MINISTÉRIO DE MINAS E ENERGIA

Secretaria de Geologia, Mineração e Transformação Mineral CPRM – Serviço Geológico do Brasil

Cooperação Brasil - Moçambique

RELATÓRIO DE VIAGEM À MOÇAMBIQUE

"Projeto Mapa Geoambiental da Região Metropolitana de Maputo e Entorno – 2ª Fase"

Edgar Shinzato
Fernando A. C. Feitosa
Achiles Eduardo G. de Castro Monteiro

SUMÁRIO

1 – INTRODUÇÃO	2
2 – OBJETIVOS DA VIAGEM	2
3 – PROGRAMA DA VIAGEM	3
4 - DESCRIÇÃO E ANÁLISE DOS ASSUNTOS TRATADOS	3
4.1 – Visita às Instituições Públicas – Coleta de Dados	
4.2 – Visitas de Campo	5
4.3 - Consolidação de Dados Hidrogeológicos	6
4.4 - Dados Hidrológicos	7
4.5 – Treinamento em Sistema de Informações Geográficas – SIG e	
Elaboração de Mapa Geoambiental Preliminar da Região	
Metropolitana de Maputo e Entorno	8
5 – CONCLUSÕES	
6 - RECOMENDAÇÕES	
7 - AGRADECIMENTOS	
O ANEVOS	16

1. INTRODUÇÃO

No período de 08 a 21 de dezembro de 2007 teve lugar uma missão brasileira à Moçambique composta pelos seguintes técnicos da CPRM – Serviço Geológico do Brasil: *Edgar Shinzato*, engenheiro agrônomo, especialista em solos e geoprocessamento, coordenador executivo do Departamento de Gestão Territorial; *Fernando A. C. Feitosa*, geólogo, especialista em Hidrogeologia, coordenador executivo do Departamento de Hidrologia; e *Achiles Eduardo G. de Castro Monteiro*, engenheiro civil, especialista em recursos hídricos, chefe da Divisão de Hidrologia Básica do Departamento de Hidrologia. A missão foi realizada no âmbito do acordo de cooperação técnica firmado entre a CPRM – Serviço Geológico do Brasil e a DNGM – Direcção Nacional de Geologia de Moçambique, com o objetivo de orientar a elaboração do *Mapa Geoambiental da Região Metropolitana de Maputo e Entorno*. A viagem correspondeu à 2ª fase do intercâmbio, dando continuidade ao projeto iniciado com a missão realizada em abril de 2006.

A viagem foi autorizada na forma do disposto no Decreto nº 1.387, de 7 de fevereiro de 1995, modificado pelos Decretos nºs 2.349, de 15 de outubro de 1997, e 3.025, de 12 de abril de 1999, em Despacho do Ministro de Minas e Energia, de 3 de dezembro de 2007, publicado no Diário Oficial na seção 2, em 4 de dezembro de 2007.

2. OBJETIVOS DA VIAGEM

A realização desse projeto conjunto entre DNGM e CPRM dá continuidade ao acordo de cooperação técnica entre os Serviços Geológicos brasileiro e moçambicano, com a finalidade de estreitar o relacionamento e ampliar o intercâmbio na área das geociências, principalmente nos aspectos relacionados aos estudos geológicos que subsidiem as áreas de planejamento territorial e meio ambiente.

Essa segunda etapa teve como objetivo principal a análise de consistência e organização dos dados de Mapa Geoambiental da Região Metropolitana de Maputo e Entorno gerados, principalmente, pela DNGM e outras instituições moçambicanas, tendo destaque o Instituto de Investigação Agrária de Moçambique – IIAM, o Centro Nacional de Cartografia e Detecção – Cenacarta e a Direcção Nacional de Águas – DNA.

Além dos trabalhos de campo, foi ministrado treinamento complementar em Sistema de Informações Geográficas – SIG, visando a elaboração e integração dos mapas temáticos digitais e necessários à confecção do produto final.

3. PROGRAMA DA VIAGEM

O programa da viagem foi integralmente cumprido nas datas e horários planejados e as atividades desenvolvidas na DNGM, em Maputo, estão especificadas a seguir:

- Análise da documentação e dos dados coletados pela DNGM e elaboração de um cronograma de trabalho;
- Visita às instituições públicas para coleta de dados complementares;
- Visita de campo para orientação da equipe da DNGM, com vista à obtenção de dados;
- Consistência de dados hidrogeológicos;
- Treinamento complementar de técnicos da DNGM em Sistema de Informações Geográficas – SIG, e técnicas de elaboração do Mapa Geoambiental Preliminar da Região Metropolitana de Maputo e Entorno.

Roteiro da Viagem

Data	Local	Horário	Atividade				
08/12/07	Rio de Janeiro	21:15	Embarque – TAP 176				
09/12/07	Lisboa	10:00	Chegada				
		22:00	Embarque – TAP 279				
10/12/07	Maputo	12:00	Chegada e deslocamento para hotel				
21/12/07 Maputo		10:00	Embarque – TAP 278				
	Lisboa	20:00	Chegada e deslocamento para hotel				
22/12/07 Lisboa		10:00	Embarque – TAP 177				
	Rio de Janeiro	18:00	Chegada				

A missão brasileira foi recebida no aeroporto de Maputo por funcionário da embaixada brasileira, o que facilitou bastante o trâmite burocrático na alfândega, e por representante da DNGM que a transportou para o hotel.

4. DESCRIÇÃO E ANÁLISE DOS ASSUNTOS TRATADOS

Os trabalhos tiveram início na manhã do dia 11/12 com uma reunião entre a equipe brasileira e o Dr. **Adriano Silvestre Sévano**, Diretor Nacional Adjunto da DNGM. Nessa reunião foram abordadas as questões relacionadas ao programa de trabalho e às necessidades atuais do projeto.

