}U$	$^{207}\mathrm{F}$	b/ ²³⁵ U	207 1	b/ ²⁰⁶ Pb	²⁰⁶ I	b/ ²³⁸ U	²⁰⁷ H	b/ ²³⁵ U
	1	0,06081	0,00073	0,09776	0,00113	0,81945	0,01034	632,4	25,59	601,3	6,64	607,7	5,77
	2	0,06006	0,00068	0,0978	0,00113	0,80959	0,00985	605,6	24,32	601,5	6,66	602,2	5,52
	c,	0,06023	0,00074	0,09789	0,00114	0,81271	0,01049	611,8	26,46	602	6,66	604	5,88
02050	4	0,06026	0,0007	0,09792	0,00113	0,81336	0,01	612,8	24,83	602,2	6,63	604,3	5,6
6061B	5	0,06029	0,00074	0,09806	0,00114	0,81496	0,01048	614,1	26,3	603	6,67	605,2	5,86
	9	0,05932	0,00069	0,09907	0,00114	0,81014	0,01003	578,9	25,17	609	6,71	602,5	5,63
	7	0,05949	0,00067	0,09932	0,00115	0,8144	0,00987	585,1	24,28	610,4	6,75	604,9	5,52
	8	0,05943	0,00069	0,09943	0,00115	0,81457	0,00999	582,9	24,87	611,1	6,72	605	5,59
		0,06028	0,00086	0,09763	0,00107	0,8113	0,01136	613,6	30,46	600,5	6,26	603,2	6,37
actd11	2	0,06046	0,00084	0,09827	0,00107	0,8191	0,01127	620,1	29,87	604,3	6,27	607,5	6,29
asuut	3	0,06058	0,00076	0,09915	0,00106	0,82799	0,01036	624,3	26,77	609,4	6,21	612,5	5,76
	4	0,05975	0,00076	0,09962	0,00106	0,82052	0,01037	594,3	27,37	612,2	6,24	608,3	5,79
	1	0,06029	0,00068	0,09722	0,001	0,80813	0,00903	614	24,29	598,1	5,86	601,4	5,07
	2	0,06016	0,00072	0,09758	0,00101	0,80937	0,0095	609,2	25,55	600,2	5,96	602,1	5,33
	ŝ	0,06007	0,00068	0,09802	0,001	0,81178	0,00904	606	24,29	602,8	5,88	603,5	5,06
	4	0,0603	0,00078	0,09803	0,00097	0,81501	0,00987	614,3	27,69	602,9	5,69	605,3	5,52
hw.d	5	0,06034	0,00067	0,09858	0,00101	0,82009	0,00899	615,7	23,67	606, 1	5,93	608,1	5,01
444	9	0,06042	0,00066	0,09893	0,00101	0,82416	0,00893	618,6	23,4	608, 2	5,93	610,4	4,97
	7	0,05956	0,00067	0,09934	0,00101	0,81574	0,00898	587,7	24,16	610,5	5,91	605,7	5,02
	8	0,06014	0,00066	0,10003	0,00101	0,82941	0,00901	608,7	23,67	614,6	5,95	613,3	5
	6	0,06002	0,00067	0,10029	0,00102	0,82992	0,0091	604,3	23,99	616,1	5,96	613,6	5,05
	10	0,06013	0,00071	0,10129	0,00106	0,83976	0,00985	608,4	25,4	622	6,2	619	5,44
	-	0,06058	0,0008	0,09781	0,0009	0,81676	0,0096	624,4	28,05	601,6	5,3	606,2	5,37
	2	0,0606	0,0007	0,09911	0,00086	0,82797	0,00833	625	24,86	609, 2	5,07	612,5	4,63
kv8	б	0,06129	0,00076	0,09955	0,00089	0,84089	0,00916	649,3	26,31	611,8	5,23	619,6	5,05
	4	0,05972	0,00079	0,09984	0,00093	0,82196	0,00984	593,6	28,3	613,5	5,46	609,1	5,48
	5	0,05982	0,00074	0,0999	0,000	0,82363	0,00899	597,1	26,56	613,8	5,25	610,1	5

						GJ-1							
		Razão	Erro (1 0)	Razão	Erro (1 0)	Razão	Erro (1 c)	Idade	Erro (1 c)	Idade	Erro (1 5)	Idade	Erro (1 c)
Seção analítica	N° do ponto	²⁰⁷ Pl	y ²⁰⁶ Pb	²⁰⁶ Pi	$b^{238}U$	$^{207}\mathrm{P}$	b/ ²³⁵ U	$^{207}\mathrm{F}$	b/ ²⁰⁶ Pb	²⁰⁶ F	b/ ²³⁸ U	207 _F	0, ²³⁵ U
	-	0,06069	0,00066	0,09883	0,00104	0,82697	0,00916	628,4	23,22	607,6	6,12	611,9	5,09
	2	0,06023	0,00066	0,09911	0,00104	0,82299	0,00917	611,8	23,59	609,2	6,09	609,7	5,11
	ŝ	0,0602	0,00067	0,09913	0,00102	0,82282	0,00918	610,8	24,03	609,3	6,01	609,6	5,11
SRY16	4	0,05976	0,00066	0,09973	0,00105	0,82159	0,00915	594,6	23,87	612,8	6,14	608,9	5,1
	5	0,05998	0,00067	0,09982	0,00106	0,82535	0,0094	602,9	23,94	613,3	6,21	611	5,23
	9	0,06071	0,0007	0,09991	0,00108	0,83607	0,00992	628,9	24,68	613,9	6,33	617	5,49
	7	0,05941	0,00069	0,09995	0,00108	0,81862	0,00983	582,2	25,16	614,1	6,35	607,3	5,49
		0,06044	0,00066	0,09812	0,00111	0,81763	0,0097	619,5	23,32	603,4	6,53	606,7	5,42
	2	0,06066	0,00069	0,09816	0,00113	0,82094	0,01022	627,2	24,48	603,6	6,64	608,6	5,7
	ŝ	0,0599	0,00075	0,09822	0,00117	0,81122	0,011	600,1	26,92	604	6,86	603,1	6,17
	4	0,06051	0,00073	0,09827	0,00115	0,8198	0,01066	621,8	25,71	604,2	6,74	607,9	5,95
	5	0,06037	0,00067	0,09856	0,00111	0,82036	0,0098	617	23,84	605,9	6,48	608,2	5,47
	9	0,0601	0,00067	0,09862	0,00111	0,8171	0,00988	607,1	24,07	606,3	6,53	606,4	5,52
	L	0,05975	0,00074	0,09869	0,00116	0,81302	0,01086	594,3	26,72	606,7	6,83	604,1	6,08
7728 - 57b	8	0,06025	0,00073	0,09883	0,00115	0,82102	0,01072	612,7	25,88	607,6	6,77	608,6	5,98
	6	0,06055	0,00074	0,09897	0,00116	0,82621	0,01086	623,2	26,03	608,4	6,8	611,5	6,04
	10	0,06	0,00069	0,09909	0,00113	0,81967	0,01011	603,5	24,6	609,1	6,61	607,9	5,64
	11	0,06051	0,00067	0,09911	0,00113	0,82681	0,00997	621,7	23,72	609,2	6,61	611,8	5,54
	15	0,06022	0,00075	0,09985	0,00119	0,82897	0,01117	611,5	26,56	613,5	6,99	613	6,2
	16	0,05987	0,00074	0,09984	0,00118	0,82427	0,01103	599	26,65	613,5	6,9	610,4	6,14
	17	0,05975	0,00066	0,09997	0,00112	0,82345	0,00982	594,3	24,01	614,2	6,56	610	5,47
	18	0,05997	0,00068	0,09999	0,00114	0,82667	0,01013	602,4	24,41	614,4	6,65	611,8	5,63

						GJ-1							
		Razão	Erro (1 o)	Razão	Erro (1 c)	Razão	Erro (1 c)	Idade	Erro (1 0)	Idade	Erro (1 o)	Idade	Erro (1 5)
Seção analítica	N° do ponto	$^{207}\mathrm{F}$	b/ ²⁰⁶ Pb	²⁰⁶ P	b/ ²³⁸ U	$^{207}\mathrm{P}$	b/ ²³⁵ U	207	206Pb	206 ₁	b/ ²³⁸ U	²⁰⁷ P	b/ ²³⁵ U
	-	0,06052	0,00071	0,09851	0,00114	0,82202	0,01048	622,2	25,24	605,7	6,69	609,2	5,84
	2	0,06025	0,00071	0,09916	0,00115	0,82379	0,01053	612,7	25,37	609,5	6,73	610,2	5,86
	33	0,06063	0,00077	0,0992	0,00117	0,82919	0,01125	626	27,1	609,7	6,88	613,2	6,25
	4	0,06016	0,00071	0,09925	0,00115	0,82319	0,01049	609,2	25,28	610	6,73	609,8	5,84
	5	0,05962	0,00071	0,09929	0,00115	0,81614	0,01051	589,6	25,63	610,3	6,77	605,9	5,88
	9	0,05989	0,00071	0,09939	0,00116	0,8208	0,01057	599,7	25,58	610,8	6,78	608,5	5,89
	L	0,05997	0,00075	0,09947	0,00117	0,82255	0,01108	602,7	26,96	611,3	6,88	609,5	6,17
	1	0,06079	0,00071	0,09751	0,00113	0,81731	0,01041	631,9	25,08	599,8	6,64	606,5	5,82
	2	0,05999	0,0007	0,09815	0,00114	0,8119	0,01033	603,3	25,16	603,6	6,68	603,5	5,79
	33	0,05975	0,00073	0,09833	0,00116	0,81011	0,01071	594,5	26,43	604,6	6,8	602,5	6,01
	4	0,05935	0,00075	0,09841	0,00118	0,80528	0,01099	579,9	27,19	605,1	6,91	599,8	6,18
	5	0,06025	0,00071	0,09867	0,00115	0,81964	0,01053	612,5	25,34	606,6	6,75	607,8	5,88
7730 576	9	0,0606	0,00076	0,09892	0,00118	0,82645	0,01123	624,9	26,86	608,1	6,93	611,6	6,24
BIC - DCII	L	0,06003	0,00075	0,09895	0,00118	0,81894	0,0111	604,7	26,9	608,2	6,92	607,5	6,2
	8	0,06011	0,00073	0,09952	0,00117	0,82483	0,01082	607,7	25,89	611,6	6,87	610,7	6,02
	6	0,0602	0,00071	0,09986	0,00116	0,82895	0,01066	610,8	25,38	613,6	6,82	613	5,92
	10	0,05979	0,0007	0,09996	0,00116	0,82415	0,0105	596,1	25,21	614,2	6,8	610,4	5,85
	11	0,06047	0,00071	0,09996	0,00116	0,83346	0,0106	620,5	25,08	614,2	6,79	615,5	5,87
	12	0,05957	0,00071	0,10023	0,00117	0,82317	0,01067	587,9	25,69	615,7	6,85	609,8	5,94

					GJ-1							
Razão		Erro (1 5)	Razão	Erro (1 5)	Razão	Erro (1 c)	Idade	Erro (1 5)	Idade	Erro (1 0)	Idade	Erro (1 0)
207 Pb/ ²	2	dd ⁹⁰	²⁰⁶ PI	o/ ²³⁸ U	$^{207}\mathrm{P}$	b/ ²³⁵ U	$^{207}\mathrm{P}$	b/ ²⁰⁶ Pb	²⁰⁶ F	b/ ²³⁸ U	207]	b/ ²³⁵ U
0,06076		0,00072	0,09685	0,0011	0,81125	0,01021	630,6	25,29	595,9	6,48	603,2	5,72
0,06006		0,00068	0,09777	0,00111	0,80958	0,00983	605,6	24,2	601,4	6,5	602,2	5,52
0,06008	-	0,00067	0,0978	0,0011	0,81006	0,00976	606,3	24,05	601,5	6,47	602,5	5,48
0,06029 (Ŭ	0,00068	0,09796	0,0011	0,8143	0,00987	614,1	24,26	602,4	6,48	604,9	5,53
0,05972 0	0	,00068	0,09814	0,00111	0,80812	0,00982	593,7	24,26	603,5	6,49	601, 4	5,51
0,06054 0,	0	00071	0,09844	0,00113	0,82165	0,01037	623,1	25,22	605,2	6,62	609	5,78
0,06021 0,	0,	00071	0,09854	0,00113	0,81798	0,01034	611,2	25,3	605,8	6,63	606,9	5,77
0,05926 0,	0	00067	0,09857	0,00111	0,80532	0,00984	576,6	24,53	606	6,53	599,8	5,53
0,06057 0,	0,0	00068	0,09867	0,00111	0,82397	0,00991	623,9	23,94	606,6	6,51	610,3	5,51
0,06056 0,	0,0	0007	0,09889	0,00112	0,82572	0,01018	623,7	24,64	607,9	6,58	611,2	5,66
0,06065 0,0	0,0	0068	0,09902	0,00112	0,82803	0,01004	627	24,1	608, 6	6,56	612,5	5,58
0,05991 0,0	0,0	69000	0,09911	0,00112	0,81872	0,01012	600,5	24,79	609,2	6,59	607,3	5,65
0,06008 0,0	0,0	6900	0,09923	0,00112	0,82206	0,01005	606,6	24,49	609,9	6,58	609,2	5,6
0,06073 0,0	0,0	0071	0,09924	0,00113	0,83091	0,01038	629,5	24,92	610	6,64	614,1	5,75
0,06019 0,0	0,0	0068	0,09935	0,00112	0,82456	0,01006	610,6	24,4	610,6	6,58	610,6	5,6
0,06109 0,0	0,0	0068	0,09942	0,00112	0,83733	0,01007	642,4	23,88	611	6,56	617,7	5,56
0,05983 0,	õ	00067	0,09943	0,00112	0,82023	0,0099	597,5	24,12	611,1	6,57	608, 2	5,52
0,06084 0,	0	,00068	0,09947	0,00112	0,83436	0,0101	633,5	24,05	611,3	6,59	616	5,59
0,06024 0	0	,00069	0,0995	0,00112	0,82639	0,0101	612,2	24,45	611,5	6,59	611,6	5,61
0,05952 0	0	,00067	0,09972	0,00112	0,81835	0,00984	586,3	24,09	612,8	6,58	607,1	5,5
0,06019 0	0	,00067	0,09978	0,00112	0,82797	0,00995	610,3	23,99	613,1	6,58	612,5	5,53
0,05986		0,0007	0,09986	0,00114	0,82419	0,01027	598,5	24,99	613,6	6,67	610,4	5,72
0,05983 (\cup),00067	0,0999	0,00112	0,82408	0,00992	597,4	24,1	613,8	6,59	610,3	5,52
0,06032 0	0	,00069	0,10004	0,00114	0,83206	0,01026	615,2	24,67	614,7	6,65	614,8	5,69
0,05927 0,	0	,00069	0,10009	0,00114	0,81793	0,01022	577,1	25,13	614,9	6,69	606,9	5,71

	Erro (1 o)	9b/ ²³⁵ U	5,94	5,92	5,94	5,94	6,36	5,92	6,19	6,17	6,17	5,95	5,99	5,7	5,67	5,84	5,83	5,72	5,83	5,64	5,6	5,81	5,69	5,68	6,07	6,05	6,14	5,67
	Idade	207 _I	604	608	609,3	608,7	606,9	608,1	610,4	611,6	611,3	611,1	617,7	604	600,5	602,6	608	608,6	607,4	609,2	611,8	605,8	610,4	609	613,3	613,9	623,7	619,8
	Erro (1 0)	o/ ²³⁸ U	7,06	7,13	7,14	7,15	7,31	7,2	7,19	7,19	7,2	7,21	7,24	6,59	6,61	6,75	6,72	6,65	6,75	6,62	6,65	6,79	6,66	6,71	6,94	6,99	L	6,79
	Idade	²⁰⁶ PI	601,6	607,9	608,5	608,6	608,7	610,4	610,6	611,4	612,3	614,6	617,1	600,9	602,1	604,3	604,8	606,3	606,7	607,5	608,4	611,3	611,6	612,3	614,4	615,2	618,4	622,2
	Erro (1 o)	/ ²⁰⁶ Pb	24,21	23,91	23,99	23,98	26,25	23,77	25,49	25,36	25,4	24,01	23,87	24,83	24,98	25,4	25,11	24,75	25,13	24,32	23,91	25,26	24,71	24,53	25,99	25,63	25,78	24,02
	Idade	$^{207}\mathrm{Pb}$	612,8	608,4	612,2	609	600,1	599,5	609,4	612,4	607,6	598,4	619,7	615,6	594,3	596,2	619,6	617,3	610	615,6	624,4	585,3	605,9	596,9	609,4	608,8	642,6	611,2
	Erro (1 σ)	/ ²³⁵ U	0,01061	0,01061	0,01067	0,01065	0,01139	0,01062	0,01112	0,01111	0,0111	0,0107	0,01085	0,01018	0,01009	0,01042	0,01044	0,01026	0,01044	0,01011	0,01008	0,0104	0,01023	0,0102	0,01094	0,01091	0,01118	0,01028
GJ-1	Razão	²⁰⁷ Pt	0,81274	0,81989	0,82229	0,82118	0,81795	0,82011	0,82415	0,82643	0,82582	0,8255	0,83736	0,81284	0,80652	0,81029	0,81988	0,82107	0,8189	0,82209	0,82667	0,81598	0,82419	0,82172	0,82944	0,83047	0,84822	0,84117
	Erro (1 o)	/ ²³⁸ U	0,0012	0,00122	0,00122	0,00122	0,00125	0,00123	0,00123	0,00123	0,00123	0,00123	0,00124	0,00112	0,00113	0,00115	0,00114	0,00113	0,00115	0,00113	0,00113	0,00116	0,00114	0,00114	0,00118	0,00119	0,00119	0,00116
	Razão	$^{206}\mathrm{Pb}$	0,09782	0,09889	0,099	0,09901	0,09903	0,09932	0,09936	0,09949	0,09964	0,10003	0,10047	0,0977	0,0979	0,09827	0,09837	0,09862	0,09868	0,09883	0,09897	0,09946	0,09952	0,09964	0,09999	0,10014	0,10069	0,10133
	Erro (1 o)	206 Pb	0,00068	0,00067	0,00067	0,00067	0,00073	0,00066	0,00072	0,00071	0,00071	0,00067	0,00067	0,0007	0,00069	0,00071	0,00071	0,0007	0,00071	0,00068	0,00068	0,0007	0,00069	0,00068	0,00073	0,00072	0,00074	0,00067
	Razão	²⁰⁷ Pb/	0,06026	0,06013	0,06024	0,06015	0,0599	0,05989	0,06016	0,06025	0,06011	0,05986	0,06045	0,06033	0,05975	0,0598	0,06045	0,06038	0,06018	0,06033	0,06058	0,0595	0,06006	0,05981	0,06016	0,06014	0,0611	0,06021
		N° do ponto	1	2	ŝ	4	5	9	L	8	6	10	11	1	2	ŝ	4	5	9	L	8	6	10	11	12	13	14	15
		Seção analítica						7732 - 63													7733 - 57a							

