Cartografia da Amazônia Levantamentos Geológicos Básicos

GEOLOGIA E RECURSOS MINERAIS DA FOLHA ILHA DE MARACÁ -NA.20-X-A

Escala: 1:250.000 2017

PROJETO ILHA DE MARACÁ

MINISTÉRIO DE MINAS E ENERGIA SECRETARIA DE GEOLOGIA, MINERAÇÃO E TRANSFORMAÇÃO MINERAL SERVIÇO GEOLÓGICO DO BRASIL – CPRM DIRETORIA DE GEOLOGIA E RECURSOS MINERAIS DEPARTAMENTO DE GEOLOGIA

SUPERINTENDÊNCIA REGIONAL DE MANAUS

Programa Geologia do Brasil

GEOLOGIA E RECURSOS MINERAIS DA FOLHA ILHA DE MARACÁ NA.20-X-A

Escala 1:250.000

ESTADO DE RORAIMA

MANAUS 2017

Programa Geologia do Brasil – PGB Integração, atualização e difusão de dados da geologia do brasil

CPRM - SUPERINTENDÊNCIA REGIONAL DE MANAUS AV. ANDRÉ ARAÚJO, 2010 - PETRÓPOLIS - MANAUS - AM CEP.: 69.067-375 TEL.: 92 2126-0306/2126-0314/2126-0303 FAX: 92 2126-0319 E-MAIL: BIBLIOTECAMA@MA.CPRM.GOV.BR

Catalogação na Fonte

A447g Reis, Nelson Joaquim (Org.)

Geologia e recursos minerais da Folha Ilha de Maracá – NA.20-X-A, Estado de Roraima, escala 1:250.000 / Organização [de] Nelson Joaquim Reis, Marina Nascimento Ramos. – Manaus: CPRM, 2016.

48 p. : il., color.; 30 cm. + mapas

Programa Geologia do Brasil - PGB. Levantamentos Geológicos Básicos do Brasil.

ISBN 978-85-7499-333-1

1. Geologia – Brasil – Roraima. 2. Recursos Minerais – Brasil – Roraima. 3. Litoestatigrafia. 4. Litogeoquímica. 5. Petrogênese. 6. Geocronologia. 7. Geoquímica Isotópica. 8. Geologia Estrutural. 9. Geologia Tectônica.

CDD 23. ed. 558.113

Ficha catalográfica elaborada na CPRM-MA pelo Bibliotecário Jean Racene, CRB 11/719

MINISTÉRIO DE MINAS E ENERGIA SECRETARIA DE GEOLOGIA, MINERAÇÃO E TRANSFORMAÇÃO MINERAL SERVIÇO GEOLÓGICO DO BRASIL – CPRM

Diretoria de Geologia e Recursos Minerais Departamento de Geologia Superintendência Regional de MANAUS

Programa Geologia do Brasil

GEOLOGIA E RECURSOS MINERAIS DA FOLHA ILHA DE MARACÁ NA.20-X-A

ESTADO DE RORAIMA

Leda Maria B. Fraga Ana Maria Dreher Nelson Joaquim Reis Leandro Menezes Betiollo Jaime Estevão Scandolara

MANAUS 2017

MINISTÉRIO DE MINAS E ENERGIA

SECRETARIA DE GEOLOGIA, MINERAÇÃO E TRANSFORMAÇÃO MINERAL

SERVIÇO GEOLÓGICO DO BRASIL – CPRM

DIRETORIA DE GEOLOGIA E RECURSOS MINERAIS DEPARTAMENTO DE GEOLOGIA SUPERINTENDÊNCIA REGIONAL DE MANAUS

Programa Geologia do Brasil

GEOLOGIA E RECURSOS MINERAIS DA FOLHA ILHA DE MARACÁ

ESTADO DE RORAIMA

MINISTÉRIO DE MINAS E ENERGIA Fernando Coelho Filho *Ministro de Estado*

SECRETARIA DE GEOLOGIA, MINERAÇÃO E TRANSFORMAÇÃO MINERAL

Vicente Lobo Secretário

SERVIÇO GEOLÓGICO DO BRASIL – CPRM

Eduardo Jorge Ledsham Diretor-Presidente José Carlos Garcia Ferreira Diretor de Geologia e Recursos Minerais Stênio Petrovich Pereira Diretor de Hidrologia e Gestão Territorial Antônio Carlos Bacelar Nunes Diretor de Relações Institucionais e Desenvolvimento Nelson Victor Le Cocq D'Oliveira Diretor de Administração e Finanças Reginaldo Alves dos Santos Chefe do Departamento de Geologia Edilton José dos Santos Chefe de Divisão de Geologia Básica Patrícia Duringer Jacques Chefe de Divisão de Geoprocessamento Marília Santos Salinas Rosário Chefe da Divisão de Cartografia José Marcio Henrique Soares Chefe do Departamento de Relações Institucionais e Divulgação José Márcio Henriques Soares Chefe da Divisão de Marketing e Divulgação

SUPERINTENDÊNCIA REGIONAL DE MANAUS

Marco Antônio de Oliveira Superintendente Regional Luis Emanoel Goulart Gerente de Geologia e Recursos Minerais Raimundo de Jesus Gato D'Antona Gerente de Relações Institucionais e Desenvolvimento

MINISTÉRIO DE MINAS E ENERGIA

SECRETARIA DE GEOLOGIA, MINERAÇÃO E TRANSFORMAÇÃO MINERAL SERVIÇO GEOLÓGICO DO BRASIL – CPRM

DIRETORIA DE GEOLOGIA E RECURSOS MINERAIS

DEPARTAMENTO DE GEOLOGIA

SUPERINTENDÊNCIA REGIONAL DE MANAUS

GEOLOGIA E RECURSOS MINERAIS DA FOLHA ILHA DE MARACÁ ESTADO DE RORAIMA

CRÉDITOS DE AUTORIA DA CARTOGRAFIA GEOLÓGICA

Leda Maria B. Fraga, Nelson Joaquim Reis, Leandro Menezes Betiollo, Jaime Escandolara, Ana Maria Dreher

CRÉDITOS DE AUTORIA DO RELATÓRIO

Capítulo 1 - INTRODUCÃO Nelson Joaquim Reis Capítulo 2 - CONTEXTO GEOLÓGICO REGIONAL E ESTRATIGRAFIA DA FOLHA Nelson Joaquim Reis Leda Maria B. Fraga Capítulo 3 - LITOESTRATIGRAFIA Leda Maria B. Fraga Ana Maria Dreher. Nelson Joaquim Reis Jaime Scandolara Capítulo 4 - GEOLOGIA ESTRUTURAL Leda Maria B. Fraga Capítulo 5 – EVOLUÇÃO GEOTECTÔNICA Leda Maria B. Fraga Nelson Joaquim Reis Capítulo 6 – RECURSOS MINERAIS Ana Maria Dreher Nelson Joaquim Reis

Capítulo 7 – CONCLUSÕES Nelson Joaquim Reis Capítulo 8 – RECOMENDAÇÕES Nelson Joaquim Reis REFERÊNCIAS BIBLIOGRÁFICAS Jean Racene Nelson Joaquim Reis

APOIO TÉCNICO

Departamento de Geologia Reginaldo Alves dos Santos Divisão de Geologia Básica Edilton José dos Santos Divisão de Geoprocessamento Patricia Duringer Jacques Divisão de Geoquímica Fernanda Gonçalves da Cunha Divisão de Geofísica Luiz Gustavo Rodrigues Pinto Divisão de Sensoriamento Remoto Luiz Gustavo Rodrigues Pinto Divisão de Paleontologia José Torres Guimarães Superintendência Regional de Manaus Marco Antônio de Oliveira Gerência de Recursos Minerais Luis Emanoel Alexandre Goulart Gerência de Relações Institucionais e Desenvolvimento Raimundo de Jesus Gato D'Antona Chefe do Projeto Nelson Joaquim Reis Supervisor de Proietos Antônio Charles de Oliveira

Colaboradores Aldenir Justino de Oliveira (SUREG-MA) Closeneusa Brilhante (CPRM-DF) Marcelo Esteves Almeida (SUREG-MA) Gerson Tavares de Souza (Auxiliar de campo) Luiz dos Santos Ramires (Auxiliar de campo) Olício Correa dos Santos (Auxiliar de campo) João Almeida (Laminação) Wianei Silva de Assunção (Laminação) Luis Rodrigues Ferreira (Auxiliar de campo) Aluisio Ramos (Auxiliar de campo) Teodoro Oliveira (Auxiliar de campo) Jean Charles Racene dos Santos Martins (Biblioteconomista) Maria Tereza da Costa Dias (Editoração, Diagramação e Projeto Multimídia-Flash)

EDIÇÃO DO PRODUTO DIGITAL

Diretoria de Relações Institucionais e Desenvolvimento Departamento de Relações Institucionais e Divulgação - DERID - Ernesto von Sperling Divisão de Marketing e Divulgação - DIMARK - José Márcio Henriques Soares Divisão de Geoprocessamento - DIGEOP - Patricia Duringer Jacques - SIG/GEOBANK

RESUMO

Este informe, sob o título "Nota Explicativa da Folha Ilha de Maracá – NA.20-X-A" reúne em versão condensada os principais resultados do mapeamento geológico da folha Ilha de Maracá na escala de 1:250.000, em uma área de 18.420 km2 situada na porção noroeste do estado de Roraima. A atividade integra o Programa de Geologia Básica do Serviço Geológico do Brasil e reúne dezesseis unidades geológicas integradas ao arcabouço da porção norte do Cráton Amazônico, no escudo das Guianas. O quadro de evolução geotectônica se processou na sua totalidade ao longo do Paleoproterozoico, no intervalo Orosiriano-Estateriano. Inliers granito-gnáissicos da Suíte Trairão, com idade em 2,03 Ga, são os mais antigos representantes de arcos magmáticos da Folha. Tectonicamente encaixados no seu interior ocorrem supracrustais do Grupo Cauarane, consideradas representar fatias de uma bacia retro-arco, que por sua vez, delineiam um segmento do Cinturão Cauarane-Coeroeni, de natureza colisional. Outras megalentes dispõem-se no interior dos granitoides Reislândia e Puruê (1,97-1,95 Ga) bem como em rochas indiferenciadas do Complexo Urariquera. A idade mínima da bacia Cauarane tem sido estabelecida em 1,99 Ga, a partir de fundidos graníticos representados pelo Granito Amajari. Rochas vulcânicas e graníticas com idades no intervalo 1,98 – 1,96 Ga (este estudo) assomam por toda a Folha, destacando-se o Grupo Surumu (1,96 Ga), Formação Cachoeira da Ilha (1,96 Ga) e suítes Pedra Pintada (1,97 Ga), Aricamã (1,98 Ga) e Tocobirém (1,96 Ga). O conjunto vulcânico e plutônico possui uma assinatura geoquímica pós-orogênica a anorogênica. No referido intervalo comparece o Granito Mixiguana (1,97 Ga) em condição de magmatismo possivelmente colisional e o Lamprófiro Serra do Cupim (1,96 Ga) na forma de digues e derrames. A Formação Tepequém foi depositada em condições de subsidência de caldeira vulcânica, em cujo substrato domina um grande volume de material piroclástico Surumu. Em discordância regional ao Tepequém, instalou-se o sistema fluvial entrelaçado da Formação Arai. Eventos magmáticos máficos correspondem a corpos da Suíte Uraricaá (1,88 Ga) e diques do Diabásio Avanavero (1,79-1,78 Ga). Ao Cenozoico relacionam-se coberturas detritolateríticas e aluviões recentes e sub-recentes. O diamante e ouro e secundariamente a ametista, constituem os principais recursos minerais que detêm um histórico de exploração (garimpagem) na folha Ilha de Maracá. O manganês, cassiterita, cromita e elementos do grupo dos platinoides permanecem como indícios a partir da comum associação com alguns tipos litológicos metassedimentares, ígneos félsicos ou máficos. Tipos ornamentais mereceram atenção. A nota acompanha um mapa geológico e inclui encartes de produtos aerogeofísicos, sensoriamento remoto, seção geológica e coluna tectonoestratigráfica.

ABSTRACT

A report under the heading "Brief Notes on Ilha de Maracá Sheet - NA.20-X-A" is given as a summarized version of the geological mapping of the Ilha de Maracá Sheet in the 1: 250,000 scale recovering an area of 18,420 km2 located in the northwestern portion of the Roraima State. It was carried out by the Basic Geology Program of the Geological Survey of Brazil. The present work applied on regional geological mapping is briefly described and give special attention to the Roraima State framework towards to the geotectonic evolution of the Guiana Shield, northern portion of the Amazonian Craton. Notes are given on the sixteen stratigraphic units whose tectonic evolution was processed entirely along the Paleoproterozoic times, in the Orosirian-Statherian period. Granite-gneiss inliers from Trairão Suite dated at 2.03 Ga are the oldest member of magmatic arcs. The Cauarane supracrustals are considered to represent slices of a back-arc basin, which in turn, marks a segment of the Cauarane-Coeroeni Belt of collisional nature. Other megalens lies within of the Reislândia and Puruê granitoids (1.97 to 1.95 Ga) and undifferentiated rocks of the Urariquera Complex. The age of Cauarane basin has been set at 1.99 Ga from the S-type Amajari Granite. Volcanic and granitic rocks with ages in the range from 1.98 to 1.96 Ga (this study) occurs all over the Sheet, highlighting the Surumu Group (1.96 Ga), Cachoeira da Ilha Formation (1.96 Ga) and Pedra Pintada (1.97 Ga), Aricamã (1.98 Ga) and Tocobirém (1.96 Ga) Suites. The volcanic and plutonic set shows a post-orogenic to anorogenic geochemical pattern. In that interval appears the Mixiguana Granite (1.97 Ga) under a collisional magmatic condition and the Serra do Cupim Lamprophyre (1.96 Ga) as dikes and flows. The Tepequém Formation was deposited under conditions of caldera subsidence, in which substrate dominates a large volume of Surumu's pyroclastic source. Possibly under unconformity, the Arai Formation is represented by a braided fluvial environment. Mafic magmatic events correspond to the Uraricaá Suite as bodies (1.88 Ga) and the Avanavero Dolerite as dikes (1.79 to 1.78 Ga). The Cenozoic register laterite covers and alluvial deposits. The diamond and gold and secondly, the amethyst, are the main mineral resources with an ancient history of exploration ("pork-knockers"). The manganese, tin, chromite and platinoids group elements remain as evidence from the common association with some lithological metasedimentary types, felsic igneous or mafic. Some types of dimension stones deserve attention. A geological map is given including a layout with the airborne geophysical survey, remote sensing, geological section and tectonic-stratigraphic column.

SUMÁRIO

_

 INTRODUÇÃO CONTEXTO GEOLÓGICO REGIONAL E ESTRATIGRAFIA DA FOLHA LITOESTRATIGRAFIA	11 12 17 17 17 17 19 21		
		3.5 - Suíte Pedra Pintada (PP3γ3pp)	22
		3.6-GrupoSurumu(PP3αsu)	24
		3.7 - Suíte Aricamã (PP3γ3ar)	26
		3.8 - Formação Cachoeira da Ilha (PP3αci)	28
		3.9 - Granito Mixiguana (PP3γ2mi)	29
		3.10 - Suíte Reislândia (PP3γ3re)	
3.11 - Suíte Tocobirém (PP3γ3to)	31		
3.12 - Quartzo-Diorito Puruê (PP3γ3pu)	32		
3.13 - Supergrupo Roraima – formações (PP3) Tepequém (te) , Arai (ar) e Uru	utanim (ut)		
	32		
3.14 - Suíte Máfica-Ultramáfica Uraricaá (PP4µur)	35		
3.15 - Diabásio Avanavero (PP4δav)	36		
3.16 - Lamprófiro Serra do Cupim (PP4αsc)	36		
3.17 - Cobertura Detrito-Laterítica (Edl) e Depósitos recentes (Qh1)	37		
4-GEOLOGIA ESTRUTURAL	38		
5-EVOLUÇÃOGEOTECTÔNICA	40		
6 - RECURSOSMINERAIS	42		
7-CONCLUSÕES	44		
8-RECOMENDAÇÕES	45		
9-REFERÊNCIASBIBLIOGRÁFICAS	46		

GEOLOGIA E RECURSOS MINERAIS DA FOLHA ILHA DE MARACÁ

ESTADO DE RORAIMA

1 - INTRODUÇÃO

Esta nota explicativa apresenta, em versão condensada os dados levantados pelo Projeto Ilha de Maracá, vinculado ao Programa de Geologia Básica do Serviço Geológico do Brasil. O projeto envolveu o mapeamento geológico da folha Ilha de Maracá (NA.20-X-A) na escala de 1:250.000, que compreende uma área de 18.420 km², situada na porção norte do estado de Roraima (Figura 1). A Reserva Indígena lanomâmi abrange 53,2% da área, sendo que 5,2% da folha encontra-se em território venezuelano.

As etapas de campo, em número de três, foram realizadas no período de outubro de 2008 a abril de 2009 e incluíram

trabalhos por via terrestre, fluvial e aérea, a última por helicóptero. Os dados de produção encontram-se listados na Tabela 1 (anexo). As análises litogeoquímicas foram executadas pela ACME Labs e os dados geocronológicos U-Pb (zircão e badeleiíta), Ar-Ar e isotópicos Sm-Nd foram obtidos em laboratórios das universidades de Brasília (LGI), Queensland e Western Australia. Dados de levantamentos aerogeofísicos com espaçamento de linhas de 500 metros (CPRM, 2001) e produtos de sensoriamento remoto foram integrados e interpretados em conjunto com as informações de campo e de petrografia para a confecção do mapa geológico.

Figura 1 – Situação da Folha NA.20-X-A (Ilha de Maracá) no estado de Roraima e articulação.

2 - CONTEXTO GEOLÓGICO REGIONAL E ESTRATIGRAFIA DA FOLHA

A folha Ilha de Maracá está localizada na porção norte do cráton Amazonas, no escudo das Guianas. Segundo os modelos de províncias geocronológicas propostos para a região, a área situa-se na Província Amazônia Central de Tassinari; Macambira (2004) e na Província Tapajós-Parima de Santos, et al. (2006). Para Reis, et al. (2003), a área registra o limite entre dois grandes domínios tectonoestratigráficos, a saber: Domínio Parima, com um arranjo de lineamentos NW-SE e, Domínio Surumu, onde assomam lineamentos E-W a NE-SW.

No contexto do escudo das Guianas, a área abrange um segmento do Cinturão Cauarane-Coeroeni - CCC, considerado representar um cinturão colisional, descontínuo e sinuoso, formado por rochas supracrustais de alto grau metamórfico (Figura 2). O cinturão divide o escudo em dois grandes blocos com evolução geotectônica distinta (FRAGA et al., 2008; FRAGA; REIS; DALL'AGNOL, 2009).

O Mapa geológico da folha Ilha de Maracá (Figura 3) reúne um total de dezesseis unidades litoestratigráficas, esquematicamente ilustradas na figura 4, cuja evolução geológica ocorreu na sua quase totalidade durante o Paleoproterozoico, ao longo do intervalo Orosiriano-Estateriano.

No terreno encontram-se representadas por corpos metassedimentares lenticulares do Grupo Cauarane, encaixados tectonicamente em unidades granito-gnáissicas da Suíte Trairão (FRAGA et al., 2010), em granitoides Reislândia e Puruê (este estudo) e em rochas indiferenciadas do Complexo Urariquera. As litologias mais antigas encontram-se representadas por fragmentos granito-gnáissicos da Suíte Trairão, cuja idade U-Pb tem sido estabelecida em 2,03 Ga e até o presente momento, registrando o valor mais antigo para a porção setentrional de Roraima. Para oeste e domínio Parima-Trairão (PA-TR, Figura 2), o Complexo Urariquera revela incertezas quanto a sua caracterização e extensão para o interior do cinturão. As supracrustais Cauarane sugerem uma deposição em condições de uma bacia do tipo retro-arco (CPRM, 1999) cuja idade mínima pode ser considerada através do valor U-Pb de fundidos graníticos no seu interior, representados pelo Granito Amajari em 1,99 Ga (FRAGA et al., 2010).

Ao norte do CCC, o domínio Cuchivero (CU)-Surumu (SU)-Burro-Burro (BU)-Dalbana (DA) (Figura 2) registra uma ampla área de distribuição de rochas vulcânicas e graníticas com idades U-Pb e Pb-Pb estabelecidas na porção brasileira ao intervalo 1,98 – 1,96 Ga. Na folha Ilha de Maracá, encontra-se representado pelo Grupo Surumu (U-Pb em 1,96 Ga, este estudo), Formação Cachoeira da Ilha (U-Pb em 1,96 Ga, este estudo) e suítes Pedra Pintada (U-Pb em 1,97 Ga, este estudo), Aricamã (U-Pb em 1,98 Ga, este estudo) e Tocobirém (U-Pb em 1,96 Ga, este estudo). O conjunto vulcânico e plutônico assinala características pós-orogênicas a anorogênicas (FRAGA et al., 2010). No referido intervalo e com uma idade U-Pb em 1,97 Ga (este estudo), assoma o Granito Mixiguana (FRAGA et al., 2010) em condição de magmatismo possivelmente colisional.

Assentada sobre o substrato vulcânico Surumu, a cobertura sedimentar da serra Tepequém (formações Tepequém e Arai) é contemporânea à evolução do Bloco Pacaraima. A Formação Tepequém foi depositada em condições de subsidência de caldeira vulcânica, cujo vulcanismo que a antecede contém um grande volume de material piroclástico. Em discordância regional, instalou-se um sistema fluvial entrelaçado que é correlacionado com a Formação Arai, base do Supergrupo Roraima (REIS; YÁNEZ, 2001). No extremo noroeste da Folha, os platôs e contrafortes da serra Urutanim são referidos à Formação Urutanim de Pinheiro et al. (1981).

Eventos magmáticos máficos correspondem a diques do Diabásio Avanavero e corpos da Suíte Máfica-Ultramáfica Uraricaá (CPRM, 1999). Os diques têm sido associados às soleiras no interior do Bloco Pacaraima, cujas idades encontram-se no intervalo 1,79-1,78 Ga (Santos et al. 2003; Reis et al. 2013). A Suíte Uraricaá reúne corpos de forma e dimensão variada, despontando o corpo do rio Uraricaá. Uma idade U-Pb em 1,88 Ga foi obtida para um diabásio da serra Uraricaá (este estudo). Corpos lamprofíricos "Serra do Cupim" (FRAGA et al., 2010) na forma de diques e derrames ocorrem no interior das suítes Trairão, Pedra Pintada e Aricamã. Uma idade U-Pb em 1,96 Ga (este estudo) a reagrupa ao contexto regional de evolução do vulcano-plutonismo Surumu--Pedra Pintada.

O Cenozoico encontra-se representado por coberturas detrito-lateríticas (Eoceno-Oligoceno) e aluviões recentes e sub-recentes holocênicas, de pouca expressão na folha Ilha de Maracá.

Figura 2 – Esboço geológico do Cinturão Cauarane – Coeroeni - CCC (adaptado de Fraga; REIS; DALL'AGNOL, 2009) e domínios no entorno: Domínio Cuchivero – Surumu – Burro-Burro – Dalbana (CU-SU-BU-DA); Domínio Parima – Trairão (PA-TR); Domínio Mucajaí – Lua – South Savannas (MU-LU-SS). Para o extremo oeste e sul respectivamente, os domínios Imeri (IM), Anauá (AN), Jatapu-Iwokrama (JT-IW) e Uatumã (UT). A moldura representa a folha Ilha de Maracá.

Figura 3 – Mapa Geológico simplificado da folha Ilha de Maracá. Legenda como na figura 4.

NW-SE, constituindo metariolitos. 1805 ± 8 Ma; 1791 ± 9 Ma U-Pb SHRIMP e LA-ICP em cristais de zircão.

Figura 4 – (a) Relações tectonoestratigráficas e, (b) Unidades geológicas da folha Ilha de Maracá.

3 - LITOESTRATIGRAFIA

3.1 - Complexo Urariquera (PP23ur)

Coube a Reis et al. (2004) adotarem a terminologia "Complexo Urariquera" para as rochas exclusivamente ortoderivadas da Suíte Metamórfica Urariquera de Pinheiro et al. (1981). Neste estudo, optou-se pela manutenção deste termo para designar o embasamento indiviso do extremo sul da Folha, com informações geológicas O complexo constitui uma escassas. faixa com direção aproximadamente E-W, contato encontrando-se em tectônico com o Grupo Cauarane, Quartzo-Diorito Puruê e as suítes Trairão e Reislândia através de zonas de cisalhamento dúcteis, em parte interpretadas de dados de aeromagnetometria. Corpos da Suíte Pedra Pintada intrudem o complexo.

A unidade reúne rochas granitoides e gnáissicas acinzentadas, bandadas ou homogêneas, de granulação fina a grossa. Texturas granoblásticas ou granolepidoblásticas e feições miloníticas são reconhecidas nos tipos gnáissicos (PINHEIRO et al., 1981).

Na folha Ilha de Maracá, três amostras de quartzo-diorito e uma de englobadas monzogranito foram no Complexo Urariquera. Os quartzo-dioritos são formados por plagioclásio, biotita, hornblenda e quartzo, exibindo foliação discreta a moderada. O hornblenda-biotita é protomilonítico, monzogranito com porfiroclastos de plagioclásio, feldspato alcalino e hornblenda, envoltos em matriz fina com biotita, agregados de feldspatos e lentes e fitas orientadas de guartzo. Magnetita, apatita, titanita, alanita e zircão são acessórios. A classificação petrográfica e composição mineral estimada de amostras do Complexo Urariquera encontram-se na Tabela 2 (anexo).

Duas amostras de quartzo-diorito foram analisadas para elementos maiores e traço, incluindo elementos terrasraras (Tabela 3, em anexo). São rochas metaluminosas que exibem afinidade cálcioalcalina de médio-K, porém, o limitado acervo litoquímico não permite maiores considerações petrogenéticas.

Na área de domínio do Complexo Urariquera e região NW de Roraima, Santos et al. (2003) obtiveram valores Sm-Nd cujos resultados conduziram a uma derivação a partir de rochas transamazônicas (idadesmodelo TDM no intervalo 2,17-2,02 Ga) e curto intervalo de residência crustal (ϵ Nd > 0). As idades-modelo TDM em paraderivadas forneceram valores em 2.502 Ma (Neoarqueano) e 2.485 Ma (Sideriano), que segundo os autores, devem resultar da mistura de isótopos de Nd de diferentes fontes.

3.2 - Suíte Trairão (PP3y1tr)

A Suíte Trairão (FRAGA et al., 2010) agrupa corpos granitoides variando de quartzo-dioríticos a graníticos, com predominância de tonalitos e granodioritos, por vezes, com aspecto gnáissico. As idades de 2026 \pm 5 Ma U-Pb (SHRIMP) e 2044 \pm 17 Ma U-Pb (LA-MC-ICP-MS) a colocam como embasamento para outras unidades litoestratigráficas mapeadas, exceto o Complexo Urariquera de idade e posicionamento estratigráfico ainda incerto.

Em campo, as litologias Trairão são em geral acinzentadas, de granulação média a grossa (Figura 5a), caracterizadas por afloramentos heterogêneos mostrando bandamento composicional com limites difusos, foliação magmática e diferentes tipos de enclaves máficos (Figura 5b). Os granodioritos e tonalitos exibem textura variando de alotriomórfica inequigranular a hipidiomórfica granular, com biotita e hornblenda como minerais máficos principais. Zircão, apatita e minerais opacos ocorrem como minerais acessórios primários sendo epídoto, allanita, titanita e parte dos minerais opacos provavelmente fases (magmáticas?) secundárias. Uma descrição detalhada dos aspectos mesoscópicos e petrográficos da suíte encontram-se em Fraga et al. (2010). A classificação petrográfica e composição mineral estimada de amostras da Suíte Trairão encontram-se na Tabela 4 (anexo).

Quatro amostras foram analisadas para elementos maiores, menores, traço e terras-raras(ETR)einterpretadasjuntamente com os resultados disponibilizados por Fraga et al., (2010) (ver tabelas 5 e 6 em anexo). As rochas da suíte são metaluminosas a fracamente peraluminosas, correspondendo a rochas cálcio-alcalinas dominantemente de médio-K. Distribuem-se segundo tendência cálcio-alcalino média а de maturidade no diagrama AFM de Irvine e Baragar (1971) e no campo das rochas vulcânicas de arcos magmáticos no diagrama Y+Nb versus Rb (Pearce et al. 1984). As características químicas como os elevados conteúdos em Al₂O₂ e CaO, baixas razões FeO/(FeO*+MgO), razões A/CNK<1,1, enriquecimento em elementos LIL e ETR leves em relação aos pesados e elementos HFS, confirmam a afinidade da Suíte Trairão com séries cálcio-alcalinas de médio-K. Os enclaves máficos mostram composição de gabro a diorito e são diversificados em natureza (cálcio-alcalina, toleiítica ou alcalina). Em relação aos típicos granitoides cálcio-alcalinos de arcos magmáticos, a suíte revela características transicionais entre arcos continentais primitivos e aqueles maduros. Porém, observam-se entre os diversos corpos, diferenças no comportamento químico de alguns elementos e óxidos que sugerem a participação de fontes distintas com contribuição mantélica e crustal.

Figura 5 - Aspecto de campo da Suíte Trairão no furo Maracá, rio Urariquera; (a) Biotita granodiorito foliado. Estação NR-50; (b) Enclaves máficos alongados orientados em granitoide tonalítico foliado. Estação NR-51.

Os dados isotópicos disponíveis (Tabela 7, em anexo), com idades Sm-Nd, $T_{_{DM}}$ entre 2,02 a 2,20 Ga, próximas da idade de cristalização das rochas e, valores de $\mathcal{E}_{_{Nd}}$ (t) situados entre +1,68 e +3,1 sugerem um caráter juvenil e/ou uma origem a partir de fontes com limitada residência crustal.

Com base nos dados químicos e isotópicos sugere-se para a Suíte Trairão uma evolução em ambiente orogênico relacionado à subducção. No escudo das Guianas, o complexo Anauá (U-Pb SHRIMP, 2028 ± 9 Ma, Faria *et al.* 2002) da porção sul de Roraima registra contemporaneidade com a Suíte Trairão.

3.3 - Grupo Cauarane (PP3cau)

O Grupo Cauarane (MONTALVÃO; PITTHAM, 1974; CPRM, 1999; FRAGA et al., 2010) é formado por metasupracrustais de médio a alto grau metamórfico que inclui, sobretudo, paragnaisses aluminosos, em geral migmatíticos, com intercalações de mica xistos, ortoanfibolitos, rochas calcissilicáticas, metacherts e gonditos. Esta unidade integra o denominado Cinturão Cauarane-Coeroeni de Fraga et al. (2008; 2009).

As exposições mais acessíveis do Grupo Cauarane encontram-se na porção sudeste e leste da Folha, em contato tectônico com as rochas das suítes Reislândia, Pedra Pintada e Granito Mixiguana, sendo frequente sua ocorrência como xenólitos nestes granitoides. As supracrustais Cauarane afloram também na porção sul da folha em um corpo alongado em contato tectônico com o Complexo Urariquera e Quartzo-diorito Puruê.

As rochas do Grupo Cauarane são foliadas e polidobradas com forte bandamento composicional (Figura 6b). Os paragnaisses aluminosos possuem níveis cinza claros ricos em feldspatos e quartzo, que se intercalam com bandas escuras contendo biotita e outros minerais como sillimanita, muscovita, cordierita e andaluzita, sendo a granada e estaurolita mais raros. Os acessórios presentes são apatita, zircão, monazita, rutilo, turmalina, hercinita e opacos. Feições migmatíticas, como veios, bolsões ou camadas leucocráticas de granulação grossa (leucossomas) são Veios quartzo-feldspáticos frequentes. registram a abundância em muscovita e por vezes schorlita, uma variedade de turmalina negra rica em ferro.

Os ortoanfibolitos são pretos ou verde-escuros (Figura 6a), constituídos por hornblenda. labradorita. biotita. cummingtonita ou diopsídio, com quartzo disperso ou concentrado em finos leitos e, acessórios como titanita, apatita e opacos. As rochas calcissilicáticas são cinza-claras a verde-escuras, geralmente bandadas e granoblásticas. Compreendem diopsiditos, compostos principalmente por clinopiroxênio, hornblenda, plagioclásio e quartzo. Os para-anfibolitos são formados por hornblenda, andesina, diopsídio e quartzo. Granofelses contendo hornblenda, diopsídio, plagioclásio, granada, quartzo, epidoto, tremolita e microclínio foram observados.

Figura 6 - Aspecto de campo do Grupo Cauarane. (a) Estação NR-19, granitóide da Suíte Reislândia (com idade U-Pb SHRIMP) com enclave anfibolítico do Grupo Cauarane. Fazenda Serra Dourada, região da vila Reislândia; (b) Estação NR-36, rio Urariquera, furo Maracá. Paragnaisse evidenciando estilos de deformação.

Os metacherts são escuros, formados por cristais de quartzo que englobam cristais finos, orientados e alinhados de hornblenda, epidoto, plagioclásio, microclínio, diopsídio, tremolita e por vezes, magnetita. O gondito, encontrado como um xenólito em granito Suíte Pedra Pintada é composto da por granada manganesífera, quartzo, clinoanfibólio, clinopiroxênio, titanita е carbonato. A classificação petrográfica e composição mineral estimada de amostras do Grupo Cauarane encontram-se na Tabela 8 (anexo).

Duas fases metamórficas foram observadas nas rochas do Grupo Cauarane, uma delas sin-cinemática (M1) desenvolvida em condições da fácies anfibolito-médio a -alto e, uma segunda fase de caráter estático (M2), em condições da fácies anfibolito-médio a -baixo. A fácies anfibolitosuperior é evidenciada por assembleias à base de sillimanita + K-feldspato e bandas leucocráticas grossas, indicativas de fusão parcial (migmatização) nos paragnaisses aluminosos, além da presença de diopsídio nas rochas calcissilicáticas e anfibolitos. ocorrência de cummingtonita А em ortoanfibolitos e de cordierita, andaluzita e sillimanita junto à escassez de granada e ausência de cianita nos paragnaisses e xistos, indicam que M₁ desenvolveu-se, de modo geral, em baixa pressão, a qual, provavelmente não ultrapassou os 4 kbar. Nos paragnaisses e xistos aluminosos, as foliações S1 e S2 são definidas pelas mesmas assembleias de minerais metamórficos, sugerindo terem sido desenvolvidas sincinematicamente durante o ápice do metamorfismo M₄. A fase metamórfica M₂ é caracterizada pela transformação em muscovita de minerais como biotita, sillimanita. andaluzita, cordierita е microclínio. A muscovita ocorre em grandes poiquilíticas, placas sem orientação preferencial, envolvendo e recobrindo parcialmente outros minerais, sugerindo um evento metamórfico estático (M2), em condições da fácies anfibolito-médio/baixo, superimposto à trama desenvolvida durante M_1 . O metamorfismo M_2 é tentativamente

atribuído ao efeito térmico produzido nas rochas do Grupo Cauarane pelo expressivo plutono-vulcanismo que afetou a área em 1,98-1,95 Ga

Quatorze amostras do Grupo Cauarane foram quimicamente analisadas para elementos maiores, menores, traço e terras-raras(ETR)einterpretadasjuntamente com os resultados disponibilizados por Fraga et al. (2010) (tabelas 9 a 11 em anexo). Os anfibolitos Cauarane são reconhecidos como basaltos toleiíticos, com assinaturas de arco vulcânico de margem continental ativa, arco oceânico e de bacias retro-arco (ambientes convergentes). No entanto, exceção é feita para um álcali-basalto intraplaca (NR-02A, tabela 9 anexa). Os paragnaisses e subordinados xistos (sedimentares clásticas) assinalam um variável conteúdo em óxidos sugestivo de protólitos de fontes diversas. Neste aspecto, registram assinaturas de rochas de arco continental e intra-oceânico. Possuem dominantemente fontes a partir de grauvacas de proveniência (gnea intermediária. Os protólitos grauváquicos depositados provavelmente foram em bacias relacionadas à margem continental ativa/arco continental.

A idade mínima para a sedimentação Cauarane baseia-se no valor U/Pb SHRIMP em monazita de 1995 ± 4 Ma obtido para o Granito Amajari (FRAGA et al., 2010), considerado ser um corpo autóctone gerado através da fusão parcial das supracrustais. Neste estudo foram obtidas idades Ar-Ar em biotita para um paragnaisse aluminoso com valores de 1722 ± 6 Ma (*step* 1) e 1656 ± 6 Ma (*step* 2) indicativos de um efeito termal pós-cinemático que não havia sido verificado nessas rochas. O valor mais antigo (1722 ± 6 Ma) se aproxima da idade obtida para os diques da unidade Lamprófiro Serra do Cupim, descrita no item 3.16.

Coube a Fraga et al. (2008) estabelecer no interior do Cinturão Cauarane-Coeroeni unidades correlatas ao Grupo Cauarane, tais como os grupos Kanuku e Coereoni, respectivamente na Guiana e Suriname.

3.4 - Granito Amajari (PP3γ2am)

Corpos de granitos com características químicas e mineralógicas de granitos do tipo-S foram identificados na região da ilha de Maracá, rio Urariquera e reunidos sob a denominação de Granito Amajari (CPRM, 1999).

As rochas relacionadas à unidade Granito Amajari variam de monzogranito a álcali-feldspato granito com subordinados granodioritos. São tipos acinzentados a esbranquiçados, de granulação fina a média, pouco magnéticos e levemente foliados. Correspondem a muscovita-biotita monzo e sienogranitos leucocráticos, destacandose cristais xenomórficos de microclínio, quartzo e plagioclásio antipertítico. Os minerais máficos principais são a biotita e a muscovita. Cordierita, granada, sillimanita e andaluzita são secundários. A monazita e apatita são os acessórios mais comuns, sendo hercinita, rutilo, zircão e turmalina mais raros (FRAGA et al., 2010).

Dois resultados analíticos para elementos maiores, menores, traço e terras-raras (ETR) foram obtidos para o Granito Amajari e encontram-se na Tabela 12 (em anexo) juntamente com dados químicos disponibilizados por Fraga et al. (2010). O Granito Amajari mostra peraluminoso, com caráter afinidades com granitos do tipo-S, relacionando-se fontes sedimentares. а provavelmente

representadas pelas paraderivadas do Grupo Cauarane. Apesar das variações pontuais em alguns elementos-traço, o Granito Amajari registra maior identidade com o padrão composicional médio dos granitos tipo-S australianos, se comparados àqueles hercinianos himalaianos. е Considerando-se outras suítes com similar comportamento na Amazônia Ocidental (ALMEIDA; MACAMBIRA; OLIVEIRA, 2007), há uma semelhança composicional em termos de ETR com os granitos Serra Dourada aflorantes na parte sul de Roraima com idade estabelecida em 1,97 Ga.

Uma idade U-Pb SHRIMP (monazita) em 1995 ± 4 Ma foi obtida para um corpo do Granito Amajari situado na cachoeira Tiporém, rio Urariquera (FRAGA et al., 2010). A mesma amostra foi submetida à análise isotópica Sm-Nd, tendo sido obtidos valores de idade modelo T_{DM} em 2135 Ma e ε_{Nd} (t) de + 1,8.

Granitoides enriquecidos em muscovita e granada interpretados como do tipo-S e encaixados em metassedimentos do Grupo Cauarane têm sido descritos por CPRM (1999) na região da serra Apon (Granito Curuxuim), proximidade da fronteira com a Guiana. Foram reconhecidos ainda corpos granitoides protomiloníticos a duas micas na região dos rios Parimé-Cauaruau, associados a gnaisses ricos em biotita.

3.5 - Suíte Pedra Pintada (PP3γ3pp)

A Suíte Pedra Pintada reúne (hornblenda)-biotita granodioritos e monzogranitos com subordinados quartzo-dioritos, tonalitos e sienogranitos (CPRM, 1999; FRAGA et al., 2010). No quadrante nordeste da Folha reúne dois grandes corpos denominados Trovão e Flechal, sendo que no presente estudo, foram individualizados mais a oeste, dois novos corpos: Ericó e Coimin.

A suíte é cortada por diques subvulcânicos do Grupo Surumu e por corpos graníticos da Suíte Aricamã. As relações de campo estabelecem como seu embasamento, as supracrustais Cauarane e os granitoides da Suíte Trairão, por sua vez, presentes como xenólitos no seu interior.

Os granitoides Pedra Pintada são bastante magnéticos, acinzentados e ricos em minerais máficos. Subordinadamente ocorrem tipos esbranquiçados ou rosados, pobres em máficos, mais evoluídos e hidrotermalizados (Figura 7a, b). Enclaves máficos arredondados e finos com inclusão de cristais de feldspato, provavelmente pingados da encaixante, sugerem a coexistência de magmas ácidos e básicos.

Os quartzo-dioritos quartzoе monzodioritos são formados principalmente por plagioclásio andesínico, fortemente zonado, com cerca de 25 a 40% de componentes máficos, representados por piroxênios, hornblenda e biotita. Minerais opacos e apatita são os principais acessórios, seguidos por titanita, allanita e zircão. Os tonalitos e granodioritos são formados por cristais de plagioclásio, quartzo e microclínio (este mais raro nos tonalitos), com 10 a 30% de componentes máficos, que correspondem a hornblenda e biotita (piroxênios estão ausentes). Os minerais acessórios são: titanita, zircão, allanita, minerais opacos e apatita. Os monzogranitos são constituídos por microclínio, quartzo e plagioclásio, com conteúdo de minerais máficos (hornblenda e biotita) entre 10 a 30%. A titanita, primária, e os minerais opacos são os acessórios mais comuns, sendo acompanhados por zircão e apatita. Nos monzo e sienogranitos mais evoluídos a hornblenda está ausente e o conteúdo em biotita varia entre 2 e 8%. Nestas rochas, texturas do tipo rapakivi e gráfica ocorrem localmente. A classificação petrográfica e composição mineral estimada de amostras da Suíte Pedra Pintada encontram-se na Tabela 13 (anexo).