Em seguida, foi elaborado, em conjunto com os técnicos da DNGM, o programa de trabalho descrito a seguir, que foi cumprido rigorosamente.

Data	Atividade
11/12/07	Reuniões técnicas e avaliação dos dados levantados pela DNGM
12/12/07	Visita às instituições públicas – coleta de dados
13/12/07	Visita de campo – Maputo e Marracuene
14/12/07	Visita às instituições públicas – coleta de dados/início do treinamento
15/12/07	Visita de campo – Catembe
17/12/07	Treinamento SIG / Consistência de dados hidrogeológicos
18/12/07	Treinamento SIG / Consistência de dados hidrogeológicos
19/12/07	Treinamento SIG / Elaboração de Mapa Geoambiental preliminar
20/12/07	Treinamento SIG / Elaboração de Mapa Geoambiental preliminar

Nessa mesma reunião, foram abordadas as seguintes questões relativas ao desenvolvimento do projeto:

- dificuldades na utilização dos softwares pela equipe moçambicana;
- os trabalhos referentes à coleta de informações de poços e furos, definidos e orientados na 1ª fase (2006), foram realizados pela equipe técnica da DNGM.
 Constatou-se, entretanto, que faltaram o desenvolvimento das bases digitais temáticas e a complementação dos dados hidrogeológicos.
- inclusão de informações de geologia de engenharia ao projeto em atenção à solicitação da direção da DNGM.

Considerando que o entendimento do ambiente SIG e a operacionalidade das ferramentas (softwares) são de fundamental importância para o desenvolvimento do projeto, foi decidida a realização de um treinamento complementar, com uma abordagem mais prática, e utilizando os dados já levantados e consistidos do próprio projeto. Decidiu-se que seria ministrado um treinamento em ArcGis pelo técnico Edgar Shinzato, e que, ao final do treinamento, seria elaborado um Mapa Geoambiental preliminar, como base para a elaboração do produto final.

4.1 Visitas às Instituições Públicas – Coleta de Dados

Para aquisição de informações e de dados complementares sobre a área do projeto como bases cartográficas, mapas (de geologia, solos, uso do solo, clima, vegetação, risco etc.) necessários à elaboração do Mapa Geoambiental, foi visitada a maioria das instituições públicas de Maputo que poderiam deter informações relevantes, destacando-se: Cenacarta — Centro de Nacional de Cartografia e Detecção (Foto 1); IIAM — Instituto de Investigação Agrária de Moçambique (Foto 2); e Instituto Nacional de Meteorologia.

Nessa ocasião foram adquiridos os seguintes materiais:

- Bases cartográficas em formato raster, folhas 1184, 1185, 1189, 1190, 1191, 1194 e 1195; (escala 1:50.000);
- Mapeamento de solos em formato raster, folhas 1184, 1185, 1189, 1190, 1191, 1194 e 1195; (escala 1:50.000);

- Mapeamento geológico de Maputo, folha 1190, em formato raster; (escala 1:50.000);
- Mapeamento de uso da terra em escala 1:250.000, em formato shape;
- Dados de climatologia (precipitação e temperatura médias);
- Dados de poços e furos, em papel;
- Imagens Landsat 7 ETM+, bandas 1, 2, 3, 4, 5, 7 e 8, sem fusão.

Foto 1 - Coleta de dados no Cenacarta

Foto 2 - Coleta de dados no IIAM

4.2 Visitas de Campo

Foram realizadas duas etapas de campo para reconhecimento dos padrões de relevo (Fotos 3 e 4), processos erosivos (Fotos 5 e 6) e também para acompanhamento da coleta de novas informações sobre os poços e furos (Fotos 7 e 8). Nestas etapas de campo foram os técnicos da DNGM foram orientados quanto a forma de obtenção dos dados para utilização em ambiente SIG, principalmente aqueles relacionados às informações de poços e furos.

Foto 3 – Paisagem no litoral de Catembe

Foto 4 – Paisagem em Marracuene

Foto 5 – Erosão marinha em Maputo

Foto 6 - Erosão em Marracuene

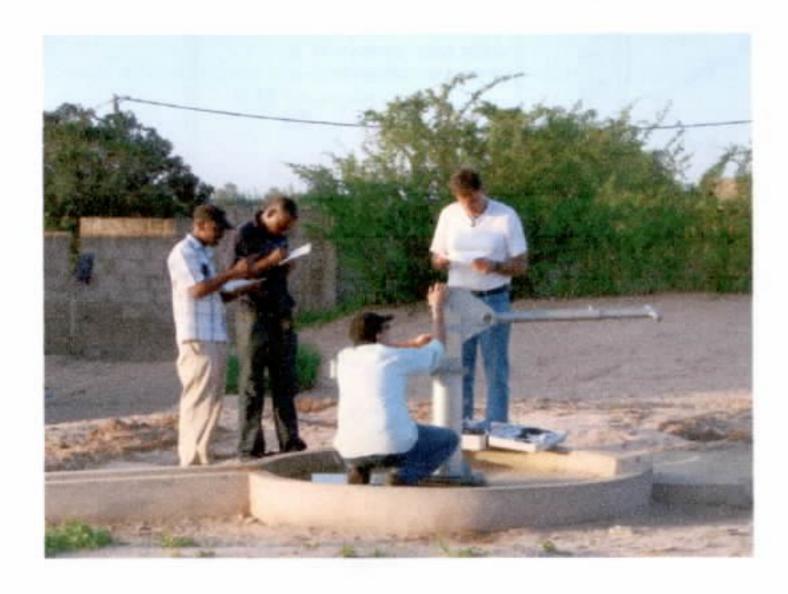


Foto 7 – Coleta de dados em furos (poços de água subterrânea)