						GJ-1							
		Razão	Erro (1 σ)	Razão	Erro (1 σ)	Razão	Erro (1 σ)	Idade	Erro (1 σ)	Idade	Erro (1 5)	Idade	Erro (1 σ)
Se ção analítica	N° do ponto	$^{207}\mathrm{Pb}$	y ²⁰⁶ Pb	²⁰⁶ P,	$b^{238}U$	207 P	$b^{235}U$	207]	Pb/ ²⁰⁶ Pb	206]	$2b^{238}U$	207]	∋b/ ²³⁵ U
	1	0,06009	0,00067	0,09805	0,00101	0,81232	0,00901	606,7	23,86	603	5,93	603,8	5,05
	2	0,0604	0,00067	0,09814	0,00101	0,81737	0,00906	618,1	23,83	603,5	5,93	606,6	5,06
	ю	0,06005	0,00068	0,09816	0,00104	0,81272	0,00938	605,4	24,33	603,6	6,12	604	5,25
	4	0,05982	0,00067	0,0983	0,00102	0,81081	0,0091	597,2	24,09	604,4	5,99	602,9	5,1
	5	0,06029	0,00068	0,09841	0,00105	0,81807	0,00941	614	24,1	605,1	6,15	607	5,26
	9	0,05974	0,00067	0,09847	0,00101	0,81116	0,00901	594,2	24,07	605,4	5,95	603,1	5,05
	7	0,06059	0,00068	0,09846	0,00102	0,82257	0,00925	624,8	23,97	605,4	6,01	609,5	5,15
	8	0,06044	0,00069	0,09846	0,00106	0,82045	0,00965	619,3	24,4	605,4	6,25	608,3	5,38
	6	0,06	0,00067	0,09863	0,00102	0,81594	0,00915	603,4	24,02	606,4	6,01	605,8	5,12
	10	0,05949	0,00069	0,09877	0,00105	0,8101	0,00952	585	24,85	607,2	6,19	602,5	5,34
	11	0,06062	0,00067	0,09886	0,00101	0,82625	0,00913	625,6	23,78	607,7	5,95	611,5	5,07
	12	0,06059	0,00067	0,09894	0,00101	0,82656	0,00911	624,7	23,73	608, 2	5,95	611,7	5,06
293 1911	13	0,06037	0,00069	0,09904	0,00107	0,8244	0,00969	616,9	24,39	608,8	6,28	610,5	5,39
800-1011	14	0,06072	0,00069	0,09905	0,00106	0,82933	0,00964	629,5	24,21	608,9	6,23	613,2	5,35
	15	0,05976	0,00067	0,09914	0,00103	0,81695	0,00919	594,7	24,43	609,4	6,05	606,3	5,14
	16	0,06057	0,00067	0,09917	0,00101	0,82829	0,00912	624	23,73	609,6	5,95	612,7	5,06
	17	0,06039	0,00069	0,09917	0,00106	0,82572	0,00964	617,5	24,61	609,6	6,19	611,2	5,36
	18	0,06007	0,00067	0,09925	0,00103	0,822	0,00917	605,9	23,97	610	6,02	609,2	5,11
	19	0,05989	0,00068	0,09927	0,00104	0,8198	0,00937	599,7	24,3	610,2	6,12	607,9	5,23
	20	0,06005	0,00069	0,0993	0,00107	0,82216	0,00968	605,4	24,52	610,3	6,29	609,3	5,4
	21	0,06043	0,00067	0,09946	0,00102	0,82873	0,00916	619	23,82	611,2	5,98	612,9	5,09
	22	0,05937	0,00067	0,09955	0,00104	0,81496	0,00921	580,8	24,23	611,8	6,08	605,2	5,15
	23	0,05979	0,00067	0,09959	0,00104	0,82105	0,00933	596,1	24,24	612	6,11	608, 6	5,2
	24	0,05962	0,00067	0,09964	0,00104	0,81906	0,00931	589,7	24,29	612,3	6,11	607,5	5,2
	25	0,05989	0,00066	0,09965	0,00102	0,82294	0,00908	599,6	23,83	612,4	5,99	609,7	5,06
	26	0,06021	0,00068	0,09983	0,00105	0,82883	0,00943	611,3	24,19	613,4	6,13	613	5,23
	1	0,0614	0,00068	0,09951	0,0011	0,8425	0,00995	653,3	23,74	611,6	6,45	620,5	5,48
	2	0,06043	0,00069	0,09977	0,00111	0,83132	0,01	619	24,36	613,1	6,5	614,3	5,54
	ю	0,0604	0,00069	0,09936	0,0011	0,8274	0,00994	617,8	24,36	610,6	6,48	612,2	5,52
	4	0,05997	0,00067	0,10002	0,0011	0,82712	0,00971	602,6	23,84	614,5	6,46	612	5,4
	5	0,06016	0,00066	0,09938	0,00111	0,82445	0,00974	609,5	23,7	610,8	6,5	610,5	5,42
SE101-63a	9	0,06022	0,00066	0,09883	0,00109	0,82065	0,0096	611,6	23,68	607,6	6,39	608, 4	5,35
	7	0,06036	0,00069	0,09849	0,0011	0,81962	0,00988	616,4	24,43	605,5	6,43	607,8	5,51
	8	0,06012	0,00066	0,09877	0,00109	0,81876	0,00957	607,9	23,67	607,2	6,39	607,4	5,35
	6	0,05991	0,00071	0,09854	0,0011	0,81396	0,0101	600,3	25,36	605,8	6,48	604,7	5,66
	10	0,05973	0,00066	0,09881	0,00109	0,8137	0,00952	593,8	23,63	607,4	6,39	604,5	5,33
	11	0,05953	0,00065	0,09833	0,00109	0,80715	0,00943	586,6	23,5	604,6	6,42	600,9	5,3

						GJ-1							
		Razão	Erro (1 σ)	Razão	Erro (1 σ)	Razão	Erro (1 σ)	Idade	Erro (1 σ)	Idade	Erro (1 σ)	Idade	Erro (1 σ)
Seção analítica	N° do ponto	²⁰⁷ PI	$\lambda^{206} Pb$	²⁰⁶ P	$b^{238}U$	²⁰⁷ P	b/ ²³⁵ U	207 F	^{206}Pb	²⁰⁶ P.	$b^{238}U$	$^{207}\mathrm{P}$	$b^{235}U$
	1	0,06008	0,00068	0,10005	0,0011	0,82885	0,00982	606,5	24,34	614,7	6,43	613	5,45
	2	0,06061	0,00072	0,09914	0,00112	0,82852	0,0104	625,3	25,54	609, 4	6,54	612,8	5,77
	ю	0,06012	0,00068	0,0999	0,00109	0,82816	0,00983	608	24,42	613,8	6,42	612,6	5,46
	4	0,05959	0,00072	0,10076	0,00114	0,82789	0,01048	588,6	25,89	618,9	6,66	612,4	5,82
	5	0,06029	0,00072	0,09958	0,00112	0,8278	0,0104	614	25,61	611,9	6,57	612,4	5,78
	9	0,06021	0,00071	0,09965	0,00108	0,82736	0,01	611,2	25,35	612,4	6,33	612,1	5,56
	7	0,06067	0,00069	0,09881	0,00108	0,82658	0,00982	627,6	24,37	607,4	6,35	611,7	5,46
	8	0,06039	0,00072	0,09921	0,00111	0,82607	0,01027	617,6	25,38	609,8	6,52	611,4	5,71
	6	0,05985	0,0007	0,0999	0,00111	0,82443	0,01003	598,2	25	613,8	6,48	610,5	5,58
7711d-7708	10	0,06067	0,00069	0,0984	0,00108	0,82319	0,00975	627,7	24,22	605	6,34	609,8	5,43
	11	0,06026	0,00069	0,09901	0,00109	0,82259	0,00978	612,8	24,44	608, 6	6,37	609,5	5,45
	12	0,06031	0,00073	0,09891	0,00112	0,82256	0,0105	614,7	25,94	608	6,59	609,5	5,85
	13	0,05991	0,00069	0,09943	0,0011	0,82136	0,00992	600,3	24,85	611,1	6,43	608,8	5,53
	14	0,06037	0,00073	0,09864	0,00112	0,82104	0,01048	616,8	25,95	606,4	6,57	608, 6	5,84
	15	0,06013	0,0007	0,099	0,0011	0,82073	0,01002	608,1	25,11	608,5	6,43	608,5	5,59
	16	0,06004	0,00071	0,09913	0,00111	0,82066	0,01015	605	25,32	609,3	6,49	608, 4	5,66
	17	0,06024	0,00069	0,0987	0,00108	0,81981	0,0098	612,2	24,61	606,8	6,35	607,9	5,47
	18	0,06024	0,00072	0,09845	0,00111	0,81772	0,01033	612,2	25,71	605,3	6,53	606,8	5,77
	19	0,05966	0,00069	0,09888	0,00108	0,81331	0,00969	591,1	24,72	607,8	6,33	604,3	5,43
	1	0,06038	0,00075	0,09997	0,00139	0,8322	0,01251	617,2	26,57	614,2	8,15	614,8	6,93
	2	0,06033	0,0007	0,09986	0,00138	0,83068	0,01206	615,6	24,97	613,6	8,08	614	6,69
	ю	0,05975	0,00069	0,09985	0,00138	0,82252	0,01186	594,5	24,92	613,5	8,11	609,5	6,61
	4	0,06021	0,0007	0,09958	0,00137	0,82662	0,01203	611,1	25,1	611,9	8,05	611,7	6,69
	5	0,05982	0,00073	0,09957	0,00136	0,82116	0,01209	597,1	26,2	611,9	7,99	608,7	6,74
	9	0,05991	0,00072	0,09951	0,00137	0,82198	0,01205	600,5	25,66	611,6	8,04	609,2	6,71
	7	0,06026	0,00073	0,0995	0,00137	0,82656	0,01217	612,8	25,85	611,5	8,02	611,7	6,76
	8	0,05965	0,0008	0,09948	0,00143	0,81807	0,013	590,8	28,67	611,4	8,37	607	7,26
	6	0,06052	0,00071	0,09947	0,00137	0,82983	0,01206	622	25,14	611,3	8,03	613,5	6,69
77664000	10	0,05977	0,00072	0,09946	0,00137	0,81961	0,01205	594,9	26,39	611,2	8,01	607,8	6,72
	11	0,05948	0,00069	0,09939	0,00137	0,81504	0,0118	584,7	25	610,8	8,05	605,3	6,6
	12	0,06044	0,00072	0,09901	0,00136	0,82502	0,01205	619,5	25,63	608, 6	7,96	610,8	6,7
	13	0,06019	0,00073	0,09897	0,00136	0,82121	0,01211	610,2	26,01	608,4	7,98	608,7	6,75
	14	0,05995	0,00072	0,09896	0,00136	0,81793	0,012	601,8	25,85	608,3	7,97	606,9	6,71
	15	0,05983	0,00072	0,09893	0,00136	0,81603	0,01198	597,5	25,77	608, 1	7,99	605,8	6,7
	16	0,06065	0,00072	0,09887	0,00136	0,82676	0,01207	627	25,39	607,8	7,97	611,8	6,71
	17	0,06031	0,0007	0,09872	0,00136	0,82094	0,01187	614,9	24,83	606,9	8	608, 6	6,62
	18	0,06006	0,00071	0,09854	0,00136	0,81598	0,01196	605,8	25,48	605,8	7,98	605,8	6,69
	19	0,05993	0,00072	0,09845	0,00136	0,81346	0,01192	601,1	25,63	605,3	7,97	604,4	6,67
	20	0,06032	0,00073	0,09811	0,00135	0.81593	0.01202	615,2	25,86	603.3	7.94	605.8	6,72

ANEXO II - DADOS ANALÍTICOS DO PADRÃO DE ZIRCÃO PLEŠOVICE

						Plešovice							
		Razão	Erro (1 0)	Razão	Erro (1 σ)	Razão	Erro (1 o)	Idade	Erro (1 σ)	Idade	Erro (1 o)	Idade	Erro (1 σ)
Seção analítica	N° do ponto	²⁰⁷ Pt	0 ^{/206} Pb	206 PI	b/ ²³⁸ U	$^{207}\mathbf{P}$	b/ ²³⁵ U	207 _H	ъ/ ²⁰⁶ РЪ	$^{206}\mathrm{P}$	$b^{238}U$	$^{207}\mathrm{P}$	b/ ²³⁵ U
	-	0,05417	0,00073	0,05399	0,00073	0,40317	0,00634	378	30	339	4	344	5
	7	0,05427	0,00085	0,05381	0,0007	0,40274	0,0067	382	35	338	4	344	S
	ω	0,05409	0,00072	0,05399	0,00071	0,40251	0,00611	375	30	339	4	344	4
	4	0,05356	0,00074	0,05443	0,00075	0,40178	0,00646	352	31	342	S	343	5
	S	0,05371	0,00083	0,0542	0,00072	0,4013	0,0067	359	35	340	4	343	5
	9	0,05394	0,00078	0,05396	0,00078	0,40113	0,00685	368	32	339	S	343	S
	7	0,05382	0,00083	0,05401	0,00073	0,40065	0,00676	363	35	339	4	342	S
	8	0,05423	0,00065	0,05355	0,00073	0,40033	0,00588	380	27	336	4	342	4
	6	0,05391	0,000	0,05386	0,00083	0,39991	0,00768	367	37	338	S	342	9
	10	0,05468	0,00068	0,05299	0,00074	0,3993	0,00617	399	28	333	5	341	4
alono/1	11	0,05346	0,00063	0,05418	0,00073	0,39929	0,00582	348	27	340	4	341	4
Claula41	12	0,05354	0,00067	0,05402	0,00073	0,3987	0,00596	352	28	339	4	341	4
	13	0,05327	0,00074	0,05415	0,00074	0,39763	0,00635	340	31	340	5	340	5
	14	0,05407	0,0007	0,05333	0,00074	0,39746	0,00623	374	29	335	5	340	5
	15	0,05348	0,00098	0,054	0,00083	0,39693	0,00808	349	41	339	5	339	9
	16	0,05269	0,00065	0,05457	0,00074	0,39638	0,0059	315	28	343	5	339	4
	17	0,05324	0,00088	0,054	0,00079	0,39608	0,00734	339	37	339	5	339	5
	18	0,05388	0,00067	0,05333	0,00072	0,39606	0,0059	366	28	335	4	339	4
	19	0,05312	0,00088	0,05409	0,00075	0,39587	0,00709	334	37	340	5	339	5
	20	0,05292	0,00079	0,05426	0,00074	0,39567	0,00655	325	33	341	5	339	5
	21	0,05358	0,00069	0,05355	0,00073	0,39555	0,00606	354	29	336	4	338	4
	22	0,05392	0,00066	0,05309	0,00073	0,39458	0,00596	368	27	334	4	338	4
	1	0,05355	0,00062	0,05426	0,00056	0,40057	0,0052	352	26	341	б	342	4
	7	0,05437	0,00059	0,05431	0,00055	0,4069	0,00506	386	24	341	ю	347	4
	ю	0,05398	0,00058	0,05448	0,00056	0,40542	0,00502	370	24	342	ю	346	4
	4	0,05369	0,00081	0,05463	0,00056	0,40421	0,00624	358	34	343	3	345	5
	5	0,05397	0,00067	0,0548	0,00058	0,4079	0,00566	370	28	344	4	347	4
Clana40	9	0,05413	0,0006	0,05485	0,00055	0,40927	0,00508	376	25	344	ю	348	4
	7	0,05335	0,00055	0,05499	0,00054	0,4044	0,00471	344	23	345	ю	345	ю
	8	0,05362	0,00064	0,055	0,00055	0,40645	0,00531	355	27	345	ω	346	4
	9	0,05388	0,0006	0,05499	0,00053	0,4085	0,005	366	25	345	ю	348	4
	10	0,05279	0,00052	0,05505	0,00055	0,40026	0,00464	320	22	345	б	342	ŝ
	11	0.05313	0.00064	0.05504	0.00055	0.40322	0.00527	334	27	345	ŝ	344	4

						Plešovice							
		Razão	Erro (1 σ)	Razão	Erro (1 σ)	Razão	Erro (1 σ)	Idade	Erro (1 σ)	Idade	Erro (1 0)	Idade	Erro (1 σ)
Seção analítica	N° do ponto	²⁰⁷ P	b/ ²⁰⁶ Pb	²⁰⁶ P	b/ ²³⁸ U	207 PI	b/ ²³⁵ U	207 PI	b/ ²⁰⁶ Pb	$^{206}\mathrm{P}$	b^{238} U	$^{207}\mathrm{P}$	$b^{235}U$
	-	0,05413	0,00083	0,05358	0,00062	0,3999	0,00611	376	34	337	4	342	4
	2	0,05422	0,00085	0,05331	0,00062	0,39857	0,00623	380	35	335	4	341	5
	3	0,05297	0,00082	0,05449	0,00063	0,39795	0,00612	327	35	342	4	340	4
	4	0,05332	0,00086	0,05408	0,00061	0,39754	0,00628	342	36	340	4	340	5
	5	0,05322	0,00088	0,05407	0,00063	0,39667	0,0065	338	37	339	4	339	5
	9	0,05274	0,00104	0,05436	0,00063	0,39517	0,00748	318	44	341	4	338	5
	7	0,05263	0,00094	0,05445	0,00065	0,39508	0,00696	313	40	342	4	338	5
	8	0,05317	0,00088	0,05388	0,00061	0,39495	0,00641	336	37	338	4	338	5
	6	0,05345	0,001	0,05358	0,00061	0,39483	0,00706	348	42	337	4	338	5
clana51 30um	10	0,05315	0,0008	0,05388	0,00063	0,39482	0,006	335	34	338	4	338	4
	11	0,05309	0,0008	0,0539	0,00063	0,39452	0,006	333	34	338	4	338	4
	12	0,05301	0,0008	0,05377	0,00062	0,393	0,00595	329	34	338	4	337	4
	13	0,05321	0,00082	0,05356	0,0006	0,39293	0,00597	338	34	336	4	337	4
	14	0,05102	0,00079	0,05576	0,00063	0,3922	0,00602	242	35	350	4	336	4
	15	0,05223	0,0008	0,05441	0,00062	0,39185	0,00601	296	35	342	4	336	4
	16	0,05194	0,00092	0,05472	0,00068	0,39175	0,007	283	40	343	4	336	5
	17	0,05203	0,00076	0,0545	0,00064	0,391	0,00582	287	33	342	4	335	4
	18	0,05286	0,00076	0,05352	0,00063	0,39003	0,00576	323	32	336	4	334	4
	19	0,05228	0,00078	0,0541	0,00062	0,38993	0,00586	298	34	340	4	334	4
	-	0,05268	0,00089	0,05418	0,00071	0,39351	0,007	315	38	340	4	337	S
dlowo1	2	0,05344	0,00087	0,0533	0,00071	0,39274	0,00677	347	36	335	4	336	5
T I I I I I I I I I I I I I I I I I I I	33	0,05332	0,00086	0,05333	0,00069	0,39202	0,00663	342	36	335	4	336	5
	4	0,05299	0,0008	0,05344	0,00071	0,39047	0,00644	328	34	336	4	335	5
	-	0,05375	0,00075	0,05505	0,00067	0,40776	0,00607	360	31	346	4	347	4
	2	0,05386	0,00087	0,05478	0,00068	0,40661	0,00678	365	36	344	4	346	5
	33	0,05412	0,0008	0,05443	0,00065	0,40589	0,00624	376	33	342	4	346	5
dlana51	4	0,05415	0,00082	0,05435	0,00064	0,4056	0,00625	377	34	341	4	346	5
	5	0,05262	0,0007	0,05561	0,0007	0,40335	0,00595	312	30	349	4	344	4
	9	0,05228	0,00085	0,05597	0,00067	0,40304	0,00659	298	36	351	4	344	5
	7	0,0521	0,00072	0.05612	0,00067	0.403	0.00583	290	31	352	4	344	4