Os resultados analíticos para elementos maiores, menores, traço e terrasraras (ETR) de seis amostras da suíte encontram-se nas tabelas 14 a 16 (anexo) juntamente com resultados anteriormente obtidos. Uma descrição química detalhada das variações entre as fácies e os principais corpos pode ser encontrada em Fraga et al. (2010).

As rochas da Suíte Pedra Pintada são metaluminosas а marginalmente peraluminosas e se distribuem no campo das rochas cálcio-alcalinas no diagrama AFM (IRVINE; BARAGAR, 1971). Ocupam dominantemente o campo das rochas cálcioalcalinas de alto-K no diagrama SiO₂ versus K₂O e exibem uma assinatura geoquímica típica da série cálcio-alcalina de alto K, se aproximando dos granitoides de arcos continentais normais a maduros. Processos de cristalização fracionada foram importantes na evolução da suíte, destacando-se o fracionamento de feldspatos, piroxênios, óxidos de Fe-Ti e apatita.

As idades-modelo, Sm-Nd, $T_{_{DM}}$ para a suíte variam desde próximas daquela de cristalização das rochas, estendendo-se até

valores 200 Ma mais antigas (2,28 Ga). Os valores de \mathcal{E}_{Nd} (t) situam-se entre - 0,15 e +3,8, sendo compatíveis com a contribuição de fontes com residência crustal moderada ou juvenis, ou com limitada residência crustal na geração da suíte. Os resultados isotópicos Sm-Nd da Suíte Pedra Pintada encontram-se na Tabela 17 (anexo).

Um ambiente pós-colisional foi proposto para a gênese das rochas Pedra Pintada, que deve refletir a fusão parcial de material crustal com assinatura de subducção herdada de um estágio précolisional, com possível contribuição de fontes mantélicas previamente enriquecidas por componentes de subducção durante a evolução do arco Trairão (FRAGA et al., 2010).

O intervalo 1,98-1,96 Ga (Pb-Pb por evaporação, U-Pb TIMS, SHRIMP) tem sido considerado como o mais representativo de cristalização da suíte (FRAGA, et al., 2010; SANTOS, 2003). Os valores U-Pb SHRIMP obtidos neste estudo, de 1971 ± 5 Ma e 1968 ± 5 Ma coincidem dentro do erro analítico com aqueles anteriormente obtidos. A Tabela 18 (anexo) exibe os resultados geocronológicos disponíveis para a Suíte Pedra Pintada.

Granitoides com similares características químicas e intervalo de idade da Suíte Pedra Pintada são reconhecidos no sudeste de Roraima, correspondendo ao Granito Martins Pereira (ALMEIDA; MACAMBIRA; OLIVEIRA, 2007).

Figura 7 - Aspectos macroscópicos de rochas da Suíte Pedra Pintada: (a) Quartzo-diorito cinza, rico em minerais máficos. Estação NR-55; (b) Monzogranito levemente alterado, de coloração esbranquiçada, pobre em minerais máficos. Estação NR-56.

3.6 - Grupo Surumu (PP3αsu)

O Grupo Surumu reúne fluxos piroclásticos ácidos a intermediários e rochas vulcânicas extrusivas (lavas) que recobrem a porção norte do estado de Roraima, servindo de substrato às rochas sedimentares do Supergrupo Roraima. A continuidade dessas rochas vulcânicas para as regiões vizinhas da Venezuela, Guiana e Suriname qualificam o vulcanismo como uma das maiores manifestações magmáticas do Escudo das Guianas (Gibbs & Barron 1993).

Na folha Ilha de Maracá o Grupo Surumu ocupa quase 50% da área mapeada. As rochas dominantes são ignimbritos félsicos, com ocorrências restritas de andesitos, rochas sedimentares vulcanogênicas, lavas riolíticas, subvulcânicas ácidas em diques, e uma ocorrência de tufo ácido de queda.

Os ignimbritos félsicos são, em geral, cinza escuros ou pretos, maciços a foliados e levemente magnéticos. Composicionalmente são riolíticos, traquíticos ou dacíticos, contendo 5 a 50% de fenocristais fragmentários a idiomórficos de feldspatos e quartzo, frequentes pedaços de púmice e raros litoclastos, em meio a matriz félsica cripto a microcristalina com texturas de devitrificação variadas. Os ignimbritos félsicos são na maioria fortemente soldados (high grade ignimbrites) com matriz marcadamente fluidal a maciça. Nos tipos fluidais é possível reconhecer partículas de púmice e lascas vítreas fortemente estiradas e deformadas em torno dos fenocristais (Figura 8a). Nas variedades maciças, atribuídas a soldamento extremo, a textura vitroclástica da matriz não está mais preservada e apenas vestígios de fluxo, shards e clastos de púmice podem ser identificados. Ignimbritos com grau de soldamento moderado são mais raros. As vulcânicas da região do rio Uraricaá são em geral dacíticas e foram afetadas por deformação e alteração intensas que encobrem evidências de uma possível origem piroclástica ou efusiva.

Os andesitos do Grupo Surumu são cinza-esverdeados escuros com fenocristais esbranquiçados de plagioclásio ocasionalmente orientados por fluxo. Variedades brechóides e vesiculares também ocorrem. As rochas sedimentares vulcanogênicas compreendem litarenitos, grauvacas líticas e brechas sedimentares identificadas nos vales dos rios Amajari (FRAGA et al., 2010)

e Uraricaá. Estas rochas são em geral cinza-esverdeadas e compostas por cristais e litoclastos angulosos a subarredondados derivados de andesitos e tufos ácidos. Riolitos, interpretados como de derrames, e tipos subvulcânicos, como microgranitos porfiríticos e riolitos pertencentes a diques, foram descritos na folha Vila de Tepequém (FRAGA et al., 2010). Uma estreita camada de um tufo de queda avermelhado ocorre na escarpa sul da serra Tepequém em meio a ignimbritos alterados. Este tufo contém fragmentos de lapilli acrescionário em matriz extremamente fina (Figura 8b) e representa uma piroclástica de queda do tipo co-ignimbrito. A classificação petrográfica e composição mineral estimada de amostras da Suíte Pedra Pintada encontram-se na Tabela 19 (anexo).

As idades das rochas vulcânicas Surumu foram balizadas no intervalo 1,98-1,96 Ga por Santos et al. (2003), no entanto, uma idade Pb-Pb de 1994 ± 4 Ma foi obtida para um ignimbrito da porção nordeste da Folha (FRAGA et al., 2010). Neste estudo, um ignimbrito (amostra NR-23C) foi submetido à análise U-Pb SHRIMP, tendo fornecido a idade de 1966 ± 7 Ma. Resultados analíticos pelo método Sm-Nd foram obtidos para três amostras do Grupo Surumu (FRAGA et al., 2010), com valores de \mathcal{E}_{Nd} (t) positivos no intervalo de + 2,0 a + 3,4 e idades modelo $T_{_{DM}}$ variando de 1992 a 2093 Ma (Tabela 20 em anexo).

Os resultados analíticos para elementos maiores, menores, traço e terrasraras (ETR) para quatorze amostras do Grupo Surumu encontram-se na Tabela 21 (anexo) juntamente com os resultados disponibilizados por (FRAGA et al., 2010). As rochas vulcânicas são metaluminosas а marginalmente peraluminosas, subalcalinas a alcalinas, compreendendo dominantemente riolitos e traquitos а traquiandesitos com subordinados dacitos. São rochas do tipo-l comparáveis aquelas de séries cálcio-alcalinas alto-K. de Segundo Fraga et al., (2010), as rochas Surumu refletem processos de fusão parcial de material crustal juvenil transamazônico, com assinatura de subducção e herança de um estágio pré-colisional, em um ambiente pós-colisional. Comportam-se petrológica e tectonicamente à semelhança da Suíte Pedra Pintada, a qual se associa em um evento vulcano-plutônico.

O Grupo Surumu mostra continuidade física para leste através da Formação Iwokrama da Guiana e pela Formação Dalbana do Suriname. Para oeste, na Venezuela, correlaciona-se com as vulcânicas do Grupo Cuchivero (GIBBS; BARRON, 1993).

Figura 8 - Aspectos macroscópicos de rochas do Grupo Surumu (a) Riolito acinzentado-escuro, porfirítico (Estação LB-47); (b) Estação NR-23. Rocha tufácea e matriz com diminutos fragmentos de lapilli acrescionários dispostos segundo planos que correspondem ao acamadamento.

3.7 - Suíte Aricamã (PP3γ3ar)

A Suíte Aricamã (FRAGA et al., 2007) tem sua localidade-tipo na serra homônima (Figura 3.1) situada na parte nordeste da folha, onde afloram diversos corpos de granitos. O maior destes corpos, em forma de meia-lua, sugere uma intrusão anelar subjacente a uma antiga caldeira vulcânica (DREHER et al., 2011). Outros granitos da suíte concentram-se na parte centroleste da folha, na região do rio Uraricaá, constituindo intrusões alongadas. A Suíte Aricamã é intrusiva em granitoides da Suíte Pedra Pintada, vulcânicas do Grupo Surumu e Formação Cachoeira da Ilha, embora xenólitos dessas unidades não tenham sido observados no seu interior. Diques das unidades Avanavero e Serra do Cupim seccionam localmente as rochas dessa suíte.

A unidade compreende feldspato alcalino granitos, sienogranitos е monzogranitos, em geral róseos а avermelhados (Figura 9a), leuco а hololeucocráticos, grossos a finos e muito pouco magnéticos. Os granitos da porção nordeste da folha são isótropos, sendo que variedades com textura rapakivi foram coletadas no topo da serra Aricamã (Figura 9b). Os granitos da região do rio Uraricaá são cataclásticos a protomiloníticos.

As rochas da Suíte Aricamã apresentam feldspato mesopertítico е quartzo como minerais principais, frequentemente intercrescidos em arranjos gráficos. Nas variedades com textura rapakivi, o plagioclásio constitui mantos ao redor de fenocristais de feldspato alcalino. Os minerais máficos presentes são biotita e, mais raramente, hornblenda. Os acessórios mais comuns são fluorita, zircão, alanita e minerais opacos. Apatita, titanita e granada são raros. Sinais de albitização e presença de turmalina e topázio foram observados em algumas variedades indicando alteração tardi- a pósmagmática. Os granitos deformados que ocorrem na parte centro-leste da área, ao longo do rio Uraricaá, possuem feldspatos tensionados e sericitizados, quartzo com forte extinção ondulante ou recristalizado e componentes máficos escassos e finos, como sericita em feixes entrelaçados, biotita

marrom e verde, minerais opacos, epidoto, alanita, titanita, apatita e granada. Vênulas preenchidas por quartzo, sericita, fluorita, mica verde e sulfetos parcialmente alterados denunciam atividade hidrotermal associada à deformação. A classificação petrográfica e composição mineral estimada de amostras da Suíte Aricamã encontram-se na Tabela 22 (anexo).

Os resultados analíticos para elementos maiores, menores, traço e terras-raras (ETR) para seis amostras da suíte encontram-se na Tabela 23 (anexo), juntamente com resultados disponibilizados por FRAGA et al., (2010). Os granitos da Suíte Aricamã são metaluminosos a marginalmente peraluminosos, exibem altos conteúdos em SiO₂, álcalis, elementos HFS e ETR, baixos conteúdos em CaO e MgO e elevadas razões Ga/Al, o que permite classificá-los como do tipo-A. Processos de fusão parcial de fontes oriundas da crosta inferior em ambiente pós-colisional são admitidos para sua gênese (FRAGA et al., 2007).

Idades U-Pb SHRIMP em 1986 ± 4 Ma para o corpo da serra Aricamã (FRAGA et al., 2007) e em 1982 ± 4 Ma (este estudo) para um corpo granitoide da região do rio Uraricaá, permitem postular sua abrangência para outras regiões. Idadesmodelo T_{DM} de 2,34 e 2,15 Ma e \in_{Nd} (T) de +0,21 e 1,56 respectivamente, sugerem sua geração a partir de fontes crustais juvenis transamazônicas.

O magmatismo Aricamã acresce a outras similares granitogêneses do tipo-A de Roraima, cujos corpos, ainda sem um estabelecimento geocronológico definido, revelam similar comportamento geoquímico, a exemplo da Suíte Auaris do oeste de Roraima (ALMEIDA et al. 2003). No setor oriental do Estado, alguns corpos reunidos na Suíte Saracura (CPRM, 1999) registram similar assinatura geoquímica.

Figura 9 – (a) Feldspato alcalino granito de granulação grossa cuja amostra é oriunda de um corpo situado a oeste da serra Aricamã. Estação LM-232A (FRAGA et al., 2010); (b) Granito com textura rapakivi proveniente do topo da serra Aricamã. Estação NR-44.

3.8 - Formação Cachoeira da Ilha (PP3αci)

A Formação Cachoeira da Ilha (FRAGA et al., 2010) aflora na porção nordeste e central da folha Ilha de Maracá, em meio às vulcânicas do Grupo Surumu. A unidade constitui áreas radiometricamente anômalas e é constituída por vulcânicas e subvulcânicas ácidas com características de rochas do tipo-A.

A formação contém principalmente ignimbritos félsicos, sendo mais raras as rochas subvulcânicas as quais incluem diques ou intrusões rasas.

Os ignimbritos são cinza-escuros ou pretos, mais raramente róseos, contendo 2 a 35% de fenocristais, em geral fragmentários, de mesopertita, quartzo e plagioclásio sódico. A matriz é félsica, com texturas devitrificação diversas. de Ignimbritos fortemente a pouco soldados ocorrem na unidade. Os tipos soldados podem mostrar aspecto maciço, semelhante ao de lavas félsicas (Figura 10), ou fluidal, onde a matriz claramente contorna os fenocristais e pedaços achatados e estirados de púmice. Os tipos pouco soldados mostram uma foliação fraca e partículas vítreas e fragmentos de púmice ainda relativamente bem preservados. Na Tabela 24 (anexo) consta a classificação e mineralogia estimada de dez amostras submetidas à análise petrográfica e química.

As rochas subvulcânicas são avermelhadas ou róseas, porfiríticas e correspondem a microgranitos, micro quartzo-sienitos e riolitos. As vulcânicas e subvulcânicas que ocorrem na porção central da Folha estão deformadas, mostrando fenocristais tensionados, fraturados ou estirados, em meio a matriz foliada.

resultados Os analíticos para elementos maiores, menores, traço e terrasraras (ETR) de amostras da suíte encontramse na Tabela 25 (anexo) juntamente com resultados obtidos por Fraga et al. (2010). As rochas da Formação Cachoeira da Ilha correspondem dominantemente a riolitos subalcalinos, metaluminosos a fracamente peraluminosos com afinidades químicas com rochas do tipo-A. Neste aspecto, foram enfatizadas diferenças importantes entre os vulcanismos Cachoeira da Ilha e Surumu, bem como as similaridades entre o comportamento químico dos vulcanitos Cachoeira da Ilha e dos granitoides da Suíte Aricamã.

Uma idade de 1990 ± 5 Ma, foi obtida para a Formação Cachoeira da Ilha por Fraga et al. (2010), sendo que neste estudo, um ignimbrito riolítico (amostra NR-22) forneceu uma idade U-Pb SHRIMP de 1974 ± 7 Ma. Os valores geocronológicos citados coincidem dentro do erro analítico com os valores obtidos para a Suíte Aricamã. Este quadro reitera as interpretações anteriores que propõem para a formação um ambiente tectônico similar àquele admitido para a Suíte Aricamã, com fusão parcial de material crustal juvenil transamazônico, em ambiente orogênico pós-colisional.

Reis et al. (2009) e Dreher et al. (2011) defendem para o vulcanismo cachoeira da Ilha uma evolução associada a um complexo de caldeira vulcânica, no qual também participaram o corpo granítico da serra Aricamã e a sedimentação da Formação Tepequém.

Unidades vulcânicas correlacionáveis à Formação Cachoeira da Ilha, do tipo-A e com idades no intervalo 1,98-1,96 Ga ainda não foram identificadas no Escudo das Guianas. No entanto, a continuidade física no terreno do vulcanismo Surumu para regiões da Venezuela (Cuchivero), Guiana (Burro-Burro) e Suriname (Dalbana) possibilita conjecturas à extensão do vulcanismo Cachoeira da Ilha para esses domínios.

Figura 10 – Ignimbrito riolítico fortemente soldado da Formação Cachoeira da Ilha e aspecto de uma lava félsica. Estação AD-23.

3.9 - Granito Mixiguana (PP3γ2mi)

O Granito Mixiguana possui área-tipo ao longo do igarapé Mixiguana de Baixo, um afluente esquerdo do rio Urariquera, no furo Santa Rosa. Constitui um corpo alongado e sinuoso com cerca de 20 km², em parte, interpretado a partir de dados aerogeofísicos. Está encaixado em litologias metassedimentares do Grupo Cauarane que aparecem como xenólitos na unidade (FRAGA et al., 2010).

Reúne sieno a monzogranitos e subordinados granodioritos e tonalitos, correspondendo no geral, a tipos acinzentados de granulação média a grossa e com conspícua foliação magmática, essa, disposta paralelamente ao contato com as supracrustais Cauarane.

São granitoides pouco magnéticos

a magnéticos refletindo, provavelmente, magmas com diferentes estados de fO2 e evoluções petrológicas distintas (FRAGA et al. 2010). Ocorrem monzogranitos, sienogranitos е granodioritos com biotita, quartzo, ocasional/ plagioclásio, ausente anfibólio e epidoto. Allanita, minerais opacos, titanita, em geral associada à biotita, além de zircão e apatita, são os minerais acessórios. Registram pouca deformação e localmente são protomiloníticos com feições microtectônicas indicativas da atuação de um evento deformacional em temperaturas (400-450°C). relativamente baixas Α classificação petrográfica e composição modal estimada do Granito Mixiguana encontram-se na Tabela 26.

Os resultados analíticos para elementos maiores, menores, traço е terras-raras (ETR) encontram-se na Tabela 27 (anexo). O Granito Mixiguana é subalcalino, metaluminoso a levemente peraluminoso e comporta-se quimicamente com características de magmas do tipo-l, pobres em MgO e enriquecidos em HFSE. Assemelham-se às rochas da série cálcioalcalina de alto-K a shoshonítica, contudo, com concentrações de Fe e Mg que fogem à média das associações cálcio-alcalinas clássicas. Sua assinatura geoquímica é similar ao padrão de rochas geradas na crosta continental superior, com a participação de magmas gerados em zonas de subducção, nos estágios finais de evolução de um arco magmático maduro, com importante contribuição de material crustal.

Uma idade U-Pb SHRIMP de 1970 ± 5 Ma foi obtida para um monzogranito (amostra MF-134A) da unidade Granito Mixiguana, estabelecendo idades orosirianas próximas daquelas obtidas para outras unidades da folha Ilha de Maracá, tais como Reislândia, Cachoeira da Ilha e Pedra Pintada (corpos Ericó e Coimin).

3.10 - Suíte Reislândia (PP3γ3re)

A Suíte Reislândia (este estudo) engloba granitoides da porção sudeste da folha Ilha de Maracá, cuja área-tipo encontrase na vila Reislândia. Aflora em dois corpos alongados que mantêm contatos tectônicos com a Suíte Trairão e Complexo Urariquera. Corpos lenticulares de supracrustais do Grupo Cauarane, ocorrem no interior da suíte e devem corresponder a megaxenólitos ou a lentes tectonicamente colocadas. A interpretação geofísica sugere uma relação de intrusão da Suíte Puruê nos granitoides Reislândia.

Predominam rochas acinzentadas a esbranquiçadas, de granulação média a grossa e com bandamento composicional (Figura 11) e, por vezes, foliação magmática. Os enclaves, quando presentes, são acinzentados-escuros, fino a médios e foliados. correspondendo а (epidoto)biotita quartzo-dioritos e biotita-hornblenda quartzo-dioritos. Na proximidade de grandes zonas de cisalhamento, as feições ígneas encontram-se superpostas por tramas deformacionais, sendo comum a presença de protomilonitos e milonitos com feições microtectônicas sugestivas de um evento deformacional/metamórfico corresponde à fácies epidoto-anfibolito no intervalo de 450-500°C.

A Tabela 28 ilustra a classificação e composição mineralógica estimada de amostras da suíte. Monzogranitos e granodioritos são os tipos litológicos predominantes. Exibem textura hipidiomórfica granular a inequigranular com microclínio pertítico e plagioclásio, por vezes mostrando zoneamento pouco definido. A biotita é o mineral máfico essencial e zircão, apatita, minerais opacos, titanita e allanita quantidades acessórias. ocorrem em Tonalitos são subordinados na Suíte Reislândia, e mostram textura e mineralogia similar aos outros tipos rochosos descritos.

Os resultados analíticos para elementos maiores, menores, traço е terras-raras (ETR) obtidos para quatorze amostras da suíte encontram-se na Tabela 29 (anexo). Os granitoides Reislândia são metaluminosos a fracamente peraluminosos е registram afinidades com séries magmáticas do tipo-I, cálcio-alcalinas de alto-K. No entanto, o conjunto mantém diferenças no comportamento de alguns elementos-traço, em especial os ETR, que não podem ser conciliadas com uma proposta de comagmatismo e que sugerem heterogeneidade de fontes. É provável que a cristalização fracionada de plagioclásio, silicatos máficos, óxidos de Fe e apatita tenha influenciado na evolução da suíte.

Um monzogranito da Suíte Reislândia (amostra NR-19) foi selecionado para análises U-Pb em zircão, por SHRIMP, tendo fornecido uma idade de 1975 \pm 5 Ma. Análises isotópicas Sm-Nd foram obtidas para quatro amostras da suíte (Tabela 30, anexo). As idades T_{DM} variam de 2200 a 2330 Ma, algo mais antigas que a idade mínima de cristalização, sendo os valores de CNd (t) situados entre -0,90 e +0,95. Este quadro é sugestivo de uma origem a partir de fontes com residência crustal moderada, provavelmente relacionadas à crosta riaciana originada durante o Ciclo Transamazônico. Admite-se para a Suíte Reislândia uma evolução em ambiente pós-colisional, entretanto, suas características estruturais, como bandamento, foliação magmática, por vezes, sugestiva de uma colocação sin-cinemática, a diferencia de outras suítes magmáticas contemporâneas que afloram dominantemente ao norte das exposições do cinturão Cauarane-Coeroeni. Este quadro é interpretado a partir de proposições anteriores (FRAGA et al., 2009) como resultante da concentração de movimentos transpressionais importantes a sul do Cinturão no período pós-colisional.

Figura 11 - Aspecto macroscópico de rochas da Suíte Reislândia. (a) Bandamento composicional (magmático). Estação NR-19; (b) Detalhe do bandamento composicional. Estação LB-57.

3.11 - Suíte Tocobirém (PP3γ3to)

A Suíte Tocobirém reúne quartzo--monzonitos, monzogranitos e alguns micromonzonitos e microsienitos, que afloram em um grande corpo na parte oeste da fo-Iha Ilha de Maracá, na região da serra Tocobirém. Esta unidade mantém contato intrusivo e tectônico, respectivamente, com vulcânicas do Grupo Surumu e granitoides Trairão. A suíte foi correlacionada por Almeida et al. (2003), diante de um acervo muito limitado de dados disponíveis à época, aos charnockitos da Suíte Serra da Prata, o que não foi confirmado no presente trabalho. Rochas sedimentares do Supergrupo Roraima recobrem a suíte em trecho da fronteira Brasil-Venezuela.

As rochas desta unidade mostram cores cinza a rosada e são em geral isótro-

pas, magnéticas, com textura inequigranular ou porfirítica. Os quartzo-monzonitos e monzogranitos exibem fenocristais grossos de plagioclásio com mantos de ortoclásio (textura antirapakivi), podendo conter também fenocristais de ortoclásio e clinopiroxênio. A matriz é granular a gráfica, média a fina e contém biotita, hornblenda, clino e ortopiroxênio como componentes máficos e apatita, titanita, zircão, epidoto e allanita como minerais acessórios. Os micromonzonitos e microsienitos são tipos subvulcânicos, com fenocristais diversos (feldspatos, clinopiroxênio, biotita, anfibólio, ortopiroxênio e opacos) no meio de uma matriz sacaroide a microgranofírica. Na Tabela 31 consta a classificação e composição mineralógica estimada de amostras submetidas à análise química.

Sete amostras da Suíte Tocobirém foram analisadas para elementos maiores, menores, traço e terras-raras (ETR). Os resultados analíticos encontram-se na Tabela 32 (anexo). Os granitoides Tocobirém metaluminosos são а peraluminosos, ocupam o campo das rochas alcalinas no diagrama TAS e das rochas shoshoníticas no diagrama SiO, versus K,O. Exibem baixos teores em CaO, teores relativamente elevados para elementos HFS, baixas razões FeO*/(FeO*+MgO) e Ga/Al е valores muito elevados de K₂O, Sr e B. Estas características químicas descartam sua correspondência com magmatismo do tipo-A e sugerem para a suíte uma afinidade com a série shoshonítica. O magmatismo shoshonítico pode estar relacionado à fusão parcial de porções férteis do manto, previamente enriquecidas em K durante o período pré-colisional ou, de rochas juvenis da crosta inferior. Um fracionamento de minerais máficos (piroxênios), feldspatos, óxidos de Fe-Ti e apatita controlaram a evolução magmática da suíte.

Uma idade de 1963 \pm 6 Ma (U-Pb SHRIMP) foi obtida neste estudo para um monzogranito (amostra NR-63).

3.12 - Quartzo-Diorito Puruê (PP3γ3pu)

A unidade Quartzo-Diorito Puruê (este estudo) refere-se a um corpo granitoide alongado com direção E-W que mantém contato tectônico com o Grupo Cauarane, sendo interpretado como intrusivo na Suíte Trairão.

Reúne quartzo-dioritos, dioritos e subordinados tonalitos e monzogranitos. Os quartzo-dioritos e dioritos, predominantes na suíte, são rochas acinzentadas-escuras, magnéticas, maciças ou foliadas e com feições ígneas preservadas. São compostas essencialmente por plagioclásio, hornblenda e biotita. Quartzo, Titanita, zircão apatita alanita e epidoto ocorrem em quantidades acessórias. Na Tabela 33 (anexo) consta a classificação e composição mineralógica estimada de amostras do Quartzo-Diorito Puruê submetidas à análise química.

O acervo de feições microtectônicas

é sugestivo da superposição de um evento deformacional/metamórfico em estado sólido a temperaturas em torno de °··°C.

Duas amostras e dois enclaves foram analisados para elementos maiores e elementos-traço, incluindo elementos terras-raras (ETR) (Tabela 34 em anexo). O conjunto analisado envolve uma amostra classificada como alcalina e três como subalcalinas no diagrama TAS, dentre estas últimas, uma ocupa o campo das rochas toleiíticas no diagrama AFM e duas o campo das rochas cálcio-alcalinas. O reduzido número de amostras não permite maiores considerações petrogenéticas sobre а unidade.

Uma idade de 1950 \pm 11 Ma (U-Pb SHRIMP) foi obtida neste estudo para um hornblenda-biotita diorito (amostra GM-70).

3.13 - Supergrupo Roraima – formações (PP3) Tepequém (te) , Arai (ar) e Urutanim (ut)

O Supergrupo Roraima representa uma das mais importantes coberturas sedimentares paleoproterozóicas do escudo das Guianas, cuja principal área contínua de sedimentação tem sido referida ao Bloco Pacaraima (REIS; CARVALHO, 1996). Na folha Ilha de Maracá, as serras Tepequém e Urutanim correspondem a *outliers* sedimentares que mantêm correlação com o referido bloco.

Formação Urutanim - A serra Urutanim, com uma área aproximada de alguns 2500 km², registra poucos avanços na organização de sua estratigrafia, em grande parte, motivados pela sua situação geográfica em área extremamente ínvia e que assinala uma extensão do divisor de águas entre o Brasil e Venezuela. Nos seus contrafortes, a Formação Urutanim (PINHEIRO et al., 1981) representa a unidade sedimentar de topo, reutilizada neste estudo.

Mais recentemente, Reis et al. (2009) postularam para o quadro de evolução da serra Tepequém um modelo de abatimento de uma estrutura de caldeira vulcânica (ou cauldron).

A base da serra corresponde a depósitos piroclásticos, via-de-regra, saprolíticos. Litarenitos avermelhados dominam a seção mediana, por sua vez, intercalados por um nível de um tufo maciço, em cuja matriz fragmentos de lapilli acrescionários sobressaem. Para o topo, intercalam-se arenitos sílticos e litarenitos maciços. Esta sucessão sedimentar vulcanogênica (depósitos vulcânicos epiclásticos) a vulcanoclástica tem sido interpretada como pertencente a fase pré- a sin-eruptiva da serra Tepequém e associase a depósitos do Grupo Surumu.

Nas porções de borda da serra Tepequém (flancos NW, NE e SE) afloram fanglomerados em forma de leques aluviais interpretados como da fase intracaldeira, neste estudo redefinidos na Formação Tepequém (CPRM, 1999). Encontra-se possivelmente sobreposta em discordância angular pelos depósitos fluviais entrelaçados da fase pós-caldeira que mantêm correlação àqueles da Formação Arai do Bloco Pacaraima.

Formação Tepequém – A formação reúne legues aluviais identificados por depósitos de fanglomerados na sua porção apical e de fluxo de detritos subaquosos na sua porção mediana/distal. Nos contrafortes, o mergulho das camadas é superior a 25°, chegando a 40° no flanco NW. Na proximidade da vertente da serra dominam possantes pacotes de fanglomerados ricos em fragmentos e seixos constituídos por material vulcânico ignimbrítico avermelhado em matriz arenosa grossa. O arranjo desorganizado entre os componentes internos da rocha é sugestivo de deposição ação de fluxo gravimétrico. pela О fanglomerado em sua porção apical é estimado possuir uma espessura na ordem de uns 30 metros, cujos seixos têm diâmetro na ordem de 15 a 20.0 cm e na sua totalidade constituídos por material ignimbrítico. A porção mediana/distal corresponde a litarenitos róseos a arroxeados, médio a grossos que inclui fragmentos (grânulo a cascalho) de ignimbritos róseos a avermelhados, além de quartzo. Gradam para um litarenito com fragmentos e seixos subarredondados a angulosos de uma rocha vulcânica avermelhado-escura. Os seixos de tufo atingem até 5,0 cm no seu eixo maior. As paleocorrentes em estratos cruzados acanalados forneceram medidas de azimutes para o quadrante NW (Figura 12). A Formação Tepequém possivelmente registre um caráter deposicional pré-Roraima.

Formação Arai - Esta formação corresponde a depósitos da fácies fluvial entrelaçada, por sua vez, representada pela alternância de sets de conglomerados arenitos conglomeráticos ricos е em quartzo-leitoso seixos de na base. gradacionais a siltitos/arenitos finos róseos a esbranquiçados e argilitos arroxeados no topo da sucessão. Nos arenitos, predominam estratificações cruzadas acanaladas de médio a grande porte e marcas onduladas com azimutes de paleocorrentes para SW. Neste conjunto assomam estratificações cruzadas tabulares, ripple bedding e estratos plano-paralelos. Nos perfis verticais a formação apresenta ciclicidade e tendência a granodecrescência ascendente

em intervalos de arenitos finos a médios com estratificação cruzada sobrepostos por arenitos finos com estratos plano-paralelos. Estruturas sin-deformacionais, como laminação convoluta, estruturas de escape d'água e estratificação cruzada recumbente são subordinadas. Os quartzo arenitos dominam alguns perfis do flanco norte e oeste da serra, levando a crer que nem toda a estruturação marginal da bacia Tepequém encontra representantes na fácies de leque aluvial (Formação Tepequém). A unidade siliciclástica formada por arenitos e conglomerados é a que melhor define as zonas de dobramentos, podendo ser acompanhada no interior da serra Tepequém através de característica morfologia.

Figura 12 – (a) Litarenito e arranjo de grânulos tufáceos na base dos *sets* de estratos cruzados acanalados. Porção mediana do fanglomerado onde se inserem canais fluviais. Estação AD-27; (b) Conglomerado polimítico formado por fragmentos, seixos e calhaus de rocha vulcânica e vulcanoclástica do Grupo Surumu. Estação NR-61. Fácies de leque aluvial (apical e mediano/distal) da Formação Tepequém.

A unidade de topo ao longo dos ciclos fluviais representa-se por siltitos/arenitos finos róseos a esbranquiçados e argilitos arroxeados, por vezes finamente laminados e à semelhança de ritmitos. Estruturas sin-deposicionais, intraclastos pelíticos e estruturas do tipo *scour and fill, wavy e linsen* são comuns. Na base dos *sets* de estratos cruzados acanalados assomam níveis de minerais pesados (hematíticos). A seção pelítica é interpretada como representativa de planícies de inundação, por vezes, em condições subaquosas rasas (Figura 13).

Figura 13 – (a) Conglomerado rico em seixos de quartzo-leitoso. Estação AD-25; (b) Estrutura do tipo *scour and fill* em nível arenoso fino e com estratos cruzados acanalados de pequeno porte. O material pelítico, por vezes, forma intraclastos na base dos estratos cruzados. Estação NR-23. Fácies fluvial da Formação Arai.

3.14 - Suíte Máfica-Ultramáfica Uraricaá (PP4µur)

A Suíte Máfica-Ultramáfica Uraricaá (CPRM, 1999) compreende quatro corpos intrusivos maiores, alongados e alinhados ao longo da zona de falha NW-SE que acompanha o baixo curso do rio Uraricaá, além de uma série de pequenas intrusões distribuídas por toda a Folha. O maior dos corpos alongados constitui a serra Uraricaá, sendo formado essencialmente por gabros. As intrusões menores são constituídas por hornblenditos, melagabros, gabros e mais raramente, quartzo dioritos.

Os gabros da serra Uraricaá são cinzaesverdeados escuros, maciços ou foliados, de granulação fina a grossa. Estas rochas exibem alteração dos silicatos máficos originais para anfibólios da série tremolitaactinolita, além de certa deformação dos plagioclásios e alteração dos mesmos para epidoto e sericita. As texturas ígneas, permanecem parcialmente entretanto, preservadas. Raro ortopiroxênio, olivina e minerais opacos intercumulus ocorrem ao longo de certos níveis. Gabros finos, maciços, com plagioclásios ripiformes ainda presentes, e tipos foliados, ricos em anfibólio, epidoto, clorita, titanita e carbonato estão também representados. As intrusões menores que ocorrem distribuídas pela área da folha estão descritas em Fraga et al. (2010). Na Tabela 35 (anexo) consta a classificação e composição mineralógica estimada de amostras da Suíte Uraricaá.

Os resultados analíticos para elementos maiores, menores, traço e terras-raras (ETR) da suíte encontram-se na Tabela 36 (anexo) juntamente com os resultados disponibilizados por Fraga et al. (2010). São rochas toleiíticas de baixo-Ti com características químicas de basaltos, andesitos basálticos e picrobasaltos. Há indicação de diferenciação magmática.

Um olivina-diabásio (amostra RG-24) proveniente da serra Uraricaá foi datado neste estudo pelo método U/Pb SHRIMP e forneceu uma idade de 1882 ± 4 Ma. O valor é inédito e estabelece para o magmatismo Uraricaá uma idade proterozóica pré-Avanavero, até então desconhecida no domínio do escudo das Guianas.

3.15 - Diabásio Avanavero (PP4oav)

O Magmatismo Avanavero no interior do escudo das Guianas representa uma das maiores províncias ígneas da Plataforma Sul-Americana (LIP), compreendendo um grande volume de diques e soleiras máficas, estas, intrusivas na cobertura Roraima. Na folha Ilha de Maracá, diques de diabásio de variada espessura e direções NE-SW, E-W a NW-SE secionam as principais unidades granitoides, vulcânicas e metassedimentares.

A unidade Avanavero inclui diabásios e subordinados microdioritos, microgabros, micro quartzo-dioritos e basaltos. São rochas cinza-escuras, finas a médias, isótropas e magnéticas, formados por plagioclásio labradorítico, augita e/ou pigeonita, magnetita titanífera e ocasionalmente olivina, sendo a apatita o mineral acessório mais frequente. Na Tabela 37 (anexo) consta a classificação e composição mineralógica estimada de amostras Avanavero da Folha.

Os resultados analíticos para elementos maiores, menores, traço e terrasraras (ETR) obtidos para três amostras da suíte encontram-se na Tabela 38 (anexo) juntamente com os dados disponibilizados por Fraga et al. (2010). São rochas toleiíticas variando de basaltos a subordinados andesitos basálticos, podendo tratar-se de magmas relacionados a diferentes quantidades de fusão parcial a partir de uma mesma fonte mantélica enriquecida, possivelmente 0 manto litosférico subcontinental ou ainda a diferentes fontes mantélicas, possivelmente resultantes dos complexos processos de amalgamação ocorrida no cráton Amazônico ao longo do tempo geológico.

Idades U-Pb SHRIMP em badeleiíta no intervalo 1,79-1,78 Ga têm sido atribuídas ao magmatismo Avanavero em Roraima e escudo das Guianas (NORCROSS et al., 2000; SANTOS et al., 2003; REIS et al., 2013).

3.16 - Lamprófiro Serra do Cupim (PP4 α sc)

A unidade "Lamprófiro Serra do Cupim" (FRAGA et al., 2010) reúne espessartitos, microdioritos porfiríticos e andesitos que ocorrem principalmente sob a forma de diques, tendo como área tipo a serra do Cupim, no nordeste da folha. Os diques não apresentam uma direção definida e secionam granitoides Trairão, Pedra Pintada, Aricamã e vulcânicas do Grupo Surumu.

As rochas dessa unidade são cinzaesverdeadas, magnéticas e geralmente porfiríticas, o que permite distingui-las daquelas Avanavero, que são comumente
afíricas. Os espessartitos caracterizamse por conter fenocristais de hornblenda e clinopiroxênio, enquanto que os microdioritos e andesitos possuem minerais máficos e plagioclásio como fenocristais. A caracterização petrográfica encontra-se na Tabela 39 (anexo).

São rochas cálcio-alcalinas de médio a alto-K cujos resultados analíticos para elementos maiores, menores, traço e terras raras e idades encontram-se em Fraga et al. (2010).

Um andesito foi submetido ao método Pb/Pb por evaporação em zircão, não tendo no entanto fornecido resultados conclusivos. Tentativamente foram avaliados os resultados de dois cristais com idades próximas entre si de 1766 \pm 6 e 1735 \pm 7 Ma (FRAGA, et al., 2010). Análises isotópicas Sm-Nd obtidas por Fraga et al. (2010) forneceram uma idade modelo TDM de 1968 Ma com ENd (t) de +1,5.

3.17 - Cobertura Detrito-Laterítica (Edl) e Depósitos recentes (Qh1)

As coberturas detrito-lateríticas

paleogênicas parcialmente recobrem unidades granitoides, vulcânicas e (meta) sedimentares da folha Ilha de Maracá, onde o relevo e a geomorfologia se apresentam como condicionadores aos processos de intemperismo. As zonas saprolíticas são comuns em paragnaisses, metacherts e arenitos, enquanto que aquelas pedolíticas (argilosas, mosqueadas e lateríticas) são abundantes em regiões de granitos e vulcânicas. O melhor exemplo encontrase na serra Tepequém, que da base para o topo, reúne abundância nessas variadas zonas regolíticas sobre diferentes tipos rochosos.

Os depósitos aluvionares neogênicos ocorrem ao longo das principais bacias de captação da Folha, encontrando-se melhor distribuídos nos trechos meandrantes dos rios e igarapés. No entanto, o forte controle tectônico condicionador dos principais cursos de drenagem (rios Urariquera, Uraricaá e Amajari), permite apenas a formação de depósitos arenosos temporários, via-deregra, desassociados de terraços subrecentes.

4 - GEOLOGIA ESTRUTURAL

A megaestruturação da folha Ilha de Maracá é assinalada por importantes zonas de cisalhamento com direção E -W a WNW-ESSE na sua porção sul, por sua vez, organizadas com direção NW-SE e subordinadamente NE-SW na sua porção central. Ocorrências e garimpos inativos de ouro estão associados às zonas NW-SE e NE-SW. Algumas dessas megazonas de cisalhamento tiveram seu registro no campo, enquanto outras foram interpretadas a partir de dados da magnetometria. Um arranjo de falhas e fraturas nas direções NW-SE e NE-SW completa o quadro da estruturação regional.

Foram identificadas feições estruturais desenvolvidas no estado magmático a submagmático e feições deformacionais formadas em estado sólido, assim agrupadas em três acervos distintos: feições que registram condições de alto grau metamórfico (restritas às supracrustais Cauarane); feições desenvolvidas em temperaturas baixas a moderadas em condições da transição rúptil-dúctil e, feições eminentemente rúpteis.

Segue uma breve abordagem das feições estruturais observadas nas diversas unidades litoestratigráficas, sendo que uma descrição mais detalhada para a porção nordeste da Folha pode ser encontrada em Fraga et al. (2010).

