PROGRAMA GEOLOGIA DO BRASIL LEVANTAMENTO DA GEODIVERSIDADE

# ATLAS MOVIMENTOS GRAVITACIONAIS DE MASSA E INUNDAÇÃO DE DO BRASIL

Equações Intensidade-Duração-Frequência

Município: Iúna

Estação Pluviométrica: Iúna

Código ANA: 02041013



#### MINISTÉRIO DE MINAS E ENERGIA SECRETARIA DE GEOLOGIA, MINERAÇÃO E TRANSFORMAÇÃO MINERAL CPRM - SERVIÇO GEOLÓGICO DO BRASIL

#### PROGRAMA GEOLOGIA DO BRASIL LEVANTAMENTO DA GEODIVERSIDADE

# CARTA DE SUSCETIBILIDADE A MOVIMENTOS GRAVITACIONAIS DE MASSA E INUNDAÇÃO

# ATLAS PLUVIOMÉTRICO DO BRASIL EQUAÇÕES INTENSIDADE-DURAÇÃO-FREQUÊNCIA

Município: Iúna - ES

Estação Pluviométrica: Iúna, Código ANA 02041013

#### PROGRAMA GEOLOGIA DO BRASIL

#### LEVANTAMENTO DA GEODIVERSIDADE

#### CARTAS MUNICIPAIS DE SUSCETIBILIDADE A MOVIMENTOS DE MASSA E ENCHENTES

#### ATLAS PLUVIOMÉTRICO DO BRASIL

## EQUAÇÕES INTENSIDADE-DURAÇÃO-FREQÜÊNCIA (Desagregação de Precipitações Diárias)

Executado pela Companhia de Pesquisa de Recursos Minerais - CPRM Residência de Teresina

Copyright @ 2016 CPRM – Residência de Teresina

Rua Goiás, 312 – Frei Serafim Teresina - PI - 64.001-620 Telefone: 0(xx)(86)3222-4153

Fax: 0(xx)(86) 3223-6188

http://www.cprm.gov.br

#### Ficha Catalográfica

#### Companhia de Pesquisa de Recursos Minerais - CPRM

Atlas Pluviométrico do Brasil; Equações Intensidade-Duração-Frequência (Desagregação de Precipitações Diárias). Município: Iúna. Estação Pluviométrica: Iúna, Código 02041013. Jean Ricardo da Silva do Nascimento; José Alexandre Moreira Farias; Eber José de Andrade Pinto. Teresina, PI: CPRM, 2016.

13p.; anexos (Série Atlas Pluviométrico do Brasil)

1. Hidrologia 2. Pluviometria 3. Equações IDF 4. I - Título II - NASCIMENTO, J. R. S.; FARIAS J. A. M.; PINTO, E. J. A.

CDU: 556.51

Direitos desta edição: CPRM - Serviço Geológico do Brasil

É permitida a reprodução desta publicação desde que mencionada a fonte.