						Plešovice							
		Razão	Erro (1 o)	Razão	Erro (1 o)	Razão	Erro (1 o)	Idade	Erro (1 s)	Idade	Erro (1 c)	Idade	Erro (1 5)
Seção analítica	N° do ponto	²⁰⁷ P	b/ ²⁰⁶ Pb	²⁰⁶ PI	b/ ²³⁸ U	$^{207}\mathrm{P}$	b/ ²³⁵ U	$^{207}\mathrm{P}$	b/ ²⁰⁶ Pb	206]	9b/ ²³⁸ U	207 <mark>1</mark>	b/ ²³⁵ U
	1	0,05509	0,00119	0,05287	0,00068	0,40177	0,00835	416	47	332	4	343	9
	2	0,05377	0,00096	0,05424	0,00065	0,40175	0,00694	361	40	341	4	343	5
	3	0,0545	0,00095	0,05338	0,00067	0,40117	0,00693	392	38	335	4	343	5
	4	0,05407	0,00081	0,05375	0,00068	0,40089	0,00635	374	33	338	4	342	5
	5	0,05353	0,00097	0,05414	0,00069	0,39969	0,00735	351	40	340	4	341	5
dlana41	9	0,05317	0,00088	0,05447	0,00073	0,3995	0,007	336	37	342	4	341	5
	L	0,05335	0,00088	0,05423	0,00068	0,3991	0,00675	344	37	340	4	341	5
	8	0,05419	0,00085	0,05326	0,00065	0,39804	0,00636	379	35	335	4	340	5
	6	0,05304	0,00096	0,05433	0,00068	0,39745	0,00716	331	40	341	4	340	5
	10	0,05331	0,00088	0,05394	0,00066	0,39636	0,00649	342	37	339	4	339	5
	11	0,0534	0,00088	0,05364	0,00069	0,39511	0,00674	346	37	337	4	338	5
7477bh Eamaria	1	0,05409	0,00067	0,0535	0,0006	0,39891	0,00513	374,6	27,8	336	3,7	340,9	3,73
747200 FEILUVIA	2	0,05345	0,00064	0,05375	0,00056	0,39617	0,00467	348,1	26,77	337,5	3,41	338,9	3,4
Dacau	3	0,05338	0,00064	0,05338	0,00058	0,3928	0,00483	345	26,92	335,2	3,56	336,4	3,52
	1	0,05256	0,0006	0,05375	0,00058	0,38949	0,00456	309,9	25,79	337,5	3,53	334	3,33
	2	0,05297	0,00063	0,05405	0,00057	0,39473	0,00467	327,6	26,66	339,3	3,47	337,8	3,4
	\mathfrak{S}	0,05303	0,00064	0,05401	0,00056	0,39475	0,00469	330,1	26,89	339,1	3,45	337,8	3,41
andronimento operation	4	0,05306	0,00061	0,05428	0,00059	0,39688	0,00475	331,2	25,96	340,8	3,62	339,4	3,45
caciloeii auocalilai go 1	5	0,05309	0,00059	0,05394	0,00058	0,39476	0,00455	332,8	24,92	338,7	3,57	337,8	3,32
I	9	0,05352	0,00064	0,05421	0,00058	0,39987	0,00487	350,7	26,93	340,3	3,55	341,6	3,53
	L	0,05359	0,00065	0,05371	0,00058	0,39679	0,00485	353,7	27,12	337,3	3,52	339,3	3,53
	8	0,05396	0,00064	0,05388	0,00058	0,40068	0,00485	369,1	26,75	338,3	3,55	342,1	3,52
	6	0,05412	0,00063	0,05413	0,00061	0,40386	0,00496	375,8	26,12	339,9	3,74	344,4	3,59

		:	:	;	:	Plešovice	:		:		:		:
		Razão	Erro (1 0)	Razão	Erro (1 0)	Razão	Erro (1 σ)	Idade	Erro (1 0)	Idade	Erro (1 0)	Idade	Erro (1 0)
Seção analítica	N° do ponto	$^{207}\mathrm{Pb}$	/ ²⁰⁶ Pb	²⁰⁶ P	$b^{238}U$	207 P	b/ ²³⁵ U	$^{207}\mathrm{P}$	b/ ²⁰⁶ Pb	206]	Pb/ ²³⁸ U	²⁰⁷ F	$b/^{235}U$
	-	0,05281	0,0006	0,05389	0,00063	0,39235	0,00489	320,6	25,39	338,3	3,85	336,1	3,57
	2	0,05293	0,00061	0,05428	0,00064	0,39596	0,00506	325,9	25,9	340,7	3,94	338,7	3,68
	3	0,05304	0,00063	0,05415	0,00061	0,39587	0,00497	330,3	26,56	340	3,76	338,6	3,62
cachoeiradocamargo	4	0,05307	0,00063	0,0541	0,00062	0,39577	0,00498	331,6	26,44	339,6	3,77	338,6	3,62
7	5	0,05322	0,00059	0,054	0,00064	0,39608	0,0049	338	24,69	339	3,89	338,8	3,56
	9	0,05343	0,00064	0,05416	0,00063	0,3989	0,00516	347	26,84	340	3,85	340,8	3,75
	7	0,05375	0,00065	0,05373	0,00062	0,39811	0,00516	360,6	27,07	337,4	3,82	340,3	3,75
	8	0,05389	0,00064	0,05384	0,00063	0,3999	0,00515	366,2	26,64	338,1	3,85	341,6	3,74
	1	0,05383	0,00077	0,05404	0,00058	0,40092	0,00557	363,7	32,05	339,3	3,54	342,3	4,03
anica7150Cao	2	0,05343	0,00061	0,05415	0,00056	0,39889	0,00453	347,2	25,35	339,9	3,45	340,8	3,29
Concolo Boood	3	0,05362	0,00063	0,0538	0,00055	0,39764	0,00456	355	26,09	337,8	3,38	339,9	3,31
GOISAIO DACAO	4	0,05326	0,00061	0,05393	0,00056	0,39601	0,00452	339,7	25,68	338,6	3,42	338,8	3,29
	5	0,05239	0,00058	0,05467	0,00057	0,39493	0,00443	302,7	25,2	343,2	3,49	338	3,23
		0,05268	0,00059	0,05477	0,00064	0,39795	0,0049	315,2	25,19	343,8	3,88	340,2	3,56
	2	0,05351	0,0006	0,0542	0,00062	0,39992	0,00488	350,6	25,22	340,2	3,78	341,6	3,54
Son Concele hereo	3	0,05368	0,00061	0,05377	0,00061	0,39801	0,00487	357,5	25,37	337,6	3,74	340,2	3,53
Day Guildary Daray	4	0,0537	0,00065	0,05344	0,00064	0,39534	0,00527	358,2	27,14	335,6	3,92	338,3	3,83
	5	0,05392	0,00064	0,05406	0,00065	0,40143	0,00533	367,5	26,83	339,4	4	342,7	3,87
	9	0,05408	0,00065	0,05394	0,00066	0,40201	0,00538	374,4	26,95	338,7	4,01	343,1	3,9
	1	0,05369	0,00069	0,05388	0,00055	0,39879	0,00494	357,9	28,87	338,3	3,34	340,8	3,58
	2	0,05362	0,00064	0,05381	0,00059	0,3978	0,00486	355,1	26,62	337,9	3,59	340	3,53
	3	0,05368	0,00081	0,05342	0,00055	0,39486	0,00563	357,7	33,92	335,5	3,39	337,9	4,1
	4	0,05366	0,00075	0,05333	0,00055	0,39461	0,0053	356,9	31,38	334,9	3,37	337,7	3,86
hord - zince o	5	0,0533	0,00061	0,05347	0,00057	0,39298	0,00463	341,6	25,78	335,8	3,5	336,5	3,37
DALJ - ZILVAU	9	0,05283	0,00063	0,05367	0,00056	0,39088	0,00462	321,4	26,65	337	3,43	335	3,37
	7	0,05231	0,00065	0,05434	0,00061	0,39188	0,00509	298,9	28,17	341,1	3,75	335,7	3,71
	8	0,05287	0,00073	0,05462	0,00062	0,39811	0,00557	323,2	30,84	342,8	3,79	340,3	4,05
	6	0,05325	0,00075	0,05387	0,00061	0,3954	0,00563	339,2	31,44	338,2	3,75	338,3	4,1
	10	0,05405	0,00069	0,05312	0,00062	0,39585	0,00529	373,2	28,52	333,6	3,77	338,6	3,85

						Plešovice							
		Razão	Erro (1 0)	Razão	Erro (1 0)	Razão	Erro (1 0)	Idade	Erro (1 0)	Idade	Erro (1 0)	Idade	Erro (1 0)
Seção analítica	N° do ponto	207 Pt	y∕ ²⁰⁶ Pb	206P	b/ ²³⁸ U	²⁰⁷ P	b/ ²³⁵ U	207]	$Pb/^{206}Pb$	206]	Pb/ ²³⁸ U	207]	b/ ²³⁵ U
	1	0,05331	0,00072	0,05373	0,00041	0,39484	0,00443	341,8	30,24	337,4	2,5	337,9	3,22
	2	0,05345	0,00073	0,05386	0,00039	0,39682	0,00435	347,7	30,59	338,2	2,39	339,3	3,16
	ю	0,05336	0,00065	0,0539	0,00039	0,39649	0,00373	344,1	27,03	338,4	2,37	339,1	2,71
	4	0,05333	0,00071	0,05389	0,00038	0,39607	0,00418	343	29,8	338,4	2,35	338,8	3,04
	5	0,05245	0,00083	0,0543	0,00042	0,39267	0,00524	305	35,82	340,9	2,55	336,3	3,82
	9	0,05256	0,00062	0,05362	0,00038	0,3885	0,00349	309,9	26,57	336,7	2,32	333,3	2,55
	7	0,05265	0,00065	0,05346	0,0004	0,38808	0,00381	313,7	27,69	335,8	2,42	333	2,79
Kassialaa	8	0,05241	0,00068	0,05405	0,00057	0,39041	0,005	303,5	29,37	339,4	3,5	334,7	3,65
	6	0,05267	0,00085	0,0537	0,00058	0,38973	0,00602	314,5	36,21	337,2	3,58	334,2	4,4
	10	0,05273	0,0007	0,05406	0,00059	0,3928	0,00522	317	29,97	339,4	3,61	336,4	3,81
	11	0,05311	0,00065	0,0534	0,00057	0,39083	0,00483	333,5	27,48	335,4	3,52	335	3,52
	12	0,0532	0,00071	0,05346	0,00057	0,39184	0,00511	337,1	29,84	335,7	3,48	335,7	3,73
	13	0,05323	0,00066	0,05345	0,00057	0,39209	0,00485	338,8	27,56	335,7	3,52	335,9	3,54
	14	0,05339	0,00065	0,05339	0,00059	0,39281	0,00491	345,3	27,11	335,3	3,62	336,4	3,58
	15	0,05352	0,00064	0,0533	0,00058	0,39312	0,00481	350,7	26,69	334,7	3,57	336,6	3,51
	1	0,05452	0,00063	0,0535	0,00048	0,40207	0,00411	392,3	25,54	335,9	2,93	343,1	2,98
	2	0,05404	0,00062	0,05391	0,0005	0,40169	0,00421	372,5	25,94	338,5	3,05	342,9	3,05
	б	0,05439	0,00076	0,05357	0,00057	0,40164	0,00546	387,2	31,15	336,4	3,47	342,8	3,95
	4	0,054	0,00066	0,05367	0,00052	0,39964	0,00458	370,8	27,4	337	3,21	341,4	3,33
	5	0,05414	0,00092	0,05355	0,00059	0,3996	0,00648	376,6	37,85	336,3	3,59	341,4	4,7
	9	0,05388	0,00079	0,05376	0,00054	0,39938	0,00552	365,8	32,98	337,6	3,33	341,2	4
	7	0,05398	0,00069	0,05358	0,00053	0,39866	0,00483	369,9	28,64	336,4	3,27	340,7	3,51
	8	0,05384	0,00074	0,05357	0,00053	0,39758	0,00515	364,1	31,01	336,4	3,26	339,9	3,74
Laccia 1	6	0,05371	0,00075	0,05358	0,00055	0,39672	0,0053	358,8	31,4	336,5	3,36	339,3	3,86
Aa551a2	10	0,05374	0,00084	0,05343	0,00059	0,39578	0,00597	360	34,93	335,5	3,58	338,6	4,34
	11	0,05341	0,00078	0,05363	0,00053	0,39494	0,00539	346,4	32,57	336,8	3,26	338	3,92
	12	0,05296	0,00081	0,05404	0,00055	0,39457	0,00565	326,8	34,09	339,3	3,38	337,7	4,11
	13	0,0535	0,00072	0,05343	0,00054	0,39397	0,00504	349,8	30,08	335,5	3,3	337,3	3,67
	14	0,05344	0,00071	0,05329	0,00054	0,39254	0,00496	347,2	29,67	334,7	3,29	336,2	3,62
	15	0,05276	0,00078	0,05396	0,00055	0,39242	0,00548	318,3	33,19	338,8	3,36	336,1	3,99
	16	0,05322	0,00079	0,05346	0,00054	0,39234	0,00545	338,3	33,18	335,7	3,28	336,1	3,98
	17	0,05316	0,00072	0,05341	0,00053	0,39136	0,00495	335,5	30,11	335,4	3,25	335,4	3,61
	18	0,05228	0,00095	0,05405	0,00059	0,38965	0,00666	297,8	40,74	339,3	3,61	334,1	4,87

						Plešovice							
		Razão	Erro (1 5)	Razão	Erro (1 5)	Razão	Erro (1 o)	Idade	Erro (1 0)	Idade	Erro (1 σ)	Idade	Erro (1 σ)
Seção analítica	N° do ponto	207 Pt	y ²⁰⁶ Pb	²⁰⁶ P	$b^{238}U$	$^{207}\mathrm{P}$	b/ ²³⁵ U	207]	уb/ ²⁰⁶ Рb	206 _F	b/ ²³⁸ U	207	9b/ ²³⁵ U
	1	0,05412	0,00067	0,05428	0,00058	0,4049	0,00499	376,1	27,64	340,7	3,54	345,2	3,61
	2	0,05423	0,00132	0,05406	0,00072	0,40381	0,00952	380,6	53,54	339,4	4,41	344,4	6,88
	3	0,05408	0,00089	0,05401	0,00062	0,40259	0,00649	374	36,63	339,1	3,81	343,5	4,7
	4	0,05369	0,00069	0,05427	0,00057	0,40157	0,00505	357,8	28,76	340,7	3,49	342,8	3,66
	5	0,05391	0,00073	0,05397	0,0006	0,40105	0,00544	367,1	30,43	338,8	3,64	342,4	3,94
	9	0,05393	0,00065	0,05358	0,00057	0,39811	0,00481	368,1	27,23	336,4	3,46	340,3	3,5
	7	0,05357	0,00116	0,05381	0,00069	0,3973	0,00838	352,9	48,49	337,9	4,21	339,7	6,09
	8	0,05356	0,00068	0,05376	0,00059	0,39689	0,00514	352,6	28,46	337,6	3,64	339,4	3,74
	6	0,05385	0,00063	0,05342	0,00057	0,39639	0,0047	364,8	26,12	335,5	3,51	339	3,42
	10	0,05293	0,00069	0,05431	0,00058	0,39623	0,00513	325,8	29,18	340,9	3,57	338,9	3,73
	11	0,05301	0,00067	0,05417	0,00058	0,39584	0,00502	329,3	28,39	340,1	3,57	338,6	3,65
kaccia 3a	12	0,05367	0,00064	0,05349	0,00056	0,39548	0,00469	357	26,86	335,9	3,4	338,4	3,41
NassiaJa	13	0,05357	0,00093	0,05357	0,0006	0,39542	0,0066	353	38,85	336,4	3,68	338,3	4,8
	14	0,05354	0,00062	0,05352	0,00057	0,39477	0,00466	351,6	26,01	336,1	3,49	337,8	3,39
	15	0,05321	0,00069	0,05374	0,00059	0,39395	0,00518	337,7	29,19	337,4	3,61	337,3	3,77
	16	0,0533	0,00072	0,05363	0,00059	0,39389	0,00529	341,7	30,16	336,7	3,59	337,2	3,86
	17	0,05294	0,00093	0,05396	0,00061	0,39377	0,00665	326,2	39,32	338,8	3,71	337,1	4,84
	18	0,05327	0,00079	0,05354	0,00057	0,39294	0,00561	340,2	33,19	336,2	3,46	336,5	4,09
	19	0,05261	0,00079	0,05415	0,00059	0,39259	0,0058	311,8	33,96	339,9	3,63	336,3	4,23
	20	0,0524	0,00061	0,05429	0,00058	0,39209	0,00467	302,7	26,42	340,8	3,56	335,9	3,4
	21	0,05296	0,00082	0,0536	0,0006	0,39144	0,00597	327	34,78	336,6	3,67	335,4	4,36
	22	0,05338	0,00063	0,05321	0,00057	0,39127	0,00467	344,8	26,41	334,2	3,47	335,3	3,41
	23	0,05269	0,00065	0,05381	0,00056	0,39062	0,00474	315,2	27,78	337,9	3,43	334,8	3,46
	24	0,05271	0,00064	0,05367	0,00058	0,38979	0,0048	316,5	27,23	337	3,56	334,2	3,51
	1	0,05319	0,00073	0,0539	0,00051	0,39534	0,00496	336,6	30,89	338,4	3,13	338,3	3,61
	2	0,05285	0,00074	0,05406	0,00052	0,39402	0,00506	322,2	31,55	339,4	3,17	337,3	3,68
	ю	0,05332	0,00085	0,05391	0,00052	0,39637	0,0057	342,4	35,5	338,5	3,17	339	4,15
	4	0,05279	0,0008	0,05423	0,00053	0,39476	0,00547	319,7	34,05	340,5	3,22	337,8	3,98
standard	5	0,05267	0,00079	0,05431	0,00054	0,39432	0,00547	314,5	33,75	340,9	3,32	337,5	3,98
	9	0,0529	0,00107	0,05409	0,00059	0,39439	0,00739	324,4	45,23	339,6	3,59	337,6	5,38
	7	0,05276	0,00096	0,05415	0,00057	0,39378	0,00663	318,5	40,55	340	3,51	337,1	4,83
	8	0,05272	0,00097	0,05443	0,00059	0,39538	0,00678	316,5	41,22	341,6	3,58	338,3	4,94
	6	0,05234	0,00113	0,0547	0,00062	0,39441	0,00792	300,2	48,39	343,3	3,77	337,6	5,76