Foto 8 – Coleta de água em furo para análise de condutividade elétrica

4.3 Consistência de Dados Hidrogeólogicos

Os dados obtidos pela equipe técnica da DNGM, através dos levantamentos de campo e em outras instituições, foram digitados em planilhas Excel e analisados cuidadosamente pelo técnico Fernando A. C. Feitosa, hidrogeólogo da CPRM. Foi verificada a ausência de informações construtivas e litológicas, principalmente aquelas relacionadas aos furos, fator que limita consideravelmente a possibilidade de análise e interpretação mais detalhada sobre o tema água subterrânea. Entretanto, os dados referentes à condutividade elétrica, medida *in loco*, conforme orientado na 1ª fase (2006), apresentaram uma boa consistência. Assim será possível utilizar esta informação para caracterizar, de forma consistente, a distribuição espacial da qualidade da água subterrânea captada nos furos da região de Maputo e entorno.

Os dados referentes às coordenadas e condutividade elétrica dos furos apresentados em planilhas Excel foram transformados em arquivos .dbf para inserção no SIG. Dessa forma, o primeiro produto obtido foi o Mapa Preliminar da Qualidade da Água Subterrânea da Região Metropolitana de Maputo e Entorno, conforme ilustrado na Figura 1.

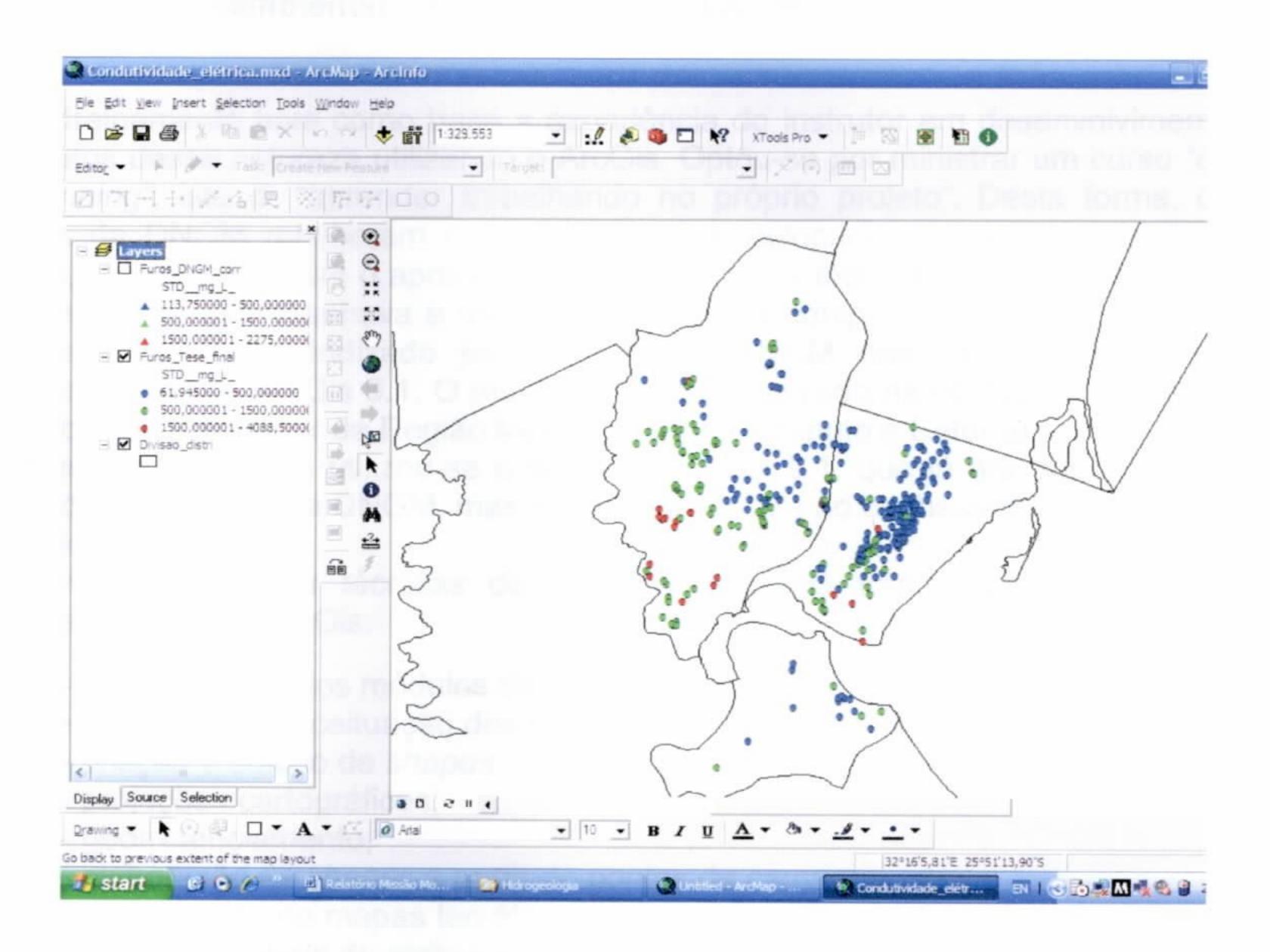


Figura 1 -Mapa Preliminar da Qualidade da Água Subterrânea da Região Metropolitana de Maputo e Entorno, contendo os dados de condutividade elétrica dos poços e furos.