#### MINISTÉRIO DE MINAS E ENERGIA

#### MINISTRO DE ESTADO

Fernando Coelho Filho

#### SECRETÁRIO EXECUTIVO

Paulo Pedrosa

#### SECRETÁRIO DE GEOLOGIA, MINERAÇÃO E TRANSFORMAÇÃO MINERAL

Vicente Humberto Lôbo Cruz

### COMPANHIA DE PESQUISA DE RECURSOS MINERAIS SERVIÇO GEOLÓGICO DO BRASIL (CPRM/SGB)

#### CONSELHO DE ADMINISTRAÇÃO

#### **Presidente**

Carlos Nogueira da Costa Junior

#### **Vice-Presidente**

Manoel Barreto da Rocha Neto

#### **Conselheiros**

Ladice Peixoto

Luiz Gonzaga Baião

Jarbas Raimundo de Aldano Matos

Osvaldo Castanheira

#### DIRETORIA EXECUTIVA

#### **Diretor-Presidente**

Eduardo Jorge Ledsham

#### Diretor de Hidrologia e Gestão Territorial

Stenio Petrovich Pereira

#### Diretor de Geologia e Recursos Minerais

Roberto Ventura Santos

#### Diretor de Relações Institucionais e Desenvolvimento

Antônio Carlos Bacelar Nunes

#### Diretor de Administração e Finanças

Nelson Victor Le Cocq D'Oliveira

#### RESIDÊNCIA DE TERESINA

Francisco Roberio Batista Almeida Chefe da Residência

Jean Ricardo da Silva do Nascimento Assistente de Hidrologia e Gestão Territorial

Elizangela Soares Amaral Assistente de Geologia e Recursos Minerais

Francisca de Paula da Silva Braga Assistente de Relações Institucionais e Desenvolvimento

> Thiago Moraes Sousa Assistente de Administração e Finanças

#### PROJETO ATLAS PLUVIOMÉTRICO DO BRASIL

Departamento de Hidrologia

Frederico Cláudio Peixinho

Departamento de Gestão Territorial

Jorge Pimentel

Divisão de Hidrologia Aplicada

Adriana Dantas Medeiros

Coordenação Executiva do DEHID - Atlas Pluviométrico

Eber José de Andrade Pinto

Coordenação do Projeto Cartas Municipais de Suscetibilidade

Sandra Fernandes da Silva

Coordenadores Regionais do Projeto Atlas Pluviométrico

Andressa Macêdo Silva de Azambuja-Sureg/BE José Alexandre Moreira Farias-REFO Karine Pickbrenner-Sureg/PA

#### **Equipe Executora**

Adriana Burin Weschenfelder - Sureg/PA
Albert Teixeira Cardoso - Sureg/GO
Caluan Rodrigues Capozzoli - Sureg/ SP
Catharina Ramos dos Prazeres Campos - Sureg/BE
Jean Ricardo da Silva do Nascimento - RETE
Luana Késsia Lucas Alves Martins - Sureg/BH

#### Osvalcélio Merês Furtunato - Sureg/SA

#### Sistema de Informações Geográficas e Mapa

Ivete Souza de Almeida - Sureg/BH

#### Apoio Técnico

Amanda Elizalde Martins - Sureg/PA Augusto Cezar Gessi Caneppele - Sureg/PA Celina Monteiro - Sureg/BE Eliane Cristina Godoy Moreira - Sureg/SP Jennifer Laís Assano - Sureg/SP João Paulo Vicente Pereira - Sureg/SP Juliana Oliveira - Sureg/BE Fabiana Ferreira Cordeiro - Sureg/SP Luisa Collischonn - Sureg/PA Murilo Raphael Dias Cardoso - Sureg/GO Eliamara Soares Silva – RETE

#### Estagiários de Hidrologia

Caroline Centeno - Sureg/PA Cassio Pereira - Sureg/PA Cláudio Dálio Albuquerque Júnior - Sureg/MA Diovana Daugs Borges Fortes - Sureg/PA Fernanda Ribeiro Gonçalves Sotero de Menezes - Sureg/BH Fernando Lourenço de Souza Junior - Sureg/RE Glauco Leite de Freitas – Sureg/RE João Paulo Lopes Chaves Miranda - Sureg/BH José Érico Nascimento Barros - Sureg/RE Liomar Santos da Hora - Sureg/SA Lêmia Ribeiro - Sureg/SA Márcia Faermann - Sureg/PA Mariana Carolina Lima de Oliveira - Sureg/BH Mayara Luiza de Menezes Oliveira - Sureg/MA Nayara de Lima Oliveira - Sureg/GO Pedro da Silva Junqueira - Sureg/PA

Rosangela de Castro - Sureg/SP Thais Danielle Oliveira Gasparin - Sureg/SP Vanessa Romero - Sureg/GO

#### **APRESENTAÇÃO**

O projeto Atlas Pluviométrico é uma ação dentro do programa de Levantamentos da Geodiversidade que tem por objetivo reunir, consolidar e organizar as informações sobre chuvas obtidas na operação da rede hidrometeorológica nacional.