Aquelas relacionadas aos granitoides Trairão têm sido interpretadas como geradas em estágio submagmático e sugerem um quadro de colocação sin-cinemática em um ambiente com componente compressional, contudo, merecedor de maior investigação.

As supracrustais Cauarane exibem dobras fechadas a isoclinais, redobradas, com foliação de superfície axial caracterizada por minerais metamórficos da fácies anfibolito a granulito. O padrão polifásico desenvolvido em condições de temperaturas altas relaciona-se ao evento tectono-termal responsável pela evolução do Cinturão Cauarane-Coeroeni (~2,0 Ga; FRAGA et al., 2009) e contrasta fortemente com o observado nas unidades mais jovens.

As suítes granitoides com idades no intervalo 1,98-1,95 Ga apresentam, no geral, feições ígneas bem preservadas е exibem particularidades estruturais controladas pelo Cinturão Cauarane-Coeroeni. Os granitoides aflorantes ao norte do cinturão, representados pelas suítes Pedra Pintada, Tocobirém e Aricamã são em geral isotrópicos. Por outro lado, os corpos colocados a sul ou na proximidade do cinturão, tal qual da Suíte Reislândia, Quartzo-diorito Puruê e Granito Mixiguana, este claramente controlado pela estrutura das supracrustais Cauarane encaixantes, mostram-se bastante estruturados. Em geral, exibem feições estruturais desenvolvidas em estágio magmático ou submagmático como bandamento composicional e foliação magmática, sendo admitida uma colocação controlada por megazonas de cisalhamento transcorrente/transpressional que se instalaram na proximidade e porção a sul do Cinturão Cauarane-Coeroeni.

Um acervo de feições deformacionais

desenvolvidas no estágio sólido, em condições de temperaturas baixas a moderadas está provavelmente relacionado à reativação da estruturação mais antiga durante o episódio K´Mudku ao redor de 1,2 Ga. Esta reativação levou a implantação de zonas de cisalhamento no interior das unidades granitoides e no desenvolvimento de dobras, possivelmente de arrasto, na cobertura sedimentar da serra Tepequém (Figura 14). Protomilonitos e milonitos desenvolveram-se ao longo das zonas de cisalhamento, enquanto que nos vulcanitos Surumu e Cachoeira da Ilha e rochas sedimentares das formações Tepequém e Arai, as dobras estão, por vezes, associadas a uma clivagem ardoseana ou espaçada. Evidências de um anquimetamorfismo foram descritas por Luzardo (2006) para as rochas da serra Tepequém.

Finalmente um acervo de feições estruturais que inclui superfícies de falha, cataclasitos e brechas registram uma reativação tectônica regional em condições rúpteis, provavelmente associadas à evolução do Graben do Tacutu ao longo do Mesozoico.

Figura 14 – Feição de dobra assimétrica em sucessão de arenitos dispostos no flanco oeste da serra Tepequém, associada a zonas de cisalhamento E-W (episódio K´Mudku).

5 - EVOLUÇÃO GEOTECTÔNICA

Coube a Fraga et al. (2010) propor um modelo de evolução para a porção central do escudo das Guianas (Figura 15).

A Suíte Trairão com idade de 2,03 Ga é interpretada como um representante de um arco magmático implantado na borda de um continente riaciano recémedificado. Concomitante à evolução do arco Trairão, formou-se a bacia Cauarane em ambiente orogênico, provavelmente de retro-arco. Durante a fase colisional do orógeno, a bacia foi fechada e submetida à intensa deformação em condições da fácies anfibolito superior a granulito. A idade de 1,99 Ga registrada para um granitoide tipo-S (Granito Amajari) embutido nas supracrustais Cauarane é interpretada como registro do pico metamórfico.

Um intenso magmatismo póscolisional dominou a região no intervalo tendo 1,98-1,95 Ga, sido fortemente controlado pelo Cinturão Cauarane-Coeroeni. Admite-se que neste período de tempo, importantes zonas transpressivas pós-colisionais instalaram-se ao longo e a sul do cinturão, tendo controlado a colocação (sin-cinemática?) dos corpos granitoides mais estruturados das unidades Reislândia, Mixiguana e Puruê.

Ao norte do cinturão e similar intervalo 1,98-1,95 Ga, granitoides das suítes Pedra Pintada, Aricamã e Tocobirém foram colocados em níveis crustais mais rasos, em íntima associação com os vulcanitos Surumu e Cachoeira da Ilha. Essas unidades registram a coexistência de magmatismos do tipo-I, cálcio-alcalino de alto-K (Suíte Pedra Pintada e Grupo-Surumu), do tipo-A (Suíte Aricamã e Formação Cachoeira da Ilha) e shoshonítico, cujo período de tempo de aproximadamente 20 Ma é um quadro comum a ambientes pós-colisionais.

Em uma fase tectônica extensional processou-se а sedimentação do Supergrupo Roraima em uma bacia do tipo rifte-sag, a qual a serra Tepequém mantém correspondência através dos depósitos fluviais da Formação Arai. O arcabouço das serras Tepequém e Aricamã revela forte identidade com a estruturação de uma caldeira vulcânica, cuja depressão topográfica criada por essa estrutura de colapso serviu de fonte à deposição de produtos vulcânicos, vulcanoclásticos e principalmente de fanglomerados, estes, associados à Formação Tepequém.

Seguiu-se a colocação de corpos ígneos máficos da Suíte Uraricaá em 1,88 Ga, cuja continuidade extensional é retratada pela presença de diques de diabásio (Avanavero) e lamprofíricos (Serra do Cupim) secionando diversas unidades plutônicas e vulcânicas.

O episódio K'Mudku em torno de 1,20 Ga representa o reflexo intraplaca da tectônica colisional na borda do continente e registra zonas de cisalhamento dúctil-rúptil, falhamentos e dobramentos.

Figura 15 - Modelo de evolução geotectônica para a porção central do Escudo das Guianas (adaptado de FRAGA, et al., 2010).

6. RECURSOS MINERAIS

O diamante, o ouro e secundariamente ametista. constituem os principais а recursos minerais que detêm um histórico de exploração pela garimpagem na folha Ilha de Maracá. Manganês, cassiterita, cromita e elementos do grupo dos platinoides permanecem como indícios a certos tipos litológicos como as rochas do Grupo Cauarane, os granitos da Suíte Aricamã ou intrusivas máficas da Suíte Uraricaá, respectivamente. Os granitoides da Folha podem ser de interesse como rochas ornamentais.

Diamante - A serra Tepequém, atualmente uma área de preservação permanente (APP), permaneceu ao longo das décadas de 40 a 80 como a principal área produtora de diamante de Roraima, cujos depósitos aluvionares encontramse atualmente exauridos. Os depósitos associam-se a prováveis paleoplaceres contidos nos conglomerados fluviais, ricos em seixos de guartzo, da Formação Arai (REIS, 2005). Na região de Surubai, rio Ericó, situada a alguns guilômetros do flanco leste da serra Urutanim, há escassos registros de atividade exploratória diamantífera, no entanto, diamantes com 2 a 10 quilates foram encontrados no igarapé Banana, em áreas de placeres no âmbito de rochas granitoides (OLIVEIRA; DAMIÃO, 1969).

Ametista – No flanco oeste da serra Aricamã, em domínio de rochas granitoides, ocorreu um pequeno garimpo de ametista, já desativado. Constitui seixos e blocos subangulosos em meio a um pacote colúvio-aluvionar depositado sobre saprólito de rocha granítica. Dados texturais e de inclusões fluidas (FRAGA et al., 2010) sugerem que a ametista seja proveniente do desmantelamento de antigos veios epitermais, possivelmente instalados no granito Aricamã.

Ouro - O baixo curso do rio Uraricaá e o furo de Santa Rosa foram intensamente explorados por garimpeiros no período 1979-1982 para ouro aluvionar e, mais subordinadamente, para ouro primário (D'ANTONA; BORGES 1982). O rio Uraricaá seciona terrenos de rochas variadas, encaixando-se em uma importante zona de transcorrência NW-SE, ao longo da qual as rochas estão foliadas, fortemente alteradas e venuladas. A deformação e o hidrotermalismo associado podem ter mobilizado e concentrado o ouro ao longo dessa zona. O garimpo da Grota Rica, ainda ativo, encontra-se em área de granitoides da Suíte Aricamã, localmente milonitizados, atravessados por veios e vênulas de quartzo e entrecortados por microfraturas preenchidas por biotita, sericita e sulfetos limonitizados (BETIOLLO et al., 2010). Na serra Tepequém, o ouro foi recuperado durante os anos 80 como subproduto da extração mecanizada do diamante.

Manganês - Uma ocorrência de gondito, um metachert manganesífero do Grupo Cauarane, tem sido descrita a sudeste da serra Aricamã. É indicadora de atividade exalativa submarina e com possibilidade de associação com sulfetos, a exemplo da serra Tabaio na região do Taiano, a leste da Folha (CPRM, 1999).

42

Cassiterita – Em relato de Borges; D'Antona (1988) é mencionada a ocorrência de cassiterita nas aluviões do igarapé Pau Baru que drena o corpo da serra Aricamã. Indícios também foram detectados em amostras de solo da região do rio Uraricaá. A presença de fluorita, turmalina, topázio e de processos de albitização em algumas variedades dos granitoides Aricamã indicam potencialidade para estanho (FRAGA et al., 2010).

Cromo e platinoides - O corpo maior da Suíte Uraricaá, no rio Uraricaá, foi pesquisado por D'Antona (2000) com resultados analíticos pouco significativos para Cr e elementos do grupo da platina. Permanece, no entanto, sua potencialidade para os citados elementos em função da dimensão de sua intrusão e da possibilidade de ocorrência de cumulados ultramáficos em profundidade.

Rochas Ornamentais – As variadas fácies apresentadas pelos granitoides das suítes Pedra Pintada e Aricamã se potencializam frente ao facilitado acesso ao longo das vicinais Trairão, Bom Futuro e RR-203, bem como a disponibilidade de exposições rochosas em lajeados e *fronts* de serras. Torna-se necessário, contudo, o conhecimento de suas características físico-mecânicas e mineralógicas de modo a assegurar o emprego correto, seguro e econômico.

7. CONCLUSÕES

A cartografia geológica da folha Ilha de Maracá é produto do estudo de um grande acervo de rochas coletadas neste projeto e de prévios mapeamentos, as quais foram submetidas a um significativo número de descrições petrográficas e de análises químicas e geocronológicas (U-Pb SHRIMP, Sm-Nd, Ar-Ar e Pb-Pb). Resulta ainda da integração de produtos do levantamento aerogeofísico e de sensoriamento remoto. O conjunto permitiu a identificação e caracterização de novas e reconhecidas unidades estratigráficas à condução e aprimoramento de um modelo geotectônico para o escudo das Guianas.

Mais de duas dezenas de novos resultados geocronológicos permitiram estabelecer:

a) A individualização de dois corpos granitoides da Suíte Pedra Pintada – Coimin e Ericó, com idades U-Pb respectivamente em 1971± 5 Ma e 1968 ± 5 Ma;

 b) Uma idade U-Pb em 1963 ± 6 Ma Ga para a Suíte Tocobirém, cuja assinatura geoquímica é distinta a outras suítes da Folha;

c) O reconhecimento do Quartzo Diorito
Puruê com uma idade U-Pb em 1950 ± 11 Ma,
em contato tectônico com as supracrustais
Cauarane e intrusivo em litologias Trairão;

d) Idades Ar-Ar em biotita de um paragnaisse em 1722 \pm 6 Ma (*step* 1) e 1656 \pm 6 Ma (*step* 2), contudo, ainda sem significado e registro nas rochas Cauarane;

e) Resultados isotópicos Sm-Nd (6) em rochas da Suíte Trairão, indicativos de um caráter juvenil e/ou uma origem a partir de fontes com restrita residência crustal;

f) Uma idade U-Pb em 1970 ± 5 Ma para
 o Granito Mixiguana, de possível natureza
 colisional;

 g) Uma idade U-Pb em 1966 ± 7 Ma para um ignimbrito cálcio-alcalino do Grupo Surumu assentado na base da serra Tepequém;

 h) Uma idade U-Pb em 1974± 7 Ma para um ignimbrito alcalino da Formação Cachoeira da Ilha;

 i) A delimitação de outros corpos da Suíte Aricamã com idade U-Pb em 1982 ± 4 Ma e resultados isotópicos Sm-Nd (2) sugestivos de uma derivação a partir de fontes crustais juvenis transamazônicas;

j) Uma idade U-Pb em 1882 ± 4 Ma para
 o magmatismo máfico Uraricaá, um valor
 pré-Avanavero até então desconhecido na
 região;

k) O reconhecimento de rochas da Suíte
Reislândia com uma idade U-Pb em 1974 ±
5 Ma, cuja assinatura geoquímica é distinta a outras suítes da Folha;

Os estudos estratigráficos da serra duas Tepequém permitiram identificar formações em presumida discordância erosiva: Formação Tepequém na forma aluviais (fanglomerados de leques em fragmentos ricos piroclásticos) е de estabelecimento pré-Roraima e. Formação Arai na forma de depósitos fluviais responsáveis pela concentração de diamante e ouro. A sedimentação e vulcanismo da serra Tepequém apontam para um quadro de evolução baseado no modelo de abatimento de uma estrutura de caldeira vulcânica (ou cauldron).

8. RECOMENDAÇÕES

Recomenda-se:

 a) O estudo dos eventos metamórficos associados às rochas supracrustais do Grupo Cauarane através da obtenção da idade e condições de P e T;

b) A investigação das suítes Pedra Pintada,
 Tocobirém e Reislândia no que se refere ao quadro de evolução geotectônica de uma
 Supersuíte no intervalo 1,98-1,96 Ga;

c) A investigação da Suíte Trairão como um relicto de crosta antiga;

 d) Identificação dos principais metalotectos associados à mineralização de ouro na região do rio Uraricaá onde assomam corpos máficos, vulcânicos e granitoides em importante zona de cisalhamento NW-SE;

 e) Prospecção geoquímica de detalhe do corpo máfico da serra Uraricaá, tendo em vista a vocação metalogenética para EPG e sulfetos;

f) Investigação do magmatismo lamprofírico
 Serra do Cupim na forma de diques,
 passível de relação com zonas de condutos
 mineralizantes nas encaixantes granitoides
 pós-colisionais (p.ex., Suíte Aricamã);

9 - REFERÊNCIAS BIBLIOGRÁFICAS

ALMEIDA, M. E.; FERREIRA, A. L.; PINHEIRO, S. da S. Associações Graníticas do Oeste do Estado de Roraima, Domínio Parima, escudo das Guianas, Brasil. **Geology Of France and Surrounding Areas – Special Guiana Shield,** n. 2-3-4, p. 135-160, 2003.

ALMEIDA, M. E.; MACAMBIRA M. J. B.; OLIVEIRA, E. C. Geochemistry and Zircon geochronology of I-type High-K Calcalkaline and S-type granitoid rocks from Southeastern Roraima, Brazil: Orosirian Collisional Magmatism (1.97-1.96 Ga) In Central Guyana Shield. **Precambrian Research,** n. 155, p. 69-97, 2007.

BETIOLLO, L. M. et al. Mineralização aurífera no rio Uraricaá, Roraima: estruturas e intrusões associadas. In: CONGRESSO BRASILEIRO DE GEOLOGIA, 45, 2010, Belém. **Anais...** Belém: SBG - Núcleo Norte, 2010. 1 CD-ROM.

BORGES, F. R.; D'ANTONA, R. de J. G. Geologia e Mineralizações da serra Tepequém. In: CONGRESSO BRASILEIRO DE GEOLOGIA, 35, 1988, Belém. **Anais...** Belém: SBG - Núcleo Norte, 1988. v. 1, p. 155-163.

CPRM – SERVIÇO GEOLÓGICO DO BRASIL. Programa Levantamentos Geológicos Básicos do Brasil. Roraima Central, Folhas NA.20-X-B e NA.20-X-D (integrais), NA.20-X-A, NA.20-X-C, NA.21-V-A e NA.21-V-C (parciais). Escala 1:500.000. Estado de Roraima. Manaus: CPRM, 1999, 166 p. 1 CD-Rom.

CPRM – SERVIÇO GEOLÓGICO DO BRASIL. **Projeto Aerogeofísico Distrito Mineral Parima-Uraricoera:** relatório final do levantamento e processamento dos dados magnetométricos e gamaespectrométricos. Brasília: CPRM, 2001. 28 v. D'ANTONA, R. de J. G.; BORGES, F. R. **Projeto Estudo dos Garimpos Brasileiros:** relatório anual. Manaus: CPRM, 1982. 28 p., il.

D'ANTONA, R. de J. G. **Síntese geológica e prospectiva das áreas Pedra Preta e Cotingo, Roraima.** Manaus: CPRM, 2000. 13 p. (Informe de Recursos Minerais. Série Metais do Grupo da Platina e Associados, 12).

DREHER, A. M. et al. Paleoproterozoic pyroclasticrocksfromnorthernRoraimaState, Brazil, Guiana Shield. In: CONGRESSO LATINOAMERICANO DE GEOLOGIA, 14.; CONGRESSO COLOMBIANO DE GEOLOGIA,13., 29 ago.-02 set., 2011, Medellín. **Resumenes...** Bogotá: CB Editores, 2011. p. 243-244.

FARIA, M. S. G. de et al. 2002. The Oldest Island Arc of Roraima State, Brazil – 2,03 Ga: Zircon

SHRIMP U-P Geochronology of Anauá Complex. In: CONGRESSO BRASILEIRO DE GEOLOGIA, 41., 2002, João Pessoa. **Anais...:** a Geologia e o homem. João Pessoa: SBG – Núcleo Nordeste, 2002. p. 306.

FRAGA, L. M. et al. Rochas vulcânicas Tipo-A no extremo norte de Roraima. In: SIMPÓSIO DE GEOLOGIA DA AMAZÔNIA, 10., 2007, Porto Velho. **Anais.** Porto Velho: SBG – Núcleo Norte, 2007. p. 153-156.

FRAGA L. M et al. Cauarane - Coeroene Belt - The Tectonic Southern Limit of the Preserved Rhyacian Crustal Domain in the Guyana Shield, Northern Amazonian Craton. In: INTERNATIONAL GEOLOGICAL CONGRESS, 33. , Aug. 6-14, 2008, Oslo. **Abstract.** Oslo: IUGS, 2008. 1 CD-ROM. FRAGA, L. M.; REIS, N. J.; DALL'AGNOL, R. Cauarane - Coeroeni belt– the main tectonic feature of the central Guyana shield, northern Amazonian Craton. In: SIMPOSIO DE GEOLOGIA DA AMAZONIA, 11, 02 - 05 ago. 2009, Manaus. **Resumos...** Manaus: Sociedade Brasileira de Geologia -Núcleo Norte, 2009. 1 CD-ROM.

FRAGA, L. M. B. et al. **Geologia e Recursos Minerais da folha Vila de Tepequém NA.20-X-A-III Estado de Roraima, Escala 1:100.000.** Manaus: CPRM, 2010. 1 CD-ROM. Cartografia da Amazônia. Programa Geologia do Brasil (PGB). Levantamentos Geológicos Básicos. Sistema de Informações Geográficas (SIG). Projeto Amajari.

GIBBS, A. K.; BARRON, C. N. **The Geology** of the Guiana shield. New York: Oxford University Press, 1993. 246 p. (Oxford monographs on geology and geophysics, 22).

IRVINE, T. N.; BARAGAR, W. R. A. A guide to the chemical classification of the common volcanic rocks. **Canadian Journal of Earth Sciences,** v. 8, p. 523-548, 1971.

LUZARDO, R. **O Metamorfismo** da Serra Tepequém (Estado de Roraima). Manaus, 2006. 77 f. Dissertação(Mestrado em Geociências)-Instituto de Ciências Exatas, Universidade Federal do Amazonas, Manaus, 2006.

MONTALVÃO, R. M. G. De; PITTHAN, J. H. L. **Grupo Cauarane, Projeto RADAMBRASIL:** relatório interno 21-G, Belém: DNPM, 1974. 7 p.

NORCROSS, C. et al. U-Pb and Pb-Pb age constraints on Paleoproterozoic magmatism, deformation and gold mineralization in the Omai area, Guyana Shield. **Precambrian Research**, v. 102, n. 1-2, p. 69-86, 2000.

OLIVEIRA, I. W. B.; DAMIÃO, R. N. **Viagem de reconhecimento à região do Garimpo do Surubai:** relatório interno. Boa Vista: DNPM, 1969. PEARCE, J. A.; HARRIS, N. B. W.; TINDLE, A. G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. **Journal of Petrology**, v. 25, p. 956-983, 1984.

PINHEIRO S. da S. et al. **Projeto Catrimâni-Uraricoera:** relatório de progresso. Manaus: CPRM, 2v.

REIS, N. J.; CARVALHO, A. de S. Coberturas sedimentares de mesoproterozóico do Estado de Roraima: avaliação e discussão de seu modo de ocorrência. **Revista Brasileira de Geociências,** São Paulo, v. 26, n. 4, p. 217-226, 1996.

REIS, N. J.; YÁNEZ, G. O Supergrupo Roraima ao longo da Faixa Fronteiriça entre Brasil e Venezuela (Santa Elena de Uairén - Monte Roraima). In: REIS, N. J.; MONTEIRO, M. A. S. (Coords.). **Contribuições à Geologia da Amazônia.** Manaus: SBG – Núcleo Norte, 2001. V. 2, p. 115-147.

REIS, N. J. et al. Geologia do Estado de Roraima, Brasil. **Geology Of France and Surrounding Areas – Special Guiana Shield,** Orleans, n. 2-3-4, p. 121-134, 2003.

REIS, N. J. et al. Folhas NA.20-Boa Vista e NB.20-Roraima. In: CPRM - SERVIÇO GEOLÓGICO DO BRASIL. **Carta Geológica do Brasil ao Milionésimo:** sistema de informações geográficas-SIG. Brasília: CPRM, 2004. CD Rom 2/41. 41 CD Rom. Programa Geologia do Brasil. ISBN 85-7499-009-4

REIS, N. J. A Exploração Diamantífera na porção setentrional do Estado de Roraima. In: SOUZA, M. M. de. **Projeto Formalização da Produção de Diamante nos estados de Mato Grosso, Minas Gerais, Rondônia e Roraima:** relatório de atividade, etapa 1. [S. I.]: SGMTM; CPRM, 2005. p. 5 – 24. 1 CD-Rom.

REIS, N. J. et al. Serra Tepequém, um possível remanescente de uma caldeira

vulcânica paleoproterozóica – Estudos preliminares. In: SIMPOSIO DE GEOLOGIA DA AMAZONIA,11, 2009, Manaus. **Resumos.** Manaus: SBG-Nucleo Norte, 2009. 1 CD-ROM.

REIS, N. J. et al. 2013. Avanavero Mafic Magmatism, a Late Paleoproterozoic LIP in the Guiana Shield, Amazonian Craton: U– Pb ID-TIMS baddeleyite, Geochemical and Paleomagnetic Evidence. **Lithos,** v. 174, p. 175-195, 2013..

SANTOS, J. O. S. et al. Age, source and Regional Stratigraphy of the Roraima Supergroup and Roraima-like Sequences in Northern South América, based on U-Pb Geochronology. **Geological Society of America Bulletin,** Boulder, v. 115, n. 3, p. 331-348, 2003.

SANTOS, J. O. S. Geotectônica dos Escudos das Guianas e Brasil Central. In:

BIZZI, Luiz Augusto (Ed.) et al. **Geologia**, **Tectônica e Recursos Minerais do Brasil:** texto, mapas e SIG. [Geology, Tectonics and Mineral Resources of Brazil: text, maps and GIS]. Brasília: CPRM, **2003**. p. 169-226. Acompanha 1 DVD.

SANTOS, J. O. S. et al. A Compartimentação do Cráton Amazonas em Províncias: Avanços ocorridos no período 2000-2006. In: SIMPOSIO DE GEOLOGIA DA AMAZONIA, 9, 2006, Belém. **Resumos expandidos...** Belém: SBG - Núcleo Norte, 2006.

SIIVOLA, J.; SCHMID, R. List of mineral abbreviations: recommendations by the IUGS Subcommision on the Systematics of Metamorphic Rocks: web version 01.02.07. [London]: BGS, 2007. Disponível em: http://www.bgs.ac.uk/scmr/docs/papers/ paper_12.pdf>. Acesso em: 11 jan. 2017.

TASSINARI, C. G. C.; MACAMBIRA, M. J. B. A Evolução Tectônica do Cráton Amazônico. In: MANTESSO-NETO, Virgínio et al. **Geologia do continente Sul-Americano:** evolução da obra de Fernando Flávio Marques de Almeida. São Paulo: Beca, 2004. p. 471-486. ISBN 85-87256-45-9.

DA	NDOS DE PRODUÇÂ	io				
	Etapa		France Manage			
	Urariquera - Uraricaá	Etapa Paredao	Etapa Maraca	Total		
Período total do trabalho de campo (dias)	27	16	22	65		
Período efetivo mapeamento (dias)	15	11	15	41	63%	
Período de logística (dias deslocados/não-trabalhados)	12	5	7	24	37%	
Caminhamento com logística (km)	2000	350	62h40min	2350	Helicóptero	(horas de voo)
Perfil geológico (km)	90	642	12	744		
Estações de geologia	46	40	67	153		
Amostras de rocha coletadas	53	73	74	200		
Amostras de sedimento de corrente	1	1	0	2		
Amostras de concentrado de bateia	3	1	3	7		
Descrição de novas lâminas petrográficas (Projeto Ilha de Maracá)	37	46	105	188	209	
Descrição de novas lâminas petrográficas (Projeto Catrimâni-Urariquera)	0	0	0	20	200	
Revisão de lâminas petrográficas (Projeto Catrimâni-Urariquera)	0	0	108	108		422
Revisão de lâminas petrográficas (Projeto Roraima Central)	0	0	17	17	214	
Revisão de lâminas petrográficas (Projeto Amajari)	0	0	59	59	214	
Revisão de lâminas petrográficas (Projeto Platina)	0	0	30	30		
Análise Química em Rocha (novas)	Projeto Amajari	Projeto Cat-Ura	Projeto Ilha de Maracá	Projeto Platina		
	142	55	51	5	253	
Análise Geogranológica (Projeto Ilha de Maracá) (novas)	U-Pb	Ar-Ar	Sm-Nd			
Analise Geoci onologica (Frojeto inta de Maraca) (novas)	10	4	15	29		

Tabela 1 - Dados de produção do Projeto Ilha de Maracá (Folha Ilha de Maracá)

Amostras	Classificação	PI	Fsp	Qtz	Hbl	Bt	Ttn	Zrn	Ар	Ор	Chl	Ep	Ser	Aln
WW-42	microqtz diorito	*73	-	4	7	**12	1	-	-	tr	>1	>1	>1	-
GM-91B	Hbl-Bt tonalito	43	-	12	18	24	-	-	2	1	tr	tr	tr	tr
GM-90A	Hbl-Bt tonalito	47	1	13	5	30	tr	tr	tr	4	tr	tr	tr	-
WW-R-41	Hbl-Bt monzogranito	28	25	20	10	12	2	-	tr	tr	-	tr	tr	tr

Tabela 2 - Classificação petrográfica e composição mineral estimada de amostras do Complexo Urariquera. Legenda: PI: plagioclásio; Fsp: feldspato alcalino; Qtz: quartzo; Hb: hornblenda; Bt: biotita; Ttn: titanita; Zrn: zircão; Ap: apatita; Op: opacos; ChI: clorita; Ep: epidoto; Ser: sericita; Aln: allanita . Abreviaturas minerais por Siivola & Schmid (2007). *PI+Ep+Se=73%; **Bi+Cl=12

۸m	octroc	GM-90A	GM-91B
AIII		Qtz Diorito	Qtz Diorito
	SiO ₂	57,31	54,85
	Al ₂ O ₃	18,51	17,35
	Fe ₂ O ₃	7,38	7,22
(၀ွ	MgO	2,41	4,93
bei	CaO	7,35	8,25
Ę	Na2O	2,59	2,55
9 9	K2O	1,12	1,34
6) (TiO₂	1,05	0,46
öp	P ₂ O ₅	0,52	0,47
) X i	MnO	0,10	0,14
Ú,	Cr ₂ O ₂	0.01	0.02
	P.F.	1.30	2.10
	ΤΟΤΑΙ	99.65	99.68
	Mo	0.10	0.60
	Cu	78.2	108.5
	Pb	3,70	3,70
	Zn	56.00	41.00
	Ni	33.00	88.00
	Sc	16.00	17.00
	Ba	425.00	374.00
ε Έ	Be	1.00	1.00
dd	Co	20,90	29,20
o o	Cs	1,40	2,20
raç	Ga	21,30	16,60
s-t	Hf	9,60	4,70
to	Nb	9,60	6,80
Jer	Rb	44,90	54,90
len	Sr	680,30	848,20
ш	Та	0,60	0,30
	Th	7,80	7,30
	U	1,50	1,30
	V	140,00	89,00
	w	0,50	0,50
	Zr	360,50	163,90
	Y	21,10	16,30
	La	23,00	39,60
Ê	Ce	57,30	88,40
pr	Pr	7,30	9,75
۶ ۲	Nd	30,90	36,10
Iras	ISM	6,91	5,47
-R		1,55	1,56
as	Ба	5,83	3,97
en		0,89	0,00
L s	Но	4,02	2,01
to	Fr	2 16	0,00
ner	Tm	0.32	0.22
len	Yh	1 90	1 45
ш	1.0	0.26	0.22
Razõos	Ca/Vh	7.80	15 20
Razues		1,00	15,60

Tabela 3 - Composição química de amostras do Complexo Urariquera, reestudadas a partir de Pinheiro *et al.* (1981).

A	mostras	Classificação	PI	Afs	Qtz	Hbl	Bt	Ttn	Zrn	Ар	Aln	Ор	Chl	Ер	Ser
	LM-28*	Qtz-diorito	45	3	12	27	8	tr	tr	tr	-	3	tr	3	tr
	LM-208A*	Hbl-bt tonalito	53	tr	16	12	14	tr	-	tr	tr	-	tr	-	tr
	LB-24	Ep-Hbl-bt Tonalito Gnaisse Prot.	40	-	20	10	20	tr	-	tr	-	2	-	7	-
	LM-27A*	Bandas qtz- dioríticas e	x	x	x	-	х	x	-	x	-	x	-	x	-
	HG-115A*	Monzogranito	28	41	18	2	9	tr	tr	tr	-	tr	tr	2	tr
	HG-119*	Tonalito	55	5	25	5	9	tr	tr	tr	-	tr	tr	1	tr
	HG-81D*	Tonalito	57	8	22	2	8	1	tr	tr	-	2	tr	tr	tr
	HG-11*	Granodiorito	48	20	20	4	5	1	tr	tr	tr	tr	tr	2	tr
.0	LM-212B*	Bt-tonalito	60	-	22	-	15	tr	tr	tr	-	1	-	2	tr
rairã	MF-185*	Bt-hbl granodiorito	42	8	20	16	9	1	tr	tr	tr	tr	-	4	tr
Ē	LM-27C L1*	Tonalito	50	3	31	-	14	tr	tr	tr	-	tr	tr	2	1
orp.	HG-81C*	Monzogranito	22	44	12	-	6	1	tr	tr	-	2	tr	1	tr
	HG-10*	Ortognaisse tonalitico	35	-	22	-	20	tr	3	4	tr	tr	2	11	-
	LM-208D*	D* Bt granodiorito		13	17	-	15	tr	-	tr	tr	2	tr	1	tr
	LM-212A*	Bt granodiorito	52	20	20	-	8	tr	-	tr	tr	tr	tr	tr	tr
					E	nclaves									
	LM-R-27B*	Qtz-diorito	40	-	10	38	5	1	tr	tr	-	3	tr	3	tr
	LM-R-27G*	Diorito a qz-diorito	48	2	4	30	12	1	-	tr	-	tr	-	3	-
	HG-R-115B*	Qtz-diorito	44	3	10	38	5	tr	tr	tr	-	tr	-	tr	tr
					X	enólito									
	LM-R-208F*	Bt-tonalito	65	-	25	-	8	tr	-	tr	tr	2	tr	tr	tr
	NR-51A	Hbl-chl tonalito protomilon.	50	-	30	4	-	tr	tr	tr	tr	1	14	1	tr
Sul	GM-78	Bt-hbl tonalito foliado	48	4	15	15		3	-	tr	-	tr	-	1	tr
orpo	GM-76B	Bt-hbl tonalito	44	5	22	18	7	2	tr	tr	tr	1	tr	1	tr
ပိ						nclave									
	NR-51B	Bt-hbl microdiorito foliado	55	tr	-	20	16	1	tr	tr	tr	3	*	5	*

Tabela 4 - Classificação petrográfica e composição mineral estimada das rochas da Suíte Trairão com análises químicas. (*dados de CPRM 2010). Abreviaturas minerais conforme Siivola & Schmid (2007): PI = plagioclásio; Afs = Feldspato alcalino; Qtz = quartzo; HbI = hornblenda; Bt= biotita; Ttn = titanita; Zrn = zircão; Ap = apatita; Aln = allanita; Op = opacos; ChI = clorita; Ep = epidoto; Ser = sericita; x = componente importante (>1%); tr = traços (< 1%).

Amostras			CORP	O SUL	
	Amostras	NR-51B Encl. Bt- hbl dio	NR-51A Hbl ton	GM-78 Bt- hbl ton	GM-76B Bt-hbl ton
	SiO ₂	46,67	58,86	62,22	62,68
	TiO ₂	1,38	1,00	0,68	0,60
-	Al2 O3	18,76	14,96	15,47	16,37
ose	Fe ₂ O ₃	12,50	8,55	5,89	4,95
d u	MnO	0,22	0,16	0,11	0,10
en	MgO	4,02	3,25	2,41	1,60
%)	CaO	8,91	5,93	5,26	4,89
so	Na ₂ O	3,61	2,70	3,55	3,69
xid	K2 O	1,31	1,90	2,86	3,14
,O	P2 O5	0,63	0,51	0,43	0,35
	P.F.	1,70	1,80	0,70	1,20
	Total	99,71	99,62	99,59	99,57
	Rb	49,40	74,50	77,60	78,30
	Sr D-	869,40	556,20	659,20	/19,60
	Ба	688,00	997,00	1262,00	1482,00
	US Dh	2,20	1,6U	2,8U	2,30
	רט V	1,70	0,00	0,00	7,10
	7r	1/2 00	506 10	302,10	23,10
e	Lif	3.80	13.00	8.80	10.00
лd	Nb	8 20	12,60	11 20	9.20
d) o	Та	0.30	0.70	0.70	0.80
açc	Th	1.40	10.50	23.70	11.00
s-tr	U	0.50	2.00	2.00	3.90
Ito	Ni	0,70	9,30	22,00	20,00
ner	Co	25,50	20,30	12,70	8,90
:len	V	196,00	164,00	110,00	83,00
ш	Sc	34,00	25,00	19,00	15,00
	W	<0.5	0,70	0,50	0,60
	Zn	76,00	78,00	39,00	42,00
	Cu	62,40	19,70	45,80	6,20
	Мо	<0.1	0,10	0,30	0,60
	Sn	2,00	2,00	2,00	1,00
	Ga	24,00	19,30	16,60	17,10
qdo	Ag	<0.1	<0.1	0,10	0,10
<u> </u>	Au	1,90	1,10	1,80	2,60
	La	24,00	40,90	69,50	42,60
	Dr	04,90 9.45	97,00	14.54	04,70
	Nd	38.30	46.30	52 10	34 40
	Sm	7.87	8.66	8.24	5.75
	Eu	2.32	2.13	1.67	1.58
~	Gd	7,28	7,45	6,38	5,14
ET R	Tb	1,13	1,22	1,03	0,79
	Dy	6,20	6,31	5,38	4,08
	Но	1,22	1,33	1,12	0,91
	Er	3,65	3,81	3,27	2,59
	Tm	0,53	0,57	0,50	0,40
	Yb	3,19	3,63	3,10	2,42
	Lu	0,51	0,56	0,49	0,38
	ETR totais	169,55	231,08	305,42	195,18
	FeOt/MgO+FeOt	5,02	4,25	3,41	2,60
	K2 0/Na2 0	0,36	0,70	0,81	0,85
S	RD/Sr Rb/Ro	0,06	0,13	0,12	0,11
zõé	ru/da Sr/Ba	1.06	0,07	0,00	0,05
Ra	(La/Yb)N	5.03	7 53	14 00	11 77
		0.04	0.90	0.71	0.80
		0,94	0,62	0,71	0,09
	∣ın/La	0,06	0,26	0,34	0,26

Tabela 5 – Resultados químicos de amostras da Suíte Trairão (este estudo). Para abreviações minerais ver tabela 5: Dio - Diorito; Ton - Tonalito; Gnd - Granodiorito; Mzg - Monzogranito; Gra - Granito.