4.4 Dados Hidrológicos

Foram coletados no Instituto Nacional de Meteorologia dados de precipitação e temperatura que, juntamente com os demais dados hidrológicos que vierem a ser obtidos, tais como vazão, parâmetros de qualidade das águas e evaporação, servirão para a elaboração de balanço hídrico, indicação de qualidade da água superficial, de descrição da climatologia. Ressalve-se que estes produtos dependem

da quantidade e qualidade dos dados a serem obtidos. É importante destacar que a sistemática para coleta destes dados está definida no Tema 8, do Plano de Trabalho apresentado no Quadro 1.

4.5 Treinamento em Sistema de Informações Geográficas – SIG e Elaboração do Mapa Geoambiental Preliminar da Região Metropolitana de Maputo e Entorno

O treinamento teve como base a experiência do instrutor em desenvolvimento de projetos dessa natureza utilizando o ArcGis. Optou-se por ministrar um curso "on job trainning", isto é, "aprender trabalhando no próprio projeto". Desta forma, os técnicos da DNGM receberam o treinamento que colocaram em prática logo em seguida, garantindo assim o aprendizado e a fixação da técnica ensinada, enquanto o instrutor ficou acompanhava e tirava as dúvidas da equipe. O produto final deste treinamento foi o aprendizado pela equipe da DNGM das funcionalidades do software adotado – ArcGis 9.1. O resultado foi materializado na confecção do Mapa Geoambiental Preliminar da Região Metropolitana de Maputo e Entorno.

Nesse treinamento utilizou-se o software ArcGis 9.1, que já era adotado pela equipe de Cartografia da DNGM, mas que ainda não era do conhecimento da equipe da Geologia.

Para transmitir as técnicas de utilização do SIG foram apresentadas as seguintes rotinas do ArcGis:

- 1 apresentação dos módulos do ArcGis;
- 2 definição e conceituação dos formatos de arquivos utilizados em SIG;
- 3 criação e edição de shapes
- 4 projeções cartográficas;
- 5 georrefenciamento;
- 6 elaboração de shapes a partir de pontos de campo;
- 7 digitalização de mapas temáticos;
- 8 edição da tabela de atributos;
- 9 elaboração de *layout*;

Considerando que quase todo o material citado no item 4.1 encontrava-se ainda na forma analógica, optou-se por direcionar o treinamento para uma transformação imediata desses materiais para o formato digital (*shape*). Sendo assim, logo após a apresentação do ArcGis 9.1, o treinamento prossegui com a digitalização do mapa geológico folha Maputo, escala 1:50.000, conforme ilustrado na Figura 2.

Em seguida, outros temas foram incorporados (solos, apresentado na Figura 3), e ao final do treinamento foi elaborado o *Mapa Geoambiental Preliminar da Região Metropolitana de Maputo e Entorno*, apresentado na Figura 4. Este mapa deverá ser consolidado com a adição de novas informações, que estão sendo elaboradas por ambas as instituições, para obtenção do produto final.