						Plešovice							
		Razão	Erro (1 σ)	Razão	Erro (1 σ)	Razão	Erro (1 0)	Idade	Erro (1 c)	Idade	Erro (1 c)	Idade	Erro (1 σ)
Seção analítica	N° do ponto	207 P	b/ ²⁰⁶ Pb	$^{206}\mathbf{P}$	b/ ²³⁸ U	$^{207}\mathrm{F}$	$\mathbf{b}^{235}\mathbf{U}$	207]	b/ ²⁰⁶ Pb	206]	⊙b/ ²³⁸ U	207])b/ ²³⁵ U
	1	0,05297	0,00063	0,05405	0,00057	0,39473	0,00467	327,6	26,66	339,3	3,47	337,8	3,4
	2	0,05303	0,00064	0,05401	0,00056	0,39475	0,00469	330,1	26,89	339,1	3,45	337,8	3,41
	3	0,05306	0,00061	0,05428	0,00059	0,39688	0,00475	331,2	25,96	340,8	3,62	339,4	3,45
	4	0,05309	0,00059	0,05394	0,00058	0,39476	0,00455	332,8	24,92	338,7	3,57	337,8	3,32
Α	5	0,05352	0,00064	0,05421	0,00058	0,39987	0,00487	350,7	26,93	340,3	3,55	341,6	3,53
	9	0,05359	0,00065	0,05371	0,00058	0,39679	0,00485	353,7	27,12	337,3	3,52	339,3	3,53
	7	0,05396	0,00064	0,05388	0,00058	0,40068	0,00485	369,1	26,75	338,3	3,55	342,1	3,52
	8	0,05412	0,00063	0,05413	0,00061	0,40386	0,00496	375,8	26,12	339,9	3,74	344,4	3,59
	-	0.05281	0.0006	0.05380	0 00063	0 30735	0.00489	320.6	75 30	338 3	3 85	336.1	3 57
	- c	0.05202	0,00061	005100	0,00064	202050	0.00506	275.0	0.30	240.7	2,02	1,000	2,60
	1 r	0.05304	0,00063	0,00420	0,00061	0.30587	000000	330.3	20,7 76.56	240,7	3,76 3,76	238.6	367
	0 4	0.05307	0.00063	0.0541	0.00062	0.39577	0.00498	3316	20,20 26 44	339.6	3.77	338.6	3.67
7470p27f	- vc	0.05322	0.00059	0.054	0.00064	0.39608	0.0049	338	24.69	339	3.89	338.8	3.56
	9	0,05343	0,00064	0.05416	0,00063	0.3989	0,00516	347	26,84	340	3,85	340,8	3,75
	7	0,05375	0,00065	0,05373	0,00062	0,39811	0,00516	360,6	27,07	337,4	3,82	340,3	3,75
	8	0,05389	0,00064	0,05384	0,00063	0,3999	0,00515	366,2	26,64	338,1	3,85	341,6	3,74
	1	0,05394	0,00055	0,05337	0,00051	0,39689	0,00431	368,3	22,71	335,2	3,1	339,4	3,13
	2	0,05361	0,00057	0,05364	0,00054	0,39651	0,0046	354,8	23,61	336,8	3,28	339,1	3,35
	ю	0,05342	0,00069	0,05377	0,00054	0,39594	0,00529	346,5	28,8	337,6	3,33	338,7	3,85
	4	0,05358	0,00053	0,05344	0,00051	0,39483	0,00425	353,5	22,28	335,6	3,1	337,9	3,09
	5	0,05287	0,00054	0,05397	0,00051	0,39338	0,00429	323	22,87	338,9	3,13	336,8	3,13
	9	0,0531	0,00059	0,05373	0,0005	0,39332	0,00448	332,8	24,86	337,4	3,04	336,8	3,26
	7	0,05314	0,00053	0,05363	0,0005	0,3929	0,00423	334,6	22,57	336,8	3,09	336,5	3,09
	8	0,05287	0,00076	0,05381	0,00055	0,39227	0,00567	323,2	32,09	337,9	3,35	336	4,13
141	6	0,05198	0,0006	0,05473	0,00052	0,3922	0,00467	284,6	26,18	343,5	3,15	336	3,4
	10	0,05279	0,00051	0,05379	0,00051	0,3915	0,00416	319,6	22	337,8	3,12	335,5	3,03
	11	0,05309	0,00056	0,05345	0,00052	0,39125	0,00445	332,7	23,61	335,7	3,19	335,3	3,25
	12	0,05278	0,00053	0,05375	0,00051	0,39112	0,00426	319,1	22,77	337,5	3,13	335,2	3,11
	13	0,05308	0,00053	0,05342	0,00052	0,39096	0,00425	332,3	22,25	335,5	3,16	335,1	3,1
	14	0,05306	0,00063	0,05335	0,0005	0,39027	0,00474	331,5	26,84	335	3,07	334,6	3,46
	15	0,05241	0,00054	0,05398	0,00051	0,39	0,0043	303,2	23,47	338,9	3,1	334,4	3,14
	16	0.05234	0.00057	0,05385	0,00055	0.38853	0,00467	300.1	24.65	338,1	3,35	333.3	3,41

						Plešovice							
		Razão	Erro (1 c)	Razão	Erro (1 c)	Razão	Erro (1 s)	Idade	Erro (1 c)	Idade	Erro (1 c)	Idade	Erro (1 0)
Seção analítica	N° do ponto	²⁰⁷ Pł	5/ ²⁰⁶ Pb	²⁰⁶ P	b/ ²³⁸ U	$^{207}\mathrm{P}$	'b/ ²³⁵ U	²⁰⁷ P	b/ ²⁰⁶ Pb	206 _T	b/ ²³⁸ U	²⁰⁷ I	$\mathbf{b}^{235}\mathbf{U}$
	1	0,05266	0,00061	0,05408	0,0006	0,3926	0,00498	314,1	25,99	339,5	3,67	336,3	3,63
	2	0,05338	0,00061	0,0542	0,0006	0,39878	0,00505	344,7	25,74	340,2	3,68	340,8	3,67
	ю	0,05319	0,00059	0,05462	0,0006	0,40052	0,00494	336,9	24,86	342,8	3,69	342	3,58
	4	0,05331	0,00057	0,05447	0,00061	0,40035	0,00489	342,1	23,88	341,9	3,74	341,9	3,54
	5	0,05306	0,00061	0,05374	0,0006	0,39306	0,00497	331,3	25,76	337,4	3,64	336,6	3,62
	9	0,05367	0,00059	0,05416	0,0006	0,40074	0,00494	357,1	24,79	340	3,66	342,2	3,58
7741a	L	0,05336	0,00059	0,05432	0,00061	0,39955	0,00501	343,9	24,94	341	3,73	341,3	3,63
	8	0,05286	0,00065	0,05417	0,0006	0,39476	0,00525	322,6	27,64	340,1	3,7	337,8	3,82
	6	0,05291	0,00064	0,05418	0,00061	0,39519	0,00522	324,9	27,34	340,1	3,71	338,2	3,8
	10	0,05297	0,00061	0,05376	0,0006	0,39262	0,00499	327,6	25,98	337,6	3,65	336,3	3,64
	11	0,05309	0,00057	0,05461	0,00061	0,39971	0,00491	332,8	24,27	342,8	3,74	341,4	3,56
	12	0,0528	0,00061	0,05462	0,00061	0,39758	0,00506	320	25,83	342,8	3,74	339,9	3,67
	13	0,0525	0,00061	0,05442	0,00062	0,39386	0,00513	307,1	26,37	341,6	3,79	337,2	3,74
	1	0,05349	0,00059	0,05435	0,00058	0,40082	0,00479	349,5	24,61	341,2	3,57	342,2	3,47
	2	0,05346	0,00054	0,05416	0,00059	0,39919	0,0046	348,2	22,8	340	3,59	341,1	3,34
	S	0,05265	0,00056	0,05413	0,00058	0,39289	0,00459	313,5	24,19	339,8	3,53	336,5	3,35
	4	0,05322	0,00058	0,05407	0,00058	0,39672	0,00466	338,1	24,26	339,5	3,52	339,3	3,39
	5	0,05271	0,00056	0,054	0,00058	0,39244	0,00463	316,2	24,17	339,1	3,56	336,1	3,37
	9	0,05366	0,00055	0,05397	0,00058	0,39925	0,00462	356,8	23,04	338,8	3,57	341,1	3,35
7742b	L	0,05358	0,00061	0,05385	0,00056	0,39773	0,00472	353,1	25,39	338,1	3,43	340	3,43
	8	0,05314	0,00057	0,05386	0,00058	0,39455	0,00465	334,7	24,1	338,1	3,54	337,7	3,38
	6	0,05384	0,00058	0,05384	0,00057	0,39965	0,00466	364,3	24,37	338,1	3,47	341,4	3,38
	10	0,05339	0,00057	0,0538	0,00058	0,396	0,00468	345,4	23,98	337,8	3,56	338,7	3,4
	11	0,053	0,00055	0,05373	0,00057	0,39256	0,00446	328,7	23,18	337,4	3,48	336,2	3,25
	12	0,05353	0,00057	0,05372	0,00058	0,39649	0,00466	351,4	23,87	337,3	3,54	339,1	3,39
	13	0,05235	0,00055	0,05359	0,00055	0,38672	0,00436	300,6	23,71	336,5	3,39	332	3,19

	Raño	Frm (1 m)	Parão	Fran (1 e)	Plešovice Bazão	From (1 m)	Idada	Free (1 a)	Idada	From (1 m)	Idada	Frm (1 r)
lo ponto	Naza0	206	706	- 338	707_	- 335	1uaue	- 206		- 238		EIIU (1 0)
•	H	/ ⁴⁰ Pb	U	۹/ _{*20} U	d ,,	0, ₅₀₇ /q	d	b/"≌Pb	d	∩°°≁/ď	I.07	Ω_{cc}/q
1	0,05401	0,00059	0,05335	0,0006	0,39727	0,00465	371,4	24,36	335	3,64	339,7	3,38
2	0,05326	0,00059	0,05408	0,00059	0,39713	0,00463	339,7	24,63	339,5	3,63	339,6	3,36
б	0,05375	0,00058	0,05352	0,0006	0,39659	0,00469	360,3	24,36	336,1	3,69	339,2	3,41
4	0,05344	0,00058	0,05376	0,0006	0,39609	0,00464	347,3	24,41	337,6	3,65	338,8	3,38
5	0,05347	0,00059	0,05369	0,0006	0,3958	0,00467	348,7	24,51	337,1	3,66	338,6	3,4
9	0,05328	0,00058	0,05387	0,0006	0,39573	0,00463	340,5	24,19	338,3	3,68	338,5	3,37
7	0,05347	0,00058	0,05368	0,00059	0,39569	0,00461	348,5	24,39	337,1	3,63	338,5	3,36
8	0,05332	0,00058	0,05377	0,0006	0,3953	0,00464	342,6	24,28	337,6	3,68	338,2	3,38
6	0,05339	0,00059	0,05364	0,00059	0,39493	0,00465	345,5	24,65	336,9	3,64	338	3,39
10	0,05289	0,00056	0,05406	0,0006	0,39426	0,00456	324,2	24,01	339,4	3,69	337,5	3,32
11	0,0529	0,00057	0,0539	0,00061	0,39312	0,00465	324,3	24,18	338,4	3,74	336,6	3,39
12	0,05292	0,00057	0,05382	0,0006	0,39268	0,00457	325,2	24,42	337,9	3,64	336,3	3,33
13	0,05274	0,0006	0,054	0,00058	0,39262	0,00461	317,6	25,47	339	3,57	336,3	3,36
14	0,05293	0,00057	0,05378	0,0006	0,39252	0,00457	325,8	24,18	337,7	3,67	336,2	3,33
1	0,05394	0,00059	0,05391	0,00058	0,40084	0,00461	368,2	24,59	338,5	3,58	342,3	3,34
7	0,05371	0,00058	0,05372	0,00059	0,39773	0,00457	358,7	24,07	337,3	3,62	340	3,32
Э	0,05373	0,00061	0,05369	0,0006	0,3977	0,00484	359,5	25,62	337,2	3,68	340	3,52
4	0,0536	0,00059	0,05373	0,0006	0,39711	0,00466	354,4	24,43	337,4	3,65	339,5	3,38
5	0,05407	0,00075	0,05325	0,00061	0,3969	0,00558	373,7	30,99	334,5	3,71	339,4	4,06
9	0,05364	0,00058	0,05351	0,00058	0,39571	0,00455	356	24,33	336	3,57	338,5	3,31
7	0,05338	0,00058	0,05376	0,00059	0,39564	0,00462	344,7	24,43	337,6	3,64	338,5	3,36
8	0,05348	0,00059	0,05357	0,00058	0,39489	0,00455	348,9	24,56	336,4	3,56	337,9	3,31
6	0,05334	0,00059	0,05361	0,0006	0,3942	0,00468	343	24,57	336,6	3,69	337,4	3,41
10	0,05302	0,00058	0,05385	0,0006	0,39362	0,00462	329,6	24,62	338,1	3,66	337	3,37
11	0,05308	0,00058	0,05379	0,0006	0,39361	0,00462	332,1	24,52	337,7	3,66	337	3,37
12	0,05344	0,00061	0,05337	0,00058	0,39326	0,00465	347,3	25,55	335,2	3,54	336,7	3,39
13	0,05312	0,00059	0,05362	0,0006	0,39274	0,00465	334	24,92	336,7	3,64	336,4	3,39
14	0,05331	0,00076	0,05342	0,00061	0,39256	0,00568	342	31,95	335,5	3,75	336,2	4,14
15	0,05299	0,00062	0,05363	0,0006	0,39189	0,00484	328,5	26,46	336,8	3,65	335,7	3,53
16	0,05303	0,00057	0,05353	0,00058	0,3913	0,00447	329,9	24,31	336,1	3,56	335,3	3,27
17	0,05292	0,00059	0,05363	0,00058	0,39129	0,00457	325,3	25,19	336,8	3,56	335,3	3,34
18	0,05289	0,00062	0,0536	0,00062	0,39086	0,00497	324,1	26,2	336,6	3,81	335	3,63
19	0,05263	0,00058	0,05374	0,00059	0,38991	0,00453	312,7	24,74	337,5	3,61	334,3	3,31

						Plešovice							
		Razão	Erro (1 0)	Razão	Erro (1 c)	Razão	Erro (1 c)	Idade	Erro (1 σ)	Idade	Erro (1 v)	Idade	Erro (1 s)
Seção analítica	N° do ponto	²⁰⁷ Pl	b/ ²⁰⁶ Pb	$^{206}\mathrm{F}$	b/ ²³⁸ U	²⁰⁷ P	b/ ²³⁵ U	²⁰⁷ F	b/ ²⁰⁶ Pb	206	9b/ ²³⁸ U	207]	0b/ ²³⁵ U
	1	0,05398	0,00064	0,05409	0,00061	0,40254	0,005	370	26,45	339,6	3,71	343,5	3,62
	2	0,05377	0,00057	0,05403	0,00059	0,40053	0,00453	361,2	23,71	339,2	3,61	342	3,29
	ю	0,05323	0,00057	0,05436	0,0006	0,39893	0,00458	338,5	23,87	341,2	3,67	340,9	3,32
9177	4	0,05372	0,00057	0,05377	0,00059	0,39825	0,00452	359,4	23,72	337,6	3,6	340,4	3,28
01//	5	0,05325	0,00056	0,05418	0,0006	0,39779	0,00454	339,5	23,74	340,1	3,67	340	3,3
	9	0,05357	0,00058	0,05358	0,00059	0,39573	0,00453	352,8	24,07	336,5	3,59	338,5	3,3
	L	0,05293	0,00063	0,05398	0,0006	0,39394	0,00485	325,8	26,54	338,9	3,65	337,2	3,53
	8	0,05278	0,00057	0,05405	0,00059	0,39331	0,0045	319,2	24,26	339,3	3,61	336,8	3,28
	1	0,05345	0,00059	0,05376	0,00059	0,39621	0,00465	347,9	24,73	337,6	3,62	338,9	3,38
	2	0,05309	0,00062	0,05391	0,0006	0,39461	0,00481	332,5	26,02	338,5	3,66	337,7	3,5
POILL	ю	0,05326	0,00061	0,05364	0,00059	0,39387	0,00474	340	25,74	336,8	3,62	337,2	3,45
net //	4	0,05313	0,00058	0,05368	0,00061	0,39328	0,00466	334,5	24,4	337,1	3,72	336,8	3,4
	5	0,05343	0,00061	0,05337	0,00059	0,39318	0,00467	347,1	25,35	335,2	3,58	336,7	3,4
	9	0,05283	0,00059	0,05388	0,00061	0,39243	0,00469	321,5	25,01	338,3	3,7	336,1	3,42
	1	0,05351	0,0006	0,0542	0,00062	0,39992	0,00488	350,6	25,22	340,2	3,78	341,6	3,54
	2	0,05368	0,00061	0,05377	0,00061	0,39801	0,00487	357,5	25,37	337,6	3,74	340,2	3,53
B	ŝ	0,0537	0,00065	0,05344	0,00064	0,39534	0,00527	358,2	27,14	335,6	3,92	338,3	3,83
	4	0,05402	0,0006	0,05422	0,00063	0,40389	0,00496	371,6	25,14	340,4	3,83	344,5	3,59
	5	0,05408	0,00065	0,05394	0,00066	0,40201	0,00538	374,4	26,95	338,7	4,01	343,1	3,9
	1	0,05383	0,00072	0,05341	0,00056	0,39622	0,00514	363,7	29,94	335,4	3,43	338,9	3,74
	2	0,05371	0,00064	0,05365	0,00056	0,39724	0,0047	359	26,57	336,9	3,46	339,6	3,41
	ю	0,05377	0,00063	0,05384	0,00053	0,3991	0,00445	361,1	26,11	338,1	3,27	341	3,23
kv4	4	0,05248	0,00064	0,05402	0,00055	0,39085	0,00458	306,5	27,32	339,1	3,35	335	3,35
	5	0,05281	0,00066	0,0541	0,00059	0,39389	0,00492	320,8	27,94	339,7	3,58	337,2	3,58
	9	0,0529	0,00067	0,05428	0,00058	0,39578	0,00498	324,5	28,58	340,7	3,54	338,6	3,62
	L	0,0529	0,00059	0,05437	0,00055	0,39654	0,00436	324,3	25,18	341,3	3,37	339,1	3,17