Dentre os vários objetivos do projeto Atlas Pluviométrico, destaca-se, a definição das relações intensidade-duração-frequência (IDF). Essas relações serão estabelecidas para os pontos da rede hidrometeorológica nacional que dispõe de registros contínuos de chuva, ou seja, estações equipadas com pluviógrafos ou estações automáticas.

Entretanto, em localidades nas quais existem somente pluviômetros, ou seja, não existem registros contínuos das precipitações, obtidos com pluviógrafos ou estações automáticas, as relações IDF serão estabelecidas a partir da desagregação das precipitações máximas diárias.

As relações IDF são importantíssimas na definição das intensidades de precipitação associadas a uma frequência de ocorrência, as quais serão utilizadas no dimensionamento de diversas estruturas de drenagem pluvial ou de aproveitamento dos recursos hídricos. Também podem ser utilizadas de forma inversa, ou seja, estimar a frequência de um evento de precipitação ocorrido, definindo se o evento foi raro ou ordinário.

Na definição das relações IDF foram priorizados os municípios onde serão mapeadas, pela CPRM-Serviço Geológico do Brasil, as áreas suscetíveis a movimentos de massa e enchentes.

Este relatório, que acompanhará a carta municipal de suscetibilidade, apresenta a equação IDF estabelecida para o município de Iúna/ES em que foi utilizada a estação pluviométrica Iúna, código 02041013.

#### 1 - INTRODUÇÃO

A equação definida pode ser utilizada no município de Iúna/ES e regiões circunvizinhas.

O município de Iúna está localizado no Estado do Espírito Santo, na mesorregião Sul Espírito-santense, fazendo fronteira com os municípios Irupi, Ibatiba, Muniz Freire, Ibitirama, Alto Caparaó, Martins Soares, Alto Jequitibá, Manhumirim, Durandé e Lajinha. Possui área 461,077 km² (IBGE). Segundo o IBGE, apresenta no ano de 2015 uma população estimada de 29.585 habitantes.

A Estação Iúna, Código ANA 02041013, está localizada na Latitude 20°20'45"S e Longitude 41°32'15"W, dentro do município de Iúna/ES. Essa estação pluviométrica encontra-se em atividade desde 1948, estando atualmente sob a responsabilidade da ANA e operada pela CPRM. A Figura 01 apresenta a localização do município e da estação.



Figura 01 – Localização do Município e da Estação Pluviométrica. (Fontes: Wikipédia e Google Earth, 2016)

#### 2 - EQUAÇÃO

A metodologia para definição da equação por desagregação das precipitações diárias está descrita em detalhes em Pinto (2013). Na definição da equação Intensidade-Duração-Frequência da Estação Iúna, Código ANA 02041013, foi utilizada a série de precipitações diárias máximas por ano hidrológico, apresentada no Anexo I. A distribuição de frequência ajustada aos dados diários foi a exponencial, com os parâmetros calculados pelo método dos momentos-L.

A desagregação dos quantis diários em outras durações foi efetuada com as relações entre alturas de chuvas de diferentes durações obtidas com as relações IDF estabelecidas pela COPASA (2001) para o município de Santa Cruz do Caparaó/ES (Vide Anexo II).

A Figura 02 apresenta as curvas ajustadas.