					СО	RPO RIO T	RAIRÃO				
	A	LM-	LM-27B*	LM-27G*	HG-		LM-	LB-24	LM-	HG-	HG-
	Amostras	208F*	Encl.	Encl. Qtz	115B*	LM-28*	208A*	Hbl-bt	27A*	115A*	119*
		Xen. Bt	Qtz-dio	dio	Encl. Qz-	Qtz-dio	Hbl-bt-	ton	Gra	Gnd	Ton
	SiOn	ton	52.07	55.90	aio	59.24	ton 60.26	61.66	62.12	62.20	62.46
	TiO2	0.90	1.33	0.81	0.90	0.84	0.73	0.73	02,12	0.53	0.45
() 0	Al ₂ O ₃	16,77	14,10	15,91	15,88	16,78	16,98	16,73	15,84	16,63	16,80
bes	Fe 2 O3	8,04	13,66	8,63	7,96	8,12	6,15	6,28	6,66	4,44	4,01
E	MnO	0,12	0,21	0,17	0,13	0,14	0,10	0,10	0,11	0,09	0,15
% е	MgO	<u>5,53</u>	4,41	5,20	4,37	2,68	2,73	2,75	2,27	1,98	1,91
s (Na ₂ O	3.28	2 89	2.81	3.24	3.66	3.83	3 39	3.80	4,25	4,09
opi	K2 0	2,51	1,29	2,47	2,84	1,18	2,79	2,04	3,06	3,29	1,46
ÓXİ	P2 O5	0,44	0,23	0,27	0,39	0,35	0,38	0,46	0,37	0,29	0,27
_	P.F.	1,20	1,10	1,20	0,40	1,30	0,90	0,70	0,60	0,80	2,20
	Total	99,68	99,78	99,74	99,60	99,76	99,64	99,68	99,87	99,81	99,77
	KD Sr	105,60 871 10	46,60	634 10	635 30	<u>64,70</u> 526.80	735.80	76,50	521.60	105,30	66,20 714 30
	Ba	774.00	402,60	659.50	1359.90	369.10	1021.70	735.00	679.40	944.70	1249
	Cs	4,90	3,30	6,80	3,80	3,10	3,70	3,40	8,00	4,40	2,40
	Pb	2,50	2,50	2,30	3,10	3,70	5,20	1,80	5,10	4,80	2,40
	Υ	20,70	30,10	18,10	25,00	20,30	25,20	13,50	22,10	19,70	18,50
Ê		211,30	114,20	112,50	259,10	134,80	297,50	217,80	180,40	206,10	216,20
dd	ni Nh	<u>5,90</u> 10.80	<u>2,70</u> 5,70	7.30	10.90	<u>3,70</u> 8,50	11 40	6,00	9.80	8 10	5,60 5,50
õ	Ta	0,80	0,40	0,40	0,50	0,80	0,40	0,50	0,80	0,50	0,00
trag	Th	11,70	3,20	6,70	11,20	12,30	26,60	5,80	9,50	12,60	6,40
s-t	U	1,70	1,00	1,70	1,50	3,30	1,30	1,80	4,70	2,30	1,70
nto	Ni	34,50	8,80	19,10	20,50	4,90	11,80	20,00	1,00	9,90	9,20
me	Co V	32,70	40,70	25,10	163.00	18,50	17,20	15,70	12,80	12,40	13,30
Ele	v Sc	23.00	41 00	24.00	23.00	21.00	21.00	10.00	15 00	12 00	13.00
_	W	1,10	1,20	0,60	0,40	0,40	0,40	0,50	1,20	0,10	0,50
	Zn	71,00	66,00	90,00	67,00	60,00	60,00	82,00	85,00	50,00	57,00
	Cu	1,00	22,70	0,80	2,80	15,00	1,40	33,70	4,70	22,30	25,30
	Mo	<,1	0,20	0,10	0,20	0,20	0,10	0,10	0,50	0,20	2,10
	Ga	19.20	19.80	19.80	21.30	18.30	19.90	18.90	17.90	2,00	2,00
q	Aq	<.1	<.1	<.1	<.1	<.1	<.1	0.10	<.1	<.1	<.1
dd	Au	0.50	0.80	0.60	<.5	<.5	0.50	0.50	<.5	<.5	0.80
	La	38,20	18,80	23,80	55,10	30,70	96,00	22,70	32,50	41,40	40,70
	Ce	96,00	43,00	52,50	116,90	70,00	216,90	52,70	70,70	87,70	79,60
	Pr Na	10,59	5,35 22,50	6,20	13,24	20.40	20,14	<u>6,75</u>	8,59	9,39	9,45
	Sm	6.30	4.80	4.20	8.00	5.30	10,10	4.68	5.50	5.20	5.60
	Eu	1,42	1,64	1,39	1,95	1,42	1,67	1,27	1,50	1,15	1,34
Ř	Gd	4,66	5,35	4,01	5,67	4,65	5,99	3,45	4,56	3,71	3,33
Π	Tb	0,76	0,81	0,55	0,83	0,66	0,98	0,51	0,65	0,59	0,70
	Dy Ha	3,71	4,50	2,68	4,72	3,05	4,68	2,37	3,21	3,39	3,19
	nu Fr	1.93	3.33	1 75	2 44	1 91	2.28	1 22	2.02	1.83	0,04
	Tm	0,30	0,46	0,21	0.35	0,30	0.36	0,18	0.30	0,26	0,25
	Yb	1,78	2,80	1,49	2,26	2,11	2,25	1,14	2,02	1,84	1,55
	Lu	0,31	0,47	0,25	0,39	0,34	0,29	0,18	0,35	0,31	0,24
	ETR totais	205.96	114.85	124.29	261.38	158.37	432.56	124.43	166.65	189.87	183.33
	reOt/NgO+reOt K2 O/Na2 O	0,53	5,41 0.45	0,20 0.88	<u>ວ,3/</u> ೧	3,08 0 32	3,13 0.72	3,75 0.60	<u>3,27</u> 0.81	<u>∠,98</u> ∩ 80	2,91
6	Rb/Sr	0.12	0,43	0.19	0,00	0.12	0,15	0.10	0.23	0.16	0.09
õe	Rb/Ba	0,14	0,10	0,18	0,08	0,18	0,11	0,10	0,18	0,11	0,05
Raz	Sr/Ba	1,13	0,89	0,96	0,47	1,43	0,72	1,08	0,77	0,70	0,57
	(La/Yb)N	14,47	4,53	10,77	16,44	9,81	28,77	13,42	10,85	15,17	17,70
	<u>Eu/Eu</u> * Th/La	0.31	0,99	0.28	0,89	0,88	0.28	0.97	0,92	0,80	0,95

				•	CORPO		IRÃO			
	Amostras	HG-81D* Ton	HG-11* Gnd	LM- 212B* Bt ton	MF- 185* Bt-hbl gnd	LM- 27C* Ton	HG- 81C* Mzg	HG-R- 10* Ton	LM- 208D* Bt gnd	LM- 212A* Bt gnd
	SiO ₂	63,81	64,02	64,20	64,64	65,79	66,26	66,38	66,94	70,31
-	TiO ₂	0,61	0,55	0,61	0,54	0,65	0,62	0,74	0,43	0,40
So	Al2 O3	17,48	16,58	16,54	16,14	16,55	16,24	15,57	16,37	15,05
be	Fe ₂ O ₃	4,07	4,38	5,17	4,50	4,35	3,38	3,86	3,00	2,45
E	MnO	0,06	0,07	0,07	0,07	0,05	0,05	0,05	0,05	0,04
~		1,42	1,73	1,87	1,96	1,40	1,05	1,54	1,04	0,87
		4,19	4,50	4,03	4,51	3,57	3,38	4,07	3,41	2,93
ğ	Ka O	4,94	<u>4,12</u> 2,70	3,04	3,09 2,64	2,09	4,30	3,39	3,03	3,03
Xi	P2 OF	0.35	0.32	0.35	0.30	2,90	0.38	0.47	0.20	0.27
•0	P F	0,35	0,52	1.00	0,50	0,20	0,30	0,47	1.00	0,27
•	Total	99.77	99.63	99.92	99.70	99.87	99.68	99.65	99.66	99.86
	Rb	72.20	88.50	116.00	61.00	123.70	84.70	91.10	89.40	111.20
	Sr	903.20	802.00	518.30	768.00	417.90	674.20	750.80	747.90	550.10
Ì	Ba	1093,50	1157,30	319,10	1402,60	679,00	1956,30	1051,00	2106,80	925,20
	Cs	1,70	2,20	5,90	1,60	6,50	1,70	3,00	2,60	6,20
[Pb	2,50	4,00	2,90	4,80	2,70	3,40	6,60	5,00	5,60
	Y	13,80	24,40	10,70	19,60	11,00	25,50	15,90	7,80	27,10
e la c	Zr	368,10	247,40	234,90	243,00	315,80	546,60	290,10	411,90	212,30
ud	Hf	9,80	6,90	6,90	6,20	8,40	14,60	7,40	9,80	6,70
g	Nb	5,30	8,00	11,80	7,00	10,00	7,00	11,50	4,90	10,30
ပ္ပ်	Та	0,20	0,60	1,10	0,50	0,50	0,40	0,70	0,30	1,10
tra	Th	9,70	15,30	14,90	13,60	7,70	13,00	13,30	11,60	18,60
-so		1,70	1,60	2,20	1,10	1,80	2,30	1,70	2,10	8,10
, T		5,10	7,30	8,40	1,70	6,40	4,10	7,60	4,70	5,60
ue i		8,90	72.00	13,30	11,70	7,70	6,30 51.00	75.00	6,20	5,50
ie i	V Sc	7.00	11.00	5.00	02,00	14.00	5 00	2.00	47,00	40,00
	w	6.90	0.00	0.40	0.20	0.90	0.50	0,70	4,00	4,00
	Zn	57.00	50.00	67.00	50.00	69.00	44 00	59.00	34.00	38.00
ľ	Cu	0.60	11.60	31.30	38.80	6.00	0.90	20.60	13.90	19,90
	Мо	0.20	0.20	<.1	0,10	0,20	0,20	0,40	0,10	0,20
	Sn	1,00	1,00	3,00	2,00	2,00	1,00	1,00	1,00	2,00
	Ga	21,00	19,80	18,40	17,80	19,90	19,00	17,90	16,50	15,70
qd	Ag	<,1	<,1	<,1	<,1	<,1	<,1	<,1	<,1	<,1
Id	Au	0.70	<.5	<.5	0.50	<.5	0.50	0.70	0.60	<.5
	La	124,40	50,70	30,20	61,70	18,00	89,10	29,00	39,20	51,60
	Ce	215,50	113,90	103,60	127,90	40,30	156,40	63,40	79,10	102,20
	Pr	19,23	12,49	8,67	13,52	4,61	17,20	7,39	7,27	12,43
	Nd	63,60	42,10	32,20	49,10	18,10	63,80	26,90	24,10	44,30
	Sm	6,50	7,90	4,50	7,50	4,00	8,90	5,20	3,10	7,10
·		2,17	1,58	0,97	1,80	1,23	2,30	1,25	0,97	1,59
TR	Ть	3,71	5,06	2,93	4,71	3,29	0,71	3,99	1,92	5,14
ш	Dv	2 38	4 75	1 94	3 37	1 71	4 50	2 94	1 35	4.68
ŀ	Ho	0.43	0.92	0.35	0.61	0.34	0.81	0.54	0.24	0.88
	Fr	1.09	2.49	0.87	1.92	1.00	2.13	1.35	0,24	2.69
	Tm	0,15	0,41	0,17	0,27	0,15	0,29	0,22	0,11	0,49
	Yb	1,07	2,16	0,93	1,75	0,92	1,78	1,32	0,72	2,87
	Lu	0,20	0,42	0,14	0,23	0,18	0,28	0,21	0,12	0,45
	ETR totais	440.97	245.76	187.88	275.06	94.24	355.07	144.30	159.18	237.28
	FeOt/MgO+FeOt	2,42	2,73	2,87	2,96	2,40	2,05	2,54	2,04	1,87
	K2 O/Na2 O	0,41	0,66	0,50	0,68	0,76	0,77	0,77	0,99	0,86
Se	Rb/Sr	0,08	0,11	0,22	0,08	0,30	0,13	0,12	0,12	0,20
ŽÕ	Rb/Ba	0,07	0,08	0,36	0,04	0,18	0,04	0,09	0,04	0,12
Ra	Sr/Ba	0,83	0,69	1,62	0,55	0,62	0,34	0,71	0,35	0,59
	(La/YD)N	/8,38	15,82	21,89	23,17	13,19	33,75	14,81	36,71	12,12
		1,36	0,77	0,82	0,93	1,04	0,91	0,84	1,22	0,81
		U.U8	0.30	0.49	0.22	0.43	0.15	0.46	0.30	0.36

Tabela 6 – Resultados químicos de amostras da Suíte Trairão (*fonte: CPRM 2010). Para abreviações minerais ver tabela 5: Dio - Diorito; Ton - Tonalito; Gnd - Granodiorito; Mzg - Monzogranito; Gra - Granito.

Amostras	Sm (ppm)	Nd (ppm)	¹⁴⁷ Sm/ ¹⁴⁴ Nd	¹⁴³ Nd/ ¹⁴⁴ Nd	erro (ppm)	€ _{Nd (0)}	€ _{Nd (t)}	Т _{DM} (Ма)	t
HG-115A*	5,1	31,3	0,098199	0,511501	8	-22,2	3,1	2024	2000
LM-27C*	3,7	17,8	0,12558	0,511828	14	-15,8	2,5	2091	2000
LM-208A*	9,4	64,8	0,088082	0,511329	21	-25,5	2,4	2070	2000
NR-51A*	9,3	48,1	0,1164	0,511645	4	-19,4	1,68	2,2	2040
NR-51B* (enclave)	8,5	41,7	0,1233	0,511677	8	-18,8	0,49	2,31	2040
LM-208F* (xenólito)	6,4	37,6	0,103346	0,511523	12	-21,8	2,2	2090	2000

Tabela 7 - Dados isotópicos Sm-Nd de rochas da Suíte Trairão (*fonte:CPRM 2010).

An	nostra	Classificação Petrográfica	PI	Afs	Qtz	Hbl	Act	Cu m	Bt	Срх	Grt	Crd	Sil	Est	And	Ms	Ор	Mnz	Zrn	Ap	Chl	Ep	Ttn	Cb	Am	Hc
	HG-124C ¹	crd-bt-qtz-pl-gnaisse	30	-	30	-	-	-	17	-	-	14	3		tr	5	tr		tr	-	tr	-	-	-	-	tr
	LM-40A1	bt-fa-qtz-pl-gnaisse	30	28	30	-	-	-	12	-	tr	-	-			tr	tr		tr	tr	-	tr	-	tr	tr	-
	MF-133B ¹	bt-qtz-fa-gnaisse	7	48	25	-	-	-	14	-	-	-	-			2	tr		tr	tr	-	4	tr	-	-	-
cas	MF-1781	ms-bt-qtz-pl-gnaisse (and e sil)	25	4	24	-	-	-	18	-	-	2	tr	-	3	16	4	tr	tr	tr	4	tr	-	-	-	-
isti	GM-22C ²	bt-qtz-fsp-gnaisse	30	22	30	-	-	-	18	-	-	1	-	-	-	tr	tr		tr	-	-	-	-	-	tr	-
Icle	GM-26B ²	bt-qtz-fsp-gnaisse	27	28	22	-	-	-	20	-	tr	-	tr	-	-	3	tr		tr	tr	tr	-	-	-	tr	-
eta	GM-60A ²	ms-bt-qtz-fsp-gnaisse	34	30	20	-	-	-	12	-	-	-	-	-	-	4	tr	?	tr	tr	tr	-	-	-	tr	-
Σ	AD-06B ³	qtz-pl-an-bt-cd gnaisse	14	-	10	-	-	-	15	-	-	38	2	tr	12	2	3	tr	tr	-	4	-	-	-	-	tr
	AD-17 ³	bt-qtz-pl-gnaisse c/ sil	36	-	30	-	-	-	30	-	-	tr	4	-	-	tr	tr	tr	tr	-	tr	-	-	-	-	-
	NR-38B ³	opx-ep-bt-qtz-pl-xisto	42	-	35	-	-	-	12	-	-	-	-	-	-	-	4		-	tr	-	7	tr	-	-	-
ttaci ico- inic	HG-901	ep-hb-qtz granofels	5	-	58	22	5	-	-	-	-	1	-			tr	-		-	tr	-	10	-	-	tr	-
μ, K, Μ	MF-116B ¹	cpx-hb-fa granofels	24	40	-	25	tr	-	tr	10	-	I	-	-	-	tr	tr		-	tr	-	tr	1	-	tr	-
	HG-90B ¹	anfibolito	40	-	15	40	-	-	-	3	-	-	-	-	-	tr	-		-	tr	-	tr	2	-	-	-
	MF-66B ¹	bt-qtz-cum-anfibolito	24	tr	15	30	-	20	5	-	-	-	-	-	-	-	6		-	tr	-	-	-	tr	-	-
s	LM-40B ¹	anfibolito	44	-	4	49	-	-	tr	-	-	1	-	-	-	tr	-		-	tr	tr	tr	3	-	-	-
fice	MF-31B ¹	qtz-anfibolito	20	tr	22	48	-	-	-	-	-	-	-	-	-	tr	7		-	tr	tr	3	tr	-	-	-
ná	AB-145B ²	bt-qtz-cum-anfibolito	40	-	12	20	-	20	6	-	-	-	-	-	-	tr	2			tr	-	-	-	-	-	-
etai	GM - 24 ²	qtz-bt-anfibolito	37	-	12	33	-	3	12	-	-	-	-	-	-	tr	3		?	tr	-	-	tr	-	-	-
Me	GM - 30 ²	qtz anfibolito	22	-	8	68	-	-	-	-	-	-	-	-	-	tr	1		-	tr	-	-	1	-	-	-
	NR-02A ³	cpx-anfibolito	-	-	-	73	-	-	-	20	-	-	-	-	-	tr	2		-	-	-	4	1	-	-	-
	NR-47B ³	otz-bt-anfibolito	32	-	8	36	-	-	20	-	-	-	-	-	-	-	2		-	tr		2	-	-	-	-

Tabela 8 - Classificação petrográfica e composição mineralógica aproximada de rochas do Grupo Cauarane com análise química. Amostras reestudadas de CPRM (2010)¹ e analisadas de Pinheiro et al. (1981)² e este estudo³. Abreviaturas conforme Siivola & Schmid (2007): Pl: plagioclásio; Afs: feldspato alcalino; Qtz: quartzo; Hb: hornblenda; Act: actinolita-tremolita; Cum: cummingtonita; Bt: biotita; Cpx: clinopiroxênio; Grt: granada; Crd: cordierita; Sil: sillimanita; Est: estaurolita; And: andaluzita; Ms: muscovita/sericita; Op: opacos; Zrn: zircão; Mnz: monazita; Ap: apatita; Chl: clorita; Ep: epidoto; Ttn: titanita; Cb: carbonato; Cm: argilominerais; Hc: hercinita; Fa: fayalita; tr: traço (<1%).

Amostras		NR-02A ³	MF-31B ³	GM-30 ²	HG-R-90B ¹	GM-24 ²	AB-145B ²	NR-47B ³
Amo	ostras	cpx anfibolito	qtz anfibolito	qtz anfibolito	anfibolito	qtz-bt anfibolito	bt-qtz-cum anfibolito	qtz-bt anfibolito
	SiO ₂	44,90	48,69	49,07	51,14	51,59	51,82	52,66
	TiO ₂	2,95	2,08	2,00	1,89	1,66	1,17	0,91
so)	Al ₂ O ₃	8,92	13,76	13,43	13,50	14,08	16,41	15,02
bei	Fe ₂ O ₃	13,96	15,62	15,34	12,71	14,58	12,02	10,82
шe	MnO	0,20	0,27	0,25	0,19	0,22	0,21	0,21
%	MgO	10,95	6,06	6,21	5,21	6,10	6,34	6,59
) se	CaO	14,20	10,00	11,50	10,71	9,07	9,72	9,8
iore	Na ₂ O	0,58	1,41	1,03	2,78	0,46	0,49	1,32
Ма	K₂O	0,51	0,33	0,41	0,74	0,80	0,64	1,28
so	P ₂ O ₅	0,47	0,28	0,23	0,36	0,35	0,45	0,26
xid	LOI	1,7	1,2	0,2	0,70	0,7	0,4	0,80
,Ò	Cr ₂ O ₃	0,153	0,017	0,022	0,02	0,020	0,006	0,029
	TOTAL	99,49	99,72	99,69	99,96	99,63	99,68	99,70
	Rb	9,4	6,6	4,6	5,70	41,0	40,0	60,6
	Sr	444,6	139,1	179,4	112,80	359,2	776,3	517,1
	Ba	150	143	92	371,10	527	269	251
	Cs	<0,1	0,2	2,9	0,10	2,6	2,6	3,1
	Pb	2,0	2,3	3,8	0,30	5,7	8,0	2,5
_	Y	42,3	37,3	36,0	55,40	26,2	13,1	19,9
(mc	TI	<0,1	<0,1	<0,1	<,1	0,2	0,2	0,2
d)	Zr	155,9	124,6	124,0	75,30	148,9	50,4	78,3
0ý	Hf	4,3	3,6	3,9	2,40	4,4	1,7	1,9
-tra	Nb	57,1	9,1	8,8	7,20	6,8	3,0	5,5
tos	Та	4,4	0,5	0,7	0,50	0,4	0,3	0,3
len.	Th	7,3	1,0	1,0	0,90	4,5	2,1	2,6
lem	υ	1,8	4,3	0,4	0,70	0,9	1,9	1,2
ш	Ni	476	78	87	13,50	90	40	31,8
	Co	75,3	51,0	54,2	43,60	52,5	38,9	38,4
	V	280	346	348	249,00	335	292	283
	Sc	31	47	45	41,00	35	34	36
	Be	2	<1	<1	1,00	1	<1	1
	W	2,0	1,0	0,6	0,40	0,5	0,7	<0.5

		NR-02A ³	MF-31B ³	GM-30 ²	HG-R-90B ¹	GM-24 ²	AB-145B ²	NR-47B ³
Amo	ostras	cpx anfibolito	qtz anfibolito	qtz anfibolito	anfibolito	qtz-bt anfibolito	bt-qtz-cum anfibolito	qtz-bt anfibolito
	Zn	17	20	14	17,00	22	19	31
	Se	<0,5	<0,5	<0,5	<,5	0,6	<0,5	0,6
l l l	Sb	<0,1	<0,1	<0,1	<,1	<0,1	<0,1	<0.1
đ	Cu	187,9	56,0	15,7	91,30	181,7	19,1	183,2
aço	Hg	<0,01	<0,01	<0,01	<,01	<0,01	<0,01	<0.01
s-tr	Мо	<0,1	0,4	0,6	<,1	0,4	0,2	<0.1
nto	Bi	0,7	0,1	<0,1	<,1	0,2	0,2	<0.1
mei	Cd	<0,1	<0,1	<0,1	<,1	<0,1	<0,1	<0.1
Ele	As	<0,5	<0,5	<0,5	<,5	<0,5	<0,5	0,9
	Sn	2	2	<1	1,00	2	2	2
	Ga	14,7	18,4	16,2	16,80	18,7	19,6	17,4
đ	Ag	<0,1	<0,1	<0,1	<,1	<0,1	<0,1	<0.1
d	Au	9,3	0,7	1,6	1,70	<0,5	1,2	2,8
	La	71,1	9,4	9,1	10,60	25,8	15,1	13
	Ce	109,1	24,1	24,8	19,10	60,2	34,0	30,6
Ê	Pr	18,07	3,47	3,32	4,22	6,95	4,30	3,79
īdd)	Nd	69,5	16,0	16,7	21,10	29,3	19,3	16,9
as	Sm	13,55	4,64	4,54	6,10	5,61	3,89	3,69
Rar	Eu	4,48	1,46	1,61	2,12	1,68	1,19	1,26
-as-	Gd	11,50	5,79	5,95	7,85	5,54	3,21	3,75
Terr	Tb	1,84	1,08	1,07	1,53	0,88	0,47	0,63
Lso	Dy	9,17	6,57	6,54	9,60	4,92	2,46	3,48
ente	Но	1,66	1,37	1,38	2,06	0,97	0,45	0,72
en	Er	4,41	4,07	4,10	5,69	2,76	1,19	2,08
Ξ	Tm	0,62	0,58	0,62	0,84	0,42	0,18	0,32
	Yb	3,63	3,68	3,95	5,25	2,59	1,00	1,97
	Lu	0,49	0,57	0,54	0,77	0,39	0,16	0,3

Tabela 9 – Classificação química de rochas máficas do Grupo Cauarane. Amostras reestudadas de CPRM (2010)¹ e analisadas de Pinheiro et al. (1981)² e este estudo³. Abreviaturas minerais por Siivola & Schmid (2007): Qtz: quartzo; Bt: biotita; Cpx: clinopiroxênio; Cum: cummingtonita.

Amos	stras	LM-40B ¹	MF-66B ³	MF-116B ¹	HG-90 ¹
	SiO ₂	53,03	56,23	57,76	82,75
-	TiO ₂	0,94	1,37	0,82	0,09
ose		11,89	12,93	12,89	4,22
be	Fe ₂ O ₃	10,54	11,62	7,08	4,55
em	MnO	0,30	0,19	0,16	0,18
%)	MgO	8,93	7,15	5,41	2,57
Se	CaO	9,81	7,66	7,37	3,51
iore	Na ₂ O	2,33	0,42	4,87	0,30
Ma	K₂O	0,91	1,05	2,46	0,17
SC	P ₂ O ₅	0,29	0,32	0,27	0,07
cide	LOI	0,90	0,7	0,80	1,60
ŷ	Cr ₂ O ₃	0,06	0,041	0,01	0,00
	TOTAL	99,94	99,68	99,90	100,01
	Rb	25,40	64,7	102,00	3,30
	Sr	267,80	244,3	452,40	32,70
	Ba	244,20	147	435,80	97,80
	Cs	0,90	1,8	4,50	0,50
	Pb	1,40	3,2	9,70	0,80
	Y	33,40	24,6	34,50	87,20
	TI	0,10	0,3	0,10	<,1
	Zr	120,00	122,6	93,60	15,90
	Hf	3,40	3,8	3,00	0,80
	ND T-	12,60	9,1	12,90	2,70
(r	Та	0,80	0,6	0,90	0,40
ude	<u> </u>	4,90	0,4	7,40	1,90
р (р	Ni	17.90	2,1	16 70	13.00
açc	<u> </u>	45 50	41.3	31 10	11 70
s-tr	<u>v</u>	218.00	293	155.00	16.00
tos	Sc	35.00	38	19.00	3.00
en	Be	5,00	3	6,00	1,00
em	W	0,30	<0,5	0,30	0,50
Ξ	Zn	22,00	25	18,00	14,00
	Se	<,5	<0,5	<,5	<,5
	Sb	<,1	<0,1	<,1	<,1
	Cu	3,80	188,3	171,70	30,60
	Hg	0,01	<0,01	<,01	0,01
	Mo	0,30	2,4	<,1	0,10
	Bi	0,20	0,1	0,40	0,10
		0,10	<0,1	<,1	<,1
	AS	c,>	<0,5	0,60	<,5
	Ga	2,00	18.1	2,00	5.20
ų	Aa	< 1	<0.1	<1	<.1
dd	Au	1.20	3.6	1.00	<.5
	La	23,10	27,8	30,90	132,00
•	Ce	52,70	62,5	53,70	48,20
ш	Pr	6,93	7,23	7,85	47,93
ld)	Nd	28,50	28,1	32,40	177,70
as	Sm	6,60	5,97	5,90	43,80
Raı	Eu	1,67	1,21	1,56	11,42
-se	Gd	5,77	5,32	5,94	29,12
erre	Tb	1,06	0,84	1,03	5,42
Ľ,	Dy	5,68	4,65	5,67	28,75
tos	H0 E-	1,14	0,87	1,00	4,41
nen	Tm	3,38 0.51	2,55	3,1Z	12,90
em	Yh	3.40	2 20	2 51	12.00
Ξ	Lu	0.51	0.36	0.43	1.75
		- , , , , ,	0,00	0,10	.,,,,,

Tabela 10 – Classificação química de rochas metaclásticas do Grupo Cauarane. Amostras reestudadas de CPRM (2010)¹ e analisadas de Pinheiro et al. (1981)² e este estudo³. Abreviaturas minerais por Siivola & Schmid (2007): Ep: epidoto; Hbl: hornblenda; Qtz: quartzo; Bt: biotita; Cum: cummingtonita; Hd: hedenbergita; Fa: fayalita. Classificação Petrográfica: LM-40B - ep-hbl-qtz metachert; MF-66B - bt-qtz-cum calcissilicática; MF-116B - hd-fa-hbl calcissilicática; HG-90 - ep-hbl-qtz metachert.

Amost	tras	AD-06B ³	MF-178 ³	HG-R-1241	NR-38B ³	LM-R-40A ¹	GM-60A ²	AD-17³	GM-26B ²	MF-R-133B ¹	GM-22C ²
	SiO ₂	54,48	65,02	68,59	69,14	69,18	69,27	70,05	70,17	70,87	73,21
~	TiO ₂	1,08	0,74	0,40	0,71	0,53	0,37	0,64	0,46	0,50	0,05
os	Al ₂ O ₃	26,49	15,99	15,38	15,26	14,87	16,29	15,34	13,88	14,24	14,66
be	Fe ₂ O ₃	9,46	5,94	2,71	3,52	2,84	2,21	5,02	4,02	2,49	0,75
E E	MnO	0,13	0,11	0,07	0,13	0,18	0,04	0,04	0,17	0,05	0,02
%	MaO	4.48	1.12	1.08	0.71	0.98	0.64	1.44	1.40	0.75	0.14
s)	CaO	0.15	2.52	2.96	5.74	1.54	1.75	1.21	0.84	1.83	1.07
ore	Na ₂ O	0.82	3 47	3.80	2.98	3 10	4 00	2.76	2.52	2 24	4 05
lai	K ₀	1.23	3.51	3.99	0.70	5 56	4 42	2 31	5 36	6.13	4 78
s -	P.O.	0.00	0.27	0,55	0,70	0,00	0.11	0.10	0,00	0,13	0.08
မ	1 205	1.2	0,27	0,10	0,57	0,10	0,11	0,10	0,11	0,10	1.0
) XI		0.025	0,9	0,70	-0.002	0,90	0,0	0,0	0,0	0,00	1,0
Ŭ		0,035	0,006	0,00	<0,002	0,00	0,002	0,011	0,000	0,00	<0,002
		99,65	99,60	99,84	99,76	99,79	99,60	99,72	99,74	99,83	99,81
	RD Or	79,5	119,8	117,00	35,8	147,10	138,6	99,6	244,6	213,50	89,5
	Sr Bo	28,2 151	260,7	412,50	299,5	1242.20	340,2 1722	174,4	123,4	211,20	318,3
		101	1144	193,80	000	2 40	26	430	090	7 90	1290
		1,0	4,0	5,90	1,0	2,40	2,0 6.2	2,4	0,3	1,00	1,2
	- PD	26.3	68.4	18.60	527	60.00	10,2	27 9	 25.3	32 70	23.6
		20,0	00,4	0.30	0.1	0,00	03	04	0.8	0.40	∠0,0 ∠0,1
	7r	648.2	518.1	175.30	387.2	536.50	605.7	698.8	274 1	549.30	71 1
	Hf	17.5	13.4	5.70	10.9	16.10	16.0	19.4	8.7	14.50	3.3
	Nb	19,3	13,0	14,90	15,7	19,20	8,4	10,0	23,3	23,50	3,4
	Та	1,4	0,8	1,20	1,0	0,90	0,8	0,7	2,1	1,50	0,2
Ē	Th	35,5	25,2	20,40	16,8	33,10	26,6	54,8	20,8	24,20	5,5
ddj	U	10,2	5,6	3,00	6,1	5,50	3,6	7,8	5,0	3,40	3,1
õ	Ni	141	28	7,60	<20	10,10	<20	42	22	5,80	<20
rac	Co	27,0	13,7	5,70	6,7	7,90	4,7	12,3	11,9	3,50	1,8
L-s	V	154	89	40,00	51	30,00	21	133	37	37,00	<8
to	Sc	6	13	7,00	14	9,00	6	7	11	8,00	1
ner	Be	11	2	2,00	3	<1	2	3	<1	2,00	1
le	w	0,7	0,7	0,30	0,5	0,30	<0,5	<0,5	0,5	0,50	<0,5
	Zn	29	62	37,00	52	47,00	35	73	81	43,00	13
	Se	<0,5	<0,5	<,5	<0,5	<,0	<0,5	<0,5	<0,5	<,0	<0,5
		<0,1	<0,1	<, I 50.60	<0,1	<,1	<0,1	<0,1	<0,1	<, 1	<0,1
	Ha	103,7	-0.01	59,00	4,9	13,20	∠,4 ∠0.01	-0.01	2,1	20,00	21,5
	Mo	0.7	0.2	0.10	0.1	0.10	<0,01	0.3	0.2	0.20	0.1
	Bi	0,7	0,2	0.20	0,1	0,10	<0.1	<0.1	<0.1	0.20	0,1
	Cd	<0.1	<0.1	0.10	0.2	0.10	<0.1	<0.1	0.1	<.1	<0.1
	As	0,8	<0,5	<,5	<0,5	0,60	<0,5	<0,5	<0,5	1,20	<0,5
	Sn	2	2	1,00	2	2,00	3	1	2	1,00	<1
	Ga	34,8	18,3	16,20	17,0	17,90	14,7	20,3	18,3	16,40	13,6
ot	Ag	<0,1	<0,1	<,1	<0,1	<,1	<0,1	<0,1	<0,1	<,1	<0,1
Id	Au	1,8	1,0	1,10	<0,5	0,70	<0,5	1,2	0,5	2,90	0,6
	La	101,5	85,1	42,40	55,0	100,30	71,4	133,9	50,2	68,10	9,4
Ē	Ce	222,1	189,8	85,80	130,4	227,20	159,2	301,5	121,2	156,70	21,6
ud	Pr	23,48	20,49	9,30	13,70	23,44	16,02	31,72	11,54	15,55	2,28
d) s	NO Sm	82,2	10,0	30,50	50,5	87,50	58,0	114,2	41,0	52,80	8,9
Iras	5m E.	1 1 2	13,72	5,10	9,1Z	10,40	9,04	2.02	1,24	0,70	1,92
-Ra	Gd	0.61	2,30	2.67	7.69	11 12	7.40	2,03	5 07	6.52	2.24
as		1 26	1 98	0.64	1,00	1.87	1.04	1.84	0.96	1 01	0.47
err		5.86	11.55	3.06	8.02	10.22	4,53	7.66	4,91	5.15	3.28
د ۲	Ho	0.94	2.33	0.58	1.75	1.94	0.73	1.03	0.89	1.01	0.77
nto	Er	2,57	6,90	1,98	5,65	6,17	1,87	2,21	2,59	2,88	2,52
nei	Tm	0,40	1,08	0,32	0,92	0,99	0,27	0,30	0,43	0,49	0,43
iler	Yb	2,63	6,70	1,99	5,90	7,83	1,84	1,81	2,96	2,94	3,00
	Lu	0,48	1,08	0,29	0,95	1,16	0,30	0,32	0,42	0,50	0,42

Tabela 11 – Classificação química de rochas clástico-químicas do Grupo Cauarane. Amostras reestudadas de CPRM (2010)¹ e analisadas de Pinheiro et al. (1981)² e este estudo³. Abreviaturas minerais por Siivola & Schmid (2007): qtz: quartzo; bt: biotita; fa: fayalita; pl: plagioclásio; sil: sillimanita; ms: muscovita; crd: cordierita; mag: magnetita. AD-06B - qtz-pl-sil-bt-crd gnaisse; MF-178 - ms-bt-qtz-pl gnaisse c/ and e crd; HG-124 - crd-bt-qtz-pl gnaisse; NR-38 - mag-fa-bt-qtz-pl xisto; LM-40A - bt-pl-qtz-mc gnaisse; GM-60A - ms-bt-qtz-fsp gnaisse; AD-17 - bt-qtz-pl gnaisse c/ sil; GM-26B - bt-qtz-fsp gnaisse; MF-133B - bt-qtz-fa-gnaisse; GM-22C - bt-qtz-fsp gnaisse.

	•	NR-89 ¹	NR-38A ³	LM-R-43 ²	LM-R-35A ²
	Amostras	Ms-bt monzogranito	Ms-bt monzogranito com	Bt-ms-monzogranito com	Ms-bt-monzogranito com crd, grt
	0:0	60.70	mag	grt co. oo	ë SII 70.50
	510 ₂	09,70	0.28	014	0.12
		0,50	0,30	0,14	0,13
so)		14,70	14,91	16,88	16,43
be	Fe ₂ O ₃	2,10	2,99	1,40	1,41
ε	MinO	0,03	0,07	0,06	0,06
°e	MgO	1,50	0,50	0,37	0,37
6	CaO	1,20	1,90	2,11	1,98
los	Na₂O	2,70	3,04	5,01	4,75
xid	K₂O	3,70	5,30	3,04	3,30
Ó	P ₂ O ₅	0,05	0,22	0,28	0,20
	LOI	0,87	0,40	0,60	0,60
	Sum	97,05	99,65	99,82	99,82
	Rb		134,30	96,00	97,80
	Sr		217,50	527,80	489,00
	Ba		1341,00	948,60	936,80
	Cs		2,60	17,20	7,80
	Pb		2,10	4,60	1,80
	Y		67,10	20,40	18,20
	TI		0,10	0,20	0,20
	Zr		642,70	192,20	135,50
	Hf		17,40	5,80	3,90
	Nb		8,40	5,20	5,40
	Та		0,50	0,60	0,70
ĉ	Th		10,00	9,60	8,40
nd	U		6,20	3,30	3,80
d)	Ni		20,00	1,40	0,80
ည်	Со		5,00	2,40	1,50
.tra	V		42,00	6,00	6,00
-so	Sc		6,00	3,00	4,00
ant	Be		1,00	6,00	3,00
Ĕ	W		0,50	0,40	0,20
E	Zn		32,00	43,00	42,00
	Se		0,50	<,5	<,5
	Sb		0,10	0,10	<,1
	Cu		6,80	2,40	3,60
	Мо		0,10	0,20	0,10
	Bi		0,10	0,20	0,10
	Cd		0,10	0,10	<,1
	As		0,50	<,5	<,5
	Sn		2,00	1,00	1,00
	Ga		16,10	17,20	17,60
	Ag		0,10	<,1	<,1
	Au		0,50	1,10	0,60
	La	31,97	27,90	42,80	33,70
	Ce	72,30	58,00	87,10	69,30
	Pr		6,40	9,68	7,64
	Nd	29,39	23,30	36,60	30,40
	Sm	5,86	5,14	6,30	5,30
E	Eu	0,82	1,92	1,17	0,94
dd)	Gd	4,01	5,80	4,20	3,04
R	Tb		1,30	0,71	0,61
Π	Dy	1,91	8,42	3,60	2,86
	Но	0,31	2,23	0,70	0,57
	F	0,53	7,57	1,85	1,62
	Tm		1,24	0,28	0,27
	Yb	0,41	7,97	1,74	1,83
	Lu	0,07	1,30	0,30	0,27
	ETRtotal	147,58	158,49	197,03	158,35
	Zr+Nb+Ce+Y		776,20	304,90	228,40
	Ga/Al		2,04	1,92	2,02

	A.m. e e trae	HG-R-87 ²	NR-81 ¹	SR-22B ¹	NR-47A ³	SR-50 ¹
	Amostras	Ms-sienogranito protomilonítico com bt e grt	Ms-bt monzogranito	Ms monzogranito c/art	Ms monzogranito	Bt-ms monzogranito
	SiO	71.34	72.80	74.10	74.97	75.30
•	TiO ₂	0,03	0.35	0,19	0,11	0,17
$\overline{\mathbf{a}}$	Al ₂ O ₂	16,10	14,10	14,40	13,40	13,60
eso	Fe ₂ O ₂	0.88	0.89	1.20	1.27	1.10
ă	MnO	0.09	0.07	0.10	0.08	0.08
em	MaO	0.10	0.03	0.44	0.21	0.34
%	CaO	1.17	0.09	1.60	1.04	1.20
s (Na ₂ O	4.51	3.00	2.90	3.09	3.50
ido	K₂0	4.51	5.50	3.20	4.77	3.40
, X	P₂Or	0.08	0.10	0.08	0.08	0.08
-	LOI	1.20	0.67	0.72	0.90	0.40
ľ	Sum	100,01	97,60	98.93	99,92	99,17
	Rb	266,90	,	*	172,80	· · ·
	Sr	98,00			108,90	
	Ba	264,20			468,00	
	Cs	14,90			3,20	
	Pb	3,50			6,70	
	Y	34,30			40,70	
	TI	0,20			0,20	
	Zr	57,60			133,10	
	Hf	3,90			4,30	
	Nb	17,00			9,80	
	Та	3,40			1,00	
2	Th	9,10			14,70	
bu	U	2,30			4,80	
g	Ni	0,30			0,70	
ŝ	Со	0,80			1,70	
tra	V	<5			17,00	
os:	Sc	2,00			3,00	
ant.	Be	5,00			2,00	
Ĕ	W	0,80			0,50	
Ше	Zn	42,00			28,00	
	Se	<,5			<0.5	
	Sb	0,10			<0.1	
	Cu	1,00			1,80	
	Мо	0,10			<0.1	
	Bi	0,60			<0.1	
	Cd	<,1			<0.1	
	As	0,50			0,70	
	Sn	2,00			2,00	
	Ga	18,70			15,30	
	Ag	<,1			<0.1	
	Au	1,60			0,70	
	La	10,60	71,18	24,15	34,70	19,98
ŀ	Ce	23,80	160,10	47,97	74,60	45,17
·	Pr	2,54	50.00	04.05	7,99	40.40
·	Nd	8,30	59,93	21,85	29,30	16,18
-	Sm	2,90	8,41	3,12	5,95	1,90
md	Eu	0,47	1,38	0,64	0,76	0,41
d)	Gd	3,65	4,80	2,38	5,37	1,51
R	Ib	0,84	0.00	4.00	1,09	4.05
ш	Dy	5,14	2,96	1,86	6,55	1,05
	HO	1,03	0,53	0,36	1,39	0,18
		3,09	1,14	0,90	4,32	0,44
	I M	0,44	0.74	0.70	0,67	0.40
·	1D 	2,68	0,74	0,79	4,31	0,40
		0,39	0,13	0,10	0,66	0,07
·		00,87 120,70	311,30	104,12	1/1,00	81,29
		132,70			258,20	
	Ga/Al	2,19			2,15	

Tabela 12 - Dados geoquímicos de rocha do Granito Amajari, incluindo a classificação petrográfica. Abreviaturas minerais conforme Siivola & Schmid (2007): mzgr - monzogranito; sgr - sienogranito; bt - biotita; ms - muscovita; cd - cordierita; si - sillimanita; gr - granada; mt - magnetita. (1) CPRM (1999); (2) CPRM (2010) e (3) este estudo.