						Plešovice							
		Razão	Erro (1 σ)	Razão	Erro (1 c)	Razão	Erro (1 σ)	Idade	Erro (1 σ)	Idade	Erro (1 σ)	Idade	Erro (1 σ)
Seção analítica	N° do ponto	²⁰⁷ Pł	_b / ²⁰⁶ Pb	^{206}P	$b^{238}U$	$^{207}\mathrm{P}$	b/ ²³⁵ U	207]	2b/ ²⁰⁶ Pb	206	$Pb/^{238}U$	207	Pb/ ²³⁵ U
	1	0,05308	0,00073	0,05332	0,00048	0,39002	0,00474	332	30,77	334,9	2,93	334,4	3,46
	2	0,05341	0,00088	0,05367	0,00053	0,39509	0,00599	346,2	36,93	337	3,26	338,1	4,36
	ю	0,05283	0,00072	0,05371	0,00049	0,39109	0,0047	321,5	30,41	337,3	2,97	335,2	3,43
	4	0,05377	0,00082	0,05375	0,00055	0,39825	0,00564	361,5	33,95	337,5	3,33	340,4	4,1
kv8	5	0,05283	0,00078	0,05392	0,00049	0,39258	0,00513	321,4	32,98	338,5	ю	336,2	3,74
	9	0,0534	0,00065	0,05403	0,00047	0,39764	0,00421	345,9	27,18	339,2	2,89	339,9	3,06
	7	0,05297	0,00103	0,05412	0,00055	0,39516	0,00704	327,5	43,46	339,8	3,36	338,1	5,13
	8	0,0532	0,00085	0,05412	0,00052	0,39693	0,00574	337,5	35,63	339,8	3,19	339,4	4,17
	6	0,0533	0,0008	0,05415	0,00051	0,39784	0,00542	341,7	33,62	340	3,13	340,1	3,94
	1	0,05417	0,00065	0,05342	0,0006	0,39884	0,00506	377,9	27,09	335,5	3,69	340,8	3,67
	2	0,05416	0,00061	0,05356	0,00057	0,39986	0,00458	377,4	25,26	336,3	3,47	341,5	3,32
	ω	0,05325	0,00069	0,05393	0,00058	0,39596	0,00518	339,3	29,13	338,6	3,58	338,7	3,77
	4	0,05341	0,00065	0,05408	0,0006	0,39827	0,00508	346,3	27,35	339,5	3,7	340,4	3,69
	5	0,05345	0,00059	0,05415	0,00057	0,39905	0,00451	348	24,86	340	3,49	341	3,27
SRY16	9	0,05331	0,00064	0,05424	0,00061	0,39861	0,00499	341,9	26,74	340,5	3,71	340,6	3,62
	7	0,0532	0,00077	0,05425	0,00059	0,39784	0,00567	337,1	32,47	340,6	3,61	340,1	4,12
	8	0,0531	0,00075	0,05428	0,00059	0,39737	0,00553	333,2	31,61	340,7	3,61	339,7	4,02
	6	0,05318	0,00064	0,05428	0,0006	0,39804	0,00502	336,6	27,06	340,8	3,7	340,2	3,64
	10	0,05389	0,0006	0,05436	0,00058	0,40382	0,00458	366,2	24,86	341,2	3,53	344,4	3,31
	11	0,05357	0,00078	0,05442	0,00065	0,40164	0,00601	352,9	32,42	341,6	3,97	342,8	4,35
	1	0,05223	0,0006	0,05429	0,00059	0,39092	0,00464	296	26	341	4	335	ю
	2	0,05256	0,0006	0,05375	0,00058	0,38949	0,00456	310	26	338	4	334	3
	ю	0,05297	0,00063	0,05405	0,00057	0,39473	0,00467	328	27	339	б	338	6
	4	0,05303	0,00064	0,05401	0,00056	0,39475	0,00469	330	27	339	ю	338	3
Table 2 - Day1	5	0,05306	0,00061	0,05428	0,00059	0,39688	0,00475	331	26	341	4	339	3
	9	0,05309	0,00059	0,05394	0,00058	0,39476	0,00455	333	25	339	4	338	ю
	7	0,05352	0,00064	0,05421	0,00058	0,39987	0,00487	351	27	340	4	342	4
	8	0,05359	0,00065	0,05371	0,00058	0,39679	0,00485	354	27	337	4	339	4
	6	0,05396	0,00064	0,05388	0,00058	0,40068	0,00485	369	27	338	4	342	4

						Plešovice							
		Razão	Erro (1 0)	Razão	Erro (1 σ)	Razão	Erro (1 σ)	Idade	Erro (1 c)	Idade	Erro (1 0)	Idade	Erro (1 σ)
Seção analítica	N° do ponto	$^{207}\mathbf{P}$	$\mathbf{b}^{206}\mathbf{Pb}$	²⁰⁶ P	$b^{238}U$	207P	b/ ²³⁵ U	207]	b/ ²⁰⁶ Pb	206	b/ ²³⁸ U	207	b/ ²³⁵ U
	1	0,05254	0,00059	0,05439	0,00064	0,39397	0,00497	309	26	341	4	337	4
	2	0,05281	0,0006	0,05389	0,00063	0,39235	0,00489	321	25	338	4	336	4
	ŝ	0,05293	0,00061	0,05428	0,00064	0,39596	0,00506	326	26	341	4	339	4
	4	0,05304	0,00063	0,05415	0,00061	0,39587	0,00497	330	27	340	4	339	4
	S	0,05307	0,00063	0,0541	0,00062	0,39577	0,00498	332	26	340	4	339	4
	9	0,05322	0,00059	0,054	0,00064	0,39608	0,0049	338	25	339	4	339	4
ToHe 1 Days	7	0,05343	0,00064	0,05416	0,00063	0,3989	0,00516	347	27	340	4	341	4
1able 2 - Day 2	8	0,05375	0,00065	0,05373	0,00062	0,39811	0,00516	361	27	337	4	340	4
	6	0,05389	0,00064	0,05384	0,00063	0,3999	0,00515	366	27	338	4	342	4
	10	0,05383	0,00077	0,05404	0,00058	0,40092	0,00557	364	32	339	4	342	4
	11	0,05343	0,00061	0,05415	0,00056	0,39889	0,00453	347	25	340	б	341	ŝ
	12	0,05362	0,00063	0,0538	0,00055	0,39764	0,00456	355	26	338	б	340	ю
	13	0,05326	0,00061	0,05393	0,00056	0,39601	0,00452	340	26	339	б	339	ŝ
	14	0,05239	0,00058	0,05467	0,00057	0,39493	0,00443	303	25	343	б	338	ю
	1	0,0536	0,00071	0,05378	0,00047	0,39736	0,00451	354	29	338	ю	340	3
	2	0,05285	0,00082	0,0542	0,00051	0,39474	0,0055	322	35	340	ю	338	4
	ю	0,05332	0,00083	0,05365	0,00054	0,39405	0,00568	342	35	337	3	337	4
	4	0,05271	0,00086	0,05423	0,00052	0,3939	0,00576	316	37	340	ю	337	4
Tokke 7 Dour 2	5	0,05319	0,00083	0,05363	0,00049	0,39328	0,00538	337	35	337	ю	337	4
laure 2 - Day J	9	0,05323	0,00091	0,05359	0,00053	0,39312	0,00611	338	38	337	ю	337	4
	L	0,05268	0,00059	0,05477	0,00064	0,39795	0,0049	315	25	344	4	340	4
	8	0,05351	0,0006	0,0542	0,00062	0,39992	0,00488	351	25	340	4	342	4
	6	0,05368	0,00061	0,05377	0,00061	0,39801	0,00487	358	25	338	4	340	4
	10	0,0537	0,00065	0,05344	0,00064	0,39534	0,00527	358	27	336	4	338	4
	1	0,05229	0,00104	0,05429	0,00055	0,39124	0,00712	298	45	341	ю	335	5
	2	0,05306	0,00077	0,05344	0,00048	0,39096	0,00497	332	32	336	б	335	4
	ю	0,05257	0,00074	0,05392	0,0005	0,39072	0,00491	310	32	339	ю	335	4
	4	0,05272	0,00075	0,0534	0,00048	0,38793	0,00486	317	32	335	ю	333	4
Table 2 - Day 4	5	0,05409	0,00067	0,0535	0,0006	0,39891	0,00513	375	28	336	4	341	4
	9	0,05285	0,0007	0,05374	0,0006	0,3916	0,00523	322	30	338	4	336	4
	L	0,05251	0,00077	0,05397	0,00061	0,39073	0,00567	308	33	339	4	335	4
	8	0,05345	0,00064	0,05375	0,00056	0,39617	0,00467	348	27	338	ю	339	3
	6	0.05338	0.00064	0.05338	0.00058	0.3928	0.00483	345	27	335	4	336	4

						Plešovice							
		Razão	Erro (1 c)	Razão	Erro (1 c)	Razão	Erro (1 o)	Idade	Erro (1 o)	Idade	Erro (1 c)	Idade	Erro (1 o)
Seção analítica	N° do ponto	$^{207}\mathbf{P}$	b/ ²⁰⁶ Pb	$^{206}\mathbf{P}$	b/ ²³⁸ U	$^{207}\mathbf{P}$	b/ ²³⁵ U	207 _F	b/ ²⁰⁶ Pb	206]	238U	207	Pb/ ²³⁵ U
	-	0,05377	0,00082	0,05375	0,00055	0,39825	0,00564	362	34	338	3	340	4
	2	0,0533	0,0008	0,05415	0,00051	0,39784	0,00542	342	34	340	33	340	4
	\mathfrak{c}	0,0534	0,00065	0,05403	0,00047	0,39764	0,00421	346	27	339	\mathfrak{S}	340	\mathfrak{c}
	4	0,0532	0,00085	0,05412	0,00052	0,39693	0,00574	338	36	340	33	339	4
Taka Caka C	5	0,05297	0,00103	0,05412	0,00055	0,39516	0,00704	328	43	340	ŝ	338	5
1 aule 2 - Dal J	9	0,05341	0,00088	0,05367	0,00053	0,39509	0,00599	346	37	337	33	338	4
	L	0,05283	0,00078	0,05392	0,00049	0,39258	0,00513	321	33	339	33	336	4
	8	0,05243	0,00069	0,05424	0,00051	0,39186	0,00464	304	30	341	33	336	33
	6	0,05283	0,00072	0,05371	0,00049	0,39109	0,0047	322	30	337	33	335	ŝ
	10	0,05308	0,00073	0,05332	0,00048	0,39002	0,00474	332	31	335	3	334	3
	1	0,05377	0,00063	0,05384	0,00053	0,3991	0,00445	361	26	338	ŝ	341	3
	2	0,05371	0,00064	0,05365	0,00056	0,39724	0,0047	359	27	337	3	340	33
	33	0,0529	0,00059	0,05437	0,00055	0,39654	0,00436	324	25	341	33	339	33
	4	0,05383	0,00072	0,05341	0,00056	0,39622	0,00514	364	30	335	3	339	4
Table 2 - Day 6	S	0,0529	0,00067	0,05428	0,00058	0,39578	0,00498	325	29	341	4	339	4
	9	0,05281	0,00066	0,0541	0,00059	0,39389	0,00492	321	28	340	4	337	4
	L	0,05248	0,00064	0,05402	0,00055	0,39085	0,00458	307	27	339	3	335	3
	8	0,05378	0,00062	0,05345	0,0006	0,39631	0,00484	362	26	336	4	339	4
	6	0,05271	0,0006	0,05404	0,00061	0,3927	0,00477	316	26	339	4	336	3

						Plešovice							
		Razão	Erro (1 σ)	Razão	Erro (1 σ)	Razão	Erro (1 c)	Idade	Erro (1 c)	Idade	Erro (1 c)	Idade	Erro (1 c)
Seção analítica	N° do ponto	²⁰⁷ PI	b/ ²⁰⁶ Pb	$^{206}\mathrm{P}$	$b^{238}U$	207 P	$b^{235}U$	207 _I	3b/ ²⁰⁶ Pb	206	2b/ ²³⁸ U	²⁰⁷ I	•b/ ²³⁵ U
	1	0,05325	0,00069	0,05393	0,00058	0,39596	0,00518	339	29	339	4	339	4
	2	0,0531	0,00075	0,05428	0,00059	0,39737	0,00553	333	32	341	4	340	4
	3	0,0532	0,00077	0,05425	0,00059	0,39784	0,00567	337	32	341	4	340	4
	4	0,05318	0,00064	0,05428	0,0006	0,39804	0,00502	337	27	341	4	340	4
	5	0,05341	0,00065	0,05408	0,0006	0,39827	0,00508	346	27	340	4	340	4
	9	0,05331	0,00064	0,05424	0,00061	0,39861	0,00499	342	27	341	4	341	4
	7	0,05417	0,00065	0,05342	0,0006	0,39884	0,00506	378	27	336	4	341	4
	8	0,05345	0,00059	0,05415	0,00057	0,39905	0,00451	348	25	340	6	341	ŝ
	6	0,05416	0,00061	0,05356	0,00057	0,39986	0,00458	377	25	336	3	342	б
	10	0,05357	0,00078	0,05442	0,00065	0,40164	0,00601	353	32	342	4	343	4
	11	0,05318	0,00059	0,05494	0,00058	0,40278	0,00457	336	25	345	4	344	3
	12	0,05389	0,0006	0,05436	0,00058	0,40382	0,00458	366	25	341	4	344	3
	13	0,05352	0,00064	0,05477	0,00058	0,40402	0,00487	351	27	344	4	345	4
	14	0,05373	0,00069	0,05423	0,00057	0,40175	0,00513	360	29	340	4	343	4
CDVE	15	0,05331	0,00062	0,05453	0,00058	0,40071	0,0047	342	26	342	4	342	3
CINC	16	0,05383	0,0006	0,05398	0,00057	0,40044	0,0045	364	25	339	3	342	3
	17	0,05437	0,00074	0,05342	0,00061	0,40027	0,00554	386	30	336	4	342	4
	18	0,05327	0,00063	0,0541	0,00057	0,39723	0,00467	340	26	340	3	340	ю
	19	0,0532	0,00064	0,05414	0,00057	0,39706	0,00475	338	27	340	6	340	3
	20	0,05395	0,00075	0,05352	0,00065	0,39809	0,00584	369	31	336	4	340	4
	21	0,05298	0,00079	0,05394	0,00061	0,39415	0,0058	328	34	339	4	337	4
	22	0,05316	0,00067	0,05351	0,00061	0,39215	0,00512	335	28	336	4	336	4
	23	0,05244	0,00071	0,05418	0,00063	0,39174	0,00544	305	30	340	4	336	4
	24	0,05347	0,00086	0,05467	0,00057	0,40289	0,00632	349	36	343	6	344	5
	25	0,05336	0,00093	0,05466	0,00057	0,4021	0,00673	344	39	343	4	343	5
	26	0,05274	0,00087	0,05471	0,00056	0,39786	0,00628	318	37	343	ю	340	5
	27	0,05309	0,00062	0,05385	0,00058	0,39414	0,00467	332,6	26,14	338,1	3,52	337,4	3,4
	28	0,05368	0,00066	0,05311	0,00059	0,39309	0,00501	357,5	27,71	333,6	3,61	336,6	3,65
	29	0,05284	0,00061	0,05366	0,00059	0,39087	0,00466	321,8	25,81	336,9	3,6	335	3,4
	30	0,05304	0,00065	0,0534	0,00061	0,39051	0,00498	330,6	27,33	335,3	3,71	334,7	3,64
	1	0,05334	0,00059	0,05228	0,00056	0,38447	0,00439	343,2	24,66	328,5	3,44	330,3	3,22
2767-569	2	0,05323	0,00059	0,05246	0,00056	0,385	0,00445	338,5	25,03	329,6	3,45	330,7	3,26
noc-1011	ю	0,05346	0,0006	0,05286	0,00057	0,38965	0,00451	348,5	24,99	332,1	3,48	334,1	3,29
	4	0,05358	0,0006	0,05348	0,00057	0,39509	0,0046	353,3	25,2	335,9	3,52	338,1	3,35