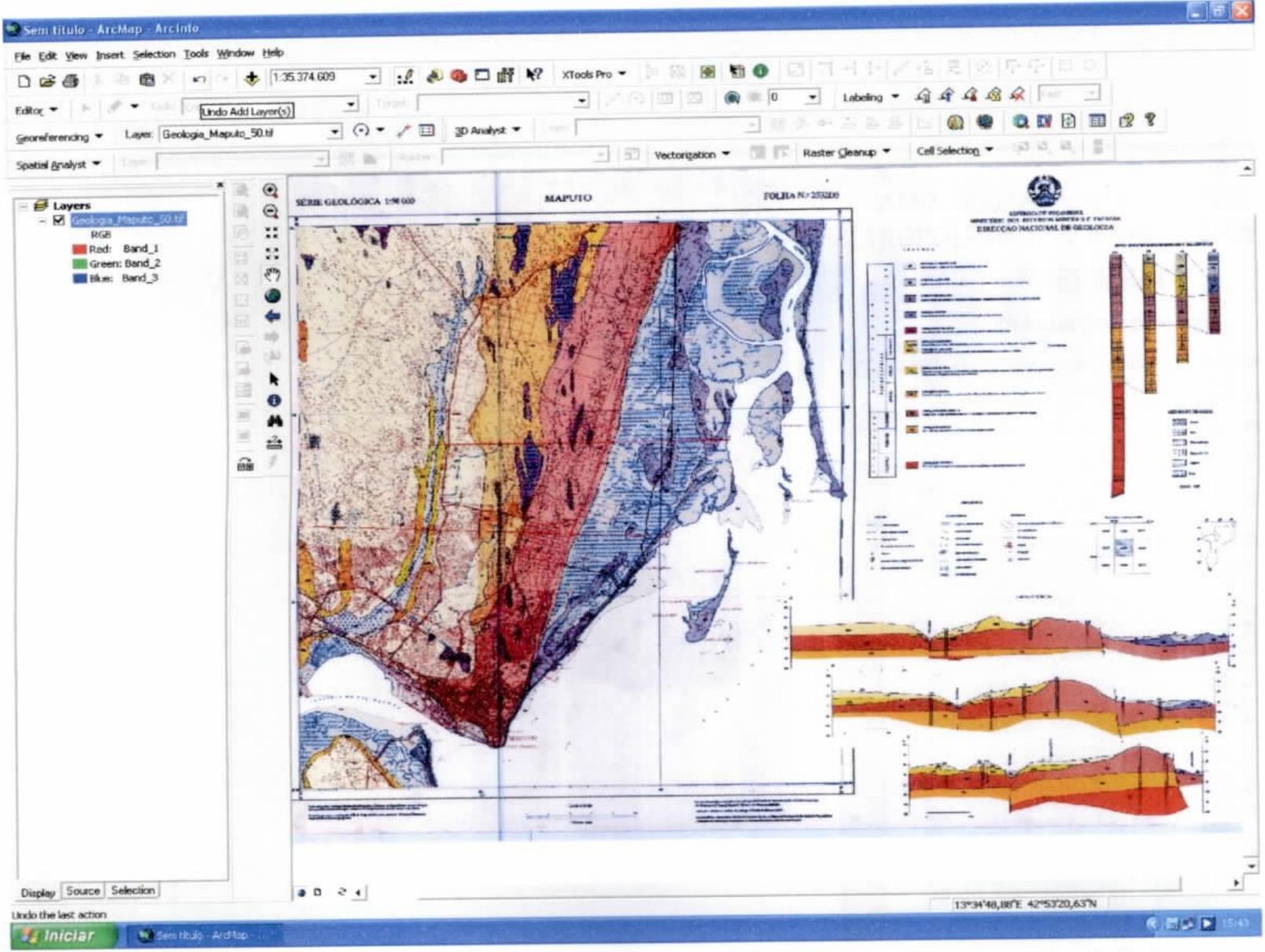


Figura 2 – Mapa Geológico da folha Maputo, escala 1:50.000, em meio digital

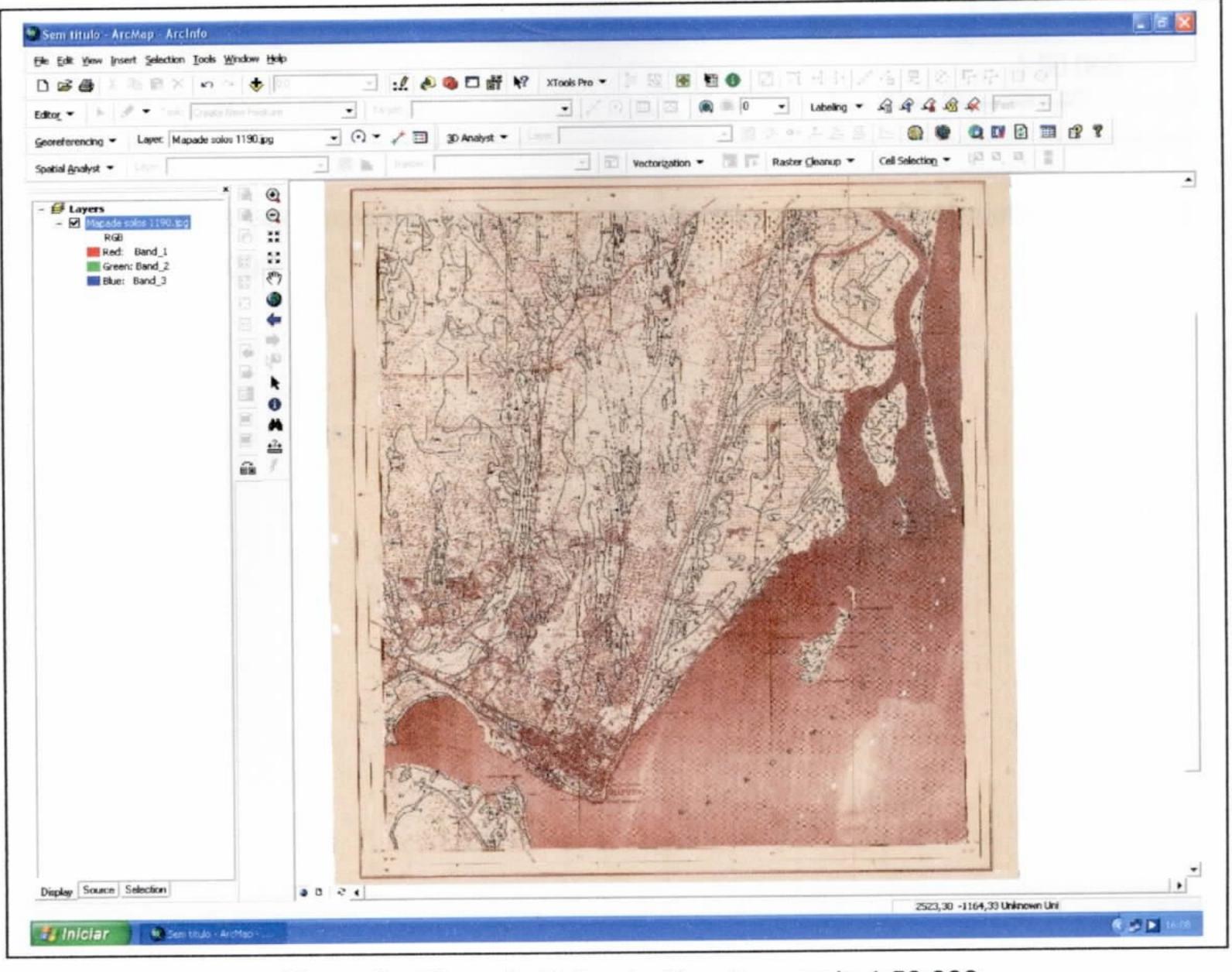


Figura 3 - Mapa de Solos de Maputo, escala 1:50.000.