	Amo	ostras	Classificação	PI	Afs	Qtz	Hbl	Bt	Срх	Орх	Ttn	Zrn	Ар	Aln	Ор	Act	Cum	Chl	Eр	Ser	Cb	Am	TIc	Tur	Zeo
		LM-34B*	Xenólito Bt-hbl- opx-cpx microdiorito	58	-	2	6	5	6	10	-	-	1	-	8	1	2	tr	-	tr	-	-	1	-	-
	FS	LM-34A*	Cpx-opx-hbl-bt qtz-diorito	50	-	11	7	15	2	tr	-	tr	1	-	3	3	5	tr	tr	tr	-	-	3	-	-
		LM-39*	Cpx-opx-hbl-bt qtz-diorito	47	-	10	8	25	4	tr	-	tr	1	-	3	-	2	-	-	tr	-	-	-	-	-
		LM-93B*	Bt-hbl monzogranito	33	30	18	12	5	tr	-	tr	tr	tr	-	1	-	-	1	tr	tr	-	-	-	-	-
		HG-124B*	Bt-hbl granodiorito	33	8	23	18	14	-	-	2	tr	tr	tr	1	-	-	-	1	tr	-	-	-	-	-
o Trovão	FC	MF-135*	Hbl-bt microgranodiorito foliado	40	8	16	4	25	-	-	1	-	tr	tr	tr	-	-	-	6	tr	-	tr	-	-	-
ğ		HG-01B*	Bi microtonalito	51	3	20	tr	20	-	-	tr	-	tr	tr	1	-	-	-	5	tr	-	-	-	-	-
ပိ	Cor	MF-162*	Hbl-bt granodiorito	34	15	23	12	15	-	-	tr	tr	tr	tr	1	-	-	-	tr	tr	-	tr	-	-	-
		HG-01 A*	Bi microgranodiorito foliado	36	17	25	-	18	-	-	tr	-	tr	tr	tr	-	-	-	4	tr	-	-	-	-	-
		MF-100*	Hbl-bt monzogranito c/ cavidades	35	25	20	4	10	-	-	tr	tr	tr	-	2	-	-	tr	2	tr	-	-	-	-	2
	F	LM-91*	Bt-hbl monzogranito	30	35	22	6	4	-	-	1	tr	tr	-	1	-	-	1	tr	tr	-	tr	-	-	-
		MF-92*	Hbl-bt monzogranito	25	34	25	4	10	-	-	1	-	tr	tr	1	-	-	tr	tr	tr	-	tr	-	-	-
		LM-222 A*	Px-bi-hbl micro qtz-diorito	60	tr	4	18	10	4	2	-	tr	tr	-	2	tr	tr	-	tr	-	-	-	tr	-	-
lechal		HG-23D*	Bt-hbl micro qtz- diorito	54	-	9	18	7	tr	-	-	-	1	-	3	1	-	2	5	tr	-	-	-	-	-
Ч	ц С	MF-01*	Bt-hbl qtz-diorito	49	4	10	30	5	tr	-	tr	tr	tr	-	2	-	-	-	-	tr	-	-	-	-	-
Corpo	Corpo Flec	MF-07*	Cpx-bt-hbl qtz- monzodiorito	42	10	12	20	6	4	-	tr	tr	tr	-	1	5	-	-	-	tr	-	-	-	-	-
		HG-16B*	Bt-hbl monzogranito	37	25	16	12	7	-	-	1	tr	tr	-	1	-	-	tr	1	tr	-	-	-	-	-

	Am	ostras	Classificação	PI	Afs	Qtz	Hbl	Bt	Срх	Орх	Ttn	Zrn	Ap	Aln	Ор	Act	Cum	Chl	Ер	Ser	Cb	Am	Tic	Tur	Zeo
		HG-99 A*	Bt-hbl monzogranito	30	18	18	21	10	-	-	2	-	tr	-	1	-	-	-	tr	tr	-	-	-	-	-
	ñ	HG-78*	Hbl-bt monzogranito	28	40	17	6	6	-	-	2	tr	tr	-	1	-	-	tr	tr	tr	-	tr	-	-	-
		HG-66 A*	Bt-hbl monzogranito	28	34	22	7	6	-	-	2	tr	tr	tr	1	-	-	tr	tr	tr	-	-	-	-	-
		NR-56	Bt monzogranito	27	45	18	-	8	-	-	tr	tr	tr	tr	2	-	-	-	tr	tr	-	-	-	-	-
		HG-69*	Bt-hbl monzogranito	25	47	18	4	3	-	-	1	tr	tr	-	1	-	-	1	tr	tr	-	tr	-	-	-
chal		MF-193*	Chl monzogranito hidrotermalizado	37	30	23	-	1	-	-	1	-	-	tr	tr	-	-	5	3	tr	-	-	-	-	-
Fe		LM-226B*	Chl monzogranito	34	26	22	-	tr	-	-	1	tr	tr	-	1	-	-	13	3	tr	-	-	-	-	-
orpo	Ч	MF-160*	Hbl-bt granodiorito	50	8	30	3	5	-	-	1	-	tr	-	1	-	-	2	tr	tr	-	tr	-	-	-
0		HG-47C*	Hbl-bt monzogranito	36	28	22	3	6	-	-	1	tr	tr	-	tr	1	-	3	tr	tr	-	tr	-	-	-
		MF-191C*	Bt monzogranito	27	42	23	-	7	-	-	tr	tr	tr	-	1	-	-	tr	tr	tr	-	-	-	-	-
		LM-25*	Chl micro- monzogranito	31	35	27	•	tr	-	-	tr	tr	tr	-	tr	-	-	5	2	tr	-	-	-	-	-
		MF-191 A*	Sienogranito	16	52	30	-	2	-	-	?	tr	tr	-	tr	-	-	tr	tr	tr	-	-	-	-	-
	LM-129C*	Aplito monzogranítico	33	40	26	-	1	-	-	tr	-	-	tr	tr	-	-	-	tr	tr	-	-	-	-	-	
		MF-06B*	Micro sienogranito	12	64	20	-	-	-	-	tr	tr	-	-	1	-	-	3	tr	tr	-	-	-	-	-

Tabela 13 - Classificação petrográfica e composição mineral estimada das rochas da Suíte Pedra Pintada com análise química. Abreviaturas minerais conforme Siivola & Schmid (2007): PI: plagioclásio; Afs: feldspato alcalino; Qtz: quartzo; HbI: hornblenda; Bt: biotita; Cpx: clinopiroxênio; Opx: ortopiroxênio; Ttn: titanita; Zrn: zircão; Ap: apatita; Aln: allanita; Op: opacos; Act: actinolita; Cum: cumingtonita; ChI: clorita; Ep: epidoto; Ser: sericita; Cb: carbonato; Am: argilo-minerais; Tlc: talco; Zeo: zeólitas; Tur: turmalina; tr: traços (< 1%); FC: fácies central; FN: fácies norte; D: diques. * Dados provenientes de CPRM (2010).

		LM-222A*	HG-23D*	MF-01*	MF-07*	HG-99A*	HG-16B*	HG-78*	HG-66A*	NR-56*	HG-69*
	Amostras	Opx-cpx-bt- hbl qtz-dio	Bt-hbl qtz- dio	Bt-hbl qz- dio	Cpx-bt-hb qtz-mzdio	Bt -hbl mzgra	Bt-hbl mzgra	Hbl-bt mzgra	Bt-hbl mzgra	Bt mzgra	Bt-hbl mzgra
	SiO ₂	55,77	56,56	57,65	58,27	58,94	61,09	63,51	65,57	66,90	67,86
~	TiO ₂	0,78	0,71	0,82	0,86	0,84	0,89	0,63	0,53	0,48	0,55
ose		16,16	16,36	16,73	14,57	16,77	16,51	17,05	15,98	17,19	14,54
ă	MnO	0.16	0,34	0.14	0.14	0,02	0.10	4,05	0.10	2,20	0.09
eπ	MgO	4,70	4,07	3,77	4,44	2,28	1,86	1,34	1,34	0,47	1,21
%)	CaO	7,67	7,22	7,16	6,33	4,75	4,62	4,09	3,12	2,29	2,04
so	Na ₂ O	3,39	3,43	3,82	3,27	4,26	3,79	4,29	4,23	4,40	4,16
cide	K₂O	1,03	1,29	1,91	3,14	3,29	3,38	3,55	4,05	4,23	4,43
ô	P ₂ O ₅	0,43	0,45	0,45	0,44	0,43	0,43	0,31	0,25	0,17	0,20
	P.F.	1,00	1,10	0,20	0,40	1,30	1,30	0,80	0,90	1,30	1,10
	Rh	29.00	30.80	49.80	104 10	92.30	116 40	117.60	169.00	170.90	189.50
	Sr	665.50	801.70	740.00	592.70	583.60	534.60	564.20	371.30	415.80	323.30
	Ba	563,90	661,90	671,00	1202,5	1668,10	1661,80	1869,4	976,00	946,00	902,00
	Cs	1,80	2,70	3,20	4,80	2,30	3,70	2,70	2,40	7,00	4,70
	Pb	1,50	1,70	2,70	8,10	5,10	6,10	5,40	11,00	11,50	12,60
	Y	21,90	19,90	30,60	32,10	47,60	22,80	39,60	43,50	45,60	37,10
e l	Zr Lif	145,00	216,40	395,70	131,90	524,90 12 70	279,90	200,10	293,50	424,30	285,20
ud	Nb	6 10	5.30	11,90	4,30	12,70	15.30	12 10	12 20	23 70	18.00
d d	Ta	0,50	0,40	0,70	0,80	0,70	1,20	0,80	1,20	2,70	1,50
açc	Th	5,70	3,60	12,50	18,00	11,10	15,30	8,30	27,10	33,70	29,50
, t	U	1,40	0,80	2,70	1,60	2,30	7,40	3,20	5,60	23,30	7,00
tos	Ni	12,40	13,60	10,40	13,60	8,40	3,80	4,30	4,40	20,00	3,90
len	Со	28,00	24,00	19,40	22,70	16,50	14,20	9,60	9,10	3,30	6,80
em	v	196,00	140,00	21.00	28.00	106,00	13.00	11.00	55,00	26,00	45,00
Ξ	Be	1.00	2 00	3.00	20,00	2 00	2 00	1 00	3.00	3,00	3.00
	Ŵ	0,50	0,70	3,90	4,20	0,30	0,90	0,50	0,50	1,50	4,80
	Zn	36,00	49,00	32,00	39,00	86,00	53,00	50,00	48,00	35,00	48,00
	Cu	69,40	31,90	30,50	96,00	8,70	30,20	14,40	4,50	19,10	52,40
	Mo	0,30	0,20	0,60	0,60	0,40	0,80	0,40	0,40	0,10	2,40
	Sn Ga	2,00	1,00	2,00	2,00	2,00	2,00	2,00	2,00	3,00	3,00
(nnh)	Ag	<,1	<,1	<,1	<,1	<,1	<,1	<,1	<,1	0,10	<,1
(ppp)	Au	2,00	18,80	<,5	2,80	<,5	1,60	0,80	0,50	0,50	<,5
	La	28,30	29,00	45,20	49,50	54,50	23,10	55,10	60,40	120,10	55,60
	Ce	67,70	61,00	102,60	113,60	119,40	106,40	131,40	108,10	127,20	116,30
	Pr Nd	7,47	7,38	11,77	13,76	14,25	8,93	13,72	12,00	19,74 68.10	12,77
	Sm	4.90	5.20	8.30	10.00	10.30	6.90	9.60	7.70	10.42	7.80
	Eu	1,40	1,41	1,88	1,90	2,06	1,58	1,84	1,55	1,66	1,36
₩	Gd	4,48	4,15	6,16	7,39	8,30	4,64	7,25	6,42	8,21	5,82
	Tb	0,74	0,71	0,91	1,08	1,37	0,89	1,26	1,03	1,22	1,01
	Dy Ha	3,93	3,65	5,76	5,74	7,18	4,72	7,30	6,52	6,07	5,71
	⊓0 Fr	0,79	2.01	1,00	3.20	1,50	0,95	1,45	1,27	1,20	3.85
	Tm	0.35	0.27	0.42	0.48	0.72	0.46	0.64	0.71	0.56	0.60
	Yb	1,95	2,02	3,21	2,78	4,52	3,08	3,96	4,38	3,46	3,93
	Lu	0,31	0,31	0,51	0,41	0,69	0,49	0,61	0,75	0,57	0,69
	ETR totais	154,86	146,05	233,02	260,37	282,13	197,69	293,92	258,83	372,14	260,95
	FeOt/MgO+FeOt	0,63	0,65	0,63	0,61	0,72	0,73	0,73	0,72	0,81	0,73
	K_O/Na_O	0.30	0.38	0,43	0.96	0,95	0.89	0.83	0.96	0.96	1.06
ŝ	Rb/Sr	0,04	0,04	0,07	0,00	0,16	0,22	0,00	0,46	0,00	0,59
ZÕ	Rb/Ba	0,05	0,05	0,07	0,09	0,06	0,07	0,06	0,17	0,18	0,21
Ra	Sr/Ba	1,18	1,21	1,10	0,49	0,35	0,32	0,30	0,38	0,44	0,36
	(La/Yb)N	9,78	9,68	9,49	12,00	8,13	5,06	9,38	9,30	23,40	9,54
	Eu/Eu*	0,92	0,93	0,81	0,68	0,68	0,86	0,68	0,68	0,55	0,62
	in/La	0,20	0,12	0,28	0,36	0,20	U,66	0,15	0,45	0,28	0,53

		MF-193*	LM-226B*	MF-160	HG-47C	MF-191C	LM-25	MF-191A	LM-129C	MF-06B
	Amostras	Chl mzgra	Chl mzgra	Hbl-bt mzgra	Hbl-bt mzgra	Bt mzgra	Chl Micro mzgra	Sng	Dique Mgra	Dique Sng
	SiO ₂	68,00	68,69	68,73	68,80	68,82	69,22	73,64	71,47	74,95
	TiO ₂	0,52	0,41	0,59	0,41	0,51	0,50	0,15	0,24	0,28
so)	Al ₂ O ₃	14,98	14,82	15,12	14,71	15,93	14,49	14,35	14,91	13,06
be	Fe ₂ O ₃	3,39	3,11	2,87	2,97	2,19	3,10	0,93	1,87	1,43
E	MaQ	0,08	0,06	0,04	0,08	0,11	0,11	0,05	0,06	0,02
%		1,00	1,12	1,02	2.57	2.02	1.68	0,18	1 44	0.34
s (Na ₂ O	3.88	3.73	3.78	3.75	4.30	4.11	4.13	3.92	3.29
op	K ₂ 0	4,02	4,52	4,13	3,99	4,54	4,23	5,39	4,85	5,70
,č	P ₂ O ₅	0,17	0,18	0,12	0,18	0,17	0,14	0,03	0,07	0,04
	P.F.	1,90	1,30	1,40	1,30	0,60	1,40	0,70	0,60	0,60
	Total	99,84	99,86	99,79	99,88	99,84	99,85	100,00	99,95	99,85
	RD Sr	203,40	186,70	176,00	160,60	271,30	207,30	343,60	208,10	148,50
	Ba	1016.60	939.10	1300.60	930 10	891 20	731.00	227.80	567.60	351 30
	Cs	4.60	2.70	3.80	3.00	9.50	11.30	5.70	8.50	1.40
	Pb	12,80	10,50	11,00	11,90	15,40	33,40	19,30	10,80	7,00
	Y	135,70	77,20	15,50	30,60	35,60	84,70	28,90	16,10	16,00
	Zr	220,00	271,40	325,10	221,90	273,50	293,10	125,80	94,30	194,80
E E	Hf	7,40	8,40	9,70	7,10	8,60	9,20	5,30	3,00	6,90
d	Nb	21,20	13,70	14,30	13,20	22,70	24,20	21,40	8,20	17,80
S,		1,60	1,10	1,10	1,00	2,30	2,30	2,30	0,60	2,00
tra		23,00	5.50	6.60	6.30	9.90	940	19.30	8.00	2 10
-sc	Ni	7,60	3.80	9.10	4.90	2.70	3.80	0.40	4.00	1.50
, t	Co	7,10	7,00	7,70	7,10	4,90	5,80	1,50	3,90	2,10
ue l	V	47,00	39,00	48,00	48,00	33,00	31,00	6,00	22,00	8,00
Ele	Sc	8,00	7,00	7,00	7,00	6,00	7,00	3,00	4,00	2,00
. –	Be	5,00	4,00	2,00	2,00	5,00	2,00	3,00	2,00	2,00
	W Zn	0,60	1,10	1,00	0,30	0,90	3,30	1,70	0,50	0,20
		99,00	3 10	50,00	3 10	2.80	16.80	25,00	34,00 12,50	16,00
	Mo	1.60	0.30	0.30	0.30	0.40	1.00	0,00	0.30	0.30
	Sn	2,00	2,00	3,00	2,00	5,00	3,00	2,00	1,00	2,00
	Ga	18.80	18.10	18.70	18.10	18.00	19.20	17.60	17.20	14.60
(ppb)	Ag	<,1	<,1	<,1	<,1	0,10	<,1	<,1	<,1	<,1
	Au	<,5 171 10	08.00	2,20	50.30	0,80	< <u>,5</u>	1,00	20.80	<,5 22.60
	Ce	173,70	104 60	92 10	81 40	161 40	166 40	97.60	77 70	49.40
	Pr	37,71	17,26	8,28	8,62	13,50	19,46	13,20	5,79	5,69
	Nd	139,00	63,80	30,50	31,60	45,80	70,90	42,40	18,40	17,90
	Sm	25,10	9,70	5,20	5,10	8,10	12,90	6,20	3,60	3,40
	Eu	4,78	1,79	0,84	0,95	1,23	1,86	1,01	0,70	0,39
Ľ	Gd	22,51	10,04	3,52	4,25	5,35	10,88	3,56	2,61	2,71
ш		4,22	9.90	0,64	0,73	5.74	1,94	0,71	0,40	0,47
	Ho	4.42	2.10	0.60	0.89	1.16	2.35	0.84	0.57	0.73
	Er	12,13	6,18	1,75	2,63	4,13	7,70	3,38	1,67	2,43
	Tm	1,96	1,05	0,29	0,40	0,73	1,21	0,68	0,30	0,44
	Yb	11,79	5,52	1,72	2,99	4,89	7,64	5,22	2,20	2,88
		1,81	0,96	0,28	0,50	0,83	1,28	1,00	0,35	0,45
	EIK totais	032,44	0.71	1/4,14	194,34	318,46	406,31	249,38	148,02	112,92
	FeOr	3.05	2.80	2.58	2.67	1.97	2.79	0,82	1.68	1,90
	K ₂ O/Na ₂ O	1,04	1,21	1,09	1,06	1,06	1,03	1,31	1,24	1,73
es	Rb/Sr	0,63	0,60	0,39	0,51	0,82	0,84	4,84	1,11	2,22
ZÕ	Rb/Ba	0,20	0,20	0,14	0,17	0,30	0,28	1,51	0,37	0,42
Ra	Sr/Ba	0,32	0,33	0,34	0,34	0,37	0,34	0,31	0,33	0,19
	(La/Yb)N	9,78	11,97	9,80	11,25	8,83	7,90	8,88	9,36	5,25
		0,62	0,56	0,60	0,63	0,57	0,48	0,66	0,70	0,39
	i in/La	0,13	0.27	0,50	0,60	0,49	0,34	U,84	0,57	0,70

		MF-160	HG-47C	MF-191C	LM-25	MF-191A	LM-129C	MF-06B
					Chl			
	Amostras	Hbl-bt	Hbl-bt	Bt	Mioro	Sna	Dique	Dique
		mzgra	mzgra	mzgra		Sily	Mgra	Sng
		_			mzgra		-	-
	SiO ₂	68,73	68,80	68,82	69,22	73,64	71,47	74,95
-	<u>TiO</u> ₂	0,59	0,41	0,51	0,50	0,15	0,24	0,28
so		15,12	14,71	15,93	14,49	14,35	14,91	13,06
pe		2,87	2,97	2,19	3,10	0,93	1,87	1,43
em	MaQ	0,04	0,00	0,11	0,11	0,05	0,00	0,02
%	CaO	1 99	2 57	2 02	1.68	0,10	1 44	0,14
s (Na ₂ O	3 78	3 75	4.30	4 11	4 13	3.92	3 29
р	<u>K</u> ₀O	4.13	3.99	4.54	4.23	5.39	4.85	5.70
Ó xi	P ₂ O ₅	0,12	0,18	0,17	0,14	0,03	0,07	0,04
U	P.F.	1,40	1,30	0,60	1,40	0,70	0,60	0,60
	Total	99.79	99.88	99.84	99.85	100.00	99.95	99.85
	Rb	176,00	160,60	271,30	207,3	343,60	208,10	148,50
	Sr	447,20	313,20	329,40	246,3	71,00	186,80	66,80
	Ba	1300,60	930,10	891,20	731	227,80	567,60	351,30
	Cs	3,80	3,00	9,50	11,30	5,70	8,50	1,40
		11,00	30.60	15,40	33,40	19,30	10,80	16.00
	í 7r	325 10	221 00	273 50	292 1	20,90 125.80	94 30	10,00
(Li Hf	970	7 10	8 60	9 20	5.30	3.00	6.90
ndo	Nb	14.30	13.20	22.70	24.20	21.40	8,20	17.80
d) (Та	1,10	1,00	2,30	2,30	2,30	0,60	2,00
açc	Th	12,70	30,10	31,90	31,10	58,10	17,60	15,90
-tra	U	6,60	6,30	9,90	9,40	19,30	8,00	2,10
SO	Ni	9,10	4,90	2,70	3,80	0,40	4,00	1,50
ent	Co	7,70	7,10	4,90	5,80	1,50	3,90	2,10
Ш.	<u>V</u>	48,00	48,00	33,00	31,00	6,00	22,00	8,00
Ē	Sc	7,00	7,00	6,00	7,00	3,00	4,00	2,00
	Be	2,00	2,00	5,00	2,00	3,00	2,00	2,00
	 7n	50.00	51.00	58.00	131	25.00	34.00	18.00
	Cu	50,00	3 10	2 80	16.80	0.30	12 50	16,60
	Mo	0.30	0.30	0.40	1.00	0.10	0.30	0.30
	Sn	3,00	2,00	5,00	3,00	2,00	1,00	2,00
	Ga	18,70	18,10	18,00	19,20	17,60	17,20	14,60
ppl	Ag	<,1	<,1	0,10	<,1	<,1	<,1	<,1
(Au	2.20	1.70	0.80	<.5	1.00	0.60	<.5
	La	25,20	50,30	64,60	90,30	69,30	30,80	22,60
	Ce	92,10	81,40	161,40	166,4	97,60	77,70	49,40
	Pr Nd	<u>8,28</u> 30,50	8,62 31.60	13,50	70.00	13,20	<u>5,79</u> 18,40	5,69 17.00
	Sm	5 20	5 10	8 10	12 90	6 20	3.60	3 40
	Eu	0.84	0.95	1.23	1.86	1.01	0.70	0.39
~	Gd	3.52	4,25	5.35	10.88	3.56	2,61	2,71
E.	Tb	0,64	0,73	1,00	1,94	0,71	0,48	0,47
	Dy	3,22	3,98	5,74	11,49	4,28	2,85	3,43
	Ho	0,60	0,89	1,16	2,35	0,84	0,57	0,73
	Er 	1,75	2,63	4,13	7,70	3,38	1,67	2,43
	Tm	0,29	0,40	0,73	1,21	0,68	0,30	0,44
		1,72	2,99	4,89	1.09	5,22	2,20	2,88
	EU FTR totais	174 14	194 34	318 /6	406 3	240.28	148.02	112 02
	FeOt/MaO+FeOt	0.72	0.70	0 75	0.76	0.82	0.76	0.90
	FeOt	2.58	2.67	1 97	2 70	0.84	1.68	1 20
	K ₂ O/Na ₂ O	1.09	1.06	1.06	1.03	1.31	1.24	1.73
es	Rb/Sr	0.39	0.51	0.82	0.84	4.84	1.11	2.22
IZÕ	Rb/Ba	0,14	0,17	0,30	0,28	1,51	0,37	0,42
Ra	Sr/Ba	0,34	0,34	0,37	0,34	0,31	0,33	0,19
	(La/Yb)N	9,80	11,25	8,83	7,90	8,88	9,36	5,25
	Eu/Eu*	0,60	0,63	0,57	0,48	0,66	0,70	0,39
	Th/La	0.50	0.60	0.49	0.34	0.84	0.57	0.70

Tabela 14 - Análises químicas de amostras da Suíte Pedra Pintada, corpo Flechal. Dados provenientes de CPRM (2010)*. Para abreviações minerais ver tabela 13. Dio - Diorito; Ton - Tonalito; Gnd - Granodiorito; Mzg - Monzogranito; Gra - Granito; Sng - Sienogranito.

						(CORPO TI	ROVÃO					
		LM-34B	LM-34A	LM-39	LM-93B	HG-124B	MF-135	HG-01B	MF-162	HG-01A	MF-100	LM-91	MF-92
	Amostras	Xen. Bt-	срх-	- срх-	D								
		hbl-opx-	opx-hbl-	opx-hbl-	Bt-hbl	Bt-hbl	Hbl-bt	Bt ton	Hbl-bt	Bt gnd	Hb-bi	Bt-hbl	Hbl-bt
		cpx dio	bt qtz-	bt qtz-	mzgra	gna	gna		gna		mzgra	mzgra	mzgra
	SiO ₂	48,72	52,06	53,97	58,78	63,44	63,63	64,62	66,70	66,71	65,25	66,05	67,30
2		2,11	1,42	1,23	0,67	0,64	0,59	0,63	0,37	0,46	0,40	0,54	0,50
eso		13 58	10,75	10,00	5 95	15,06	5 59	10,29	2.80	3 20	3 16	376	2 90
ď	MnO	0,24	0,20	0,20	0,12	0,00	0,00	0.05	0.07	0,08	0,08	0,09	0.08
en	MgO	3,59	3,67	3,47	4,05	2,61	3,75	1,97	1,11	1,40	1,12	1,42	1,16
%)	CaO	8,00	7,86	7,36	5,85	4,52	3,94	3,52	3,24	3,35	3,68	3,20	2,35
los	Na ₂ O	3,71	3,60	3,48	3,71	3,28	3,33	4,29	4,13	4,43	4,85	3,94	3,84
xio	R_0_	0,67	1,23	1,00	3,22	0.23	0.20	0.19	3,63	2,45	2,98	0.21	4,73
٠O	P.F.	0,90	0,50	0,60	1,20	1,00	0,60	1,40	0,40	0,80	0,70	1,00	1,10
	Total	99,69	99,77	99,81	99,64	99,85	99,84	99,69	99,74	99,70	99,77	99,70	99,82
	Rb	29,50	35,80	52,40	95,40	114,80	122,80	73,80	124,70	87,60	83,20	137,00	219,60
	Sr	808,50	175,20	746,60	601,80	495,30	428,90	755,60	569,80	670,10	679,60	409,60	328,20
	Da Cs	1.00	1.50	2 10	3.90	3 90	6.90	3 40	6 00	4 40	2 10	3 00	7 00
	Pb	1,90	2,50	2,50	4,90	8,20	7,50	2,60	4,10	3,30	4,50	9,60	12,60
	Y	58,30	45,80	46,60	32,70	21,80	26,90	16,40	26,30	18,40	19,60	63,60	27,10
	Zr	113,20	117,60	179,90	198,70	282,60	207,70	175,60	232,00	190,40	270,90	248,80	424,50
Ъ	Hf	2,80	3,20	4,90	5,40	7,50	5,60	5,20	6,90	5,20	6,80	8,00	11,90
d)	Ta	1 00	0.80	0.70	9,50	12,80	15,30	0.60	12,50	0.90	9,90	16,40	1,70
ço	Th	3,60	8,80	8,30	13,30	19,50	13,50	6,30	17,00	9,20	12,50	20,00	29,30
-tra	U	1,10	1,70	2,00	3,60	2,70	3,50	2,40	1,50	1,30	2,00	4,10	4,00
tos	Ni	14,50	22,60	23,90	23,50	17,20	46,10	37,30	7,30	18,50	4,50	3,50	8,50
en	Со	27,40	25,90	25,40	17,50	15,10	19,50	12,30	6,50	7,90	6,40	8,40	6,70
em	V Sc	30.00	29.00	30.00	158,00	15.00	93,00	8.00	<u>39,00</u> 8,00	45,00	7 00	13 00	8.00
Ξ	Be	2,00	2,00	2,00	2,00	3,00	2,00	2,00	2,00	3,00	1,00	1,00	3,00
	W	0,70	0,60	0,50	1,50	0,20	0,50	0,80	0,50	0,50	1,70	0,30	1,10
	Zn	86,00	83,00	81,00	29,00	52,00	60,00	64,00	37,00	61,00	51,00	46,00	43,00
	Cu	62,10	64,10	67,90	169,60	50,80	34,90	9,60	26,60	11,60	24,50	12,10	49,70
	Sn	<1	1.00	2.00	2.00	2.00	2.00	1.00	1.00	2.00	<1	3.00	2.00
	Ga	24,20	23,60	22,50	16,30	17,90	17,40	21,60	17,30	22,00	19,30	18,30	16,30
do	Ag	<,1	<,1	<,1	<,1	<,1	<,1	<,1	<,1	<,1	<,1	<,1	<,1
Ξ	Au	1,30	1,10	1,30	1,80	<,5	<,5	0,80	0,80	<,5	<,5	1,80	1,50
	La	153 10	56,50 124 70	133 20	89,80 145 10	45,30	47,30 93,50	28,10	20,10	32,40	46,60 96,50	52,30	59,90
	Pr	19,26	15,59	15,49	17,64	10,07	10,79	6,59	5,50	7,64	9,72	12,55	11,95
	Nd	86,30	66,90	64,70	62,90	37,20	39,00	21,70	20,20	27,80	32,90	45,40	39,40
	Sm	16,80	12,80	12,70	10,00	6,10	6,90	4,00	4,30	5,20	5,00	8,60	5,70
	Eu	3,76	3,23	3,08	1,84	1,23	1,41	0,86	1,07	0,99	1,18	1,31	0,99
TR	Tb	2.16	9,02 1,55	1.59	1.09	0.73	0.75	0.48	0.69	0.52	0.56	1.37	0.77
ш	Dy	11,14	8,58	8,82	5,95	3,68	4,38	2,76	4,04	3,22	3,01	7,99	4,17
	Но	1,97	1,56	1,61	1,08	0,70	0,84	0,52	0,83	0,68	0,57	1,84	0,86
	E	5,85	4,58	4,46	3,06	2,16	2,81	1,66	2,59	1,72	1,91	5,51	2,54
	l m Vh	0,76	0,65	0,62	0,48	0,36	0,42	0,25	0,45	0,25	0,29	0,80	0,45
	Lu	0.69	0.59	0.55	0.40	0.35	0.40	0.35	0.44	0.24	0.39	0.78	0.45
	ETR totais	386,65	310,68	315,91	349,06	213,64	215,91	129,21	150,24	158,11	204,09	273,23	251,28
	FeOt/MgO+FeOt	0,77	0,74	0.73	0,57	0,66	0,57	0,67	0.69	0.68	0.72	0.70	0.69
	FeOt K O/No O	12,21	10,26	9,30	5,35	5,06	5,03	4,00	2,52	2,96	2,84	3,38	2,61
S	Rb/Sr	0.04	0.05	0,40	0.16	0.23	0.29	0.10	0.22	0.13	0.12	0.33	0.67
zõe	Rb/Ba	0,03	0,05	0,05	0,07	0,14	0,15	0,09	0,10	0,09	0,08	0,14	0,18
Ra	Sr/Ba	0,74	1,17	0,73	0,46	0,60	0,54	0,93	0,46	0,72	0,64	0,42	0,28
	(La/Yb)N	9,66	10,41	9,83	21,45	13,23	12,07	10,27	5,19	12,52	14,77	6,84	15,53
	Eu/Eu*	0,76	0,89	0,83	0,68	0,72	0,75	0,79	0,82	0,67	0,89	0,52	0,59
	in/La	0,05	0,16	0,15	0,15	0,43	0,∠9	0,22	0,85	∪,∠8	∪,∠/	0,38	0,49

Tabela 15 - Análises químicas de doze amostras da Suíte Pedra Pintada, corpo Trovão. Os resultados são provenientes de CPRM (2010). Para abreviações minerais ver tabela 13. Dio - Diorito; Ton - Tonalito; Gnd - Granodiorito; Mzg - Monzogranito; Gra - Granito; Sng - Sienogranito.

			C	orpo Eri	icó		Co	rpo				Corp	os Menor	es		
		EC-165	FS-09	EC-166	EC-167	FS-06A	FS-04	FS-05	LM-13A*	NR-03	AD-05A	HG-89*	AD-06A	MF-124*	NR-29	NR-28
	Amostras	Chl-hbl gnd	Hbl mzgra	Hb mzgra	Hbl mzgra	Chl-hbl gnd	Hbl mzgra	Hb-bt mzgra	Opaco- bt mzdio	Hbl-bt qtz-dio	Bt micrognd	Bt gnd	Bt micrognd	Bt mzgra	Ep-bt micro gnd	Bt- mzgra
	SiO ₂	63,19	64,01	64,48	64,65	68,92	65,21	73,66	57,09	58,13	63,86	65,56	68,67	68,78	68,90	72,41
	TiO2	0,73	0,76	0,74	0,81	0,43	0,60	0,18	1,24	1,28	0,70	0,80	0,70	0,41	0,59	0,44
so	Al2 O3	14,95	14,71	14,72	14,52	14,35	14,84	13,63	15,98	17,60	16,23	14,71	13,34	15,35	13,04	13,78
ď	Fe2 O3	0,54	5,91	0.13	0,58	3,52	4,88	1,59	7,99	0,44	5,03	5,89 0.12	5,04	2,78	5,16	1,94
em	Milo	1.92	1.64	1.60	1.62	1.01	1.61	0.09	2.17	2.57	1.97	1.75	1.13	1.12	2.28	0.44
%)	CaO	3,95	3,52	3,55	3,77	2,56	3,53	0,70	5,38	7,19	4,60	3,54	2,70	3,13	3,43	2,08
so	Na ₂ O	3,14	3,47	3,36	3,43	3,26	3,30	3,35	4,02	2,98	3,15	3,64	2,61	3,71	2,87	2,72
xid	K₂ 0	3,58	3,65	3,62	3,66	4,40	3,92	5,23	2,98	1,99	3,29	2,90	4,24	3,55	2,42	5,22
ô	P2 O5	0,31	0,37	0,31	0,41	0,18	0,28	0,03	1,02	0,50	0,25	0,24	0,32	0,17	0,23	0,21
	Total	99.64	99.65	99.69	99.66	99.72	99.67	99.89	99.52	99.69	99.68	99.85	99.74	99.88	99.70	99.78
	Rb	128,70	125,2	133,80	145,20	175,40	142,4	218,2	79,90	82,40	127,20	157,40	184,10	112,10	79,20	134,90
	Sr	378,10	342,4	368,00	362,70	251,60	358,1	70,60	732,00	670,30	522,10	304,60	234,60	429,70	421,30	261,10
	Ba	1008	1116	1127	1133	635,00	973	351	1419,00	703,00	881,00	722,90	1063,00	800,40	924,00	958,00
	CS Ph	3,20	1,70	3,10	4,50	5,50	4,50	6,10 22.00	2,00	4,60	4,60	8,60	9.50	3,70	2,90	2,80
	<u>ги</u> Ү	42.30	59.40	39.50	48.40	67.90	37.20	48.20	56.50	25.90	19.80	32.70	50.30	19.70	25.00	16.10
	Zr	360,60	452	354,00	510,70	308,10	348,9	200,6	739,60	260,20	349,10	273,90	556,80	216,40	199,40	303,50
Ē	Hf	10,80	11,50	9,30	13,00	10,00	9,50	7,60	15,80	7,00	10,10	8,50	13,90	7,20	5,70	8,60
dd)	Nb	16,90	16,10	15,30	18,10	17,40	15,40	26,90	12,50	13,70	15,50	11,80	21,50	17,90	19,00	9,00
S,	La Th	1,30	19 10	0,90	1,20	32.70	1,20	2,50	0,70	12 20	16.30	0,80	23.00	21.60	1,50	0,40
tra	U 10	6,50	4,30	4,50	4,60	8,30	6,50	12,90	2,80	2,20	2,40	4,30	4,00	3,20	3,00	2,60
-so	Ni	20,00	20,00	20,00	20,00	20,00	20,00	20,00	20,00	26,00	20,00	15,10	7,50	7,80	20,00	20,00
ent	Co	12,90	11,60	10,50	9,20	6,10	9,70	1,40	9,60	14,90	10,70	15,50	7,60	6,60	12,10	3,50
en	<u> </u>	116,00	18.00	86,00	79,00	58,00	83,00	10,00	104,00	115,00	76,00	103,00	57,00	42,00	88,00	30,00
ŭ	SC Bo	2 00	2 00	1 00	2 00	2 00	2 00	2 00	2 00	2 00	1 00	3 00	2 00	2 00	1 00	4,00
	Ŵ	1,60	1,00	1,50	1,30	1,20	4,70	4,50	1,40	1,30	1,70	0,30	< 0.5	0,30	36,60	0,50
	Zn	51,00	59,00	69,00	34,00	35,00	35,00	10,00	88,00	62,00	68,00	83,00	79,00	36,00	62,00	26,00
	Cu	23,50	9,00	21,00	13,80	11,40	19,70	3,80	14,60	36,40	23,20	17,90	14,30	23,10	59,90	1,90
	<u>Mo</u>	2.00	3,00	0,80	0,60	2.00	2.00	2,70	2.00	0,30	2,00	2.00	3.00	2,00	3,10	0,20
	Ga	16,10	18,40	16,30	17,20	14,70	15,50	13,80	18,10	19,10	17,10	19,10	16,60	15,40	15,80	14,60
pt	Ag	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	<,1	<0.1	<,1	0,10	0,10
3	Au	0,60	0,50	1,00	0,50	0,50	0,50	1,10	0,50	1,70	0,50	1,40	1.00	0,70	1,50	0,50
	La	50,70	90,40	52,50	66,00	130,80	46,50	68,20	65,50	38,70	51,00	52,50	69,50	36,20	31,10	14,50
	Pr	13.01	21.92	13.07	145,10	279,00	11.63	16.08	18.58	9.78	11.36	11.24	17.27	8.24	7.57	3.43
	Nd	48,40	84,60	50,20	60,30	98,70	43,00	52,10	74,40	38,70	38,00	38,00	66,80	28,80	28,90	13,80
	Sm	8,66	14,35	8,81	10,88	15,10	7,68	8,70	13,74	6,81	6,16	7,00	12,11	4,60	5,46	2,80
	Eu	1,19	2,03	1,50	1,79	1,18	1,19	0,52	2,82	2,06	1,89	1,64	2,17	0,94	1,26	1,55
TR	Ga Th	1,32	1 84	1,55	9,31	1 90	1.06	1.26	1 81	0.85	4,33	5,56 1.02	1 65	0.64	4,30	0.43
ш	Dy	6,54	10,15	6,85	8,21	10,51	5,97	7,36	9,33	4,18	3,33	5,70	9,16	3,15	4,04	2,48
	Ho	1,44	1,99	1,36	1,71	2,07	1,27	1,62	1,90	0,91	0,72	1,10	1,78	0,62	0,83	0,53
	Er	4,19	5,64	4,04	4,78	6,17	3,75	5,10	5,50	2,52	2,07	3,41	5,44	1,79	2,53	1,63
	Tm	0,68	0,84	0,65	0,79	0,97	0,62	0,92	0,79	0,39	0,34	0,52	0,81	0,29	0,39	0,24
		0,69	0,82	0,63	0,78	0,96	0,65	1,00	0,79	0,35	0,38	0,49	0,82	0,32	0,39	0,26
	ETR totais	264,14	446,8	274,60	332,09	594,09	237,2	336,7	373,25	198,16	230,80	223,85	364,00	168,54	156,79	76,37
	FeOt/MgO+FeOt	0,75	0,76	0,77	0,76	0,76	0,73	0,94	0,77	0,69	0,70	0,75	0,80	0,69	0,67	0,80
	FeOt	5,88	5,31	5,29	5,02	3,16	4,39	1,43	7,18	5,79	4,52	5,30	4,53	2,50	4,64	1,74
Se	Rb/Sr	0.34	0.37	0,36	0.40	0.70	0.40	3,09	0,74	0.12	0.24	0,80	0.78	0,90	0,04	0.52
zõ	Rb/Ba	0,13	0,11	0,12	0,13	0,28	0,15	0,62	0,06	0,12	0,14	0,22	0,17	0,14	0,09	0,14
Ra	Sr/Ba	0,38	0,31	0,33	0,32	0,40	0,37	0,20	0,52	0,95	0,59	0,42	0,22	0,54	0,46	0,27
	(La/Yb)N	8,12	11,74	9,05	9,25	14,29	7,92	7,63	8,43	10,87	14,63	10,26	9,06	12,91	8,42	6,15
	<u>Eu/Eu</u> Th/La	0,40	0.21	0,57	0,55	0.27	0,52	0.63	0,08	0.32	0.32	0.29	0,60	0,75	0,80	0.33

			Corpo	os Meno	res	
		HG-89*	AD-06A	MF-124*	NR-29	NR-28
	Amostros		D.			
	Amostras	.	Bt	Bt	Ep-bt	Bt-
		Bt gnd	microgn	mzora	micro	mzora
			d	J **	gnd	J
	SiO ₂	65.56	68.67	68.78	68.90	72.41
	TiO ₂	0,80	0,70	0,41	0,59	0,44
(0	Al2 O3	14,71	13,34	15,35	13,04	13,78
be	Fe 2 O3	5,89	5,04	2,78	5,16	1,94
Ε	MnO	0,12	0,09	0,07	0,08	0,04
°e	MgO	1,75	1,13	1,12	2,28	0,44
6		3,54	2,70	3,13	3,43	2,08
ğ		3,64	2,01	3,71	2,87	<u>2,12</u> 5.22
xid	P2 O5	0.24	<u>4,24</u> 0.32	0.17	0.23	0.21
٠O	P.F.	0,24	0,90	0,17	0,25	0,21
	Total	99.85	99.74	99.88	99.70	99.78
	Rb	157,40	184,10	112,10	79,20	134,9
	Sr	304,60	234,60	429,70	421,3	261,1
	Ba	722,90	1063,00	800,40	924	958
	Cs	8,60	10,30	3,70	2,90	2,80
	Pb	4,90	9,50	5,00	7,00	4,50
	Y 7-	32,70	50,30	19,70	25,00	16,10
î	<u>د</u> ۲ ۲	213,90		7 20	5 70	303,5
bu	Nh	11.80	21 50	17.90	19.00	9,00
d)	Ta	0.80	1 60	1.30	150	0.40
) Č	Th	15.30	23.00	21.60	10.40	4.80
-tr	U	4,30	4,00	3,20	3,00	2,60
SO	Ni	15,10	7,50	7,80	20,00	20,00
ent	Co	15,50	7,60	6,60	12,10	3,50
Ш,	<u>V</u>	103,00	57,00	42,00	88,00	30,00
Ш	Sc	14,00	17,00	7,00	13,00	4,00
	Be	3,00	2,00	2,00	1,00	1,00
	 	83.00	<0.5 70.00	36.00	<u>30,00</u> 62,00	26.00
	Cu	17.90	14.30	23 10	59.90	1.90
	Mo	0,20	0.20	<,1	3,10	0,20
	Sn	2,00	3,00	2,00	2,00	1,00
	Ga	19,10	16,60	15,40	15,80	14,60
bpl	Ag	<,1	<0.1	<,1	0,10	0,10
)	Au	1.40	1.00	0.70	1.50	0.50
	La	52,50	69,50	36,20	31,10	14,50
	Ce Dr	92,20	17 27	9.24	7 57	30,50
	Nd	38.00	66.80	28.80	28.90	13.80
	Sm	7,00	12,11	4,60	5,46	2,80
	Eu	1,64	2,17	0,94	1,26	1,55
R	Gd	5,58	10,32	3,26	4,30	2,63
Π	Tb	1,02	1,65	0,64	0,73	0,43
	Dy	5,70	9,16	3,15	4,04	2,48
	Ho	1,10	1,/8 E 44	0,62	0,83	0,53
	Tm	3,41	ວ,44 ೧ ຊ 1	0.20	∠, <u>5</u> 3 0 30	0.24
	Yh	3 45	5 17	1.89	2 49	1.59
	Lu	0.49	0.82	0.32	0.39	0.26
	ETR totais	223.85	364.00	168.54	156.8	76.37
	FeOt/MgO+FeOt	0,75	0,80	0,69	0,67	0,80
	FeOt	5,30	4,53	2,50	4,64	1,74
	K2 O/Na2 O	0,80	1,62	0,96	0,84	1,92
ões	Rb/Sr	0,52	0,78	0,26	0,19	0,52
azi	Rb/Ba	0,22	0,17	0,14	0,09	0,14
R	Sr/Ba	0,42	0,22	0,54	0,46	0,27
	(La/Yb)N	10,26	9,06	12,91	8,42	6,15
		0,81	0,60	0,75	0,80	1,76
	111/La	0.29	0.33	0.00	0.33	0.33

Tabela 16 - Análises químicas de amostras da Suíte Pedra Pintada, corpos Ericó, Coimin e menores. Dados provenientes de CPRM (2010)*. Para abreviações minerais ver tabela 13. Dio - Diorito; Ton - Tonalito; Gnd - Granodiorito; Mzg - Monzogranito; Gra - Granito; Sng - Sienogranito.