ANEXO III - DADOS ANALÍTICOS DO PADRÃO DE ZIRCÃO BB9

						BB9							
1		Razão	Erro (1 0)	Razão	Erro (1 c)	Razão	Erro (1 0)	Idade	Erro (1 0)	Idade	Erro (1 c)	Idade	Erro (1 σ)
Seção analítica	N° de Análises	²⁰⁷ PI	5/ ²⁰⁶ Pb	²⁰⁶ P	b/ ²³⁸ U	$^{207}\mathbf{P}$	$b^{235}U$	207 P	$b^{206}Pb$	206	$Pb/^{238}U$	207]	b^{235} U
	1	0,05978	0,0007	0,09088	0,00102	0,74907	0,00926	595,1	25,78	560,7	6,02	567,7	5,37
	2	0,05953	0,00069	0,09095	0,00104	0,74649	0,00931	586,6	24,92	561, 1	6,15	566,2	5,41
	ŝ	0,05959	0,0007	0,09072	0,00104	0,74531	0,00938	588,6	25,19	559,8	6,15	565,5	5,45
	4	0,05891	0,00067	0,09108	0,00104	0,73982	0,00914	563,8	24,71	561,9	6,15	562,3	5,34
	5	0,05862	0,00066	0,09139	0,00105	0,73868	0,00909	552,9	24,41	563,8	6,21	561, 6	5,31
	9	0,05862	0,00067	0,09132	0,00105	0,73807	0,0091	552,9	24,65	563,3	6,18	561,3	5,31
	L	0,059	0,00068	0,0907	0,00104	0,7378	0,00917	567	24,87	559,7	6,15	561, 1	5,36
7716	8	0,05896	0,00064	0,09058	0,00102	0,73644	0,00864	565,8	23,31	559	6,02	560,3	5,05
	6	0,05904	0,00064	0,09031	0,00101	0,7351	0,00861	568,5	23,33	557,4	5,98	559,5	5,04
	10	0,05919	0,00065	0,09002	0,00101	0,73462	0,00868	574	23,53	555,6	5,98	559,3	5,08
	11	0,05879	0,00065	0,09045	0,00102	0,73321	0,00875	559,3	23,8	558,2	6,04	558,4	5,12
	12	0,05842	0,00065	0,09094	0,00103	0,73261	0,00887	545,7	24,3	561, 1	6,09	558,1	5,2
	13	0,05843	0,00065	0,09079	0,001	0,73139	0,00858	545,8	24,08	560,2	5,9	557,4	5,03
	14	0,05874	0,00065	0,09029	0,001	0,73135	0,00869	557,6	24,12	557,3	5,94	557,3	5,1
	15	0,0583	0,00065	0,09089	0,00104	0,73065	0,00883	540,5	24,7	560,8	6,14	556,9	5,18
	1	0,05873	0,00064	0,09117	0,00098	0,73815	0,00844	557	23,7	562,4	5,82	561,3	4,93
	2	0,05913	0,00063	0,0905	0,00101	0,73782	0,00849	572	22,6	558,5	5,96	561, 1	4,96
	ŝ	0,05885	0,00063	0,09087	0,00099	0,73736	0,00836	561, 6	23,28	560,7	5,82	560,9	4,88
	4	0,05894	0,00063	0,09068	0,00098	0,7369	0,00832	565	23,28	559,5	5,79	560,6	4,86
	5	0,05858	0,00064	0,09105	0,00098	0,7354	0,00842	551,5	23,79	561,8	5,81	559,7	4,93
	9	0,05883	0,00064	0,09065	0,001	0,73521	0,00852	560,7	23,54	559,4	5,91	559,6	4,98
7719d	7	0,05852	0,00064	0,09108	0,00099	0,73481	0,00839	549,2	23,61	561,9	5,83	559,4	4,91
	8	0,05886	0,00063	0,09053	0,00098	0,73462	0,00831	561,8	23,28	558,7	5,79	559,3	4,87
	6	0,05889	0,00063	0,09031	0,00099	0,73335	0,0084	563,2	23,16	557,4	5,88	558,5	4,92
	10	0,05873	0,00063	0,09047	0,00099	0,73264	0,00838	557,2	23,2	558,3	5,88	558,1	4,91
	11	0,05856	0,00064	0,09063	0,00098	0,73172	0,00837	550,9	23,76	559,3	5,79	557,6	4,91
	12	0,05867	0,00064	0,09042	0,00099	0,73149	0,00843	555	23,59	558	5,85	557,4	4,94
	13	0,0583	0,00063	0,09094	0,00099	0,73106	0,0083	540,6	24,08	561,1	5,83	557,2	4,87

						BB9							
		Razão	Erro (1 0)	Razão	Erro (1 c)	Razão	Erro (1 c)	Idade	Erro (1 c)	Idade	Erro (1 5)	Idade	Erro (1 s)
Seção analítica	N° de Análises	²⁰⁷ P	b/ ²⁰⁶ Pb	²⁰⁶ P	$b/^{238}$ U	207 PI	b/ ²³⁵ U	$^{207}\mathrm{P}$	$b^{206}Pb$	206	Ph/ ²³⁸ U	207 _I	b/ ²³⁵ U
	1	0,05955	0,00071	0,09166	0,00101	0,75247	0,0092	587,2	25,77	565,3	5,99	569,7	5,33
	2	0,05933	0,00067	0,09176	0,00105	0,75034	0,00907	579,2	24,46	565,9	6,22	568,4	5,26
a7959	ŝ	0,05881	0,00069	0,09187	0,00103	0,74486	0,00903	560,2	25,19	566,6	6,11	565,2	5,26
	4	0,0585	0,00068	0,09267	0,00102	0,74737	0,00893	548,4	25,16	571,3	6,04	566,7	5,19
	5	0,05859	0,00063	0,09267	0,00105	0,74849	0,00869	551,9	23,47	571,3	6,19	567,3	5,04
	1	0,05895	0,00065	0,09109	0,00096	0,74014	0,00823	565,2	23,98	562	5,66	562,5	4,8
لمما	2	0,05887	0,00067	0,09181	0,001	0,74498	0,00871	562,3	24,58	566,2	5,93	565,3	5,07
KAX	ŝ	0,05868	0,00061	0,09208	0,001	0,74495	0,00818	555,4	22,69	567,8	5,9	565,3	4,76
	4	0,05848	0,00061	0,0924	0,001	0,74479	0,00812	547,8	22,64	569,7	5,89	565,2	4,73
	1	0,05961	0,00068	0,09021	0,00101	0,74148	0,00899	589,6	24,67	556,8	5,95	563,3	5,24
	2	0,05945	0,00067	0,0907	0,00102	0,74335	0,00891	583,5	24,11	559,7	9	564,4	5,19
7728 - 57b	3	0,05913	0,0007	0,09077	0,00102	0,74006	0,00923	572,1	25,58	560,1	6,02	562,4	5,39
	4	0,05942	0,00065	0,09089	0,00102	0,74458	0,00883	582,6	23,73	560,8	6,01	565,1	5,14
	5	0,05856	0,00067	0,09159	0,00103	0,73941	0,00899	550,7	24,74	564,9	6,06	562,1	5,25
	1	0,05916	0,00063	0,09141	0,00104	0,74557	0,00881	573	23,07	563,9	6,15	565,7	5,13
	2	0,05966	0,00064	0,09177	0,00104	0,75485	0,00895	591,1	23,23	566	6,15	571	5,18
7733 - 576	3	0,05902	0,00063	0,0918	0,00105	0,74703	0,00884	567,9	23,11	566,2	6,18	566,5	5,14
BIC - CCII	4	0,05935	0,00064	0,09186	0,00105	0,75167	0,00893	579,8	23,21	566,5	6,17	569,2	5,17
	5	0,05974	0,00135	0,09259	0,00119	0,76198	0,01646	594,2	48,14	570,8	7,05	575,2	9,49
	9	0,05979	0,00071	0,09735	0,00114	0,80254	0,01034	595,2	26,06	598,9	69'9	598,3	5,82

						BB9							
		Razão	Erro (1 c)	Razão	Erro (1 o)	Razão	Erro (1 0)	Idade	Erro (1 o)	Idade	Erro (1 o)	Idade	Erro (1 0)
Seção analítica	N° de Análises	207 PI	b/ ²⁰⁶ Pb	²⁰⁶ P	6/ ²³⁸ U	207 PI	b/ ²³⁵ U	207 PI	b/ ²⁰⁶ Pb	$^{206}\mathrm{F}$	b/ ²³⁸ U	$^{207}\mathrm{P}$	b/ ²³⁵ U
	1	0,05839	0,00062	0,08836	0,00091	0,7113	0,00768	544,3	23,22	545,8	5,4	545,5	4,56
	2	0,05879	0,00063	0,08921	0,00092	0,72308	0,00784	559,2	23,24	550,9	5,45	552,5	4,62
	3	0,05888	0,00062	0,08928	0,00092	0,72477	0,00774	562,6	22,92	551,3	5,43	553,5	4,56
	4	0,05857	0,00063	0,08972	0,00094	0,72445	0,00794	551	23,36	553,9	5,53	553,3	4,68
	5	0,05907	0,00064	0,08978	0,00094	0,73128	0,00802	569,8	23,55	554,3	5,54	557,3	4,7
	9	0,05907	0,00063	0,09013	0,00094	0,73401	0,00804	569,6	23,61	556,3	5,56	558,9	4,71
	7	0,05891	0,00063	0,09026	0,00093	0,73316	0,00789	563,8	23,09	557,1	5,5	558,4	4,62
7767 EKo	8	0,05881	0,00063	0,09028	0,00093	0,73201	0,00791	560	23,17	557,2	5,51	557,7	4,64
poc-1011	6	0,0589	0,00064	0,09031	0,00091	0,73349	0,00785	563,6	23,35	557,4	5,41	558,6	4,6
	10	0,05934	0,00063	0,09038	0,00093	0,73953	0,00797	579,7	23,04	557,8	5,51	562,1	4,65
	11	0,05868	0,00064	0,0906	0,00091	0,73306	0,00784	555,3	23,64	559,1	5,37	558,3	4,59
	12	0,05885	0,00064	0,09078	0,00092	0,73658	0,00791	561,4	23,5	560,1	5,43	560,4	4,62
	13	0,05949	0,00064	0,09082	0,00092	0,74495	0,00795	585	23,24	560,4	5,43	565,3	4,63
	14	0,05864	0,00064	0,09096	0,00092	0,73557	0,00789	553,9	23,57	561,2	5,42	559,8	4,61
	15	0,05914	0,00068	0,09103	0,000	0,7423	0,00816	572,1	24,71	561,6	5,34	563,7	4,76
	16	0,05942	0,00066	0,09121	0,00091	0,74734	0,00806	582,5	23,86	562,7	5,39	566,7	4,68

ANEXO IV - DADOS ANALÍTICOS DO PADRÃO DE ZIRCÃO M127

					M	127							
		Razão	Erro (1 c)	Razão	Erro (1 c)	Razão	Erro (1 c)	Idade	Erro (1 c)	Idade	Erro (1 0)	Idade	Erro (1 σ)
Seção analítica	N° do ponto	²⁰⁷ PI	$b^{206}Pb$	²⁰⁶ PI	0, ²³⁸ U	207 Pl	₀/ ²³⁵ U	207 Pl	o/ ²⁰⁶ Pb	$^{206}\mathrm{P}$	b^{238} U	207 _I	•b/ ²³⁵ U
	1	0,05689	0,00154	0,08645	0,00121	0,67856	0,01785	487	59	535	7	526	11
clana42 30um	2	0,05796	0,0013	0,08486	0,00117	0,67816	0,01534	528	49	525	Γ	526	6
	3	0,05823	0,00168	0,08474	0,0012	0,68094	0,01865	538	62	524	L	527	11
		0,05859	0,001	0,08432	0,00109	0,68115	0,01202	552	37	522	Γ	528	L
	2	0,05883	0,00099	0,08388	0,00111	0,6804	0,01201	561	36	519	Γ	527	L
	ŝ	0,05849	0,00096	0,08423	0,00109	0,67935	0,01161	548	35	521	9	526	Γ
	4	0,05819	0,00096	0,08446	0,00112	0,67754	0,01183	536	36	523	Γ	525	Γ
clana37 30um	5	0,05815	0,00086	0,08445	0,00109	0,67713	0,01083	535	33	523	Γ	525	Γ
	9	0,05854	0,00109	0,08388	0,00107	0,67699	0,0125	550	40	519	9	525	8
	7	0,05792	0,00134	0,08469	0,0012	0,67614	0,01541	526	50	524	Γ	524	6
	8	0,05814	0,00091	0,08431	0,00108	0,67598	0,0111	534	34	522	9	524	L
	6	0,05742	0,00101	0,08533	0,00107	0,67562	0,0119	507	39	528	9	524	7
	1	0,05902	0,00083	0,08407	0,00092	0,684	0,0094	568	30	520	5	529	9
	2	0,05856	0,00077	0,08449	0,00092	0,6821	0,00896	551	29	523	5	528	5
	ю	0,05736	0,0008	0,08618	0,00095	0,68145	0,00938	505	30	533	9	528	9
	4	0,05814	0,00076	0,08496	0,00094	0,68087	0,00895	535	29	526	9	527	5
	5	0,05801	0,00098	0,0851	0,00092	0,68036	0,01081	530	37	527	5	527	7
	9	0,05764	0,00073	0,08555	0,00098	0,67976	0,00904	516	28	529	9	527	5
alono£1 20mm	7	0,05769	0,00074	0,08537	0,00097	0,67903	0,00896	518	28	528	9	526	5
LINUC LCALAD	8	0,05848	0,00076	0,08401	0,00091	0,67722	0,00877	548	28	520	5	525	5
	6	0,05713	0,00078	0,08595	0,00094	0,67689	0,00917	496	30	532	9	525	9
	10	0,05755	0,00073	0,08511	0,00098	0,67525	0,00892	512	27	527	9	524	5
	11	0,05832	0,00076	0,08393	0,000	0,67477	0,0087	541	29	520	5	524	5
	12	0,05747	0,00077	0,08514	0,00092	0,67444	0,00888	509	29	527	5	523	5
	13	0,05718	0,00077	0,08547	0,00095	0,67367	0,00914	498	30	529	9	523	9
	14	0,05779	0,00073	0,08427	0,00098	0,67134	0,00892	522	28	522	9	522	5
					M	127							
-----------------	-------------	-------------------	---------------------	-------------	--------------------	-------------------	--------------------	-------------	----------------------	------------------	---------------------	--------------	--------------------
		Razão	Erro (1 0)	Razão	Erro (1 σ)	Razão	Erro (1 0)	Idade	Erro (1 c)	Idade	Erro (1 σ)	Idade	Erro (1 σ)
Seção analítica	N° do ponto	²⁰⁷ Pt	/ ²⁰⁶ Pb	206 Ph	/ ²³⁸ U	²⁰⁷ Pb	/ ²³⁵ U	207 PI	b/ ²⁰⁶ Pb	²⁰⁶ F	b/ ²³⁸ U	207 I	$b^{235}U$
	1	0,05804	0,00067	0,08425	0,00111	0,67307	0,00934	515	25	522	7	523	9
	2	0,05818	0,00063	0,08399	0,00111	0,67276	0,00918	536	24	520	L	522	9
	33	0,05768	0,00064	0,08457	0,00117	0,67233	0,0096	518	24	523	7	522	9
	4	0,0578	0,00078	0,08445	0,00108	0,67125	0,00994	522	29	523	9	522	9
	5	0,0578	0,00063	0,08431	0,00113	0,67109	0,00927	522	24	522	L	521	9
dlana60	9	0,05722	0,00063	0,08489	0,00121	0,6701	0,00987	500	24	525	L	521	9
	7	0,05749	0,00069	0,08461	0,00112	0,66971	0,00964	510	26	524	L	521	9
	8	0,05719	0,00073	0,08498	0,00108	0,66845	0,0096	498	28	526	9	520	9
	6	0,05778	0,00069	0,08372	0,00117	0,66713	0,01	521	26	518	7	519	9
	10	0,05777	0,00067	0,08374	0,00116	0,6671	0,00981	521	25	518	7	519	9
	11	0,05668	0,00065	0,08525	0,00119	0,66644	0,0098	478	25	527	L	519	9
	1	0,05768	0,00081	0,0855	0,00101	0,67913	0,00982	517	31	529	9	526	9
	2	0,05809	0,00092	0,08449	0,00105	0,6755	0,01085	533	35	523	9	524	7
	3	0,05858	0,0007	0,08371	0,00098	0,67522	0,00867	551	26	518	9	524	5
	4	0,05826	0,00072	0,08408	0,00099	0,67429	0,00886	539	27	520	9	523	5
	5	0,05813	0,00083	0,08422	0,00104	0,6742	0,01005	534	31	521	9	523	9
	9	0,05711	0,00075	0,0858	0,00101	0,67406	0,0092	495	29	531	9	523	9
	7	0,05728	0,00079	0,08546	0,001	0,67395	0,00953	502	30	529	9	523	9
	8	0,05755	0,00074	0,08503	0,00101	0,6733	0,00924	512	28	526	9	523	9
	6	0,05745	0,00073	0,08516	0,00102	0,67325	0,00914	508	28	527	9	523	9
Α	10	0,05723	0,00072	0,08533	0,00098	0,67307	0,00884	500	28	528	9	523	5
	11	0,05729	0,0007	0,08537	0,00099	0,67286	0,00876	502	27	528	9	522	5
	12	0,05808	0,00071	0,08416	0,00097	0,67252	0,00872	532	27	521	9	522	5
	13	0,05756	0,00073	0,08489	0,00099	0,67247	0,009	513	27	525	9	522	5
	14	0,05671	0,00082	0,086	0,00101	0,67226	0,00987	480	32	532	9	522	9
	15	0,05749	0,00094	0,0848	0,00103	0,67174	0,01099	510	36	525	9	522	7
	16	0,0579	0,00075	0,0843	0,001	0,67134	0,00922	526	28	522	9	522	9
	17	0,05853	0,00079	0,08264	0,00099	0,66578	0,0094	550	29	512	9	518	9
	18	0,05789	0,00071	0,08308	0,00096	0,66204	0,00863	525	27	515	9	516	S
	19	0,05885	0,00071	0,08152	0,00095	0,66056	0,00853	562	26	505	9	515	5