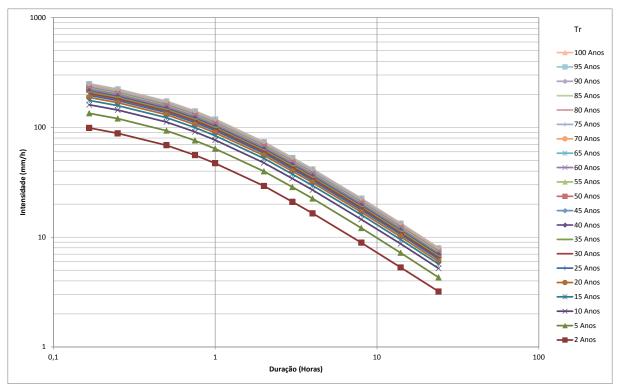



Figura 02 – Curvas intensidade-duração-frequência

A equação adotada para representar a família de curvas da Figura 02 é do tipo:

$$i = \{ [(aLn(T) + b).Ln(t + (\delta/60))] + cLn(T) + d \}/t$$
 (01)

Onde:

i é a intensidade da chuva (mm/h)

T é o tempo de retorno (anos)

t é a duração da precipitação (horas)

 $\it a,\,b,\,c,\,d,\,\delta$ são parâmetros da equação

No caso da Estação Iúna, para durações de 10 minutos a 1 hora, os parâmetros da equação são os seguintes:

$$a$$
 = 9,1033;  $b$  = 17,0744;  $c$  = 17,3654;  $d$  = 32,5444 e  $\delta$  = 8,1

$$i = \{ [(9,1033Ln(T) + 17,0744).Ln(t + (8,1/60))] + 17,3654Ln(T) + 32,5444 \}/t \quad (02)$$

Esta equação é válida para tempos de retorno até 100 anos.

Para durações superiores a 1 hora até 24 horas, os parâmetros da equação são os seguintes:

$$a$$
 = 2,4242;  $b$  = 4,5453;  $c$  = 22,6116;  $d$  = 42,3764 e  $\delta$  = -48,9

$$i = \{ [(2,4242Ln(T) + 4,5453).Ln(t + (-48,9/60))] + 22,6116Ln(T) + 42,3764 \}/t$$
 (03)

A equação acima é válida para tempos de retorno até 100 anos.

A Tabela 01 apresenta as intensidades, em mm/h, calculadas para várias durações e diferentes tempos de retorno. Enquanto que na Tabela 02 constam as respectivas alturas de chuva, em mm, para as mesmas durações e os mesmos tempos de retorno.

Tabela 01 – Intensidade da chuva em mm/h.