Amostras	Sm (ppm)	Nd (ppm)	¹⁴⁷ Sm/ ¹⁴⁴ Nd	¹⁴³ Nd/ ¹⁴⁴ Nd	erro (ppm)	€ Nd (0)	E _{Nd}	Т _{DM} (Ga)	¹⁴³ Nd/ ¹⁴⁴ Nd	t
LM-39*	11,2	<mark>58,4</mark>	0,116216	0,511692	7	-18,4	2,1	2, <mark>1</mark> 0	0,510173	1986
MF-162*	3,9	17,8	0,132573	0,511829	17	-15,8	0,6	2,27	0,510096	1986
MF-92*	6,0	37,4	0,096453	0,511512	13	-22,0	3,6	1,98	0,510251	1986
MF-01*	6,4	35,0	0,110142	0,511692	22	-18,5	3,8	1,98	0,510241	2000
AD-06 A	13,012	69,5 <mark>4</mark> 5	0,1131	0,511531	18	- 21,59	-0,15	2,28	0,511531	2000

 Tabela 17 - Resultados isotópicos Sm-Nd de rochas da Suíte Pedra Pintada. * Dados provenientes de CPRM (2010).

Amostra	Corpo	ldade (Ma)	Método	Referência	Fonte
NR-13	Pedra Pintada	2005 ± 45	Pb-Pb evaporação	Almeida et al. (1997)	herança
PG-30	Orocaima	1956 ± 5	U-Pb SHRIMP	Santos (2003)	cristalização
HG-47C	Flechal	2009 ± 2	Pb-Pb evaporação	Fraga & Dreher 2010	herança
LM-39	Trovão	1985 ± 1	Pb-Pb evaporação	Fraga & Dreher 2010	cristalização
MF-162	Trovão	1991 ± 18	U-Pb TIMS	Fraga & Dreher 2010	cristalização
FS-05	Coimin	1971 ± 5	U-Pb SHRIMP	este estudo	cristalização
EC-165	Ericó	1968 ± 5	U-Pb SHRIMP	este estudo	cristalização

 Tabela 18 - Resultados geocronológicos disponíveis para a Suíte Pedra Pintada.
Amo	ostras	Classificação	PI	Afs	Qtz	Bt	Ор	Am	Ttn/Le	Zrn	Ар	Chl	Ер	Ser	Cb	Cm	Ру
	HG-55*	Ignimbrito traq sold	х	х	х	-	х	tr	-	-	-	-	tr	tr	-	tr	-
	LM-162A*	lgnimbr traq foliado	х	х	х	х	х	-	tr	-	-	tr	-	tr	tr	-	-
	HG-206*	Ignimbrito traq sold	х	х	х	-	х	-	-	-	-	tr	-	tr	tr	-	tr
	LM-167B*	Riolito ou ignimbrito	х	х	х	?	х	-	-	-	tr	х	tr	tr	-	tr	-
	MF-76B*	lgnimbr riol soldado	х	х	х	х	х	-	tr	-	tr	-	х	tr	tr	-	-
	LM-15A*	Riolito devitrif e alt	х	х	х	-	х	-	tr	-	-	tr	-	tr	tr	tr	-
rte	LM-21A*	Ignimbrito riolítico	х	х	х	х	х	-	tr	-	tr	tr	-	tr	tr	tr	tr
oue	HG-203*	lgnimbrito traq sold	х	х	х	-	х	-	-	-	-	-	-	tr	tr	-	tr
Áreá	MF-73*	lgnimbr riol foliado	х	х	х	-	х	-	tr	tr	-	tr	tr	tr	tr	tr	-
	HG-54*	Ignimbrito riol soldado	х	х	х	-	х	-	tr	-	tr	tr	tr	tr	tr	tr	tr
	MF-90B*	Ignimbr riol pouco sold	х	х	х	-	х	-	tr	-	tr	-	tr	tr	tr	-	tr
	LM-151B*	lgnimbr traq devitr	-	х	х	-	х	-	tr	-	-	tr	-	tr	tr	tr	-
	LB-53A	Ignimbrito dacítico	х	-	х	-	х	-	tr	-	tr	х	х	tr	-	-	-
	LB-53B	Andesito amigdaloidal	х	-	tr	-	tr	-	-	-	-	х	х	-	-	-	-
	NR-58	lgnimbr riol ou riolito	х	х	х	-	х	-	tr	tr	-	х	tr	tr	tr	-	-
	VC-45⁺	Ignimbrito riolítico	х	х	х	-	х	-	tr	-	-	tr	tr	tr	-	tr	-
0	VC-39B ⁺	Ignimbrito riolítico	х	-	х	-	х	-	tr	-	-	tr	tr	tr	tr	tr	-
este	VC-42*	Ignimbrito traquítico	х	-	х	-	х	-	-	-	-	tr	tr	-	-	-	-
Joro	FS-01A⁺	Ignimbrito traquítico	х	х	х	-	х	х	-	tr	tr	tr	tr	tr	-	tr	-
real	FS-11⁺	Dacito	х	-	-	-	х	?	tr	-	tr	х	х	tr	-	-	-
Ψ́	AB-105⁺	Ignimbrito traquítico	х	-	х	-	х	х	-	-	-	tr	tr	tr	-	tr	-
	AB-148A⁺	Ignimbrito riolítico	х		х	х	х	-	-	-	tr	tr	tr	tr	-	-	-
Baixo	SR-172A**	Dacito ou tufo foliado	х	х	х	х	tr	-	tr	-	tr	-	х	х	х	-	-
Uraricaá	SR-174**	Dacito foliado	х	х	х	х	tr		tr	-	tr	-	tr	х	-	-	-
Leste da	LM-73C*	Dacito	х	-	х	х	х	х	tr	tr	tr	tr	х	tr	-	-	-
Sa.	MF-110A*	Riolito foliado	х	х	х	х	х	-	tr	tr	-	tr	х	х	-	tr	-
Aricamã	LM-70A*	Vulcânica riolítica	х	х	х	tr	tr	-	tr	-	-	-	х	tr	-	tr	-
Corpo NE-	HG-159A*	Riolito ou microgranito	х	х	х	х	х	-	tr	tr	tr	tr	tr	tr	-	tr	-
SW	MF-10A*	Microgranito granof	х	х	х	х	tr	-	tr	tr	tr	х	tr	tr	tr	tr	tr
Diques na	HG-29*	Microgranito granof	х	х	х	-	х	-	tr	tr	tr	х	tr	х	х	-	-
SPP	LM-05A*	Microgranito granof	х	х	х	tr	tr	-	-	-	-	tr	-	tr	tr	-	-

Tabela 19 - Classificação e composição mineralógica aproximada das rochas do Grupo Surumu com análise química. Pl: plagioclásio; Afs: feldspato alcalino; Qtz: quartzo; Bt: biotita; Op: opacos; Cpx: clinopiroxênio; Am: anfibólio; Ttn: titanita; Le: leucoxênio; Zrn: zircão; Ap: apatita; Chl: clorita; Ep: epidoto; Ser: sericita; Cb: carbonato; Cm: argilominerais; Py: pirita; x: componente importante (>1%); tr = traços (< 1%). Amostras provenientes de Pinheiro *et al.* (1981)⁺, CPRM (1999)^{**} e CPRM (2010)^{*}.

Amostra	Rocha	ε _{Nd} (T)	Т _{DM} (Ма)
HG-54	Ignimbrito riolítico	2,0	2093
HG-159A	Riolito ou microgranito	2,5	2056
LM-73C	Dacito	3,4	1992

Tabela 20 - Dados Sm-Nd de amostras do Grupo Surumu (fonte: Dreher & Fraga, 2010).

					GRUP	O SURUMU			
		LM-12	AB-97B	HG-R-55	FS-11	LM-R-73C	LM-R-162A	HG-R-203	HG-102A
	Amostras								
		Cpx-op-bt	Bch vulc. ou	Ign traquítico	Andesito		lgn traquítico	lgn traquítico	Op-cpx-anf Rdc
		Dac ou Mor	Bch sed vulc.	compact.	alterado	Dac	foliado	compact.	ou Mar
	8:0	04 77	00.00	00.55	00.00	04.00	05.00	05.00	00.04
	510 ₂	61,77	62,08	63,55	63,63	64,26	65,82	65,90	66,01
	TiO ₂	0,96	0,69	0,69	0,60	0,53	0,53	0,54	0,59
	Al ₂ O ₃	16,49	17,07	16,22	16,64	15,50	16,14	15,14	16,35
ô	Fe ₂ O ₂	5.51	5.49	4.32	4.57	4.89	2.88	3.03	3.04
es	MnO	0.14	0.17	0.11	0.15	0.10	0.10	0.12	0.11
đ	Millo	0,14	0,17	0,11	0,15	0,10	0,10	0,12	0,11
ω	MgO	1,64	1,09	0,99	1,25	2,48	0,72	0,63	0,69
%	CaO	3,40	3,08	2,60	4,45	3,66	2,00	2,81	1,99
ŝ	Na ₂ O	4,32	4,26	4,66	3,89	4,07	4,67	4,35	4,69
ğ	K₀O	4.09	4.22	4.05	3.07	2.75	4.23	3.81	5.09
ž	P.O.	0.37	0,30	0.27	0.27	0.16	0.14	0.21	0.22
ò	1 205	0,57	0,50	0,27	0,27	0,10	0,14	0,21	0,22
	LOI	0,9	1,2	2,20	1,2	1,30	2,40	3,10	0,7
	Cr ₂ O ₃	<0,002	0,005	0,00	<0,002	0,01	<,001	<,001	<0,002
	Total	99,59	99,66	99,66	99,72	99,72	99,63	99,65	99,48
	Rb	127,5	123,4	98,70	92,3	105,10	126,70	100,80	109,1
	Sr	551.7	606.5	515 50	477.3	569 60	287 10	331 10	356.7
	 	1509	1227	1072.00	1175	1002.20	1572.40	1510.60	2606,7
	Dd	1390	100/	1073,00	11/0	1002,30	1372,40	1319,00	2000
	ŬS	4,5	1,5	3,50	1,7	2,80	2,30	3,20	1,4
	Pb	6,5	28,7	5,90	7,6	7,50	18,00	8,30	12,8
	Y	40,7	28,1	38,40	27,3	16,80	64,40	44,50	56,4
	TI	0.2	<0,1	0,10	<0,1	0,20	0,10	0,10	<0,1
	7r	362.5	214.3	322 30	200.9	152.60	379.20	256.20	699.0
	 ¥	07	E A	0.00	47	102,00	0.70	6 70	46 4
	<u>гл</u>	0,/	5,4	0,00	4,/	4,50	9,70	0,70	10,4
	Nb	15,6	11,7	17,30	9,6	9,60	16,10	11,50	18,1
	Та	0,8	0,7	0,80	0,6	0,70	0,90	0,70	1,0
آ	Th	10,8	9,6	10,20	9,0	6,40	11,90	7,80	11,8
đ	U	3.1	2.9	2.90	2.7	2.40	3.00	2.10	3.0
3	Ni	<20	<20	3 30	<20	18 50	1 40	1.40	<20
S.	<u> </u>	~20	~20	0,00	~20	15,00	1,40	1,=0	1.0
tra	60	6,2	0,0	8,10	8,5	15,20	2,90	1,50	1,9
-s	V	68	60	63,00	68	95,00	24,00	15,00	19
Ĕ	Sc	12	9	10,00	9	12,00	10,00	10,00	9
Jei	Be	2	2	3,00	2	2,00	3,00	2,00	2
len	w	1.0	1.0	1.60	1.5	1.20	1.60	1.20	1.1
Ξ	7n	51	61	60.00	65	37.00	62.00	38.00	56
	201 Se	-0.5	-0.5	00,00	-0.5	57,00	02,00	50,00	-0 F
	Se	<0,5	<0,5	<,5	<0,5	<,5	<,5	<,5	<0,5
	Sb	0,1	0,4	0,50	0,3	0,60	0,10	0,20	<0,1
	Cu	10,4	11,0	9,70	4,4	13,00	6,40	2,20	3,3
	Hg	<0,01	<0,01	<,01	<0,01	<,01	<,01	<,01	<0,01
	Мо	1,1	0,8	0,30	0,4	0,10	0,20	0,10	1,4
	Bi	01	0.1	< 1	<0.1	< 1	0.10	0.10	<01
	C4	-0.1	-0.1	<,1	-0,1	<,1	0,10	0,10	-0.1
	Cu	<0,1	<0,1	<,1	<0,1	<,1	0,20	0,20	<0,1
	AS	1,1	1,1	2,70	1,0	1,70	1,00	0,90	<0,5
	Sn	2	2	2,00	1	1,00	3,00	2,00	2
	Ga	18,9	19,3	19,10	18,9	20,30	21,10	16,90	18,1
þþ	Ag	<0,1	<0,1	<,1	<0,1	<,1	<,1	<,1	<0,1
g	Au	<0.5	1.4	1.70	23.5	1.30	2.80	1.00	<0.5
	La	50.5	40.0	59.80	35.0	22 70	67.50	51 40	74 1
		115.9	00 <i>/</i>	126.00	7/ 0	46.50	132 70	03.60	165.2
	 	10.00	40.07	14.05	0.00	-10,30	16.00	33,00	100,0
		13,26	10,07	14,05	8,38	5,∠U	16,28	11,56	18,01
	Nd	51,9	39,7	49,90	33,0	18,70	64,20	47,10	69,0
	Sm	9,14	7,06	9,80	5,54	4,10	12,00	8,20	11,03
	Eu	1,99	1,75	1,65	1,28	0,85	2,35	1,83	2,47
E	Gd	7,80	5,64	7,14	4,74	3,02	9,61	7,39	9,93
d)	Th	1 21	0.89	1 24	0.76	0.57	1.80	1 26	1.57
Ř		6.61	1 96	6.94	1 1 1	2.90	10.04	7.02	9 60
Ē		0,01	4,00	0,04	4,14	2,00	10,04	1,23	0,00
	Но	1,36	0,94	1,35	0,87	0,52	1,99	1,46	1,87
	Er	4,04	2,86	4,03	2,53	1,51	5,41	4,08	5,57
	Tm	0,60	0,45	0,59	0,40	0,24	0,84	0,54	0,88
	Yb	4.07	2.69	3.88	2.37	1.56	5.23	3.82	5.71
	1	0.61	0.43	0.65	0.37	0.23	0.70	0.57	0.87
	ETP totoio	262.00	207.74	200 42	17/ 00	109 50	220 74	240.04	274.04
		200,09	201,14	200,42	1/4,20	100,00	330,74	240,04	3/4,91
	K ₂ 0/Na ₂ 0	0,95	0,99	0,87	0,79	0,68	0,91	0,88	1,09
	FeOt	4,96	4,94	3,89	4,11	4,40	2,59	2,73	2,74
6	FeOt/(FeOt + MgO)	0,75	0,82	0,80	0,77	0,64	0,78	0,81	0,80
õe	Al ₂ O ₃ /(K ₂ O/Na ₂ O)	17,42	17,23	18,66	21,08	22,94	17,82	17,29	15,07
az	log[CaO/(Na_O+K_O)]	-0.39	-0.44	-0.53	-0.19	-0.27	-0.65	-0.46	-0.69
Ř	Rh/Ra	0.08	0.00	0.09	0.08	0.10	0.08	0.07	0.04
		0,00	0,03	0,09	0,00	0,10	0,00	0,07	0,04
	KD/Sr	0,23	0,20	0,19	0,19	0,18	0,44	0,30	0,31
	Sr/Ba	0,35	0,45	0,48	0,41	0,57	0,18	0,22	0,14

				GRU	JPO SURU	MU		
1		LM-R-151B	HG-R-206	AB-105	FS-01A	LB-53A	MF-R-73	VC-42
			110 11 200	712 100		22 00/1		10 12
	Amostras							
	, an oot do	lan traquítico	lan traquítico	lan	lan	lan	lan riolítico	lan dacítico
		doovitrif	oomnoot	docítico	docítico	docítico	foliodo	mod coldada
		desviin.	compact.	uacilico	uacilico	uacilico	Tollado.	mou. soluado
	SiO ₂	66,18	66,42	67,03	67,25	67,44	67,55	68,09
1	TiO₂	0.43	0.52	0.52	0.65	0.55	0.56	0.61
	AL O	15 / 2	16.09	15.09	1/ 8/	16.36	1/ 85	15 16
		0.70	10,00	10,00	4.04	10,00	14,00	0.40
ŝ	Fe ₂ O ₃	3,72	3,37	3,37	4,01	3,24	3,40	3,40
be	MnO	0,08	0,16	0,08	0,12	0,06	0,12	0,15
ε	MgO	1,78	0,71	0,68	0,70	0,90	0,81	0,42
°e	CaO	3,49	1,99	2,51	2,39	1,57	2,17	2,06
)	Na.O	3.68	4 41	3,82	3 37	3 16	4 46	5 33
s	K 0	2,00	4.70	4.09	4.60	2.07	2.95	2,00
id	k ₂U	3,90	4,70	4,08	4,09	3,07	3,65	3,47
-ô	P ₂ O ₅	0,27	0,19	0,13	0,25	0,21	0,21	0,20
	LOI	0,80	1,10	2,4	0,6	2,4	1,80	0,7
	Cr ₂ O ₃	0,01	<,001	0,004	0,003	<0,002	<,001	<0,002
1	Total	99.83	99.66	99.71	99.67	99.76	99.78	99.65
	Dh	100,00	122.60	142.2	146.0	450.4	00,00	74.0
	RD	120,00	133,60	143,2	140,3	152,4	96,60	74,0
	Sr	451,00	375,90	344,2	292,6	234,8	360,40	304,9
	Ba	1029,60	1099 <u>,</u> 90	1219	1371	1236	1 <u>628,</u> 70	1356
	Cs	4,10	1,80	2,2	2.9	2.6	2.20	1,3
	Ph	8 40	10.40	33.4	21.9	5.6	14 20	10.1
	v	24 50	40.00	20.0	10 4	20,0	10 00	10,1 40 E
	T	34,50	40,00	29,0	43,1	32,1	40,80	40,5
	TI	0,30	0,10	<0,1	<0,1	<0,1	<,1	<0,1
	Zr	275,10	420,40	452,8	498,1	317,4	350,30	317,3
	Hf	6,90	11,00	11,4	12,0	8,6	9,80	8,8
	Nh	9.50	18.50	15.3	18 9	127	16.00	14.8
	Te	0,00	0.00	10,0	10,5	0.6	1.00	0.0
-		0,60	0,90	1,0	1,0	0,6	1,00	0,9
E	Th	16,60	11,50	13,7	13,4	9,1	10,40	8,4
dd	U	5,40	3,20	3,6	4,1	2,1	2,80	2,5
õ	Ni	9,30	3,40	<20	<20	<20	0,20	<20
àç	Co	8.50	8 10	3.9	5.8	4.0	2.90	26
÷	V	65.00	28.00	20	41	20	29.00	27
so	V	05,00	36,00	20	41	30	20,00	31
, t	SC	10,00	6,00	10	12	9	9,00	8
Ĕ	Be	1,00	3,00	2	2	2	3,00	3
<u>e</u>	W	0,60	1,00	2,1	3,0	1,0	1,20	1,0
ш	Zn	30.00	63.00	47	72	59	76.00	91
	So	< 5	< 5	<0.5	<0.5	<0.5	< 5	<0.5
	06	\ ,0	<,5 0.40	~0,5	<0,0	<0,0	<,0 0.00	<0,0
	50	<,1	0,10	0,6	0,3	<0,1	0,20	0,3
	Cu	38,20	12,10	23,6	9,3	3,5	2,60	4,2
	Hg	<,01	<,01	<0,01	<0,01	<0,01	<,01	<0,01
	Мо	0,10	0,20	1,5	0,9	<0,1	0,10	0,2
1	Bi	0.10	0.10	0.5	<0.1	<0.1	<.1	<0.1
	C4	- 1	0.10	-0.1	-0.1	<0.1	0.10	0.1
	Cu	<,1	0,10	<0,1	<0,1	<0,1	0,10	0,1
	AS	0,80	0,90	10,1	1,2	<0,5	1,70	0,9
	Sn	2,00	3,00	3	3	2	2,00	2
	Ga	<u>15,3</u> 0	20,80	16,8	19 <u>,</u> 5	17,7	<u>19,1</u> 0	19,6
bb	Ag	<,1	<,1	<0,1	<0,1	<0,1	<,1	<0,1
g	Au	1.10	2.30	0.6	<0.5	<0.5	0.90	0.6
	 a	61.20	62 10	44.1	56.2	31.6	45 30	54.2
	<u> </u>	110.00	140.00	074	101 5	66.5	111 50	440.4
	08	110,00	140,90	31,1	121,D	7.00	111,30	119,1
	۲r	11,21	14,57	10,59	13,65	7,66	12,05	13,14
	Nd	37,60	56,90	42,1	51,0	29,3	45,70	49,2
	Sm	5,60	9,40	6,90	9,44	5,38	7,80	8,58
	Eu	0,99	1,67	1,41	1,76	1,20	1,66	2,06
E	Gd	3,99	6.95	5.45	8.13	4.43	6.58	7.42
pp	Th	0.67	1 22	0.88	1 22	0.82	1.22	1.22
R	1V D.	0,07	1,22	4.70	7.54	0,02	1,22	0.40
Ē	- Uy 	3,41	0,71	4,78	7,54	4,90	0,55	0,40
	Ho	0,71	1,37	0,94	1,50	1,14	1,31	1,34
	F	2,01	3,79	2,81	4,34	3,57	3,88	3,99
	Tm	0,27	0,61	0,45	0,65	0,55	0,69	0,61
	Yh	1.83	3.96	2.92	4 23	3 74	3 78	3 99
		0.27	0.50	0.45	0.65	0.60	0.66	0.61
		0,21	0,03	0,40	0,00	161.00	0,00	0,01
	EI K TOTAIS	∠40,36	310,74	220,88	∠ช1,91	161,39	∠48,68	2/1,94
	K ₂ O/Na ₂ O	1,08	1,07	1,07	1,39	1,22	0,86	0,65
	FeOt	3,35	3,03	3,03	4,33	2,92	3,06	3,11
	FeOt/(FeOt + MgO)	0,65	0,81	0,82	0,86	0,76	0,79	0,88
es	Al ₂ O ₂ /(K ₂ O/Na ₂ O)	14 26	15 10	14 13	10.66	13 36	17 20	23 29
ΪZÕ		.0.24	0.66	_0 =0	-0.50	-0.65	_0.50	
R	DU/D-	-0,34	-0,00	-0,50	-0,00	-0,05	-0,00	-0,03
	KD/Ba	0,12	0,12	0,12	0,11	0,12	0,06	0,06
	Rb/Sr	0,28	0,36	0,42	0,50	0,65	0,27	0,25
	Sr/Ba	0,44	0,34	0,28	0,21	0,19	0,22	0,22

					GRUPO SU	RUMU		
		LM-R-167B	HG-R-159A	VC-45	AB-148A	MF-R-76B	LM-R-15A	MF-R-10A
	Amostras							
		lgn ou	Riol ou	lan	lgn	lgn riolítico	Riol desvitrif e	Mgr
		Riol	Mar	ign	dacítico	compact.	alterado	granofírico
								g
Ļ	SiO ₂	68,48	68,53	68,83	69,16	69,20	69,66	69,94
	TiO ₂	0,45	0,43	0,48	0,47	0,52	0,35	0,39
i i	Al ₂ O ₂	15.75	15.93	15.29	15.40	15.22	15.06	14.83
$\hat{\mathbf{a}}$	Fe.O.	2 38	2 36	2.96	2 75	2 49	1.60	2.28
esc	MnO	2,00	2,00	2,50	2,70	2,40	1,00	2,20
ă	MINO	0,10	0,04	0,09	0,12	0,10	0,06	0,07
Ē	MgO	0,48	0,63	0,24	0,72	0,54	0,29	0,54
%	CaO	1,33	2,50	1,21	1,91	1,00	1,25	1,44
e e	Na₂O	4 48	3.67	4 90	4 05	4.18	3.98	4.15
os	K 0	5 20	4.50	1 36	4.52	5.46	5.87	4.97
iq.	<u> </u>	5,29	4,30	4,30	4,32	5,40	5,67	4,07
-ô	P ₂ O ₅	0,12	0,08	0,13	0,12	0,11	0,07	0,11
-	LOI	0,70	1,10	1,1	0,5	0,80	1,50	1,10
	Cr ₂ O ₃	<.001	0.00	< 0.002	< 0.002	<.001	<.001	0.00
·	Total	00.56	00.77	00.50	00.72	00.61	00.60	00.72
		99,50	99,11	33,33	33,72	33,01	99,09	33,72
	RD	148,50	155,30	129,8	137,1	155,50	180,20	122,70
	Sr	211,50	496,40	142,4	361,9	193,80	131,90	228,50
	Ba	1958,10	1378,40	1544	1525	1887,80	1299,90	1896,70
·	Cs	2.00	4 50	29	77	3 10	4 00	1 50
·	Dh	10.10	0,00	17.0	0.5	24.60	20,10	0,60
		10,10	9,00	17,9	9,5	24,00	20,10	9,00
	Γ Υ	56,40	19,70	132,1	30,1	44,80	45,40	97,70
	TI	0,10	0,10	<0,1	0,2	0,20	0,10	<,1
	Zr	647.80	259.50	518.2	250.3	408.10	394.90	347.00
·	 	15 50	7.00	12.2	7 1	11.20	11.20	9 70
		15,50	7,00	13,2	7,1	11,30	11,20	0,70
	Nb	21,00	11,90	18,5	14,5	20,00	19,90	15,40
	Та	1,20	1,00	1,1	0,9	1,20	1,20	1,10
Ê C	Th	15.70	15.70	13.4	11.6	11.60	16.90	13.00
ā	11	3 20	3 90	3.8	36	3 50	4 30	3.80
e e	NE	0,20	0,00	-0,0	-20	0,00	4,00	1,00
S,	NI	0,10	3,00	<20	<20	0,40	0,60	1,20
La .	Со	1,30	4,20	2,6	2,3	1,50	0,90	3,40
s-t	v	8,00	30,00	28	19	14,00	9,00	25,00
t2	Sc	7.00	7.00	8	7	7.00	5.00	4 00
e	Bo	4.00	3.00	2	3	3.00	3,00	2,00
E E	De	4,00	3,00	2	5	3,00	3,00	2,00
Ш	W	0,70	0,30	0,9	1,1	1,00	1,10	1,50
	Zn	59,00	37,00	62	65	67,00	25,00	39,00
	Se	<,5	<,5	0,8	<0,5	<,5	<,5	<,5
	Sb	0.10	0.10	0.2	0.6	0.10	0.20	0.10
•	<u> </u>	1.60	6.20	5.1	4.4	7 70	3 20	5,50
	Cu	1,00	0,20	5,1	4,4	7,70	3,20	5,50
	нg	0,01	<,01	<0,01	<0,01	<,01	<,01	<,01
	Мо	1,00	0,50	0,2	0,4	0,20	0,50	0,30
	Bi	0,10	0,20	<0,1	0,2	0,10	0,10	0,10
	Cd	0.20	0.10	0.2	<0.1	0.10	0.30	0.20
•		1.50	0,50	3.0	2.8	1.60	1 10	- 5
•	A\$	1,30	0,30	3,0	2,0	1,00	1,10	<,5
	Sn	3,00	1,00	2	2	2,00	3,00	2,00
	Ga	20,70	18,10	16,8	16,0	17,70	18,70	16,80
qo	Ag	<,1	0,20	<0,1	<0,1	<,1	<,1	<,1
d	Au	3.80	0.70	< 0.5	0.8	3.90	5.40	<.5
	12	91.20	38 90	125.4	37.1	58.20	82 70	109.00
•		100.40	72.00	144.0	06.0	14440	101.00	100,00
		199,40	73,90	141,3	00,0	144,10	101,00	123,30
	Pr	21,37	8,97	28,14	9,40	14,72	18,27	16,18
	Nd	76,20	29,80	122,4	35,5	53,90	67,00	58,40
	Sm	13,10	5,60	22.06	6,48	8,90	10,40	9,60
-	Eu	1.98	1.24	4 93	1.46	1.73	1.57	2.28
Ē	64	0.54	2.24	27 17	5 10	7 24	7.67	12 /1
do	 	3,04	3,34	21,11	0,10	1,34	1,01	12,41
2	Tb	1,66	0,64	4,31	0,89	1,31	1,31	1,75
Ē	Dy	9,10	3,05	24,47	4,71	7,26	7,82	10,22
ш	Но	1,89	0,65	5,02	1,01	1,43	1,55	2,54
	Fr	5.67	2.05	13 03	2.96	4 44	4 40	7 35
•		0,07	0.20	1.00	0.47	0.72	0.74	1.04
	100	0,00	0,30	1,90	0,47	0,73	0,71	1,04
	Yb	5,69	2,02	12,17	3,01	4,26	4,97	6,41
	Lu	0,87	0,26	1,81	0,49	0,74	0,77	1,01
	ETR totais	438.52	170.72	535.07	194.58	309.06	390.14	361.49
	K O/Na O	1 1 2	1 22	0.80	1 1 2	1 21	1 /7	1 17
		1,10	1,23	0,09	1,12	1,01	1,47	1,17
	FeUt	2,14	2,12	2,66	2,47	2,24	1,44	2,05
S	FeOt/(FeOt + MgO)	0,82	0,77	0,92	0,77	0,81	0,83	0,79
õe	Al ₂ O ₃ /(K ₂ O/Na ₂ O)	13,34	12,99	17,18	13,80	11,65	10,21	12,64
azi	log[CaO/(Na_O+K_O)]	-0.87	-0.51	-0.88	-0.65	-0.98	-0.90	-0.80
Ř		0,07	0.14	0.00	0.00	0,00	0.14	0.06
·	KU/Dd	0,00	0,11	0,00	0,09	0,00	0,14	0,00
	Rb/Sr	0,70	0,31	0,91	0,38	0,80	1,37	0,54
	Sr/Ba	0,11	0,36	0,09	0,24	0,10	0,10	0,12

					GRUPO SU	RUMU			
1		HG-R-29	HG-R-54	VC-39B	MF-R-110A	NR-58	LM-R-21A	LM-R-70A	LM-R-05A
	Amostras								Mar
		Mgr porf. granof.	lgn riolítico	lgn		Riol		Vulcânica	ivigi
		(Dique)	compact	dacítico	Riol foliado	desvitrif	Ign riolitico	riolítica	granofirico
		((Dique)
								====	
	SIO ₂	69,99	70,23	70,36	/1,15	72,75	72,90	73,34	74,74
	TiO ₂	0,35	0,53	0,41	0,29	0,34	0,34	0,23	0,22
1	Al ₂ O ₂	14.16	14.59	13.95	14.26	13.81	13.75	13.78	13.88
$\hat{\mathbf{a}}$	E	2.02	2.69	2 4 2	2 21	1.59	1.67	1.60	1.21
ŝ	10203	2,02	2,00	2,42	2,51	1,50	1,07	1,00	1,21
ă	MnO	0,07	0,09	0,08	0,04	0,05	0,06	0,04	0,02
E	MgO	0,42	0,56	0,67	0,57	0,34	0,48	0,23	0,12
°.	CaO	1,33	1,31	0,96	1,53	1,04	0,47	0,90	0,14
۳	Na₂O	3.94	4 36	3 20	4 03	3 50	3 18	3 23	4 36
os	K 0	4.95	4.49	5.04	2.95	5.05	6.02	5.20	4.75
ig	K₂U	4,00	4,40	5,94	3,00	5,35	0,02	5,27	4,75
۰Ô	P ₂ O ₅	0,08	0,13	0,13	0,09	0,06	0,06	0,05	0,03
	LOI	2,40	0,80	1,7	1,60	1,0	0,80	1,00	0,40
	Cr ₂ O ₃	0,00	0,00	<0,002	<,001	<0,002	<,001	<,001	0,00
	Total	99.61	99.76	99.82	99.72	99.82	99.72	99.67	99.87
	Dh	105,01	101.40	474.0	145 50	220.02	100.00	100.00	124.00
	KD	125,40	121,40	174,8	145,50	220,6	168,80	196,80	134,80
	Sr	213,70	225,50	116,4	248,30	208,7	134,20	187,60	52,70
	Ba	1700,60	1573,00	633	1097,20	805	992,70	1496,30	1053,90
	Cs	1,50	3,70	3.5	2,80	5,8	1,70	2,70	1,80
	Ph	11 30	16 10	24.7	7 80	0.2	16.50	10.80	11.80
	v	00.40	4440	40.0	7,00	3,2	F4 70	24.70	24.60
	ř	20,10	44,10	48,8	35,80	24,9	51,70	24,70	∠4,60
	TI	<,1	<,1	<0,1	0,20	<0,1	<,1	0,30	<,1
	Zr	311,20	368,60	257,7	214,60	291,0	285,70	263,50	192,40
	Hf	7.50	9.70	8.0	6.10	7.7	8.40	7.50	6.20
	Nh	14.00	17.00	21.0	10 70	10.1	20.70	11.60	15 40
		14,00	17,00	21,9	12,70	19,1	20,70	11,60	15,40
	Та	1,00	1,10	1,6	0,90	1,6	1,40	0,80	1,10
Ξ	Th	14,70	11,10	20,9	11,30	23,9	18,70	14,70	13,00
d	U	3,10	3,30	6,8	3,50	7,7	5,30	5,10	3,70
	Ni	0,60	0,60	<20	2 10	<20	0.70	0.20	0,70
ŭ,	<u> </u>	2,20	2,00	4.4	2,10	17	0,10	0,20	1.20
tra	60	2,30	2,70	4,4	3,10	1,7	0,90	0,80	1,20
s'	V	19,00	23,00	39	23,00	20	13,00	5,00	7,00
Ĕ	Sc	4,00	6,00	9	7,00	5	4,00	7,00	4,00
er e	Be	4.00	5.00	3	3.00	3	<1	3.00	2.00
en	w	1.40	2,00	12	1 10	19	1 70	1 20	1 20
Ξ	7	27.00	2,00	50	50.00	1,5	1,70	24.00	10.00
	Zn	37,00	42,00	52	50,00	20	39,00	24,00	10,00
	Se	<,5	<,5	<0,5	<,5	<0,5	<,5	<,5	<,5
	Sb	0,20	0,50	0,2	0,20	0,5	0,30	0,20	0,10
	Cu	3,50	2,10	3,3	3,70	9,0	3,00	1,00	0,90
	Ηα	< 01	< 01	<0.01	< 01	<0.01	< 01	< 01	< 01
	Mo	0,10	4,01	0.0	0,10	0.0	0,20	0,00	1.90
	NIU D:	0,10	4,10	0,2	0,10	0,9	0,20	0,90	1,00
	Ві	0,10	0,30	0,1	<,1	<0,1	0,20	0,10	0,20
	Cd	0,20	0,10	<0,1	0,10	<0,1	0,10	0,10	0,10
	As	<,5	4,30	<0,5	3,90	2,2	1,50	0,70	0,50
	Sn	1 00	2 00	3	2 00	2	3.00	3.00	1.00
	6.2	16.40	17 70	21.0	16 10	1/2	12 50	15 10	15 00
-	Ja	10,40	11,10	21,3	10,10	0.4	12,00	10,10	15,50
d	Ag	<,1	<,1	<0,1	<,1	<0,1	0,10	<,1	<,1
3	Au	0,80	0,50	<0,5	0,90	<0,5	6,30	1,90	<,5
	La	56,80	57,20	69,8	58,30	48,8	79,40	55,10	41,00
	Ce	105,70	119,30	134,0	114,50	109,1	164,00	115,30	85,60
	Pr	11.24	13.91	16.01	13.58	11.25	17.87	12.46	9.07
1	Nd	34.70	46.40	58.0	48.60	20.7	64.00	45.30	30.80
		54,70		44.04	-+0,00	0.50	44.00	-0,00	50,00
-	Sm	5,70	9,30	11,21	7,60	6,50	11,20	8,00	5,00
Ê	Eu	0,98	1,71	1,42	1,30	0,88	1,49	0,99	0,64
pn	Gd	3,41	6,68	8,91	5,89	4,65	8,44	5,21	3,66
g	Tb	0.59	1.31	1.52	0.93	0.77	1.44	0.84	0.62
Ř	Dv.	3 44	7 81	8 4 3	5 27	4.07	8 80	4 43	3 38
Ξ		0.55	1.01	1 70	0,21	0.04	1 70	-,-0	0.75
	HO	0,05	1,58	1,70	0,99	0,84	1,76	0,84	0,75
	Er	1,99	4,56	4,84	2,96	2,43	4,88	2,42	2,33
	Tm	0,27	0,74	0,77	0,50	0,43	0,73	0,38	0,37
	Yb	2,19	4,54	4,78	3,07	2.69	4,97	2,36	2,42
	Lu	0.37	0.73	0.72	0.50	0.41	0.73	0.38	0.42
1		0,07	0,10	200.44	0,00	222.50	0,13	0,00	100.00
	LI K TOTAIS	228,03	215,11	322,11	263,99	232,52	370,70	∠04,01	186,06
	K ₂ O/Na ₂ O	1,23	1,03	1,86	0,96	1,53	1,89	1,63	1,09
	FeOt	1,82	2,41	2,18	2,08	1,42	1,50	1,44	1,09
	FeOt/(FeOt + MaO)	0,81	0,81	0,76	0,78	0,81	0,76	0,86	0,90
es	Al_O_/(K_O/Na_O)	11.50	14 20	7 52	14 93	9.03	7 26	8 45	12 74
ZÕ		1,00	0 00	0.00	0.74	0.00	1.20	0,-0	4 04
Ra	$\log[CaU/(Na_2U+K_2U)]$	-0,82	-0,83	-0,98	-0,71	-0,93	-1,29	-0,98	-1,81
	Rb/Ba	0,07	0,08	0,28	0,13	0,27	0,17	0,13	0,13
	Rb/Sr	0,59	0,54	1,50	0,59	1,06	1,26	1,05	2,56
	Sr/Ba	0.13	0.14	0.18	0.23	0.26	0.14	0.13	0.05
-		-,	-,	.,	-,	.,	-, -	-,	-,

Tabela 21 - Análises químicas de vulcanitos do Grupo Surumu. Dados provenientes de CPRM (2010)*. Para abreviações minerais ver tabela 19.

Amostra	Classificação	Pg	Fsp	Qtz	Hbl	Bt	Ttn	Zrn	Ар	Aln	Ор	Chl	Εp	Ser	Am	FI	Toz	Tur
LM-R-79*	Hbl-fsp alc. granito	-	65	31	4	tr	-	tr	tr	tr	tr	-	-	tr	-	-	-	-
HG-R-68*	Fsp alc. granito porfirítico	-	63	35	-	2	-	tr	-	-	tr	-	-	-	tr	tr	-	-
HG-R-57*	Bt-fsp alc. granito c/ toz	-	65	32	-	5	-	tr	-	-	-	-	-	-	tr	-	tr	tr
LM-R-60*	Fsp alc. granito granofírico	-	69	30	-	tr	-	tr	-	tr	1	-	-	tr	-	-	-	-
MF-R-84*	Fsp alc. granito granofírico	-	67	30	-	tr	tr	tr	tr	tr	2	2	-	tr	tr	tr	-	-
HG-R-64*	Fsp alc. granito hololeuc.	-	66	33	-	1	-	tr	-	-	tr	-	-	tr	tr	-	-	tr
LM-R-71B*	Fsp alc. granito granofírico	-	66	32	-	tr	-	tr	-	-	2	-	-	-	-	tr	-	-
LB-R-33	Monzogranito catacl. a p.	27	45	26	-	-	-	-	-	-	1	-	tr	tr	-	-	-	-
LB-R-36	Monzogran. p. s.	28	32	30	-	2	-	tr	I	-	1	-	-	5	-	I	-	-
LB-R-41	Fsp alc. granito s.	-	67	30	-	-	-	tr	-	-	1	-	-	2	-	-	-	-
LB-R-41C	Fsp alc. microleucogranito	-	52	45	-	tr	-	-	-	-	2	-	-	tr	-	-	-	-
LB-R-41D	Fsp alc. leucogranito cat.	-	52	45	-	2	tr	tr	-	tr	tr	-	1	-	-	-	-	-
NR-R-43A	Sienogranito c/ bt	13	54	31	-	2	tr	-	-	-	tr	1	tr	-	tr	-	-	-
NR-R-44	Hbl sienogranito porf. rapak.	15	52	20	8	3	tr	tr	tr	-	2	-	tr	tr	tr	-	-	-
NR-R-45	Fsp alc. granito cat. c/ bt	-	63	35	-	2	-	tr	-	-	tr	-	-	-	tr	-	-	-

Tabela 22 - Classificação e composição mineralógica aproximada das rochas da Suíte Aricamã com análise química. (*) amostras provenientes de CPRM (2010). Abreviaturas minerais de acordo com Siivola & Schmid (2007): Pg - plagioclásio; Fsp - feldspato alcalino; Qtz - quartzo; Hbl - hornblenda; Bt - biotita; Ttn - titanita; Zrn - zircão; Ap - apatita; Aln - allanita; Op - opacos; Chl - clorita; Ep - epidoto; Ser - sericita; Cm - argilominerais; Fl - fluorita; Toz - topázio; Tur - turmalina; tr - traços (< 1%); p. - protomilonítico; s. - sericítico; c. - cataclástico.