121

					Μ	127							
		Razão	Erro (1 o)	Razão	Erro (1 s)	Razão	Erro (1 s)	Idade	Erro (1 0)	Idade	Erro (1 0)	Idade	Erro (1 c)
Seção analítica	N° do ponto	²⁰⁷ PI	₀/ ²⁰⁶ Pb	²⁰⁶ PI	0/ ²³⁸ U	²⁰⁷ Pł	√ ²³⁵ U	207 PI	b/ ²⁰⁶ Pb	$^{206}\mathrm{P}$	b/ ²³⁸ U	207	Pb/ ²³⁵ U
	-	0,05805	0,00063	0,08578	0,00107	0,68645	0,00885	531	24	531	9	531	5
	2	0,05851	0,00076	0,08494	0,00109	0,68528	0,00999	549	28	526	L	530	9
	ŝ	0,05827	0,0007	0,08524	0,00103	0,68471	0,00907	539	27	527	9	530	5
	4	0,05815	0,00066	0,0854	0,00105	0,68464	0,00893	535	25	528	9	530	5
	5	0,05802	0,00063	0,08537	0,00107	0,68284	0,00885	530	24	528	9	529	5
	9	0,05744	0,00062	0,08608	0,00109	0,68167	0,00888	508	23	532	9	528	5
	L	0,0579	0,00063	0,08536	0,00111	0,68128	0,00913	526	24	528	L	528	9
	8	0,05851	0,00076	0,08494	0,00109	0,68528	0,00999	549	28	526	L	530	9
	6	0,05792	0,00063	0,08575	0,00107	0,68469	0,00884	527	24	530	9	530	5
	10	0,05815	0,00066	0,0854	0,00105	0,68464	0,00893	535	25	528	9	530	5
	11	0,05883	0,00064	0,08436	0,00106	0,68412	0,00886	561	24	522	9	529	5
6	12	0,05846	0,00072	0,0849	0,00101	0,68392	0,00915	547	27	525	9	529	9
Q	13	0,05858	0,00063	0,0846	0,00108	0,68316	0,00889	552	23	524	9	529	5
	14	0,05802	0,00063	0,08537	0,00107	0,68284	0,00885	530	24	528	9	529	5
	15	0,05862	0,00064	0,08445	0,00108	0,68252	0,00904	553	24	523	9	528	5
	16	0,0579	0,00063	0,08536	0,00111	0,68128	0,00913	526	24	528	7	528	9
	17	0,05847	0,0007	0,08609	0,0011	0,69383	0,0096	547	26	532	L	535	9
	18	0,05793	0,00068	0,08546	0,0011	0,68287	0,00937	527	26	529	L	529	9
	19	0,05808	0,00073	0,08515	0,00105	0,6819	0,00944	532	28	527	9	528	9
	20	0,05865	0,00069	0,08428	0,00108	0,68163	0,00939	554	25	522	9	528	9
	21	0,05777	0,00068	0,08554	0,00113	0,68144	0,0096	521	26	529	L	528	9
	22	0,05828	0,00067	0,08452	0,00107	0,67911	0,00912	540	26	523	9	526	9
	23	0,05756	0,00067	0,08521	0,00109	0,67629	0,00919	513	25	527	9	525	9
	24	0,05733	0,00072	0,08481	0,00107	0,67042	0,00941	504	27	525	9	521	9
	1	0,05803	0,000	0,08454	0,00098	0,67629	0,01037	530	34	523	9	525	9
	2	0,05843	0,00086	0,08388	0,00099	0,67543	0,01009	546	32	519	9	524	9
	ω	0,05843	0,00085	0,08382	0,00099	0,67504	0,00993	546	31	519	9	524	9
С	4	0,05755	0,0008	0,08505	0,00101	0,67472	0,00969	512	31	526	9	524	9
	5	0,05818	0,00101	0,08408	0,00096	0,67432	0,01115	536	38	520	9	523	7
	9	0,05713	0,00105	0,08545	0,001	0,67279	0,01177	496	40	529	9	522	7
	7	0,05716	0,00089	0,08515	0,00097	0,67101	0,01023	497	34	527	9	521	9

					M	127							
		Razão	Erro (1 5)	Razão	Erro (1 0)	Razão	Erro (1 s)	Idade	Erro (1 0)	Idade	Erro (1 o)	Idade	Erro (1 o)
Seção analítica	N° do ponto	207 Pł	/ ²⁰⁶ Pb	²⁰⁶ Pb	/ ²³⁸ U	207 Pt	/ ²³⁵ U	207 PI	o/ ²⁰⁶ Pb	$^{206}\mathrm{P}$	b/ ²³⁸ U	207 _I	b/ ²³⁵ U
	1	0,05889	0,00075	0,0845	0,00088	0,68592	0,00857	562,9	27,51	522,9	5,25	530,3	5,16
	2	0,05897	0,00082	0,08455	0,00087	0,6875	0,00905	565,8	29,35	523,2	5,15	531,3	5,45
004011	3	0,05838	0,00077	0,0848	0,00086	0,68251	0,00862	544	28,6	524,7	5,14	528,3	5,2
TIMSP	4	0,05801	0,00077	0,0853	0,00088	0,68223	0,00872	529,8	29,11	527,7	5,23	528,1	5,26
	5	0,05801	0,00074	0,08589	0,00092	0,68688	0,00872	529,7	28,04	531,2	5,45	530,9	5,25
	6	0,05744	0,00077	0,08611	0,00088	0,68211	0,00876	508,1	29,17	532,5	5,22	528	5,29
	1	0,05867	0,00072	0,08468	0,00089	0,68498	0,00835	555	26	524	5	530	5
	2	0,05843	0,00065	0,08503	0,00087	0,68485	0,00753	546	24	526	5	530	5
	33	0,0585	0,00071	0,08492	0,00092	0,68479	0,00849	549	26	525	5	530	5
Tche 1 DAV1	4	0,05779	0,00064	0,08574	0,00088	0,68297	0,00753	522	24	530	5	529	5
1 aute 2 - DAY 1	5	0,05767	0,00065	0,08588	0,00089	0,68253	0,00771	517	24	531	5	528	5
	9	0,05816	0,00071	0,0851	0,00089	0,68238	0,00825	535	27	527	5	528	5
	L	0,05868	0,00064	0,08435	0,00087	0,68233	0,00751	555	24	522	5	528	5
	8	0,05796	0,00063	0,08537	0,00088	0,682	0,00744	528	24	528	5	528	4
	1	0,05713	0,00064	0,08652	0,00089	0,68137	0,00764	496	25	535	5	528	5
	2	0,05824	0,00064	0,08485	0,0009	0,68109	0,00767	538	24	525	5	527	5
	3	0,05768	0,00063	0,08568	0,00089	0,68108	0,00747	517	23	530	5	527	5
	4	0,05819	0,00064	0,08485	0,00088	0,68061	0,00754	536	25	525	5	527	5
Table 2 - Day 2	5	0,05751	0,00079	0,08582	0,00087	0,68014	0,00882	511	30	531	5	527	5
	9	0,05864	0,00066	0,08572	0,00092	0,69267	0,00803	554	24	530	5	534	5
	L	0,05804	0,00064	0,08493	0,00095	0,67964	0,00804	531	24	526	9	527	5
	8	0,05761	0,00066	0,08538	0,00094	0,67812	0,0081	515	24	528	9	526	5
	6	0,05753	0,00065	0,08537	0,00094	0,67707	0,00802	512	24	528	9	525	5

					M	127							
		Razão	Erro (1 σ)	Razão	Erro (1 σ)	Razão	Erro (1 0)	Idade	Erro (1 σ)	Idade	Erro (1 σ)	Idade	Erro (1 σ)
Seção analítica	N° do ponto	²⁰⁷ Pt	0/ ²⁰⁶ Pb	²⁰⁶ Pt	₀⁄² ³⁸ U	207 Pt	∕ ²³⁵ U	^{207}P	$b^{206}Pb$	206 J	∕b/ ²³⁸ U	207 F	$\mathbf{b}^{235}\mathbf{U}$
	1	0,05682	0,00065	0,08634	0,00096	0,67641	0,00817	484	25	534	9	525	5
	2	0,05758	0,00065	0,08519	0,00094	0,67635	0,00806	514	24	527	9	525	5
	ю	0,05696	0,00065	0,08596	0,00096	0,67504	0,00813	489	25	532	9	524	5
Table 2 Der 2	4	0,05789	0,00085	0,08535	0,00084	0,68126	0,00956	525	32	528	5	528	9
1 aure 2 - Day 3	5	0,05845	0,00088	0,08449	0,00082	0,68096	0,00959	547	32	523	S	527	9
	9	0,05823	0,00085	0,0847	0,00082	0,68016	0,00935	538	32	524	S	527	9
	7	0,05774	0,00083	0,08534	0,00083	0,67934	0,00925	520	31	528	5	526	9
	8	0,05831	0,00086	0,08447	0,00081	0,67917	0,00929	541	33	523	5	526	9
	1	0,0571	0,00085	0,08617	0,00086	0,67841	0,0097	495	33	533	5	526	9
	2	0,05717	0,00089	0,08599	0,00086	0,67799	0,01002	498	34	532	5	526	9
	ε	0,05761	0,00084	0,08532	0,00082	0,67757	0,00937	515	32	528	5	525	9
	4	0,05749	0,00084	0,08548	0,00084	0,67757	0,0095	510	31	529	5	525	9
Table 2 - Day 4	5	0,05796	0,00087	0,08479	0,0008	0,67755	0,00936	528	33	525	5	525	9
	9	0,05762	0,00087	0,08514	0,00083	0,67649	0,00961	515	33	527	5	525	9
	7	0,05764	0,00089	0,0851	0,00084	0,67626	0,00982	516	34	527	5	525	9
	8	0,05715	0,00091	0,08581	0,00083	0,67621	0,0099	497	35	531	5	525	9
	6	0,05752	0,00089	0,08523	0,00082	0,67591	0,00968	511	34	527	5	524	9
	1	0,05803	0,00068	0,08472	0,000	0,67782	0,00818	530	26	524	S	526	S
	2	0,05841	0,0007	0,08412	0,00089	0,67746	0,00828	545	26	521	5	525	5
	3	0,0581	0,00069	0,08448	0,000	0,67664	0,00832	533	26	523	5	525	5
	4	0,05807	0,00069	0,08449	0,00092	0,67646	0,00843	532	26	523	5	525	5
Table 2 - Day 5	5	0,05854	0,00079	0,08378	0,00092	0,67603	0,00926	550	29	519	S	524	9
	9	0,05806	0,0007	0,08445	0,00087	0,67592	0,00813	532	27	523	S	524	S,
	L	0,05766	0,00071	0,08498	0,00098	0,67541	0,00893	516	27	526	9	524	S,
	8	0,05826	0,00068	0,08406	0,00092	0,67517	0,00828	539	26	520	S	524	S
	6	0,05769	0,00069	0,08487	0,00089	0,67505	0,00819	518	26	525	5	524	5
	1	0,058	0,00068	0,08432	0,00089	0,67429	0,00809	531	27	522	5	524	5
	2	0,05775	0,00073	0,08467	0,00087	0,67392	0,0084	529	26	522	5	523	5
	ю	0,05766	0,00072	0,08471	0,00087	0,67314	0,0083	520	28	524	5	523	5
	4	0,05767	0,00072	0,0846	0,00087	0,67255	0,00837	517	27	524	5	523	5
Table 2 - Day 6	5	0,05773	0,0007	0,08448	0,00093	0,67238	0,00857	517	28	524	5	522	5
	9	0,05769	0,0007	0,08451	0,00087	0,67215	0,00815	519	27	523	9	522	5
	7	0,05753	0,00067	0,08467	0,00089	0,67159	0,00804	518	27	523	S	522	S
	8	0,05867	0,0009	0,08473	0,00083	0,6855	0,00991	512	25	524	S	522	5
	6	0,05805	0,00071	0,08433	0,00089	0,67488	0,00833	555	33	524	5	530	9

	Erro (1 σ)	'Pb/ ²³⁵ U	ν,	in n	in v	n vr	o vo	S	4	ŝ	ŝ	ŝ	5	v, i	n v	n v	n vo	ŝ	S	5	9	9	vo		0 0	9	9	9	9	9	9	vov	o vo	5	5	ŝ	9	ŝ	n v	n vo	ŝ	5	5	v, v	n vr	י זי	n vr	n vo	5	6,44	6 22	115
	Idade	202	530	530	530	805	528	528	528	528	527	527	527	527	450 703	526	525	525	525	524	528	527	527	526	526	526	525	525	525	525	525	525	526	525	525	525	524	524 4 0 1	470 470	524	524	523	523	523	522	522	522	530	2	537,2	0 404	0,070
	Erro (1 σ)	$Pb/^{238}U$	ν,	in n	v v	n v	o vo	S	5	ŝ	S	ŝ	S	ν, i	n v		0 0	9	9	9	ŝ	in n	v v	n v	מי ה	ŝ	S	5	ŝ	2	i N	vn v	n vî	S	5	ŝ	ŝ	n v	οv	n va	ŝ	S	ŝ	v, v	n vc	יי כ	ο v	רא ה	,	5,27		5,15
	Idade	206	524	526	525	531	527	522	528	535	525	530	525	531	050 276	528	528	534	527	532	528	523	524	523	533 533	532	528	529	525	527	527	531	524	521	523	523	519	523	025	525	522	522	524	524	523	523	070 702	524 524		526,8		527,7
	Erro (1 σ)	b/ ²⁰⁶ Pb	26	24	50 57	4 C	27	24	24	25	24	23	25	30	4 c	4 C	40	25	24	25	32	32	32	10	9 C 0 0	34	32	31	33	33	8 i	35 2	26	26	26	26	29	27	26	26	27	26	28	27	07	14	, c 8	33	2	34,77		35,35
	Idade	207 I	555	546	549	517	535	555	528	496	538	517	536	511	400 163	515	512	484	514	489	525	547	538	541	495	498	515	510	528	515	516	497 511	530	545	533	532	550	532	010	518	531	529	520	517	519 519	518	010	555	2	581,6		514
	Erro (1 σ)	b/ ²³⁵ U	0,00835	0,00753	0,00849	0,00771	0,00825	0,00751	0,00744	0,00764	0,00767	0,00747	0,00754	0,00882	0,00803	0.0081	0.00802	0,00817	0,00806	0,00813	0,00956	0,00959	0,00935	0.00929	0.0097	0,01002	0,00937	0,0095	0,00936	0,00961	0,00982	0,0099	0.00818	0,00828	0,00832	0,00843	0,00926	0,00813	0.00828	0.00819	0,00833	0,00809	0,0084	0,0083	0.00857	0.00815	0.00804	0,00991		0,01077		0,01028
1127	Razão	²⁰⁷ PI	0,68498	0,68485	0,68479	0.68253	0,68238	0,68233	0,682	0,68137	0,68109	0,68108	0,68061	0,68014	0,69267	0.67812	0.67707	0,67641	0,67635	0,67504	0,68126	0,68096	0,68016	0.67917	0.67841	0,67799	0,67757	0,67757	0,67755	0,67649	0,67626	0,67621	0.67782	0,67746	0,67664	0,67646	0,67603	0,67592	0,67517	0.67505	0,67488	0,67429	0,67392	0,67314	0,67238	0.672.15	0.67159	0,6855		0,69739		0,67751
N	Erro (1 σ)	b/ ²³⁸ U	0,00089	0,00087	0,00092	0.00089	0,00089	0,00087	0,00088	0,00089	0,0009	0,00089	0,00088	0,00087	0,00092	0.00004	0.00094	0,00096	0,00094	0,00096	0,00084	0,00082	0,00082	0.00081	0.00086	0,00086	0,00082	0,00084	0,0008	0,00083	0,00084	0,00083	0.0009	0,00089	0,0009	0,00092	0,00092	0,00087	0.0000	0.00089	0,00089	0,00089	0,00087	0,00087	0.00093	0.00087	0,00089	0,00083		0,00089		0,00087
	Razão	$^{206}\mathbf{P}$	0,08468	0,08503	0,08492	0.08588	0,0851	0,08435	0,08537	0,08652	0,08485	0,08568	0,08485	0,08582	0,08402	0.08538	0.08537	0,08634	0,08519	0,08596	0,08535	0,08449	0,0847	0.08447	0.08617	0,08599	0,08532	0,08548	0,08479	0,08514	0,0851	0,08581	0.08472	0,08412	0,08448	0,08449	0,08378	0,08445	0,08496	0.08487	0,08433	0,08432	0,08467	0,08471	0,0040 0.08448	0.08451	0.08467	0,08473		0,08515		0,08531
	Erro (1 σ)	o∕ ²⁰⁶ Pb	0,00072	0,00065	0,00071	0.00065	0,00071	0,00064	0,00063	0,00064	0,00064	0,00063	0,00064	0,00079	0,00064	0.00066	0.00065	0,00065	0,00065	0,00065	0,00085	0,00088	0,00085	0.00086	0.00085	0,00089	0,00084	0,00084	0,00087	0,00087	0,00089	0,00091	0,00068	0,0007	0,00069	0,00069	0,00079	0,00071	0.000.1	0.00069	0,00071	0,00068	0,00073	0,00072	0 0007	0,0007	0.00067	6000,0		0,00096		0,00093
	Razão	²⁰⁷ PI	0,05867	0,05843	0,0585	0.05767	0,05816	0,05868	0,05796	0,05713	0,05824	0,05768	0,05819	0,05751	0,05864	0.05761	0.05753	0.05682	0,05758	0,05696	0,05789	0,05845	0,05823	0.05831	0.0571	0,05717	0,05761	0,05749	0,05796	0,05762	0,05764	0,05715	0.05803	0,05841	0,0581	0,05807	0,05854	0,05806	0.05826	0.05769	0,05805	0,058	0,05775	0,05766	0.05773	0.05769	0.05753	0,05867		0,0594		0,05759
		N° do ponto		61 0	m ∠	t v	9	7	8	6	10	11	12	13	14 7	16	17	18	19	20	21	22	23	4 C	26	27	28	29	30	31	32	60 6 7 6	1 20	36	37	38	39	40	41	1 4	44	45	46	47	40 49	ν 1 Ο λ	25	52		1		2
	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	Seção analítica																								SKIS																										

ANEXO V - DADOS ANALÍTICOS DO PADRÃO DE ZIRCÃO 91500

						91500							
		Razão	Erro (1 J)	Razão	Erro (1 J)	Razão	Erro (1 c)	Idade	Erro (1 o)	Idade	Erro (1 o)	Idade	Erro (1 o)
Seção analítica	N° do ponto	²⁰⁷ Pt	0 ²⁰⁶ Pb	²⁰⁶ PI	√ ²³⁸ U	²⁰⁷ PI	∕ ²³⁵ U	²⁰⁷ Pt	J ²⁰⁶ Pb	²⁰⁶ P	0/ ²³⁸ U	$^{207}\mathrm{P}$	0/ ²³⁵ U
	1	0,07539	0,00089	0,1797	0,0021	1,86801	0,02376	1079	23,51	1065,3	11,45	1069,8	8,41
	2	0,07544	0,00091	0,17956	0,00203	1,86769	0,02339	1080, 2	23,9	1064,6	11,07	1069,7	8,28
	3	0,07568	0,00093	0,17898	0,00208	1,86767	0,02436	1086,7	24,51	1061,4	11,39	1069,7	8,63
	4	0,0756	0,00088	0,17892	0,00205	1,86514	0,02328	1084, 6	23,24	1061,1	11,21	1068, 8	8,25
7716	5	0,0752	0,00086	0,1796	0,00204	1,86221	0,02274	1073,9	22,83	1064.8	11,12	1067,8	8,07
	9	0,07516	0,00088	0, 17969	0,00204	1,86216	0,02318	1072,9	23,44	1065,3	11,16	1067,8	8,22
	L	0,07477	0,00086	0,18013	0,00204	1,85696	0,0227	1062,3	22,97	1067, 7	11,13	1065.9	8,07
	8	0,07482	0,00086	0,17972	0,00204	1,85415	0,02274	1063,8	23,01	1065,5	11,14	1064,9	8,09
	6	0,07641	0,00097	0,17489	0,00195	1,84255	0,02374	1105,9	25,22	1039	10,69	1060,8	8,48
	1	0,07553	0,00099	0,18005	0,00191	1,87482	0,02376	1082,6	25,99	1067,3	10,44	1072,2	8,39
	2	0,07563	0,00089	0, 17924	0,00193	1,86874	0,02235	1085,2	23,5	1062,8	10,57	1070, 1	7,91
	3	0,0753	0,00085	0,17942	0,00197	1,86254	0,02197	1076,5	22,61	1063.8	10,74	1067,9	7,79
	4	0,0754	0,00087	0, 17909	0,00195	1,86191	0,02206	1079,3	22,97	1062	10,66	1067,7	7,83
	5	0,07526	0,00087	0, 17939	0,00193	1,86147	0,02187	1075,6	22,94	1063,6	10,57	1067,5	7,76
7718	9	0,07507	0,00085	0,17938	0,00196	1,85667	0,02173	1070,5	22,46	1063,6	10,69	1065,8	7,72
	7	0,07505	0,00089	0, 17934	0,00192	1,85554	0,02207	1069, 8	23,56	1063,4	10,51	1065,4	7,85
	8	0,07511	0,00088	0, 17908	0,00194	1,85439	0,02202	1071,4	23,25	1061,9	10,59	1065	7,83
	6	0,07485	0,00092	0, 17927	0,00191	1,84978	0,02244	1064,4	24,4	1063	10,45	1063,4	8
	10	0,07428	0,00087	0, 17989	0,00191	1,84194	0,02167	1049	23,49	1066,4	10,44	1060, 6	7,74
	11	0,07399	0,00088	0,1796	0,00201	1,83216	0,02267	1041,2	23,86	1064,8	10,98	1057,1	8,13