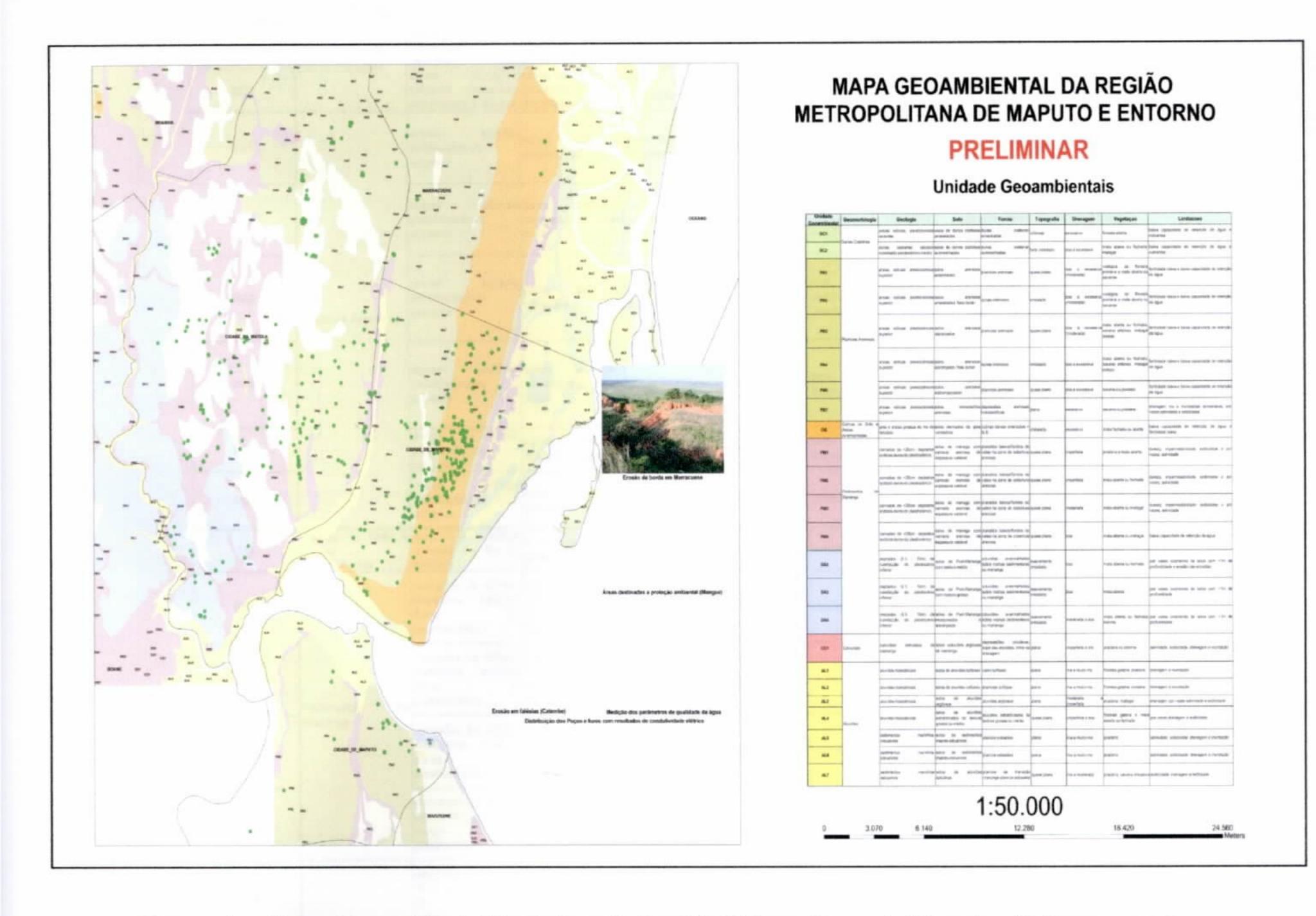


Figura 4 – Mapa Geoambiental Preliminar da Região Metropolitana de Maputo e Entorno, escala 1:50.000