		NR-44	NR-43A	LM-79*	HG-68*	HG-57*	LB-33	LB-41A	LM-60*	MF-84	SR-177A*	NR-45	HG-64*	LM-71B*	LB-41D	LB-41C	LB-36
A	nostras	Hbl sienogranito porfiritico rapakiwi	Sieno granito c/ bio tita	Hbl fsp alcalino granito	Fsp alcalino granito porfiritico	Bt fsp alcalino leucogranito c/ topázio	Monzogranito cataclástico a protomilonítico	Fsp alcalino granito sericitico	Fsp granito granofirico	Fsp alcalino granito granofírico	Fsp alcalino leucogranito fino (alaskito)	Fsp alcalino granito cataclástico c/ biotita	Fsp alcalino leucogranito (alaskito)	Fsp alcalino granito granofírico	Fsp alcalino leucogranito cataclástico	Fsp alcalino leucogranito fino	Monzogranito Protomilonítico c/ sericita
	SiO ₂	69,38	71,22	71,57	72,24	72,28	73,03	73,58	73,8	73,85	74,23	74,37	74,37	74,52	74,55	75,09	75,72
	TiO ₂	0,63	0,34	0,33	0,15	0,07	0,22	0,26	0,22	0,27	0,18	0,24	0,11	0,14	0,26	0,09	0,17
	Al ₂ O ₃	14,02	14,96	14,08	14,87	14,57	14,48	14,23	13,59	12,91	13,05	12,14	13,55	13,39	13,48	13,23	12,89
	Fe ₂ O _{3t}	3,33	1,89	2,43	1,23	1,3	1,67	1,46	1,7	2,2	2,37	2,04	1,27	1,62	1,73	1,42	1,82
	MnO	0,09	0,12	0,09	0,04	0,04	0,02	0,01	0,01	0,07	0,04	0,03	0,02	0,01	0,05	0,01	0,06
eso)	MgO	0,48	0,4	0,16	0,02	0,02	0,22	0,13	0,01	0,11	0,11	0,08	0,02	0,02	0,17	0,04	0,2
å E	CaO	1,51	0,58	0,66	0,28	0,4	0,16	0,14	0,16	0,63	0,24	1,3	0,35	0,27	0,33	0,15	0,26
* *	Na ₂ O	3,97	3,71	3,91	4,98	5,06	3,95	4,08	3,21	4,07	4,23	3,66	4,44	4,55	4,19	3,69	3,61
so	K ₂ O	5,2	5,33	5,81	4,94	5,03	5,02	4,96	6,66	5,14	4,53	4,47	5,01	5,05	4,19	4,52	4,11
Ôxi	P205	0,29	0,08	0,06	0,02	0,01	0,09	0,05	0,02	0,04	0,03	0,05	0,01	0,01	0,03	0,03	0,04
	LOI	0,8	1,1	0,7	1,2	1,1	0,9	0,9	0,6	0,6	0,9	1,3	0,8	0,4	0,8	1,7	1
	total	99,7	99,73	99,8	99,96	99,88	99,76	99,8	99,98	99,88	99,91	99,68	99,95	99,98	99,78	99,97	99,88
	Na ₂ O+K ₂ O	9,17	9,04	9,72	9,92	10,09	9	9,04	9,87	9,21	8,8	8,13	9,45	9,6	8,38	8,21	7,72
	K ₂ O/Na ₂ O	1,31	1,44	1,49	0,99	0,99	1,3	1,22	2,07	1,26	1,1	1,22	1,13	1,11	1	1,22	1,14
	TiO ₂ /MgO	1,31	0,85	2,06	7,5	3,5	1	2	22	2,45	1,6	3	5,5	7	1,53	2,25	0,85

		NR-44	NR-43A	LM-79*	HG-68*	HG-57*	LB-33	LB-41A	LM-60*	MF-84	SR-177A*	NR-45	HG-64*	LM-71B*	LB-41D	LB-41C	LB-36
Am	nostras	Hbl sienogranito porfiritico rapakiwi	Sieno granito c/ bio tita	Hbl fsp alcalino granito	Fspalcalino granito porfirítico	Bt fsp alcalino leucogranito c/ topázio	Monzogranito cataclástico a protomilonítico	Fsp alcalino granito sericitico	Fsp granito granofírico	Fsp alcalino granito grano fírico	Fsp alcalino leucogranito fino (alaskito)	Fsp alcalino granito cataclástico c/ biotita	Fsp alcalino leucogranito (alaskito)	Fsp alcalino granito granofírico	Fsp alcalino leucogranito cataclástico	Fsp alcalino leucogranito fino	Monzogranito Protomilonítico c/ sericita
	Rb	159,9	225,6	121,7	358,3	866	164,8	170,6	241	203	139,1	238,2	509,5	160,8	185,6	166,7	232,3
	Sr	129,1	121,9	80,5	16,3	3,4	131,4	64,1	19,9	39,7	50	30,3	4,4	11,4	40	24,8	61,2
	Ba	942	627	915,2	127,5	8,6	999	463	145,9	416,9	183	323	12,8	148,1	318	87	325
	Cs	3,4	1,5	2,4	12,3	29,7	2,4	2,8	1,1	5,7	1,3	1,9	11,2	0,5	3,4	2,2	5,4
	Pb	22,4	13	22,9	15,7	27,7	7,1	10,9	14,8	43,2	15,5	9,5	21,2	46,7	21	10,3	32,2
	Y	94,9	58,4	84,5	86,4	387,1	47,5	57	48,3	83	24,7	360,7	150,2	27,8	102,2	47,4	44,5
	Zr	658,5	270,3	661,9	276,3	308,2	313,5	505,4	329,4	465	322,7	487	250,4	315,2	582,5	176,1	276,4
	Hf	19,1	11,4	17,4	15,7	26,2	10	17,5	12,1	15,6	14	17,7	15	8,9	18,1	8,8	10,3
	Nb	32,2	32,6	27,9	84,6	198,8	16	31,4	39,2	49	91,2	57	133,7	17	28,6	18,1	27,3
(ju	Та	2,5	3,7	1,4	9,2	30,7	0,9	2,4	3,1	3,7	5,6	2,9	10,9	1,3	1,8	1,5	2,8
id) o	Th	32,1	61,5	20,9	38	101,5	23,5	26,2	37	27,9	40,6	28,6	56,2	19,3	42,1	25,3	37,8
traç	U	9,7	12,3	2,2	17,7	24,4	4,4	3,2	12,3	9	9,3	9,9	12,1	5	11,7	6	9,9
tos-	Ni	20	20	0,4	0,5	0,3	<20	20	1,1	0,2	4,4	20	0,2	0,8	0,8	20	2,9
men	Co	2,8	4,1	0,8	0,5	0,5	1,3	0,3	2,6	0,7	1,6	0,7	0,5	0,5	1,5	0,4	1,5
Ele	Be	5	3	2	13	29	2	2	3	4	3	3	9	2	3	2	5
	W	1	2,1	0,9	10,1	9,9	0,9	2,7	1,2	3,6	2,2	1,6	7,6	0,8	1,2	0,9	4,5
	Zn	63	26	83	67	82	3	7	8	109	11	25	70	70	53	5	31
	Cu	1,9	4,2	5,8	2,1	0,5	3,5	3,9	2	1,3	18,7	1,8	0,5	2,6	4	2	45,1
ľ	Mo	4,8	0,4	0,3	3,7	5,9	0,2	4,4	1,6	2,8	1,4	4,2	4,4	1,5	2,6	0,7	1,2
	As	0,7	0,7	2,4	1,8	7,5	<0,5	1	0,6	4,6	0,9	0,5	3,8	1	1,2	0,5	17,1
ľ	Sn	6	3	2	9	10	2	4	6	8	5	6	12	2	4	2	4
	Ga	20,5	16,3	21,2	29,1	37,5	17,1	20	20,1	21,5	21,8	20,9	28,1	22	20,2	19,4	16,6
	Ag	0,1	0,1	0,1	0,1	0,1	<0,1	0,1	0,1	0,1	0,2	0,1	0,1	0,1	0,1	0,1	0,3
	Au (ppb)	0,5	0,5	0,5	1,4	0,5	<0,5	0,5	1,4	2,7	0,7	0,5	0,5	1,6	1,2	0,5	4,1

		NR-44	NR-43A	LM-79*	HG-68*	HG-57*	LB-33	LB-41A	LM-60*	MF-84	SR-177A*	NR-45	HG-64*	LM-71B*	LB-41D	LB-41C	LB-36
Aı	nostras	Hbl sieno granito porfirítico rapakiwi	Sieno granito c/ bio tita	Hbl fsp alcalino granito	Fsp alcalino granito porfirítico	Bt fsp alcalino leucogranito c/ topázio	Monzogranito cataclástico a protomilonítico	Fsp alcalino granito sericitico	Fsp granito granofírico	Fsp alcalino granito granofírico	Fspalcalino leucogranito fino (alaskito)	Fsp alcalino granito cataclástico c/ biotita	Fsp alcalino leucogranito (alaskito)	Fsp alcalino granito granofírico	Fsp alcalino leucogranito cataclástico	Fsp alcalino leucogranito fino	Monzogranito Protomilonítico c/sericita
	La	137,5	75,6	194,6	77,8	189,4	60,1	77,7	52,9	82,9	7,4	363,7	70,6	18,9	134	39,2	47,1
	Ce	311,1	167,4	407,8	153,4	367,4	133,6	176,1	114,3	222,1	20,4	522,3	152	39,4	296,2	72,6	109,4
	Pr	33,06	16,86	47,84	16,88	33,35	14,39	18,85	12,18	21,23	2,16	89,03	15,34	5,01	33,84	10,58	11,84
	Nd	119,3	55,4	185,1	52,7	87	50,7	66,8	45,1	76,1	8,3	315,2	48	19	121,4	38,1	44,4
	Sm	19,88	9,3	28,6	11,6	19,2	8,89	10,54	9,4	15	1,95	58,44	10,9	3,9	22,72	8	9,48
Ê	Eu	2,79	0,94	3,68	0,52	0,11	0,94	0,68	0,26	1,33	0,12	3,86	0,12	0,18	1,74	0,22	0,68
(bbr	Gd	16,11	7,12	19,69	8,92	17,74	7,37	7,77	7,23	12,32	2,18	51,67	10,85	3,28	18,28	6,44	8,38
ЦК	Tb	2,78	1,31	3,27	1,97	4,92	1,29	1,34	1,43	2,37	0,55	8,76	2,56	0,67	3,17	1,24	1,44
	Dy	15,24	7,51	16,49	12,69	38,05	7,09	7,73	8,69	13,98	4,01	50,73	19,27	4,51	17,48	6,98	8,18
	Ho	3,24	1,76	3,13	2,9	9,92	1,58	1,73	1,81	2,77	1,02	10,55	4,52	0,95	3,48	1,55	1,51
	Ē	9,92	5,85	8,18	9,47	39,86	4,9	5,51	5,41	8,93	3,79	30,78	17,03	3,27	11	4,91	4,47
	Tm	1,55	1	1,23	1,67	8,1	0,74	0,92	0,86	1,53	0,71	4,57	3,06	0,54	1,68	0,81	0,71
	Yb	9,8	6,79	7,97	11,84	57,34	4,66	6,43	5,97	9,72	5,04	30,18	20,3	3,06	11,6	5,15	4,35
	Lu	1,56	1,09	1,17	1,82	9,91	0,75	1,01	0,84	1,5	0,87	4,49	3,31	0,55	1,77	0,84	0,65
	ETR total	683,83	357,93	928,75	364,18	882,3	297	383,11	266,38	471,78	58,5	1544,26	377,86	103,22	678,36	196,62	252,59
es	Eun/Eu*	0,46	0,34	0,45	0,15	0,02	0,35	0,22	0,09	0,29	0,18	0,21	0,03	0,15	0,25	0,09	0,23
azõ	Lan/Ybn	8,21	6,38	13,23	3,35	1,66	7,42	7,08	4,95	5,91	1,05	4,48	1,94	3,33	6,6	3,65	6,51
œ	Zr+Nb+Ce+Y	1096,7	528,7	1182,1	600,7	1261,5	510,6	769,9	531,2	819,1	459	1427	686,3	399,4	1009,5	314,2	457,6
	Ga/AI	2,76	2,06	2,84	3,7	4,86	2,23	2,65	2,79	3,15	3,15	3,25	3,92	3,1	2,83	2,77	2,43

Tabela 23 - Dados geoquímicos de rocha da Suíte Aricamã, incluindo a classificação petrográfica. Abreviaturas minerais conforme Siivola & Schmid (2007) e tabela 22: mzgr - monzogranito; sgr - sienogranito; bt - biotita; ms - muscovita; cd - cordierita; si - sillimanita; gr - granada; mt - magnetita. (*) CPRM (2010).

Amostras	Classificação	PI	Afs	Qtz	Bt	Ор	Am	Ttn	Le	Ар	Chl	Εр	Ser	Cb	Cm	Ру
AD-23	lgnimbrito (ou riolito) perl seric	х	x	x		х		tr		tr		tr	x	tr	tr	
HG-220B*	Ignimbrito riolitico	х	х	х	-	х		tr	-	-	х	tr	tr	tr	tr	-
LB-54	Ignimbrito riolítico	tr	х	х		х					tr	tr	tr	tr		
LM-18C*	Ignimbrito riolítico	х	х	х	-	tr		-	-	-	tr	-	tr	-	-	tr
LM-114*	Ignimbrito riolítico	х	х	х	?	х		-	-	tr	tr	tr	tr	tr	-	-
LM-116A*	Ignimbrito riolítico	х	х	х	х	х		-	-	tr	-	tr	tr	tr	tr	-
LM-171B*	Microgranito granofírico	х	х	х	-	х		-	-	-	-	-	х	-	tr	-
MF-104*	Ignimbrito riolítico foliado	х	х	х	х	х	х	-	tr	-	tr	tr	tr	tr	-	-
MF-191D*	Riolito esferulítico	-	х	х	-	х		-	-	-	-	-	-	-	-	-
NR-22	Ignimbrito riolítico	х	х	х	х	х		tr			tr	tr	tr	tr	tr	

Tabela 24 - Classificação petrográfica e composição mineralógica aproximada de rochas da Formação Cachoeira da Ilha. (*) Amostras provenientes de CPRM (2010). Abreviaturas minerais de acordo com Siivola & Schmid (2007): PI = plagioclásio; Afs = feldspato alcalino; Qtz = quartzo; Bt = biotita; Op = opacos; Am = anfibólio; Ttn = titanita; Le = Leucoxênio; Ap = apatita; ChI = clorita; Ep = epidoto; Ser = sericita; Cb = carbonato; Cm = argilominerais; Py = pirita; X = componente importante (>1%); tr = traços (< 1%).

	Amostras	LM-116A*	MF-167A*	LB-54	HG-220B*	MF-104	AD-23	LM-114*	NR-22	MF-167B*	LM-171B*	MF-191D	LM-18C*
	Allocado	igri	ri	igri	igri	igri	igps	igri	igri	igd	mig	ri	igri
	SiO ₂	69,06	70,54	70,75	71,47	72,65	72,70	72,77	73,27	74,13	74,21	76,06	76,75
	TiO ₂	0,56	0,39	0,42	0,30	0,25	0,35	0,47	0,30	0,32	0,26	0,17	0,14
-	Al ₂ O ₃	14,29	14,60	14,25	13,69	13,40	14,29	14,02	13,69	12,80	13,86	12,81	12,26
eso	Fe ₂ O ₃	4,45	2,10	2,18	2,76	2,42	1,72	2,07	1,54	1,60	1,58	1,19	1,97
b p	MnO	0,15	0,08	0,11	0,07	0,06	0,07	0,04	0,06	0,08	0,02	0,07	0,03
em	MgO	0,32	0,33	0,27	0,17	0,48	0,31	0,06	0,19	0,19	0,15	0,09	0,10
%)	CaO	1,11	0,78	0,97	1,11	0,84	0,71	0,53	0,80	0,62	0,05	0,15	0,11
os	Na ₂ O	4,62	4,21	4,39	4,30	4,30	1,94	4,52	3,95	2,96	3,65	4,16	3,26
xid	K₂O	4,76	5,62	5,50	4,66	4,74	5,94	4,99	5,22	6,31	5,00	4,95	4,49
ŵ	P ₂ O ₅	0,18	0,07	0,06	0,06	0,05	0,05	0,09	0,03	0,04	0,03	0,02	0,03
	LOI	0,10	1,0	0,9	1,10	0,60	1,7	0,10	0,8	0,8	1,00	0,30	0,70
	Cr ₂ O ₃	0,00	<0,002	<0,002	<,001	0,00	<0,002	0,00	<0,002	<0,002	<,001	0,00	0,00
	Total	99,60	99,72	99,80	99,69	99,79	99,78	99,66	99,85	99,85	99,81	99,97	99,84
	Rb	123,30	160,2	164,6	139,70	165,90	220,3	135,20	180,7	231,0	223,10	140,90	118,00
	Sr	142,50	86,7	41,1	87,30	91,30	83,5	85,70	54,3	29,9	42,00	15,00	44,70
	Ba	1469,10	1019	445	951,40	463,70	955	1344,40	392	303	414,90	/1,50	136,40
		3,20	2,0	2,1	0,80	5,70	0,0 19.0	1,30	2,1	4,5	2,70	1,80	2,20
	FD V	64.00	10,0 51.1	60.6	24,70	20,10	10,0 52,7	50.50	12,3 57.7	30, I 66 2	13,90 50,10	6,30 57.20	14,20 59,70
	TI	04,00	<0.1	<0.1	92,10 < 1	45,10	<0.1	1	<0.1	<0.1		57,50	
	7r	541 10	557.6	592.8	530.30	327 40	354.5	396.30	336.9	364.8	355.40	321.80	336.00
	Hf	13.60	14.2	14.9	14.70	9,60	10.0	10.80	10.9	11.9	11.90	10.60	10,10
	Nb	21.20	22.9	27.1	27.30	15.70	20.9	18.00	26.4	31.5	24.60	30.40	18.30
	Та	1,40	1,4	1,4	1,60	1,10	1,2	1,30	1,7	2,0	1,70	1,90	1,30
Ē	Th	14,10	14,7	15,5	14,40	15,60	19,2	15,60	19,1	26,7	22,70	17,00	14,20
dd)	U	4,10	3,5	3,7	4,10	3,80	6,4	2,10	4,8	8,2	5,50	5,40	3,60
S.	Ni	1,30	<20	<20	0,90	<5	<20	0,30	<20	<20	0,20	5,00	0,70
tra	Co	3,40	0,7	0,8	1,40	2,80	1,0	0,90	0,9	0,6	0,60	<0,5	0,70
os-	V	11,00	14	<8	<5	18,00	26	5,00	<8	9	<5	5,00	8,00
ent	Sc	10,00	7	8	4,00	4,00	6	8,00	5	5	5,00	3,00	1,00
ě	Be	2,00	2	3	4,00	4,00	4	3,00	3	5	2,00	4,00	2,00
Ĕ	W	0,90	1,0	0,8	0,90	1,30	1,4	2,00	0,9	1,4	2,00	0,70	2,60
	Zn	124,00	56	81	108,00	95,00	1/	76,00	38	56	52,00	63,00	61,00
	Se	<,5	<0,5	<0,5	<,5 0.10	nd	<0,5	<,5	<0,5	<0,5	<,5	nd	<,5 0.20
	Cu	3.40	6.0	3.1	3,80	15.20	4.1	2.00	1.6	4.2	1 30	6.60	1 40
	Ha	< 01	< 0.01	<0.01	≤ 01	nd	< 0.01	2,00 < 01	<0.01	<0.01	< 01	0,00 nd	< 01
	Mo	1.40	0.8	0.2	1.80	0.30	0.5	0.20	0.4	1.5	0.60	0.10	0.40
	Bi	0,10	0,2	<0,1	0,10	nd	0,3	0,10	0,2	<0,1	1,80	nd	<,1
	Cd	0,10	<0,1	0,2	0,20	nd	<0,1	0,10	<0,1	<0,1	0,10	nd	0,20
	As	<,5	1,0	<0,5	1,50	nd	0,8	<,5	<0,5	<0,5	<,5	nd	2,10
	Sn	2,00	3	3	4,00	3,00	3	2,00	3	3	12,00	2,00	2,00
	Ga	21,50	17,4	18,4	22,90	20,00	21,4	18,60	18,3	16,4	21,10	19,50	21,40
qd	Ag	<,1	<0,1	<0,1	0,10	nd	<0,1	<,1	<0,1	<0,1	<,1	nd	<,1
d	Au	0,80	54,6	<0,5	<,5	nd	<0,5	1,00	<0,5	<0,5	1,30	nd	0,70
	La	67,80	/3,1	102,8	114,00	47,40	60,3	62,60	84,1	89,8	32,00	62,70	72,30
	Ce Br	146,50	157,8	225,8	200,60	116,40	131,2	130,80	186,6	201,4	7.06	103,10	133,60
	FI Nd	67.00	61.6	24,09	27,00	12,40	53.5	15,20 56.40	20,00	21,30	28.20	68.80	69.00
	Sm	12.30	9 74	13.46	18 90	8 40	9.45	9 70	11 94	13.04	5.60	16 40	12 70
Ê	Eu	2 48	1 28	1 09	1.94	0.63	1 12	1 77	0.96	0.78	0.44	0.67	0.82
ppr	Gd	11.62	8.26	10.27	15.75	7.32	8.40	8.28	9.06	10.53	5.26	12.86	11.38
R (Tb	1,88	1,40	1,76	2,79	1,39	1,41	1,39	1,61	1,88	1,36	2,05	1,80
Ш	Dy	10,25	7,88	9,59	16,06	7,38	8,08	7,79	8,91	11,10	8,79	10,58	9,84
	Но	2,19	1,74	1,97	3,25	1,47	1,68	1,64	1,87	2,34	1,98	2,13	1,99
	Er	6,74	5,34	6,08	9,06	4,20	4,89	5,26	5,93	7,33	6,18	6,35	5,58
	Tm	1,01	0,88	0,92	1,31	0,74	0,80	0,78	0,95	1,23	1,00	0,93	0,79
	Yb	6,52	5,43	5,97	8,68	3,99	5,17	5,01	6,10	7,44	6,85	6,02	4,99
		1,06	0,88	0,93	1,2/	0,67	0,88	0,79	0,92	1,22	1,03	1,01	0,81
		9,38	9,83	9,89	8,96	9,04	7,88	9,51	9,17	9,27	8,65	9,11	1,15
	K ₂ O/Na ₂ O	1,03	1,33	1,25	1,08	1,10	3,06	1,10	1,32	2,13	1,37	1,19	1,38
es	KD/Sr	0,87	1,85	4,00	1,60	1,82	2,64	1,58	3,33	1,13	5,31	9,39	2,64
аzõ	KD/Ba	0,08	0,16	0,37	0,15	0,36	0,23	0,10	0,46	0,10	0,54	1,97	0.32
ñ	Ja/VhN	10 /0	13 /6	17.22	13 12	0,20	11 66	12 50	13 70	12.07	0,10 1 67	10 12	1/ /0
		4 01	1 89	1 96	2 49	2 18	1.55	1.86	1 30	1 44	1 42	1.07	1 77
	FeO*/(FeO*+MaO)	0.93	0.85	0.88	0.94	0.82	0.83	0.97	0.88	0.88	0.90	0.92	0.95

Tabela 25 - Resultados analíticos de rochas da Formação Cachoeira da Ilha, provenientes de CPRM (2010)* e deste estudo. Abreviaturas: igri – ignimbrito riolítico; ri – riolito; igps – ignimbrito perlítico sericítico; igd – ignimbrito devitrificado e alterado; mig – microgranito granofírico.

Amostras	Classificação	Pg	Fa	Qz	Hb	Bi	Ti	Zi	Ар	AI	Ор	CI	Ер	Se	Са	Am
HG-88*	Eb-Bi sienogranito	18	44	20	-	12	tr	tr	tr	tr	tr	-	6	tr	tr	-
MF-123*	Bi sienogranito	15	60	20	-	4	-	tr	tr	-	tr	tr	1	tr	-	-
MF-126*	Bi monzogranito	28	33	20	-	16	tr	tr	tr	tr	2	-	1	tr	tr	-
MF-127*	Hb-bi granodiorito	35	18	20	12	12	tr	tr	tr	tr	tr	-	3	tr	-	tr
MF-131*	Bi monzogranito	31	35	22	-	10	•	tr	tr	tr	tr	-	2	tr	-	tr
MF-133A*	Bi monzogranito	26	26	22	tr	17	1	tr	tr	tr	1	-	7	tr	-	tr
MF-134A	Bi monzogranito	29	32	22	-	15	tr	tr	-	tr	-	-	2	tr	-	-
MF-138	Bi microtonalito	40	tr	30	-	29	-	tr	tr	-	-	-	1	tr	-	-

Tabela 26 - Classificação petrográfica e composição mineralógica aproximada das amostras da unidade Granito Mixiguana. Amostras provenientes de CPRM (2010). Abreviaturas minerais de acordo com Siivola & Schmid (2007): Pg = plagioclásio; Fa = feldspato alcalino; Qz = quartzo; Hb = hornblenda; Bi = biotita; Ti = titanita; Zi = zircão; Ap = apatita; Al = allanita; Op = opacos; Cl = clorita; Ep = epidoto; Se = sericita; Ca = carbonato; Am = argilo-minerais; tr = traços (< 1%).

	Amostras	MF-120*	LM-41A	MF-34A*	MF-126*	MF-123
	SiO ₂	65,02	65,83	65,95	67,31	71,40
	TiO₂	0,61	0,84	0,57	0,76	0,15
	Al ₂ O ₃	15,81	14,59	15,31	14,44	15,12
	Fe ₂ O ₃	4,08	6,28	5,62	6,32	1,50
	MnO	0,12	0,13	0,08	0,07	0,05
so)	MgO	1,70	0,55	0,58	0,62	0,20
be	CaO	4,34	3,73	2,85	3,48	1,76
em	Na₂O	3,46	3,11	2,93	2,37	3,14
%)	K₂O	3,17	3,66	4,88	3,44	5,71
idos	P ₂ O ₅	0,32	0,45	0,25	0,30	0,09
ÓX	LOI	1,00	0,50	0,70	0,60	0,70
	Cr ₂ O ₃	0,00	0,00	<,001	0,00	0,00
	Sum	99,02	98,83	99,15	98,95	99,67
	Na ₂ O+K ₂ O	6,60	6,80	7,80	5,80	8,90
	K ₂ O/Na ₂ O	0,92	1,18	1,67	1,45	1,82
	TiO₂/MgO	0,36	1,53	0,98	1,23	0,75
	Rb	131,80	169,50	132,70	174,90	95,30
	Sr	191,40	207,30	212,50	137,70	535,90
	Ba	987,00	1421,40	1626,30	700,00	1061,00
	Cs	7,10	6,70	3,70	3,20	2,80
(je	Pb	7,20	10,30	6,30	8,70	5,10
ppr	Y	63,60	42,00	48,70	16,90	31,90
) იქ	тΙ	0,50	0,60	0,50	0,10	0,20
tra	Zr	635,70	629,90	728,40	213,00	339,20
-so:	Hf	17,20	17,40	19,60	7,40	10,10
ent	Nb	21,90	19,40	23,80	12,10	17,50
em	Та	1,40	1,10	0,90	0,50	1,20
	Th	27,20	39,40	40,20	28,10	22,20
	U	3,30	3,50	3,50	4,30	3,40
	Ni	20,00	2,10	1,80	20,00	20,00
	Со	8,50	5,30	8,40	1,90	9,70
	V	23,00	25,00	37,00	11,00	71,00

	Amostras	MF-120*	LM-41A	MF-34A*	MF-126*	MF-123
	Sc	24,00	17,00	27,00	5,00	13,00
	Ве	2,00	2,00	2,00	1,00	2,00
	w	0,80	0,70	0,40	0,50	0,50
	Zn	78,00	82,00	81,00	30,00	38,00
	Se	0,50	<,5	<,5	0,50	0,50
	Sb	0,10	<,1	<,1	0,10	0,10
	Cu	15,30	6,60	34,50	3,70	42,30
	Hg	0,01	<,01	<,01	0,01	0,01
	Мо	0,60	0,40	0,30	0,10	0,10
	Bi	0,40	0,10	0,10	0,10	0,20
	Cd	0,10	0,10	0,10	0,10	0,10
	As	0,50	<,5	1,10	0,50	0,50
	Sn	3,00	<1	1,00	1,00	3,00
	Ga	18,70	19,90	19,10	14,50	17,20
	Ag	0,10	<,1	<,1	0,10	0,10
	Au	0,50	<,5	0,50	0,50	0,80
	La	80,30	112,50	129,60	50,30	58,80
	Ce	190,90	235,10	307,70	106,50	154,00
	Pr	20,12	25,32	30,62	11,06	12,84
	Nd	72,90	88,50	107,50	38,50	45,90
	Sm	13,25	14,70	16,60	7,45	7,65
ک	Eu	2,24	2,10	2,29	0,94	1,62
Idd)	Gd	11,72	10,12	12,35	5,83	6,15
R	Tb	1,87	1,58	2,02	0,79	0,97
ш	Dy	10,24	8,33	9,99	3,49	5,12
	Но	2,14	1,47	1,76	0,54	1,05
	Er	6,40	4,52	4,60	1,35	3,06
	Tm	0,95	0,60	0,67	0,20	0,50
	Yb	6,18	3,79	3,84	1,30	3,10
	Lu	0,92	0,56	0,61	0,21	0,52
	ETRtotal	301,28	420,13	509,19	630,15	228,46
	Zr+Nb+Ce+Y	542,60	912,10	926,40	1108,60	348,50
	Ga/Al	2,10	2,40	2,50	2,50	1,80

Tabela 27 - Dados geoquímicos de rochas do Granito Mixiguana. (*) Biotita monzogranito; (s. ref.) Biotita sienogranito. Abreviaturas minerais conforme Siivola & Schmid (2007): mzgr - monzogranito; sgr - sienogranito; bt - biotita; ms - muscovita; cd - cordierita; si - sillimanita; gr - granada; mt - magnetita.

Amo	stras	Classificação	PI	Afs	Qtz	Hbl	Bt	Ttn	Zrn	Ар	Aln	Ор	Chl	Ep	Ser
	NR-35A	Bt tonalito	50	5	20	-	23	tr	tr	tr	-	1	-	1	tr
	AD-02	Bt tonalito protomilon.	55	5	20	-	16	1	-	tr	tr	tr	-	3	tr
	LB-59	Ep-bt tonalito foliado	54	5	22	-	12	1	-	tr	tr	tr	-	1	tr
ş	NR-46A	Bt granodiorito foliado	44	6	22	-	24	1	tr	tr	tr	-	-	3	tr
itóide	AD-16B	Bt granodiorito protomil.	45	20	19	-	12	2	-	tr	tr	1	-	1	tr
Gran	AD-09	Bt monzogranito foliado	31	30	20	-	14	1	-	-	tr	-	-	-	tr
	AD-10	Bt monzogranito protomil.	25	44	22	-	7	tr	-	tr	-	tr	tr	1	1
	NR-16A	Bt monzogranito protomil.	32	34	22	-	8	1	tr	tr	-	1	-	1	1
	NR-09A	Bt monzogranito foliado	30	45	20	-	4	tr	tr	tr	tr	1	tr	tr	tr
	LB-58	Bt monzogranito	25	42	23	-	6		tr	tr		1		2	1
ant	NR-13C	Bt monzogr protom	30	44										tr	
Dic	NR-14A	Bt-hbl dior foliado	52	-	-	28	14	tr	tr	tr	tr	tr	tr	tr	tr
clave s	NR-16B	Bt-hbl-qzdior fol.	47	-	8	30	12	2	-	tr	-	tr	-	1	-
En	NR-13B	Bt-hbl qzdior fol	46	-	4	40	8	tr	-	tr	tr	tr	tr	-	tr

Tabela 28 - Classificação petrográfica e composição mineralógica aproximada de rochas da Suíte Reislândia. Abreviaturas minerais de acordo com Siivola & Schmid (2007): Pl: plagioclásio; Afs: feldspato alcalino; Qtz: quartzo; Hbl: hornblenda; Bt: biotita; Op: opacos; Ttn: titanita; Zrn: zircão; Ap: apatita; Aln: alanita; Chl: clorita; Ep: epidoto; Ser: sericita; tr = traços (< 1%).