						91500							
		Razão	Erro (1 σ)	Razão	Erro (1 σ)	Razão	Erro (1 σ)	Idade	Erro (1 σ)	Idade	Erro (1 σ)	Idade	Erro (1 σ)
Seção analítica	N° do ponto	207 PI	$b^{206}Pb$	²⁰⁶ PI	$b^{238}U$	$^{207}\mathbf{P}$	$b^{235}U$	207 PJ	$b^{206}Pb$	$^{206}\mathrm{P}$	b/ ²³⁸ U	$^{207}\mathbf{P}$	$b^{235}U$
	1	0,07345	0,00104	0,17919	0,00201	181.418	0,02508	1026,5	28,03	1062,6	10,98	1050,6	9,05
	2	0,07251	0,00105	0, 17924	0,00199	179.178	0,0252	1000,2	29,22	1062, 8	10,86	1042,5	9,16
	3	0,07441	0,00105	0, 17927	0,00198	183.903	0,02517	1052,6	28,1	1063	10,84	1059,5	6
	4	0,07523	0,00142	0,17938	0,00237	186.012	0,03437	1074,7	37,33	1063, 6	12,96	1067	12,2
	5	0,07494	0,00151	0,1794	0,00225	185.332	0,03528	1066.9	39,89	1063,7	12,28	1064, 6	12,56
	9	0,07573	0,00108	0, 17943	0,00198	187.279	0,0258	1088	28,22	1063,9	10,84	1071,5	9,12
	7	0,07517	0,00116	0, 17962	0,00201	186.078	0,02761	1072,9	30,76	1064,9	10,98	1067, 3	9,8
7473Hb	8	0,07478	0,00108	0, 17976	0,00197	185.278	0,02566	1062,7	28,68	1065,6	10,77	1064,4	9,13
	6	0,07484	0,00105	0, 17979	0,00202	185.433	0,02564	1064,3	28,01	1065,8	11,02	1065	9,12
	10	0,07456	0,00122	0, 17979	0,00205	184.758	0,02881	1056,3	32,95	1065,8	11,2	1062, 6	10,27
	11	0,07347	0,00103	0, 17993	0,00208	182.218	0,02548	1027,1	27,76	1066, 6	11,35	1053,5	9,17
	12	0,07514	0,00114	0, 17992	0,00207	186.372	0,02742	1072,3	30,26	1066, 6	11,32	1068, 3	9,72
	13	0,07453	0,00136	0,18015	0,00212	185.082	0,03191	1055,6	36,54	1067, 8	11,58	1063,7	11,37
	14	0,07502	0,00108	0,18031	0,00199	186.481	0,02588	1069, 1	28,59	1068, 7	10,88	1068, 7	9,17
	15	0,07382	0,00102	0,18036	0,00201	183.526	0,02485	1036,6	27,54	1068,9	10,97	1058, 2	8,9
	1	0,07657	0,00097	0,17742	0,00212	187.267	0,02474	1110,1	24,98	1052,9	11,59	1071,5	8,74
	2	0,07662	0,00097	0,17744	0,00209	187.410	0,02474	1111,3	25,19	1053	11,47	1072	8,74
	ю	0,07504	0,00098	0,17844	0,00207	184.597	0,02457	1069,7	26,07	1058,5	11,32	1062	8,76
	4	0,07508	0,00108	0,17864	0,00206	184.920	0,02629	1070,8	28,76	1059,5	11,24	1063, 1	9,37
	5	0,07508	0,00165	0,17889	0,00251	185.136	0,03924	1070,7	43,54	1060,9	13,75	1063,9	13,98
	9	0,07513	0,00099	0,17891	0,00208	185.287	0,02478	1072	26,21	1061	11,35	1064.5	8,82
	7	0,07497	0,00144	0,1791	0,00222	185.141	0,03391	1067,8	38,1	1062	12,16	1063,9	12,08
	8	0,07511	0,00104	0,17937	0,00212	185.679	0,02607	1071,3	27,57	1063, 6	11,58	1065,8	9,27
	9	0,07483	0,0013	0, 17949	0,00225	185.112	0,0315	1064	34,45	1064, 2	12,32	1063, 8	11,22
	10	0,07475	0,00096	0, 17976	0,00207	185.229	0,02426	1061, 7	25,7	1065, 6	11,29	1064, 2	8,63
a7959	11	0,0749	0,0012	0, 17974	0,00237	185.574	0,03072	1065,9	31,98	1065, 6	12,92	1065,5	10,92
	12	0,07605	0,00158	0, 17977	0,00243	188.441	0,03756	1096,4	40,93	1065,7	13,3	1075,6	13,22
	13	0,07515	0,00138	0, 17987	0,00222	186.386	0,03283	1072,6	36,41	1066,3	12,15	1068,4	11,64
	14	0,0745	0,00102	0,18009	0,00212	184.916	0,02561	1054,8	27,54	1067,5	11,6	1063, 1	9,13
	15	0,0746	0,00114	0,18028	0,00213	185.340	0,02786	1057,4	30,69	1068,5	11,63	1064, 6	9,91
	16	0,0748	0,00094	0,1804	0,00212	186.015	0,02423	1063, 1	24,98	1069, 2	11,57	1067	8,6
	17	0,0745	0,00103	0,18052	0,00214	185.378	0,02603	1054,7	27,84	1069, 8	11,7	1064, 8	9,26
	18	0,07442	0,001	0,18064	0,00212	185.282	0,02548	1052,8	26,96	1070,4	11,58	1064, 4	9,07
	19	0,07445	0,00116	0,1808	0,00219	185.551	0,02867	1053,3	31,39	1071,3	11,94	1065,4	10, 19
	20	0,07472	0,001	0,18099	0,00214	186.417	0,02555	1061, 1	26,61	1072,4	11,69	1068,5	9,06
	21	0.07439	0,00104	0.1812	0.00208	185.839	0.02587	1052.1	28.04	1073.5	11.38	1066.4	9.19

						91500							
		Razão	Erro (1 o)	Razão	Erro (1 c)	Razão	Erro (1 c)	Idade	Erro (1 J)	Idade	Erro (1 J)	Idade	Erro (1 s)
Seção analítica	N° do ponto	²⁰⁷ Pt	y ²⁰⁶ Pb	²⁰⁶ PI	b/ ²³⁸ U	²⁰⁷ Pt	y² ³⁵ U	207 Pl	b/ ²⁰⁶ Pb	206 P	$b^{238}U$	207 Pb	/ ²³⁵ U
		0,07539	0,00095	0,17895	0,00212	185.996	0,02498	1078,9	24,96	1061,2	11,6	1067	8,87
	2	0,0764	0,00102	0,17896	0,00206	188.491	0,02581	1105,5	26,5	1061,3	11,29	1075,8	9,08
	33	0,07571	0,0014	0,17897	0,00221	186.740	0,0331	1087,4	36,51	1061,4	12,06	1069,6	11,72
7778 - 57h	4	0,07559	0,00094	0,17901	0,00207	186.544	0,02438	1084,1	24,67	1061,5	11,31	1068,9	8,64
010-0711	5	0,07518	0,00093	0,17931	0,00206	185.853	0,0241	1073,3	24,52	1063,2	11,28	1066,5	8,56
	6	0,07564	0,00094	0,17939	0,00213	187.082	0,02496	1085,5	24,72	1063, 6	11,65	1070, 8	8,83
	L	0,075	0,00106	0,17952	0,00206	185.625	0,02631	1068,4	28,2	1064,4	11,26	1065,7	9,35
	8	0,07562	0,00096	0, 1797	0,00214	187.376	0,02539	1085,1	25,22	1065,4	11,68	1071,9	8,97
	1	0,07599	0,00094	0,17923	0,0021	187.790	0,02468	1094,9	24,49	1062,8	11,47	1073,3	8,71
4E3 0CEE	2	0,07557	0,00091	0, 17929	0,00213	186.821	0,02429	1083,8	23,84	1063,1	11,62	1069,9	8,6
010-6711	ю	0,0759	0,00109	0,18027	0,00212	188.661	0,02739	1092,5	28,44	1068,4	11,6	1076,4	9,64
	4	0,0752	0,00091	0,18028	0,00212	186.929	0,02432	1073,9	24,06	1068,5	11,56	1070,3	8,61
	1	0,0753	0,00105	0,17918	0,0022	186.020	0,02736	1076,6	27,71	1062,5	12,04	1067, 1	9,71
	2	0,07583	0,00109	0,17942	0,00216	187.553	0,02778	1090,6	28,58	1063.8	11,81	1072,5	9,81
7730 - 576	ю	0,07407	0,00121	0,17944	0,0022	183.234	0,03001	1043,5	32,54	1063.9	12,02	1057,1	10,76
BIC - 0011	4	0,07473	0,00105	0,17949	0,00219	184.910	0,02728	1061,1	28,03	1064,2	11,99	1063, 1	9,72
	S	0,07416	0,00103	0,17978	0,00217	183.779	0,02674	1045,8	27,87	1065.8	11,86	1059,1	9,57
	9	0,07442	0,00117	0,17997	0,00222	184.650	0,03004	1052,9	31,25	1066,8	12,15	1062,2	10,72

129

						91500							
		Razão	Erro (1 0)	Razão	Erro (1 0)	Razão	Erro (1 σ)	Idade	Erro (1 σ)	Idade	Erro (1 0)	Idade	Erro (1 0)
Seção analítica	N° do ponto	²⁰⁷ Pt	1 ²⁰⁶ Pb	²⁰⁶ Pl	₅ / ²³⁸ U	²⁰⁷ PI	y ²³⁵ U	²⁰⁷ P	b/ ²⁰⁶ Pb	$^{206}\mathrm{P}$	b/ ²³⁸ U	$^{207}\mathbf{P}$	o∕² ³⁵ U
	1	0,07572	0,00089	0,17918	0,00206	187.055	0,0234	1087,7	23,35	1062,5	11,26	1070,7	8,28
	2	0,07629	0,00088	0, 17924	0,00204	188.529	0,02324	1102,7	22,94	1062,8	11,18	1075,9	8,18
	3	0,07563	0,00095	0,17936	0,0021	187.018	0,0248	1085,3	24,98	1063,5	11,46	1070, 6	8,78
	4	0,07479	0,00095	0,17957	0,00206	185.141	0,02445	1062,8	25,43	1064,6	11,24	1063,9	8,71
	5	0,07519	0,00093	0,17956	0,00207	186.124	0,02417	1073,5	24,54	1064,6	11,33	1067, 4	8,58
34 1771	9	0,07519	0,00095	0, 17986	0,0021	186.435	0,0249	1073,5	25,28	1066,2	11,49	1068,5	8,83
nc - Tc//	7	0,0759	0,00089	0,17988	0,00205	188.239	0,02346	1092,5	23,32	1066,3	11,22	1074,9	8,26
	8	0,07576	0,00095	0,17997	0,00212	187.975	0,02503	1088,8	24,87	1066,8	11,59	1074	8,82
	6	0,07396	0,00092	0,18009	0,00208	183.635	0,02402	1040,4	24,97	1067,5	11,35	1058,6	8,6
	10	0,07526	0,00095	0,18014	0,00213	186.903	0,025	1075,4	25,07	1067,7	11,61	1070, 2	8,85
	11	0,07474	0,00088	0,18017	0,00206	185.652	0,02322	1061,5	23,52	1067,9	11,24	1065,8	8,25
	12	0,07515	0,00089	0,18032	0,00205	186.830	0,02326	1072,5	23,5	1068,7	11,17	1069,9	8,23
		0,07439	0,00086	0,17948	0,00221	184.081	0,02426	1052	23,21	1064, 1	12,06	1060,2	8,67
7732 - 63	2	0,07513	0,00089	0, 17953	0,00222	185.980	0,02499	1072,1	23,74	1064,4	12,13	1066,9	8,87
00 - 7011	ю	0,0745	0,000	0,17955	0,00218	184.443	0,02461	1054,8	24,4	1064,5	11,94	1061,4	8,79
	4	0,07443	0,00087	0,17999	0,00221	184.701	0,02451	1053	23,46	1066,9	12,1	1062,4	8,74
	1	0,07458	0,0011	0,17873	0,00215	183.779	0,02766	1057	29,83	1060, 1	11,75	1059, 1	9,9
	2	0,07413	0,00092	0, 17882	0,00211	182.785	0,02429	1045	24,91	1060, 6	11,55	1055,5	8,72
	33	0,07733	0,00135	0, 17888	0,0023	190.671	0,0333	1129,6	34,45	1060, 8	12,57	1083,4	11,63
7733 - 576	4	0,07688	0,00132	0, 17922	0,00233	189.990	0,03306	1118	33,99	1062,7	12,76	1081,1	11,58
BIG-0011	5	0,07331	0,00096	0,17925	0,00211	181.191	0,02476	1022,5	26,21	1062,9	11,53	1049,8	8,94
	9	0,0749	0,00095	0,17939	0,00212	185.274	0,0249	1065,8	25,32	1063, 6	11,57	1064,4	8,86
	7	0,0754	0,00092	0,1796	0,0021	186.717	0,02429	1079, 1	24,31	1064.8	11,45	1069.5	8,6
	8	0,0756	0,00096	0,18	0,00213	187.640	0,02528	1084,5	25,29	1067	11,63	1072,8	8,92

						91500							
		Razão	Erro (1 0)	Razão	Erro (1 σ)	Razão	Erro (1 σ)	Idade	Erro (1 s)	Idade	Erro (1 0)	Idade	Erro (1 c)
Seção analítica	N° do ponto	²⁰⁷ PI	$b/^{206}$ Pb	²⁰⁶ Pł	₅ / ²³⁸ U	²⁰⁷ Pł	√ ²³⁵ U	$^{207}\mathrm{Pb}$	v ²⁰⁶ Pb	206 P	b/ ²³⁸ U	207 P	$b^{235}U$
	1	0,0748	0,00086	0,18204	0,00205	1,87751	0,02284	1063,2	22,92	1078,1	11,2	1073,2	8,06
	2	0,07479	0,00094	0,18084	0,00198	1,8649	0,02345	1063	25,05	1071,5	10,78	1068,7	8,31
CE101 630	33	0,07484	0,00092	0,18029	0,00202	1,86055	0,02354	1064,3	24,58	1068,5	11,01	1067,2	8,36
BC0-1017C	4	0,07513	0,00096	0, 17928	0,00203	1,85731	0,02466	1072,1	25,47	1063,1	11,1	1066	8,76
	5	0,07453	0,000	0,1807	0,00201	1,85704	0,0231	1055,7	24,4	1070,8	10,99	1065,9	8,21
	6	0,07471	0,00086	0,18026	0,00199	1,85691	0,02237	1060,7	23,12	1068,4	10,89	1065,9	7,95
	1	0,07561	0,00093	0,1802	0,00205	1,87843	0,02505	1084,7	24,57	1068	11,19	1073,5	8,84
	2	0,07586	0,00088	0, 17949	0,00203	1,877	0,02419	1091, 3	23,04	1064,2	11,11	1073	8,54
	3	0,07548	0,00083	0,1802	0,00204	1,8751	0,02356	1081,3	21,91	1068	11,12	1072,3	8,32
	4	0,07561	0,00086	0,1798	0,00205	1,87416	0,02398	1084,7	22,53	1065,9	11,19	1072	8,47
	5	0,07525	0,0008	0,18059	0,00207	1,87352	0,02332	1075,3	21,16	1070,2	11,28	1071,8	8,24
	9	0,07581	0,00092	0, 17925	0,0021	1,8734	0,02524	1090,2	24,06	1062,9	11,49	1071,7	8,92
	L	0,0754	0,0008	0,18012	0,00204	1,87229	0,02326	1079,2	21,26	1067,6	11,13	1071,3	8,22
77666000	8	0,07554	0,00089	0,17973	0,00205	1,87164	0,02446	1082,8	23,42	1065,5	11,22	1071,1	8,65
	6	0,07561	0,00083	0,17947	0,00203	1,87076	0,02354	1084,7	21,86	1064, 1	11,11	1070,8	8,32
	10	0,07499	0,00084	0,17986	0,00206	1,85952	0,02379	1068, 2	22,38	1066,2	11,23	1066,8	8,45
	11	0,07502	0,0011	0, 17941	0,00215	1,85547	0,02798	1069, 1	29,25	1063,7	11,76	1065,4	9,95
	12	0,07467	0,00089	0,18018	0,00206	1,85477	0,0244	1059,7	23,82	1067,9	11,23	1065,1	8,68
	13	0,07463	0,00085	0,18015	0,00209	1,85349	0,02425	1058,3	23,21	1067,8	11,44	1064,7	8,63
	14	0,07437	0,00082	0,18047	0,00206	1,85028	0,02356	1051,5	22,16	1069,5	11,27	1063,5	8,39
	15	0,07484	0,00081	0, 17932	0,00203	1,85025	0,02317	1064,3	21,64	1063,3	11,1	1063,5	8,25
	16	0,07447	0,00089	0,18006	0,00212	1,84865	0,02497	1054	24,31	1067,3	11,6	1062,9	8,9