| Duração de |      |       |       |       | Tei   | mpo de Re | torno, T (a | nos)  |       |       |       |       |
|------------|------|-------|-------|-------|-------|-----------|-------------|-------|-------|-------|-------|-------|
| Chuva      | 2    | 5     | 10    | 15    | 20    | 25        | 40          | 50    | 60    | 75    | 90    | 100   |
| 10 Minutos | 99,3 | 134,8 | 161,7 | 177,4 | 188,5 | 197,2     | 215,4       | 224   | 231,1 | 239,7 | 246,8 | 250,9 |
| 15 Minutos | 89   | 120,8 | 144,9 | 159   | 169   | 176,7     | 193         | 200,8 | 207,1 | 214,8 | 221,2 | 224,8 |
| 20 Minutos | 80,5 | 109,3 | 131   | 143,8 | 152,8 | 159,8     | 174,5       | 181,5 | 187,3 | 194,3 | 200   | 203,3 |
| 30 Minutos | 67,9 | 92,2  | 110,5 | 121,2 | 128,9 | 134,8     | 147,2       | 153,1 | 157,9 | 163,8 | 168,7 | 171,4 |
| 45 Minutos | 55,6 | 75,5  | 90,5  | 99,3  | 105,5 | 110,4     | 120,6       | 125,4 | 129,3 | 134,2 | 138,1 | 140,4 |
| 1 HORA     | 47,5 | 64,5  | 77,3  | 84,9  | 90,2  | 94,3      | 103         | 107,2 | 110,5 | 114,7 | 118   | 120   |
| 2 HORAS    | 29,6 | 40,1  | 48,1  | 52,7  | 56,1  | 58,6      | 64          | 66,6  | 68,7  | 71,3  | 73,4  | 74,6  |
| 3 HORAS    | 21   | 28,5  | 34,1  | 37,4  | 39,8  | 41,6      | 45,4        | 47,3  | 48,8  | 50,6  | 52,1  | 52,9  |
| 4 HORAS    | 16,3 | 22,1  | 26,5  | 29,1  | 30,9  | 32,4      | 35,4        | 36,8  | 37,9  | 39,3  | 40,5  | 41,2  |
| 5 HORAS    | 13,4 | 18,2  | 21,8  | 23,9  | 25,4  | 26,6      | 29          | 30,2  | 31,1  | 32,3  | 33,2  | 33,8  |
| 6 HORAS    | 11,4 | 15,4  | 18,5  | 20,3  | 21,6  | 22,6      | 24,7        | 25,7  | 26,5  | 27,5  | 28,3  | 28,7  |
| 7 HORAS    | 9,9  | 13,5  | 16,1  | 17,7  | 18,8  | 19,7      | 21,5        | 22,3  | 23    | 23,9  | 24,6  | 25    |
| 8 HORAS    | 8,8  | 11,9  | 14,3  | 15,7  | 16,7  | 17,4      | 19          | 19,8  | 20,4  | 21,2  | 21,8  | 22,2  |
| 12 HORAS   | 6,1  | 8,3   | 9,9   | 10,9  | 11,6  | 12,1      | 13,2        | 13,7  | 14,2  | 14,7  | 15,1  | 15,4  |
| 14 HORAS   | 5,3  | 7,2   | 8,6   | 9,4   | 10    | 10,5      | 11,5        | 11,9  | 12,3  | 12,8  | 13,1  | 13,4  |
| 20 HORAS   | 3,8  | 5,2   | 6,2   | 6,8   | 7,2   | 7,6       | 8,3         | 8,6   | 8,9   | 9,2   | 9,5   | 9,6   |
| 24 HORAS   | 3,2  | 4,4   | 5,3   | 5,8   | 6,1   | 6,4       | 7           | 7,3   | 7,5   | 7,8   | 8     | 8,2   |