Unidade Geoambiental	Geomorfologia	Geologia	Solo	Forma	Topografia	Drenagem	Vegetação	Limitacoes
DC1		areias eólicas, pleistocenicas	costaires	dunas costeiras amareladas	colinosa	excessiva	floresta aberta	baixa capacidade de retenção de água e
DC2	Ounas Costeiras	dunas costeiras calcario cimentado pleistocênico médio	amareladas solos de dunas costeiras		forte ondulado	boa a excessiva	matagal	nutrientes baixa capacidade de retenção de água e nutrientes
PA1		areias eólicas pleistocênicas superior	solos arenosos amarelados	planicies arenosas	quase plana	(moderada)	vestígios da floresta primária e mata aberta ou savanas	fertilidade baixa e baixa capacidade de retenção de
PAZ			solos arenosos amarelados, fase dunar	dunas interiores	ondulada	boa a excessiva (moderada)		fertilidade baixa e baixa capacidade de retenção de
PA3	1	areias eólicas pleistocênicas superior	solos arenosos	planicies arenosas	quase plana	boa a excessiva (moderada)	mata aberta ou fechada, savana arbórea, matagal estepe	fertilidade baixa e baixa capacidade de retenção de água
PA4		areias eólicas pleistocénicas superior		dunas interiores	ondulada	boa a excessiva	mata aberta ou fechada, savana arbórea, matagal estepa	fertilidade baixa e baixa capacidade de retenção de água
PA5		areias eólicas pleistocênicas superior	solos alenosos	planicies arenosas	quase plana	boa a excessiva	savana ou pradaria	fertificiade baixa e baixa capacidade de retenção de água
PA7		areias eólicas pleistocênicas superior	solos hidromórfico arenosos	depressões arenosas hidromórficas	plana	excessiva	savana ou pradaria	drenagem ma e inundações temporárias, por vezes salinidade e sodicidade
CG	Colinas de Grés e Areias Avermalhadas	gres e areias grossas do fim do terciário	Isolos derivados de	colinas baixas orientadas + N-S	ondulada	excessiva	mata fechada ou aberta	baixa capacidade de retenção de água e fertilidade baixa
PM1		duros do	com camada	baixos/fundos de vales na zona de	quase plana	imperioita	pradaria e mata aberta	dureza, impermeabilidade, sodicidade e por vezes, salinidade
PM2		duros do	Lane commanda	baixos/fundos de vales na zona de	quase plana	imperfeita	mata aberta ou fechada	dureza, impermeabilidade, sodicidade e por vezes, salinidade
PM3			come comede	baixos/fundos de vales na zona de	quase piana	moderada	mata aberta	dureza, impermeabilidade, sodicidade e por vezes, salinidade
PM4		camadas de <20cm, depósitos sodicos duros do plesitocênico		baixos/fundos de vales na zona de	1	boa		baixa capacidade de retenção de água
DA2		depósitos (0.5 10m) de rubefacção do pleistocênio inferior	solos de Post- Mananga com textura média	coluviões avermelhados sobre rochas sedimentares or mananga	1000HIAGA	bea	mata aberta ou fechada	por vezes ocorrencia de solos com <1m de profundidade e erosão nas encostas
DA3	auchores and vales	depósitos (0.5 10m) de rubefacção do pleistocênio inferior	solos de Post Mananga com textura grossa	coluviões avermelhados sobre rochas sedimentares or mananga	ROREHBORG	boa	mata aberta	por vezes ocomencia de solos com <1m de profundidade
DA4		10m) de rubefacção	Mananga mosqueados alaranjados	avenneihados	suavemente	moderada a	mata aberta ou fechada brenha	I'
CO1	Coltwides	coluviões derivados de mananga	solos coluviões argilosos de mananga	depresssões circulares, sopi das encostas linha de drenagen		imperfeita a	pradaria ot brenha	salinidade, sodicidade, drenagem e inundação
AL1		aluviões holocênicos	solos de aluviões turfosos	vales turfosos	piana	ma a muito	floresta galeria, pradaria	drenagem e inundação
AL2		aluviões holocênicos		1		ma a muito	floresta galeria, pradaria	drenagem e inundação
AL3		aluviões holocênicos	argilosos		plana	moderada imperfeita	pradaria, matagal	drenagem por vezes salinidade e sodicidade
AL4	Aluviões	aluviões holocênicos	solos de aluviões estratificados de textura grossa ou média	aluviões e estratificados de textura grossa or média	e quase plana	imperfeita :	floresta galeria e mata aberta ou fechada	por vezes drenagem e sodicidade
AL5		sedimentos marinhos-estuarinos	marmo-estuarmos	planicie estuarina	plana	ma a muite	pradaria	salinidade, sodicidade, drenagem e inundação
AL6		sedimentos marinhos-estuarinos	solos de	planície estuarina	plana	ma a muiti ma	pradaria	salinidade, sodicidade, drenagem e inundação
AL7		sedimentos marinhos-estuarinos	solos de aluviões	planicie d	nuese plana	ma moderada	pradaria, savana arbustiva	sodicidade, drenagem e fertilidade

Figura 5 – Legenda do Mapa Geoambiental Preliminar da Região Metropolitana de Maputo e Entorno

5. CONCLUSÕES

Considera-se que essa 2ª missão a Moçambique, referente ao Projeto *Mapa Geoambiental da Região Metropolitana de Maputo e Entorno*, alcançou os objetivos almejados. A avaliação e consistência dos dados disponíveis, levantados pela equipe da DNGM, bem como a orientação na coleta de dados complementares realizada pela equipe técnica da CPRM — Serviço Geológico do Brasil foi fundamental para o desenvolvimento do projeto. O treinamento realizado também assume grande importância na realização do projeto em questão, tendo contribuído não somente para capacitação dos técnicos da DNGM, no que se refere à utilização do SIG, como também para o próprio desenvolvimento das tarefas de elaboração do produto final.

Para a finalização do projeto será necessário cumprir as atividades previstas no Quadro 1, nos prazos estabelecidos no Quadro 2, elaborados em conjunto pelas equipes técnicas da CPRM e DNGM, com base na real situação dos dados disponíveis em dezembro de 2007, bem como com a coleta de outros dados necessários à conclusão do produto.

Cabe ressaltar que devido ao curto período de tempo para o desenvolvimento das atividades dessa missão, principalmente no que concerne ao treinamento com o software ArcGis e a pouca experiência dos técnicos da DNGM no uso de SIG, é normal que apareçam dificuldades na execução do projeto.

Para dirimir quaisquer dúvidas durante a execução dos trabalhos, os técnicos da DNGM poderão lançar mão do apoio da equipe da CPRM através da Internet, por carta ou por telefone.

6. RECOMENDAÇÕES

Com base no exposto neste relatório e visando a conclusão do projeto dentro das perspectivas emanadas da cooperação técnica CPRM-DNGM, apresentam-se as seguintes recomendações:

- a) Cumprir o plano de trabalho apresentado nos Quadros 1 e 2;
- b) Intensificar os contatos entre as instituições e os técnicos envolvidos no projeto;
- c) Intensificar o uso da ferramenta SIG pela equipe do Departamento de Geologia Aplicada da DNGM;
- d) Considerando a pouca experiência da equipe do Departamento de Geologia Aplicada da DNGM em integrar dados em ambiente SIG, caberá à equipe da CPRM esta tarefa, cujos resultados serão apresentados em uma próxima missão a Moçambique prevista para maio/2008, estando esta data condicionada à disponibilização dos dados sob a responsabilidade da DNGM;

- e) Incluir na próxima missão a Moçambique um técnico da CPRM com formação em geologia de engenharia;
- f) Promover uma nova missão para elaboração final do Mapa Geoabiental da Região Metropolitana de Maputo e Entorno;