Tabela 02 – Altura de chuva em mm

| Duração de | Tempo de Retorno, T (anos) |       |       |       |       |       |       |       |       |       |       |       |
|------------|----------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Chuva      | 2                          | 5     | 10    | 15    | 20    | 25    | 40    | 50    | 60    | 75    | 90    | 100   |
| 10 Minutos | 16,6                       | 22,5  | 26,9  | 29,6  | 31,4  | 32,9  | 35,9  | 37,3  | 38,5  | 40,0  | 41,1  | 41,8  |
| 15 Minutos | 22,3                       | 30,2  | 36,2  | 39,7  | 42,2  | 44,2  | 48,3  | 50,2  | 51,8  | 53,7  | 55,3  | 56,2  |
| 20 Minutos | 26,8                       | 36,4  | 43,7  | 47,9  | 50,9  | 53,3  | 58,2  | 60,5  | 62,4  | 64,8  | 66,7  | 67,8  |
| 30 Minutos | 34,0                       | 46,1  | 55,3  | 60,6  | 64,4  | 67,4  | 73,6  | 76,6  | 79,0  | 81,9  | 84,3  | 85,7  |
| 45 Minutos | 41,7                       | 56,6  | 67,9  | 74,5  | 79,1  | 82,8  | 90,4  | 94,0  | 97,0  | 100,6 | 103,6 | 105,3 |
| 1 HORA     | 47,5                       | 64,5  | 77,3  | 84,9  | 90,2  | 94,3  | 103,0 | 107,2 | 110,5 | 114,7 | 118,0 | 120,0 |
| 2 HORAS    | 59,1                       | 80,2  | 96,2  | 105,5 | 112,1 | 117,3 | 128,1 | 133,2 | 137,4 | 142,5 | 146,7 | 149,2 |
| 3 HORAS    | 62,9                       | 85,4  | 102,4 | 112,3 | 119,3 | 124,8 | 136,3 | 141,8 | 146,3 | 151,7 | 156,2 | 158,8 |
| 4 HORAS    | 65,3                       | 88,6  | 106,2 | 116,5 | 123,8 | 129,5 | 141,4 | 147,1 | 151,7 | 157,4 | 162,0 | 164,7 |
| 5 HORAS    | 67,0                       | 90,9  | 108,9 | 119,5 | 127,0 | 132,8 | 145,1 | 150,9 | 155,7 | 161,5 | 166,2 | 169,0 |
| 6 HORAS    | 68,3                       | 92,7  | 111,1 | 121,9 | 129,5 | 135,5 | 148,0 | 153,9 | 158,8 | 164,7 | 169,6 | 172,4 |
| 7 HORAS    | 69,4                       | 94,2  | 112,9 | 123,9 | 131,6 | 137,7 | 150,4 | 156,4 | 161,3 | 167,4 | 172,3 | 175,1 |
| 8 HORAS    | 70,3                       | 95,4  | 114,4 | 125,5 | 133,4 | 139,5 | 152,4 | 158,5 | 163,5 | 169,6 | 174,6 | 177,5 |
| 12 HORAS   | 73,1                       | 99,2  | 118,9 | 130,4 | 138,6 | 145,0 | 158,4 | 164,7 | 169,9 | 176,2 | 181,4 | 184,4 |
| 14 HORAS   | 74,1                       | 100,6 | 120,6 | 132,3 | 140,6 | 147,0 | 160,6 | 167,0 | 172,3 | 178,7 | 184,0 | 187,0 |
| 20 HORAS   | 76,4                       | 103,7 | 124,4 | 136,4 | 145,0 | 151,6 | 165,6 | 172,3 | 177,7 | 184,3 | 189,8 | 192,9 |
| 24 HORAS   | 77,6                       | 105,3 | 126,3 | 138,5 | 147,2 | 154,0 | 168,2 | 174,9 | 180,4 | 187,2 | 192,7 | 195,9 |

#### 3 - EXEMPLO DE APLICAÇÃO

Suponha que em um determinado dia, no município de lúna, foi registrada uma Chuva de 51,8 mm com duração de 15 minutos, a qual gerou vários problemas no sistema de drenagem pluvial urbana da cidade. Qual é o tempo de retorno dessa precipitação?

Resp: Inicialmente, para se calcular o tempo de retorno será necessária a inversão da equação 01. Dessa forma temos:

$$T = exp\left[\frac{it - bLn(t + (\delta/60)) - d}{aLn(t + (\delta/60)) + c}\right] \tag{04}$$

A intensidade da chuva registrada é a altura da chuva dividida pela duração, ou seja, 51,8 mm dividido por 0,25 h é igual a 207,2 mm/h. Substituindo os valores na equação 04 temos:

$$T = exp \left[ \frac{207,2x0,25 - 17,0744Ln(t + (8,1/60)) - 32,5444}{9,1033Ln(t + (8,1/60)) + 17,3654} \right] = 60 \text{ anos}$$

O tempo de retorno de 60 anos corresponde a uma probabilidade de 1,67% que esta intensidade de chuva seja igualada ou superada em um ano qualquer, ou

$$P(i \ge 207,2 \ mm/h) = \frac{1}{T}100 = \frac{1}{60}100 = 1,67\%$$

O evento ocorrido apresenta um tempo de retorno de 60 anos, o qual é superior aos tempos de retorno utilizados no dimensionamento do sistema de drenagem urbana de Iúna, isto explica os transtornos gerados no sistema de drenagem pluvial da cidade.

#### 4 – REFERÊNCIAS BIBLIOGRÁFICAS

CETESB. Drenagem Urbana: Manual de Projeto. 3º ed, São Paulo: CETESB/ASCETESB, 1986.

DAEE. Precipitações Intensas no Estado de São Paulo. Departamento de Águas e Energia Elétrica DAEE / Centro Tecnológico de Hidráulica e Recursos Hídricos - USP, Dezembro de 2013.

FENDRICH, R. Chuvas Intensas para Obras de Drenagem no Estado do Paraná. 3ª Edição Ampliada. Curitiba-PR, 2011.

GOOGLE EARTH. Disponível em: <a href="http://www.google.com/earth">http://www.google.com/earth</a>. Acesso em novembro de 2016.

IBGE – Instituto Brasileiro de Geografia e Estatística, 2010. Cidades. Disponível em: <a href="http://www.cidades.ibge.gov.br/xtras/perfil.php?lang=&codmun=320300&search=espiritosanto|iuna">http://www.cidades.ibge.gov.br/xtras/perfil.php?lang=&codmun=320300&search=espiritosanto|iuna</a>. Acesso em novembro de 2016.

PFAFSTETTER, O. Chuvas Intensas no Brasil. 2ª ed. DNOS, 1982.

PINTO, E. J. A. *Metodologia para definição das equações Intensidade-Duração-Frequência do Projeto Atlas Pluviométrico*. CPRM. Bello Horizonte. Mar., 2013.

TABORGA, J. T. *Práticas Hidrológicas*. TRANSCON Consultoria Técnica Ltda. Rio de Janeiro, RJ, 1974.

WIKIPEDIA, 2016. Ficheiro – Espírito Santo – Município: Iúna. Disponível em: <a href="https://pt.wikipedia.org/wiki/I%C3%BAna">https://pt.wikipedia.org/wiki/I%C3%BAna</a>. Acesso em novembro de 2016.

ANEXO I Série de Dados Utilizados – Altura de Chuva diária (mm) Máximo por Ano Hidrológico

| Data       | P Max Diária | Data       | P Max Diária |
|------------|--------------|------------|--------------|
| 01/04/1954 | 45,20        | 13/01/1985 | 73,20        |
| 30/12/1954 | 48,00        | 06/01/1986 | 65,20        |
| 03/03/1956 | 96,40        | 08/11/1986 | 53,20        |
| 28/12/1956 | 70,00        | 10/11/1987 | 71,00        |
| 20/04/1958 | 56,00        | 15/09/1989 | 132,20       |
| 03/11/1958 | 76,90        | 05/04/1990 | 56,60        |
| 07/03/1960 | 70,60        | 27/03/1991 | 92,31        |
| 14/02/1961 | 66,60        | 15/11/1991 | 71,60        |
| 12/11/1961 | 138,40       | 22/01/1993 | 78,10        |
| 20/12/1962 | 84,40        | 25/10/1993 | 85,00        |
| 14/01/1964 | 72,41        | 24/12/1994 | 64,00        |
| 28/10/1964 | 72,40        | 01/01/1996 | 126,00       |
| 15/01/1966 | 56,40        | 27/02/1997 | 100,30       |
| 29/12/1966 | 53,40        | 25/03/1998 | 78,50        |
| 06/01/1968 | 61,60        | 23/11/1998 | 76,80        |
| 09/11/1968 | 64,80        | 20/10/1999 | 55,60        |
| 25/12/1969 | 62,40        | 18/12/2000 | 121,20       |
| 09/03/1971 | 60,40        | 18/02/2002 | 90,80        |
| 20/11/1971 | 108,60       | 15/01/2003 | 71,41        |
| 14/11/1972 | 64,40        | 12/01/2004 | 129,30       |
| 29/10/1973 | 98,80        | 01/03/2005 | 97,30        |
| 26/03/1975 | 71,20        | 03/12/2005 | 83,80        |
| 27/11/1975 | 52,40        | 28/12/2006 | 71,40        |
| 19/12/1976 | 32,40        | 31/01/2008 | 46,00        |
| 22/11/1977 | 48,20        | 18/12/2008 | 92,30        |
| 01/02/1979 | 46,80        | 05/12/2009 | 111,00       |
| 02/01/1980 | 58,20        | 02/11/2010 | 89,00        |
| 02/03/1981 | 58,40        | 29/12/2011 | 80,00        |
| 12/11/1981 | 73,60        | 28/02/2013 | 74,40        |
| 05/12/1982 | 41,20        | 12/12/2013 | 59,00        |
| 20/10/1983 | 43,20        | 29/11/2014 | 80,50        |