PLANO DE TRABALHO

Tema Discriminação		Situação Atual	O que fazer?	Responsabilidade	Prazo
1	Base Cartográfica	Raster	Digitalizar	DNGM	Março /08
2	Geologia	Raster / Georrefenciado	Terminar digitalização e criar polígonos	DNGM	Março /08
3	Solos	Raster e Digital	Digitalizar	CPRM	Março /08
4	Geomorfologia	1:250.000	Aprimorar c/ base em imagem, SRTM e fotos – CPRM Escanear fotos – DNGM	DNGM / CPRM	Março /08
5	Vegetação – Uso Atual	1:250.000	Reclassificação dos polígonos – CPRM Classificação nominal – DNGM	CPRM / DNGM	Março /08
6	Atividades Impactantes	Só tem o planejado	Levantar as existentes	DNGM	Março /08
7	Climatologia	Dados coletados	Preparar balanço hídrico	CPRM	Março /08
8	Hidrologia	Sem informação. Aguardando dados	Coletar dados na DNA e ARA-Sul	DNGM	Março /08
9	Hidrogeologia	Bases – Superpostas Aguardando dados	Base de dados/Consistência - Excel - DNGM Mapas - CPRM	DNGM / CPRM	Março /08
10	Geotecnia	Sem informação	Visita de técnico da CPRM	DNGM / CPRM	Abril/08
11	Integração dos Dados	Aguardando dados	Realizar - CPRM - DNGM	CPRM	Abril a Maio/08
12	Lançamento do Produto				Julho

Quadro 1 - Atividades Previstas

	Cr	onogram	a de Exe	cução				
Atividade Meses (2008)								
	jan	fev	mar	abr	mai	jun	jul	ago
1								
2								
3								
4								
5								
6								
7								
8								
9								
10								
Integração dos dados								
Lançamento Produto								

7. AGRADECIMENTOS

Os membros da missão gostariam de agradecer as seguintes pessoas e entidades:

Dr. Cássio Roberto da Silva, chefe do DEGET, e Dr. Frederico Cláudio Peixinho, chefe do DEHID, bem como a toda Diretoria da CPRM pela indicação e aprovação dos seus nomes para representar tecnicamente a CPRM junto a DNGM, em prosseguimento ao Convênio de Cooperação Técnica, consubstanciando, assim, a confiança depositada na equipe;

Ao Ministério de Minas e Energia, em especial ao Excelentíssimo Sr. Ministro Interino Nelson Hubner, por ter chancelado a nossa viagem à Moçambique;

À Agência Brasileira de Cooperação, pelo fornecimento das passagens aéreas e apoio aos preparativos da viagem;

À Dra. Maria Glícia da Nóbrega Coutinho, chefe da ASSUNI, e demais colaboradores dessa assessoria pela ajuda significativa nos preparativos da viagem;

À equipe do SERAFI-DF que não mediu esforços na preparação dos documentos necessários para viabilizar a viagem;

À DNGM – Direção Nacional de Geologia de Moçambique, nas pessoas dos Drs. Elias Xavier Félix Daudi, Diretor Nacional, Adriano Silvestre Sénvano, Diretor Nacional Adjunto, e Dino Miguel Milisse, Chefe do Departamento de Geologia Aplicada, pela acolhida, hospitalidade e apoio ao desenvolvimento dos trabalhos; e

À Embaixada do Brasil em Moçambique, nas pessoas da Embaixadora Leda Lúcia Camargo, do Sr. Francisco C. S. Luz, Ministro Conselheiro e do Sr. Orlando Melembe, Assistente Técnico, pela acolhida e apoio dispensados.

ANEXOS

Cartões de visitas

ADRIANO SILVESTRE SÉNVANO

Geólogo / Geologist Director Nacional Adjunto Deputy National Director

Praça 25 de Junho, No. 380, P.O. Box 217 Tel: + 258 21 312082, + 258 21 312083 Cel: + 258 82 3128890, + 258 82 3128670 Fax: + 258 21 429216

E-mail: senvano@tvcabo.co.mz http://www.dng.gov.mz

Private: + 258 82 3216400 Maputo - Moçambique

DIRECÇÃO NACIONAL DE GEOLOGIA

DINO MILISSE

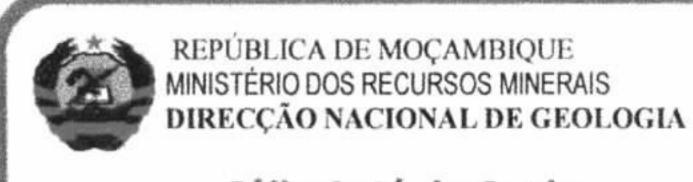
Geólogo / Geologist Chefe do Departamento de Geologia Aplicada Head of Applied Geology Department

Praça 25 de Junho, No. 380, P.O. Box 217 Tel: + 258 21 312082, + 258 21 312083 Cel: + 258 82 3128890, + 258 82 3128670 Fax: + 258 21 429216

E-mail: dmilisse.dng@tvcabo.co.mz

http://www.dng.gov.mz

Private: + 258 82 4134170 Maputo - Moçambique Institute de la vestigação Agrana de Meximbique


Direcção de Agronomia e Recursos Naturais - DARN

Jacinto M. Mafalacusser

MSc. Inventariação e Avaliação de Terras

Av. FPLM 2698 C.P. 3658 Maputo - Moçambique

Tel: +258-21460130
Fax: +258-21460074
Cel: +258 - 82-8874130
Email: jmafalacusser@gmail.com
www.iiam.minag.org.mz

Júlio António Conjo (Técnico Cartógrafo) Chefe da Secção

Praça 25 de Junho, 380 Caíxa Postal, No. 217

Maputo - Moçambique

Telef:+258 21 312 082 Ext. 265 Casa 21 40 99 30 cel : 842688890 Fax: 258 21 42 92 16 egmailjulioconjo@com.mz: Francisco C. S. Luz Ministro - Conselheiro

Embaixada do Brasil

Tel +258 21 484 800 Tel +258 21 484 802