#### **ANEXO II**

As razões entre as alturas de chuvas de diferentes durações utilizadas para a desagregação dos quantis diários foram obtidas a partir das relações IDF estabelecidas pela COPASA (2001) para a Estação Santa Cruz do Caparaó /ES.

Relação 24h/1dia: 1,14

| Relação | Relação | Relação | Relação | Relação | Relação |
|---------|---------|---------|---------|---------|---------|
| 14h/24h | 8h/24h  | 4h/24h  | 3h/24h  | 2h/24h  | 1h/24h  |
| 0,98    | 0,94    | 0,87    | 0,83    | 0,77    | 0,62    |

| Relação  | Relação 30 | Relação 15 | Relação 10 |
|----------|------------|------------|------------|
| 45min/1h | min/1h     | min/1h     | min/1h     |
| 0,89     | 0,73       | 0,47       | 0,35       |

#### CARTA DE SUSCETIBILIDADE A MOVIMENTOS GRAVITACIONAIS DE MASSA E INUNDAÇÃO

#### ATLAS PLUVIOMÉTRICO DO BRASIL

O projeto Atlas Pluviométrico é uma ação dentro do programa de Levantamentos da Geodiversidade que tem por objetivo reunir, consolidar e organizar as informações sobre chuvas obtidas na operação da rede hidrometeorológica nacional. Dentre os vários objetivos do projeto Atlas Pluviométrico, destaca-se a definição das relações intensidade-duração-frequência (IDF).

As relações IDF são importantíssimas na definição das intensidades de precipitação associadas a uma frequência de ocorrência, as quais serão utilizadas no dimensionamento de diversas estruturas de drenagem pluvial ou de aproveitamento dos recursos hídricos. Também podem ser utilizadas de forma inversa, ou seja, estimar a frequência de um evento de precipitação ocorrido, definindo se o evento foi raro ou ordinário.

#### **ENDEREÇOS**

#### Sede

SGAN- Quadra 603 – Conjunto J – Parte A – 1° andar

Brasília - DF - CEP: 70830-030

Tel: 61 2192-8252 Fax: 61 3224-1616

#### Escritório Rio de Janeiro

Av Pasteur, 404 – Urca Rio de Janeiro – RJ Cep: 22290-255 Tel: 21 2295-5337 - 21 2295-5382

Fax: 21 2542-3647

#### Diretoria de Hidrologia e Gestão Territorial

Tel: 61 3223-1059 - 21 2295-8248 Fax: 61 3323-6600 - 21 2295-5804

#### Departamento de Gestão Territorial

Tel: 21 2295-6147 - Fax: 21 2295-8094

#### Diretoria de Relações Institucionais e Desenvolvimento

Tel: 21 2295-5837 - 61 3223-1059 Fax: 21 2295-5947 - 61 3323-6600

#### Residência de Teresina

Rua Goiás, 312 - Sul

Teresina - PI - CEP: 64001-570

Tel.: 86 3222-4153 - Fax: 86 3222-6651

#### Assessoria de Comunicação

Tel: 61 3321-2949 - Fax: 61 3321-2949 E-mail: asscomdf@cprm.gov.br

#### Divisão de Marketing e Divulgação

Tel: 31 3878-0372 - Fax: 31 3878-0370 E-mail: marketing@cprm.gov.br

#### **Ouvidoria**

Tel: 21 2295-4697 - Fax: 21 2295-0495

www.cprm.gov.br