Ninest Bit mage Bit mage Bit mage Resoug Resoug <thresoug< th=""> <thresoug< th=""> <threso< th=""><th>Ame</th><th></th><th>AD-10</th><th>NR-16A</th><th>NR-09A</th><th>LB-58</th><th>NR-13C</th></threso<></thresoug<></thresoug<>	Ame		AD-10	NR-16A	NR-09A	LB-58	NR-13C
Bi02 70.30 70.80 71.30 71.50 73.11 TO2 0.41 0.44 0.60 0.21 0.08 F2 03 2.39 2.24 1.225 1.457 1.458 MO 0.050 0.031 0.051 0.431 0.16 MO 0.254 0.317 0.433 0.16 MO 0.254 0.317 0.43 0.16 MO 0.254 0.314 0.47 5.67 No 2.955 2.951 3.942 3.02 2.971 No 0.280 0.11 0.12 0.03 0.16 PE 1.1 0.7 1.1 0.5 0.7 PE 1.1 0.7 1.1 0.5 0.7 PE 1.1 0.12 0.11 1.1 0.1 PE 1.1 0.1 0.1 0.1 0.1 0.1 PE 1.1 0.1 0.1 0.1 0.1	Amo	stras	Bt mzgra	Bt mzgra	Btsng	Btsng	Bt mzgra
Tri020.410.40.600.210.068Ak 0.14.1814.2514.2514.5714.81Per 0.2.392.242.271.950.08Mm00.050.030.060.040.01Mg00.940.990.370.430.16Cal2.211.812.191.81.82Nac 02.252.953.423.022.97Fx 04.945.144.075.675.08P2 0s0.280.110.120.190.01P2 0s0.280.110.120.9799.74P3 0s99.8799.7499.5799.7499.58P4 0s187.8125.7138.5128.967.7Sr391.6574.9333304.9513.8P5 0s3.446.2112.11Y7.26.9141.921.71T7.16.5819.4357.215.1T7.16.5819.4357.215.1T7.16.5819.4357.215.1T7.17.76.5819.43.31.7T7.26.9141.921.71Z7.17.26.61.51.5T7.316.618.73.31.7T7.22.26.13.11.7T7.22.26.13.1 <th></th> <th>SiO₂</th> <th>70,23</th> <th>70,69</th> <th>71,13</th> <th>71,56</th> <th>73,11</th>		SiO ₂	70,23	70,69	71,13	71,56	73,11
Ab 2014,1614,2714,2614,5714,83Per 202,302,242,271,980,04M000,050,030,040,016M000,280,050,040,16Ra 202,252,953,423,022,97Ka 202,953,440,160,98Pa 0s0,280,110,120,190,01Pr 0s0,280,110,120,190,01Pr 0s0,280,110,120,190,01Pr 0s0,280,9499,8799,709,74Na16,78125,7138,5128,90,77Sr391,557,49333304,9513,6Pb5,34.16,21112,17Pb5,34.16,21112,17Pb5,34.16,2112,17Pb5,34.16,2112,17Pb5,34.16,2112,17Pb5,34.16,2112,17Pb7,76,3524,560,55Pb5,34.16,13,331,75Pb5,34.12,1810,30,1Pb5,33.524,55,60,55Pb3,3716,618,73,331,75Pc130,20,10,30,20,1Pc13		TiO ₂	0,41	0,4	0,6	0,21	0,06
Fe: Co.2.392.242.271.950.8MnO0.050.030.050.040.01MO0.990.370.430.16CaO2.211.812.191.61.88Naz O2.952.953.423.022.97Kc O4.945.144.075.675.08Naz O2.952.953.420.010.11P.F.1.10.71.10.50.7Total99.6899.4199.5799.7499.58Rb167.8125.7138.5128.9307.1Ba140.9308.31585128.9305.1Ca4.12.11.11.90.2Pb5.346.21112.1Tr1.82.4.660.5Ta0.40.21.90.3Pb5.34.46.2111Zr179635819.4357.2Ft1.12.11.11.90.2Pb5.34.46.21.1Zr179635819.4357.2Ta0.40.21.90.3Th2.3.716.618.738.4Ta0.40.21.90.3Ta0.40.21.90.3Ta0.40.21.90.3Ta0.40.20.93.4Ta <t< th=""><th></th><th>Al2 O3</th><th>14,18</th><th>14,75</th><th>14,25</th><th>14,57</th><th>14,8</th></t<>		Al2 O3	14,18	14,75	14,25	14,57	14,8
Mno 0.05 0.03 0.05 0.04 0.01 MgO 0.24 0.59 0.57 0.43 0.16 Na2 O 2.25 2.55 3.42 3.02 2.97 KcO 4.94 5.14 4.07 5.67 5.08 P.O 0.28 0.11 0.12 0.19 0.01 P.E 1.1 0.7 1.1 0.55 0.7 Sr 39.68 99.41 99.75 99.74 99.58 Ba 167.8 125.7 138.5 128.9 65.1 Sr 39.15 57.49 33.3 304.9 51.6 P.E 1.1 2.1 1.1 1.1 2.1 Y 7.2 6.9 141.9 2.1 1.1 Y 7.6 3.5 24.5 6 0.5 Ta 0.4 0.2 1.9 0.3 1.1 H 4.9 1.6 1.7 3.4	ô	Fe ₂ O ₃	2,39	2,24	2,27	1,95	0,8
Mg0 0,94 0,59 0,37 0,43 0,16 CaO 2,21 1,81 2,19 1,6 1,88 Nac O 2,95 2,85 3,42 3,02 2,97 Ko O 4,94 5,14 4,07 5,67 5,08 P2 Os 0,28 0,11 0,12 0,19 0,01 P2 Os 0,28 0,11 0,12 0,19 0,01 P4 Os 0,28 0,11 0,12 0,19 0,01 P5 1,1 0,7 1,1 0,5 0,77 Sr 391,5 574,9 333 304,9 513,6 Ba 140,9 383 148 2,1 1,1 2,1 Y 7,2 6,9 141,9 2,1 1 2,1 Y 7,2 6,9 141,9 3,1 2,1 Y 7,2 6,9 141,9 3,1 2,1 Y 7,2 2,2 <th>bes</th> <th>MnO</th> <th>0,05</th> <th>0,03</th> <th>0,05</th> <th>0,04</th> <th>0,01</th>	bes	MnO	0,05	0,03	0,05	0,04	0,01
Ca02.211.812.191.61.88Na2 O2.252.953.423.022.97Ke O4.945.144.075.675.08P2 C0.280.110.120.190.01P.F.1.10.71.10.50.7Total99.6899.4199.5799.7499.58Rb187.8125.7138.5126.9303.5Rb187.8125.7138.5126.9305.8Ca4.12.11.11.90.2Pb5.346.621112.1T173635819.4357.251.1T2.71.76.35819.4357.251.1Th2.3.716.618.736.41U2.72.26.13.10.2Nb7.83.524.560.5Nb7.83.524.560.5Nb7.83.524.560.5Nb7.83.524.560.5Nb7.83.524.560.5Nb7.83.524.560.5Nb7.83.524.560.5Nb7.83.524.560.5Nb7.83.524.54.1Nb6.620.53.63.1Nb6.73.33.64.1<	e	MgO	0,94	0,59	0,37	0,43	0,16
Naz O2,952,953,423,022,97Ko O4,945,144,075,675,08P2 O60,280,110,120,190,01P5 O1100,5799,7499,58Rb167,8125,7138,5128,967,7Sr391,5574,9333304,9513,6Ba14093033158512893068Cs4,12,11,11,90,2Pb5,346,2112,1T79655819,4357,251,1T79635819,4357,251,1Hf4,91821,810,51,5Nb7,63,524,560,5Ta0,40,21,90,30,1T1,2,71,226,13,10,2Ni6,6203,83,420Co4,84,43,63,31,7V2933571411Sc23641W40,50,540,54,3Mo0,20,10,30,20,1Sc23641W40,50,511,1Sc23641W40,50,511,1Sc23641	%)	CaO	2,21	1,81	2,19	1,6	1,88
Ko 0 4,94 5,14 4,07 5,67 5,08 P2 06 0.28 0.11 0.12 0.19 0.01 P.F 1,1 0.7 1,1 0.5 0.7 Total 99,88 99.41 99.53 67.7 Sr 391.5 574.9 333 304.9 513.6 Ba 1409 3083 1585 128.9 67.7 Sr 391.5 574.9 333 304.9 513.6 Ba 1409 3083 1585 128.9 67.7 Y 7.2 6.9 141.9 21.7 1 Zr 179 635 819.4 357.2 51.1 HH 4.9 18 21.8 10.5 1.5 Nb 7.6 3.5 24.5 6 0.5 Ta 0.4 0.2 1.9 0.3 0.1 W 2.7 12.6 3.1 0.2 1.1	sopi	Na ₂ O	2,95	2,95	3,42	3,02	2,97
P2 060.280.110.120.190.01P.F.1.10.71.10.500.7Total99.6899.4199.5799.7499.86Bb167.8125.7138.5128.93089Sr391.5574.9333304.9513.6Ba14093083158512893089Cs4.12.11.11.90.2Pb5.346.21112.1T179635819.4357.251.1H4.91821.810.51.5Nb7.63.524.560.5Nb7.63.524.560.5Nb7.63.524.560.5Nb7.63.524.560.5Nb7.63.524.560.5Nb7.63.524.560.5Nb7.63.524.560.5Nb7.63.524.560.5Nb7.63.524.560.5Nb7.63.524.560.5Nb7.63.524.560.5Nb7.63.524.560.5Nb7.63.73.83.420Nb7.63.33.71.411Nb7.11.10.13.11.1	, Ŏ	K₂ 0	4,94	5,14	4,07	5,67	5,08
P.F. 1,1 0,7 1,1 0,5 0,7 Total 99,68 99,41 99,57 99,74 99,58 Rb 167,8 125,7 138,5 128,9 67,7 Sr Ba 1409 3083 1585 128,9 67,7 Pa 5,3 4 6,2 111 2,1 1 Y 7,2 6,9 141,9 21,7 1 Zr 179 635 819,4 357,2 51,1 Hf 4,9 18 21,8 10,5 1,5 No 7,6 3,5 24,5 6 0,5 Ta 0,4 0,2 1,9 0,3 0,1 W 2,7 2,2 6,1 3,1 0,2 Ni 6,6 20 3,8 3,4 20 Co 4,8 4,4 3,6 3,3 1,7 V 29 33 57 14<		P2 O5	0,28	0,11	0,12	0,19	0,01
Total99,6899,4199,5799,7499,58Rb167,8125,7138,5128,967,7Sr391,5574,9333304,9513,6Ba14093083158512693098Ca41,42,11,11,90,2Pb5,346,2112,1Y7,26,9141,921,71Zr179635819,4357,251,1Mb7,63,524,560,5Ta0,40,21,90,30,1Th23,716,618,736,41U2,72,26,13,10,2Nb7,63,524,560,5Ta0,40,21,90,30,1Th23,716,618,736,41U2,72,26,13,10,2Nb7,63,5303231V2933571411Sc2364U2,72,10,30,2N7,035303231R4111131411Sc236,49,48,2A6,11,10,30,20,1M<0,2		P.F.	1,1	0,7	1,1	0,5	0,7
Rb 167,8 125,7 138,5 128,9 67,7 Sr 391,5 574,9 333 304,9 513,6 Ba 1409 3083 1585 1269 3058 Cs 4,1 2,1 1,1 1,9 0,2 Pb 5,3 4 6,2 11 2,1,7 1 Zr 179 635 819,4 367,2 51,1 H 4,9 18 21,8 10,5 1,5 Nb 7,6 3,5 24,5 6 0,5 Ta 0,4 0,2 1,9 0,3 0,1 U 2,7 2,2 6,1 3,1 0,2 Ni 6,6 20 3,8 3,4 20 Co 4,8 4,4 3,8 3,3 1,7 V 29 33 57 14 11 Ba 0,0 0,5 40,5 40,5 40,5		Total	99,68	99,41	99,57	99,74	99,58
Sr 391,5 574,9 333 304,9 513,6 Ba 1409 3083 1585 1269 3058 Cs 4,1 2,1 1,1 1,9 0,2 Pb 5,3 4 6,2 11 2,1 Pb 5,3 4 6,2 11 2,1 T 179 635 819,4 357,2 51,1 Hf 4,9 18 21,8 10,5 1,5 Nb 7,6 3,5 24,5 6 0,5 Ta 0,4 0,2 1,9 0,3 0,1 W 2,7 2,2 6,1 3,1 0,2 Ni 6,6 20 3,8 3,4 20 Co 4,8 4,4 3,6 3,3 1,7 V 29 33 57 14 11 W <0,5 0,5 <0,5 0,5 0,5 Zn </th <th></th> <th>Rb</th> <th>167,8</th> <th>125,7</th> <th>138,5</th> <th>128,9</th> <th>67,7</th>		Rb	167,8	125,7	138,5	128,9	67,7
Ba 1409 3083 1585 1289 3058 Cs 4,1 2,1 1,1 1,9 0.2 Pb 5,3 4 6,2 11 2,1 Y 7,2 6,9 141,9 21,7 1 Y 7,2 6,9 141,9 21,7 1 H 4,9 18 21,8 10,5 1,5 Nb 7,6 3,5 24,5 6 0,5 Ta 0,4 0,2 1,9 0,3 0,1 Th 23,7 16,6 18,7 36,4 1 U 2,7 2,2 6,1 3,1 0,2 N 6,6 20 3,8 3,4 20 Co 4,8 4,4 3,6 3,3 1,7 V 29 33 57 14 11 Sc 2 3 6 4 1 1 Sc <th></th> <th>Sr</th> <th>391,5</th> <th>574,9</th> <th>333</th> <th>304,9</th> <th>513,6</th>		Sr	391,5	574,9	333	304,9	513,6
Cs 4,1 2,1 1,1 1,9 0,2 Pb 5,3 4 6,2 11 2,1 Y 7,2 6,9 141,9 21,7 1 Zr 179 635 819,4 357,2 51,1 Hf 4,9 18 21,8 10,5 5 Nb 7,6 3,5 24,5 6 0,5 Ta 0,4 0,2 1,9 0,3 0,1 Th 23,7 16,6 18,7 36,4 1 U 2,7 2,2 6,1 3,1 0,2 Co 4,8 2 4,3 36 3,3 1,7 V 29 33 57 14 11 Sc 2 3 6 4 1 W <0,5		Ва	1409	3083	1585	1269	3058
Pb 5,3 4 6,2 11 2,1 Y 7,2 6,9 141,9 21,7 1 Zr 179 635 819,4 357,2 51,1 H 4,9 18 21,8 10,5 1,5 Nb 7,6 3,5 24,5 6 0,5 Ta 0,4 0,2 1,9 0,3 0,1 U 2,7 2,2 6,1 3,1 0,2 Ni 6,6 20 3,8 3,4 20 Co 4,8 4,4 3,6 3,3 1,7 V 29 33 57 14 11 Sc 2 3 6 4 1 W <0.5 0,5 <0.5 <0.5 0,5 Zn 35 30 32 31 8 Cu 2,8 6,4 9,4 8,2 4,3 Mo 0,2		Cs	4,1	2,1	1,1	1,9	0,2
Y 7.2 6.9 141.9 21.7 1 Zr 179 635 819.4 357.2 51,1 Hf 4.9 18 21.8 10,5 1,5 Nb 7.6 3.5 24.5 6 0.5 Ta 0.4 0.2 1,9 0.3 0,1 Th 23.7 16.6 18.7 36.4 1 U 2.7 2.2 6.1 3.1 0.2 Ni 6.6 20 3.8 3.4 20 Co 4.8 4.4 3.6 3.3 1.7 V 29 33 57 14 11 Sc 2 3 6 4 1 W <0.5 0.5 <0.5 0.5 0.5 Zn 35 30 32 31 8 Cu 2.8 6.4 9.4 8.2 4.3 Mo 0.2<		Pb	5,3	4	6,2	11	2,1
Zr 179 0.10 0.10 0.10 0.10 Hf 4,9 18 21,8 10,5 1,5 Nb 7,6 3,5 24,5 6 0,5 Ta 0,4 0,2 1,9 0,3 0,1 Th 23,7 16,6 18,7 36,4 1 U 2,7 2,2 6,1 3,1 0,2 Ni 6,6 20 3,8 3,4 20 Co 4,8 4,4 3,6 3,3 1,7 V 29 33 57 14 11 Sc 2 3 6 4 1 W <0.5 0,5 <0.5 0,5 0,5 Zn 35 30 32 31 8 Cu 2,8 6,4 9,4 8,2 4,3 Mo 0,2 0,1 0,3 0,2 0,1 Sn <1 <th></th> <th>Y</th> <th>7,2</th> <th>6,9</th> <th>, 141,9</th> <th>21,7</th> <th>1</th>		Y	7,2	6,9	, 141,9	21,7	1
Hf 4.9 1.1 1.1 0.1 Nb 7,6 3,5 24,5 6 0,5 Ta 0,4 0,2 1,9 0,3 0,1 Th 23,7 16,6 18,7 36,4 1 U 2,7 2,2 6,1 3,1 0,2 Ni 6,6 20 3,8 3,4 20 Co 4,8 4,4 3,6 3,3 1,7 V 29 3 57 14 11 Sc 2 3 6 4 1 W <0.5 0.5 <0.5 <0.5 0.5 Zn 35 30 32 31 8 Cu 2.8 6,4 9,4 8.2 4.3 Mo 0,2 0,1 0,3 0,2 0,1 Sn <1 1 4 1 1 Go Ag <0.1 <t< th=""><th></th><th>Zr</th><th>179</th><th>635</th><th>819.4</th><th>357.2</th><th>51.1</th></t<>		Zr	179	635	819.4	357.2	51.1
Nb 7.6 3.5 24.5 6 0.5 Ta 0.4 0.2 1.9 0.3 0.1 Th 23.7 16.6 18.7 36.4 1 U 2.7 2.2 6.1 3.1 0.2 Ni 6.6 20 3.8 3.4 20 Co 4.8 4.4 3.6 3.3 1.7 V 29 33 57 14 11 W <0.5 0.5 <0.5 0.5 0.5 Zn 35 30 32 31 8 Cu 2.8 6.4 9.4 8.2 4.3 Mo 0.2 0.1 0.3 0.2 0.1 Go Ag <0.1 0.1 4.1 1.9 Go Ag <0.1 0.1 0.1 1.1 Go Ag <0.1 0.1 0.1 1.1 Go		Hf	4.9	18	21.8	10.5	1.5
Pine 1.1. 2.1.0 0 0 0.03 Ta 0.4 0.2 1.9 0.3 0.1 Th 23.7 16.6 18.7 36.4 1 U 2.7 2.2 6.1 3.1 0.2 Ni 6.6 20 3.8 3.4 20 Co 4.8 4.4 3.6 3.3 1.7 V 29 33 57 144 11 Sc 2 3 6 4 1 W <0.5 0.5 <0.5 <0.5 0.5 Zn 35 30 32 31 8 Cu 2.8 0.1 0.3 0.2 0.1 Sn <1 1 4 <1 1 Ga 15 13.9 15.1 14.1 1 Ga 15 13.9 15.1 14.1 1.1 Ga 15	Ê	Nb	7.6	3.5	24.5	6	0.5
PerformDiracDiracDiracDiracDiracTh23.716.618.736.41U2.72.26.13.10.2Ni6.6203.83.420Co4.84.43.63.31.7V2933571411Sc23641W<0.50.5<0.5<0.50.5Zn353032318Cu2.86.49.48.24.3Mo0.20.10.30.20.1GoAg<0.114<11Ga1513.915.114.111.9Ag<0.10.1<0.1<0.10.10.1Au<0.50.511.1.10.5Au<0.50.511.4.111.9Au<0.50.511.4.111.9Au<0.50.511.4.114.7Pr5.1120.331.1310.50.83Nd16.562.5125.535.42.6Sm1.965.5622.415.870.36Eu0.761.116.421.10.62Gd1.222.4525.234.580.16Dy1.031.0723.0940.21Ho0.120.122.480.31 </th <th>(ppr</th> <th>Та</th> <th>0.4</th> <th>0.2</th> <th>1.9</th> <th>0.3</th> <th>0.1</th>	(ppr	Та	0.4	0.2	1.9	0.3	0.1
Part Los Los Los Los Los U 2,7 2,2 6,1 3,1 0,2 Ni 6,6 20 3,8 3,4 20 Co 4,8 4,4 3,6 3,3 1,7 V 29 33 57 14 11 Sc 2 3 6 4 1 W <0.5 0,5 <0.5 <0.5 0,5 Zn 35 30 32 31 8 Cu 2,8 6,4 9,4 8,2 4,3 Mo 0,2 0,1 0,3 0,2 0,1 Ga 15 13,9 15,1 14,1 11,9 Ag <0.1 0,1 <0.1 <0.1 0,1 Au <0.5 1 1,1 0,5 2,8 Mi 6.5 0,5 1 1,1 0,2 Ag <0.1<	ŝ	Th	23.7	16.6	18.7	36.4	1
Ni 6,6 20 3,8 3,4 20 Ni 6,6 20 3,8 3,4 20 Co 4,8 4,4 3,6 3,3 1,7 V 29 33 57 14 11 Sc 2 3 6 4 1 W <0.5	s-tra	 U	27	2.2	6.1	3.1	0.2
Participan No. Lo. A.8 A.4 A.6 A.7 Lo. V 29 33 57 14 11 Sc 2 3 6 4 1 W <0.5 0.5 <0.5 <0.5 0.5 Zn 35 30 32 31 8 Cu 2.8 6.4 9.4 8.2 4.3 Mo 0.2 0.1 0.3 0.2 0.1 Sn <1 1 4 <1 1 Ga 15 13.9 15.1 14.1 1.9 Ga 15 13.9 15.1 14.1 1.9 Ga 15 13.9 15.1 14.1 14.7 F Ag <0.1 <0.1 <0.1 <0.1 Au <0.5 0.5 1 1.1 <0.5 Ga 1.2 2.45 125.5 35.4 2.6	ntos	Ni	66	2,2	3.8	3.4	20
B C A,0 A,4 C,0 C,0 C,1 V 29 33 57 14 11 Sc 2 3 6 4 1 W <0.5 0.5 <0.5 <0.5 <0.5 Zn 35 30 32 31 8 Cu 2.8 6.4 9.4 8.2 4.3 Mo 0.2 0.1 0.3 0.2 0.1 Sn< <1 1 4 <1 1 Ga 15 13.9 15.1 14.1 11.9 Ga 15 13.9 15.1 14.1 11.9 Ag <0.1 0.1 <0.1 <0.1 0.1 Au <0.5 0.5 1 1.1 0.5 La 33.9 123.4 147.2 55.2 4.9 Ce 56.3 231.1 128.4 114 14.7	eme		4.8	4.4	3.6	33	17
K 23 33 61 14 11 Sc 2 3 6 4 1 W <0.5 0.5 <0.5 <0.5 0.5 Zn 35 30 32 31 8 Cu 2.8 6.4 9.4 8.2 4.3 Mo 0.2 0.1 0.3 0.2 0.1 Sn <1 1 4 <1 1 Ga 15 13.9 15.1 14.1 11.9 Ag <0.1 0.1 <0.1 <0.1 0.1 Ag <0.1 0.1 <0.1 <0.1 0.1 Ag <0.1 0.1 <0.1 <0.1 0.1 Ag <0.1 0.1 <0.1 <0.1 <0.1 Au <0.5 1 1.1 <0.5 <0.5 La 33.9 123.4 147.2 55.2 4.9 Ce	ă	v	-,0 20	33	57	1/	1,7
Sc 2 3 0 4 1 W <0.5 0.5 <0.5 <0.5 0.5 Zn 35 30 32 31 8 Cu 2,8 6,4 9,4 8,2 4,3 Mo 0,2 0,1 0,3 0,2 0,1 Sn <1 1 4 <1 1 Ge Ag <0.1 0,1 <0.1 0,1 Au <0.5 0,5 1 1,1 0,5 Au <0.5 0,5 1 1,1 0,5 Au <0.5 0,5 1 1,1 0,5 Ce 56,3 231,1 128,4 114 14,7 Pr 5,11 20,3 3,13 10,5 0,83 Nd 16,5 62,5 125,5 35,4 2,6 Sm 1,96 5,56 22,41 5,87 0,33 Dy		• •	23	33	57	14	1
V 20.3 0.3 20.		w	-0.5	0.5	-0.5	-0.5	0.5
Em 3.3 3.0 3.2 3.1 6 Cu 2,8 6,4 9,4 8,2 4,3 Mo 0,2 0,1 0,3 0,2 0,1 Sn <1 1 4 <1 1 Ga 15 13,9 15,1 14,1 11,9 Ag <0.1		70	<0.5 25	0,5	<0.0	<0.5	0,5
Feature 2,8 6,4 9,4 8,2 4,3 Mo 0,2 0,1 0,3 0,2 0,1 Sn <1 1 4 <1 1 Ga 15 13,9 15,1 14,1 11,9 Ag <0.1 0,1 <0.1 <0.1 0,1 Au <0.5 0,5 1 1,1 0,5 La 33,9 123,4 147,2 55,2 4,9 Ce 56,3 231,1 128,4 114 14,7 Pr 5,11 20,3 31,13 10,5 0,83 Nd 16,5 62,5 125,5 35,4 2,6 Sm 1,96 5,56 22,41 5,87 0,36 Eu 0,76 1,11 6,42 1,1 0,62 Gd 1,22 2,45 25,23 4,58 0,16 Tb 0,19 0,28 4,02 0,78 0,		20	35	30	32	31	0
Mo 0,2 0,1 0,3 0,2 0,1 Sn <1 1 4 <1 1 Ga 15 13,9 15,1 14,1 11,9 Ag <0.1 0,1 <0.1 <0.1 0,1 Au <0.5 0,5 1 1,1 0,5 La 33,9 123,4 147,2 55,2 4,9 Ce 56,3 231,1 128,4 114 14,7 Pr 5,11 20,3 31,13 10,5 0,83 Nd 16,5 62,5 125,5 35,4 2,6 Sm 1,96 5,56 22,41 5,87 0,36 Eu 0,76 1,11 6,42 1,1 0,62 Gd 1,22 2,45 25,23 4,58 0,16 Tb 0,19 0,28 4,02 0,78 0,03 Dy 1,03 1,07 2,309 4 0,21		Cu	2,8	6,4	9,4	8,2	4,3
Sn <1		MO	0,2	0,1	0,3	0,2	0,1
Ga 15 13,9 15,1 14,1 11,9 Ag <0.1 0,1 <0.1 <0.1 <0.1 0,1 Au <0.5 0,5 1 1,1 0,5 La 33,9 123,4 147,2 55,2 4,9 Ce 56,3 231,1 128,4 114 14,7 Pr 5,11 20,3 31,13 10,5 0,83 Nd 16,5 62,5 125,5 35,4 2,6 Sm 1,96 5,56 22,41 5,87 0,36 Eu 0,76 1,11 6,42 1,1 0,62 Gd 1,22 2,45 25,23 4,58 0,16 Tb 0,19 0,28 4,02 0,78 0,03 Dy 1,03 1,07 23,09 4 0,21 Ho 0,22 0,19 5,04 0,77 0,03 Er 0,72 0,67 15,77 <th></th> <th>Sn</th> <th><1</th> <th>1</th> <th>4</th> <th><1</th> <th>1</th>		Sn	<1	1	4	<1	1
Ag 40,1 0,1 40,1 40,1 0,1 Au <0.5 0,5 1 1,1 0,5 La 33,9 123,4 147,2 55,2 4,9 Ce 56,3 231,1 128,4 114 14,7 Pr 5,11 20,3 31,13 10,5 0,83 Nd 16,5 62,5 125,5 35,4 2,6 Sm 1,96 5,56 22,41 5,87 0,36 Eu 0,76 1,11 6,42 1,1 0,62 Gd 1,22 2,45 25,23 4,58 0,16 Tb 0,19 0,28 4,02 0,78 0,03 Dy 1,03 1,07 23,09 4 0,21 Ho 0,22 0,19 5,04 0,77 0,03 Er 0,72 0,67 15,77 2,18 0,09 Tm 0,12 0,12 2,48 0,31<		Ga	15	13,9	15,1	14,1	11,9
Ku <0.5	qdd	Ag	<0.1	0,1	<0.1	<0.1	0,1
La 33,9 123,4 147,2 55,2 4,9 Ce 56,3 231,1 128,4 114 14,7 Pr 5,11 20,3 31,13 10,5 0,83 Nd 16,5 62,5 125,5 35,4 2,6 Sm 1,96 5,56 22,41 5,87 0,36 Eu 0,76 1,11 6,42 1,1 0,62 Gd 1,22 2,45 25,23 4,58 0,16 Tb 0,19 0,28 4,02 0,78 0,03 Dy 1,03 1,07 23,09 4 0,21 Ho 0,22 0,19 5,04 0,77 0,03 Er 0,72 0,67 15,77 2,18 0,09 Tm 0,12 0,12 2,48 0,31 0,02 Yb 0,86 0,89 16,37 1,86 0,11 Lu 0,16 2,64 0,31	=	Au	<0.5	0,5	1	1,1	0,5
Ce 56,3 231,1 128,4 114 14,7 Pr 5,11 20,3 31,13 10,5 0,83 Nd 16,5 62,5 125,5 35,4 2,6 Sm 1,96 5,56 22,41 5,87 0,36 Eu 0,76 1,11 6,42 1,1 0,62 Gd 1,22 2,45 25,23 4,58 0,16 Tb 0,19 0,28 4,02 0,78 0,03 Dy 1,03 1,07 23,09 4 0,21 Ho 0,22 0,19 5,04 0,77 0,03 Er 0,72 0,67 15,77 2,18 0,09 Tm 0,12 0,12 2,48 0,31 0,02 Yb 0,86 0,89 16,37 1,86 0,11 Lu 0,16 0,16 2,64 0,31 0,02 Kb 0,80 0,82 0,80 <		La	33,9	123,4	147,2	55,2	4,9
Pr 5,11 20,3 31,13 10,5 0,83 Nd 16,5 62,5 125,5 35,4 2,6 Sm 1,96 5,56 22,41 5,87 0,36 Eu 0,76 1,11 6,42 1,1 0,62 Gd 1,22 2,45 25,23 4,58 0,16 Tb 0,19 0,28 4,02 0,78 0,03 Dy 1,03 1,07 23,09 4 0,21 Ho 0,22 0,19 5,04 0,77 0,03 Er 0,72 0,67 15,77 2,18 0,09 Tm 0,12 0,12 2,48 0,31 0,02 Yb 0,86 0,89 16,37 1,86 0,11 Lu 0,16 0,16 2,64 0,31 0,02 Fre Ot 0,70 0,77 0,85 0,80 0,82 K2 O/Na2 O 1,67 1,74 1,19 <th></th> <th>Ce</th> <th>56,3</th> <th>231,1</th> <th>128,4</th> <th>114</th> <th>14,7</th>		Ce	56,3	231,1	128,4	114	14,7
Nd 16,5 62,5 125,5 35,4 2,6 Sm 1,96 5,56 22,41 5,87 0,36 Eu 0,76 1,11 6,42 1,1 0,62 Gd 1,22 2,45 25,23 4,58 0,16 Tb 0,19 0,28 4,02 0,78 0,03 Dy 1,03 1,07 23,09 4 0,21 Ho 0,22 0,19 5,04 0,77 0,03 Er 0,72 0,67 15,77 2,18 0,09 Tm 0,12 0,12 2,48 0,31 0,02 Yb 0,86 0,89 16,37 1,86 0,11 Lu 0,16 0,16 2,64 0,31 0,02 FFe Ot 0,70 0,77 0,85 0,80 0,82 Kb/Sr 0,43 0,22 0,42 0,13 0,71 Rb/Ba 0,12 0,04 0.09		Pr	5,11	20,3	31,13	10,5	0,83
Sm 1,96 5,56 22,41 5,87 0,36 Eu 0,76 1,11 6,42 1,1 0,62 Gd 1,22 2,45 25,23 4,58 0,16 Tb 0,19 0,28 4,02 0,78 0,03 Dy 1,03 1,07 23,09 4 0,21 Ho 0,22 0,19 5,04 0,77 0,03 Er 0,72 0,67 15,77 2,18 0,09 Tm 0,12 0,12 2,48 0,31 0,02 Yb 0,86 0,89 16,37 1,86 0,11 Lu 0,16 0,16 2,64 0,31 0,02 Fre Ot 0,70 0,77 0,85 0,80 0,82 K2 O/Na2 O 1,67 1,74 1,19 1,88 1,71 Rb/Sr 0,43 0,22 0,42 0,13 0,02 Sr/Ba 0,28 0,19 0,2		Nd	16,5	62,5	125,5	35,4	2,6
Eu 0,76 1,11 6,42 1,1 0,62 Gd 1,22 2,45 25,23 4,58 0,16 Tb 0,19 0,28 4,02 0,78 0,03 Dy 1,03 1,07 23,09 4 0,21 Ho 0,22 0,19 5,04 0,77 0,03 Er 0,72 0,67 15,77 2,18 0,09 Tm 0,12 0,12 2,48 0,31 0,02 Yb 0,86 0,89 16,37 1,86 0,11 Lu 0,16 0,16 2,64 0,31 0,02 Er totais 119,05 449,8 555,7 236,86 24,68 FeOr MgO 0,70 0,77 0,85 0,80 0,82 K2 O/Na2 O 1,67 1,74 1,19 1,88 1,71 Rb/Sr 0,43 0,22 0,42 0,13 0,02 Sr/Ba 0,28		Sm	1,96	5,56	22,41	5,87	0,36
Gd 1,22 2,45 25,23 4,58 0,16 Tb 0,19 0,28 4,02 0,78 0,03 Dy 1,03 1,07 23,09 4 0,21 Ho 0,22 0,19 5,04 0,77 0,03 Er 0,72 0,67 15,77 2,18 0,09 Tm 0,12 0,12 2,48 0,31 0,02 Yb 0,86 0,89 16,37 1,86 0,11 Lu 0,16 0,16 2,64 0,31 0,02 Er totais 119,05 449,8 555,7 236,86 24,68 K2 O/Na2 O 1,67 1,74 1,19 1,88 1,71 Rb/Sr 0,43 0,22 0,42 0,42 0,13 K2 O/Na2 O 1,67 1,74 1,19 1,88 1,71 Rb/Sr 0,43 0,22 0,42 0,42 0,13 Kb/Ba 0,12 0,04		Eu	0,76	1,11	6,42	1,1	0,62
Tb 0,19 0,28 4,02 0,78 0,03 Dy 1,03 1,07 23,09 4 0,21 Ho 0,22 0,19 5,04 0,77 0,03 Er 0,72 0,67 15,77 2,18 0,09 Tm 0,12 0,12 2,48 0,31 0,02 Yb 0,86 0,89 16,37 1,86 0,11 Lu 0,16 0,16 2,64 0,31 0,02 Er totais 119,05 449,8 555,7 236,86 24,68 K2 O/Naz O 1,67 1,74 1,19 1,88 1,71 Rb/Sr 0,43 0,22 0,42 0,42 0,13 Rb/Ba 0,12 0,04 0,09 0,10 0,02 Sr/Ba 0,28 0,19 0,21 0,24 0,17 Rb/Sr 0,43 0,22 0,43 0,66 20,01 30,03 Eu/Eu* 1,51	£	Gd	1,22	2,45	25,23	4,58	0,16
Dy 1,03 1,07 23,09 4 0,21 Ho 0,22 0,19 5,04 0,77 0,03 Er 0,72 0,67 15,77 2,18 0,09 Tm 0,12 0,12 2,48 0,31 0,02 Yb 0,86 0,89 16,37 1,86 0,11 Lu 0,16 0,16 2,64 0,31 0,02 ETR totais 119,05 449,8 555,7 236,86 24,68 FeOt MgO 0,70 0,77 0,85 0,80 0,82 Kz O/Naz O 1,67 1,74 1,19 1,88 1,71 Rb/Sr 0,43 0,22 0,42 0,42 0,13 Rb/Ba 0,12 0,04 0,09 0,10 0,02 Sr/Ba 0,28 0,19 0,21 0,24 0,17 Rb/Ba 0,12 0,04 0,09 0,10 0,02 Sr/Ba 0,28<	Ш	Tb	0,19	0,28	4,02	0,78	0,03
Ho 0,22 0,19 5,04 0,77 0,03 Er 0,72 0,67 15,77 2,18 0,09 Tm 0,12 0,12 2,48 0,31 0,02 Yb 0,86 0,89 16,37 1,86 0,11 Lu 0,16 0,16 2,64 0,31 0,02 ETR totais 119,05 449,8 555,7 236,86 24,68 FeOt/MgO +FeOt 0,70 0,77 0,85 0,80 0,82 K2 O/Naz O 1,67 1,74 1,19 1,88 1,71 Rb/Sr 0,43 0,22 0,42 0,42 0,13 Rb/Ba 0,12 0,04 0,09 0,10 0,02 Sr/Ba 0,28 0,19 0,21 0,24 0,17 (La/Yb)N 26,58 93,48 6,06 20,01 30,03 Eu/Eu* 1,51 0,92 0,83 0,65 7,94 Th/La 0,7		Dy	1,03	1,07	23,09	4	0,21
Er 0,72 0,67 15,77 2,18 0,09 Tm 0,12 0,12 2,48 0,31 0,02 Yb 0,86 0,89 16,37 1,86 0,11 Lu 0,16 0,16 2,64 0,31 0,02 ETR totais 119,05 449,8 555,7 236,86 24,68 Fe0.rMg0 +Fe0t 0,70 0,77 0,85 0,80 0,82 K2 ONAz O 1,67 1,74 1,19 1,88 1,71 Rb/Sr 0,43 0,22 0,42 0,13 0,02 Sr/Ba 0,12 0,04 0,09 0,10 0,02 Sr/Ba 0,28 0,19 0,21 0,24 0,13 Rb/Ba 0,12 0,04 0,09 0,10 0,02 Sr/Ba 0,28 93,48 6,06 20,01 30,03 Eu/Eu* 1,51 0,92 0,83 0,65 7,94 Th/La 0,70<		Ho _	0,22	0,19	5,04	0,77	0,03
Tm 0,12 0,12 2,48 0,31 0,02 Yb 0,86 0,89 16,37 1,86 0,11 Lu 0,16 0,16 2,64 0,31 0,02 ETR totais 119,05 449,8 555,7 236,86 24,68 FeO:/MgO +FeOt 0,70 0,77 0,85 0,80 0,82 K2 O/Na2 O 1,67 1,74 1,19 1,88 1,71 Rb/Sr 0,43 0,22 0,42 0,13 Rb/Ba 0,12 0,04 0,09 0,10 0,02 Sr/Ba 0,28 0,19 0,21 0,24 0,17 (La/Yb)N 26,58 93,48 6,06 20,01 30,03 Eu/Eu* 1,51 0,92 0,83 0,65 7,94 Th/La 0,70 0,13 0,13 0,66 0,20 Zr/Yb 208,14 713,48 50.05 192.04 464.55		Er	0,72	0,67	15,77	2,18	0,09
Yb 0,86 0,89 16,37 1,86 0,11 Lu 0,16 0,16 2,64 0,31 0,02 ETR totais 119,05 449,8 555,7 236,86 24,68 FeO: Mg0 +FeOt 0,70 0,77 0,85 0,80 0,82 K2 O/Na2 O 1,67 1,74 1,19 1,88 1,71 Rb/Sr 0,43 0,22 0,42 0,42 0,13 Rb/Ba 0,12 0,04 0,09 0,10 0,02 Sr/Ba 0,28 0,19 0,21 0,24 0,17 (La/Yb)N 26,58 93,48 6,06 20,01 30,03 Eu/Eu* 1,51 0,92 0,83 0,65 7,94 Th/La 0,70 0,13 0,13 0,66 0,20 Zr/Yb 208,14 713,48 50.05 192.04 464.55		Tm	0,12	0,12	2,48	0,31	0,02
Lu 0,16 0,16 2,64 0,31 0,02 ETR totais 119,05 449,8 555,7 236,86 24,68 FeO: MgO +FeO: 0,70 0,77 0,85 0,80 0,82 K2 O/Na2 O 1,67 1,74 1,19 1,88 1,71 Rb/Sr 0,43 0,22 0,42 0,42 0,13 Rb/Ba 0,12 0,04 0,09 0,10 0,02 Sr/Ba 0,28 0,19 0,21 0,24 0,17 (La/Yb)N 26,58 93,48 6,06 20,01 30,03 Eu/Eu* 1,51 0,92 0,83 0,65 7,94 Th/La 0,70 0,13 0,13 0,66 0,20		Yb	0,86	0,89	16,37	1,86	0,11
ETR totais 119,05 449,8 555,7 236,86 24,68 FeO./MgO +FeOt 0,70 0,77 0,85 0,80 0,82 K2 O/Naz O 1,67 1,74 1,19 1,88 1,71 Rb/Sr 0,43 0,22 0,42 0,42 0,13 Rb/Ba 0,12 0,04 0,09 0,10 0,02 Sr/Ba 0,28 0,19 0,21 0,24 0,17 (La/Yb)N 26,58 93,48 6,06 20,01 30,03 Eu/Eu* 1,51 0,92 0,83 0,65 7,94 Th/La 0,70 0,13 0,13 0,66 0,20		Lu	0,16	0,16	2,64	0,31	0,02
FeO: /MgO +FeOt 0,70 0,77 0,85 0,80 0,82 K2 O/Na2 O 1,67 1,74 1,19 1,88 1,71 Rb/Sr 0,43 0,22 0,42 0,42 0,13 Rb/Ba 0,12 0,04 0,09 0,10 0,02 Sr/Ba 0,28 0,19 0,21 0,24 0,17 (La/Yb)N 26,58 93,48 6,06 20,01 30,03 Eu/Eu* 1,51 0,92 0,83 0,65 7,94 Th/La 0,70 0,13 0,13 0,66 0,20 Zr/Yb 208,14 713,48 50.05 192.04 464.55		ETR totais	119,05	449,8	555,7	236,86	24,68
K2 O/Na2 O 1,67 1,74 1,19 1,88 1,71 Rb/Sr 0,43 0,22 0,42 0,42 0,13 Rb/Ba 0,12 0,04 0,09 0,10 0,02 Sr/Ba 0,28 0,19 0,21 0,24 0,17 (La/Yb)N 26,58 93,48 6,06 20,01 30,03 Eu/Eu* 1,51 0,92 0,83 0,65 7,94 Th/La 0,70 0,13 0,13 0,66 0,20 Zr/Yb 208,14 713,48 50.05 192.04 464.55		re∪t/MgO +FeΩ+	0,70	0,77	0,85	0,80	0,82
Rb/Sr 0,43 0,22 0,42 0,42 0,13 Rb/Ba 0,12 0,04 0,09 0,10 0,02 Sr/Ba 0,28 0,19 0,21 0,24 0,17 (La/Yb)N 26,58 93,48 6,06 20,01 30,03 Eu/Eu* 1,51 0,92 0,83 0,65 7,94 Th/La 0,70 0,13 0,13 0,66 0,20 Zr/Yb 208,14 713,48 50.05 192.04 464.55		K ₂ O/Na ₂ O	1,67	1,74	1,19	1,88	1,71
Rb/Ba 0,12 0,04 0,09 0,10 0,02 Sr/Ba 0,28 0,19 0,21 0,24 0,17 (La/Yb)N 26,58 93,48 6,06 20,01 30,03 Eu/Eu* 1,51 0,92 0,83 0,65 7,94 Th/La 0,70 0,13 0,13 0,66 0,20 Zr/Yb 208,14 713,48 50.05 192.04 464.55		Rb/Sr	0,43	0,22	0,42	0,42	0,13
Sr/Ba 0,28 0,19 0,21 0,24 0,17 (La/Yb)N 26,58 93,48 6,06 20,01 30,03 Eu/Eu* 1,51 0,92 0,83 0,65 7,94 Th/La 0,70 0,13 0,13 0,66 0,20 Zr/Yb 208,14 713,48 50.05 192.04 464.55	S	Rb/Ba	0,12	0,04	0,09	0,10	0,02
Lag Lag <thlag< th=""> <thlag< th=""> <thlag< th=""></thlag<></thlag<></thlag<>	azõe	Sr/Ba	0,28	0,19	0,21	0,24	0,17
Eu/Eu* 1,51 0,92 0,83 0,65 7,94 Th/La 0,70 0,13 0,13 0,66 0,20 Zr/Yb 208,14 713,48 50.05 192.04 464.55	R	(La/Yb)N	26.58	93.48	6,06	20.01	30.03
Th/La 0,70 0,13 0,13 0,66 0,20 Zr/Yb 208,14 713,48 50.05 192.04 464.55		Eu/Eu*	1,51	0,92	0,83	0,65	7,94
Zr/Yb 208,14 713,48 50.05 192.04 464.55		Th/La	0.70	0.13	0.13	0.66	0.20
		Zr/Yb	208,14	713,48	50,05	192,04	464,55

		NR-14A	NR-16B	NR-13B	NR-35A	AD-02	LB-59	NR-46A	AD-16B	AD-09
Amo	stras	Enc. Bt-hbl dio	Enc. Bt-hbl qtz-dio	Enc. Bt-hbl qtz-dio		Bt gnd	Ep-bt mzgra		Bt mzgra	Bt mzgra
	SiO ₂	49,7	54,79	55,71	63,18	63,29	63,32	65,49	65,62	68,5
	TiO ₂	1,48	1,05	0,87	1,1	0,8	0,79	0,76	0,77	0,44
	Al2 O3	17,03	15,74	14	16,1	16,52	16,18	14,65	16,01	14,4
ŝ	Fe 2 O3	11,19	8,68	9,13	5,56	4,73	4,36	4,85	3,87	3,05
pesc	MnO	0,25	0,2	0,21	0,11	0,08	0,08	0,07	0,08	0,08
E H	MgO	3,66	4,33	6,01	1,12	1,39	1,83	2,61	1,13	1,16
%)	CaO	9,8	8,43	7,94	4,73	4,36	5,3	4,39	2,91	3,05
sop	Na ₂ O	3,62	3,9	2,97	3,54	4,25	3,57	3,17	3,9	3,17
Óxii	K₂ 0	0,65	1,2	1,47	2,71	3,15	3	2,05	4,2	4,37
	P2 O5	1,26	0,74	0,47	0,72	0,57	0,42	0,51	0,48	0,26
	P.F.	1	0,6	0,8	0,7	0,5	0,7	1,1	0,7	1,3
	Total	99,64	99,67	99,66	99,57	99,64	99,55	99,66	99,67	99,79
	Rb	16,4	39,9	38,3	98,6	113,8	107,9	98,5	136,1	120,9
	Sr	881,2	504,3	470,2	399,2	514,7	605,8	583,9	411,4	377,4
	Ba	285	467	667	1075	1222	1215	428	1392	806
	Cs	2,1	1,3	0,5	2,7	3,8	2,3	4,4	3,1	5
	Pb	1	1,3	1,3	3,4	4,4	10,2	6	4,8	4,9
	Y	70,9	38,3	36,4	48,3	31,5	23,7	32,4	20,1	16,5
	Zr	795,6	142,4	122	1010,3	470,1	551,3	633,3	511,5	534,5
	Hf	16,8	3,9	3,3	26,5	12	15,5	16,6	14,7	15,7
ί.	Nb	14	15,8	7,1	24,1	20,2	13,5	17,4	17,4	13,2
dd)	Та	0,8	1,1	0,3	1,6	1,7	0,6	1	1,1	1,2
raço	Th	1,2	1,2	2	7,8	13,7	41,8	33	16,7	19,9
os-ti	U	0,5	0,8	0,8	7,6	5,1	2,5	4,6	4,1	4,6
ento	Ni	3,6	61	45	20	20	20	25,6	7	12,5
llem	Co	22,5	28,7	29,1	8,4	9,2	11	14,6	7,9	7,2
	v	227	171	185	53	61	86	115	54	56
	Sc	43	29	31	10	13	15	17	18	10
	w	1,3	<0,5	<0,5	1,6	1,9	0,7	<0.5	<0.5	2,1
	Zn	46	44	46	68	62	47	60	60	41
	Cu	72,2	75,6	97,4	23,9	45,8	6,7	12,1	17,7	15,3
	Мо	0,9	<0,1	0,1	0,2	0,4	0,3	<0.1	0,4	0,2
	Sn	2	4	2	2	2	1	2	2	1
	Ga	19,9	18,4	16,1	19,4	19,5	16,3	17,7	19	15,1
(q	Ag	<0.1	<0,1	<0,1	0,1	0,1	0,1	<0.1	0,4	<0.1
ld)	Au	1,9	<0,5	<0,5	0,5	0,5	0,5	<0.5	<0.5	0,8
	La	45,3	39,2	32,8	43,5	49,4	116,1	102,5	66,2	60,1
	Ce	117,5	108,8	84,9	93	106,1	228,5	217,3	136,7	108,7
	Pr	16,8	13,95	9,94	10,76	12,41	22,31	20,77	13,03	10,47
	Nd	79,1	54,6	40	41,5	44,9	66,5	70	45,8	36,4
	Sm	16,46	9,43	1,11	8,33	7,71	8,49	10,64	6,8	5,37
	Eu	4,45	2,13	1,62	3,04	2,05	1,54	1,77	1,78	0,96
£۲	Ga	15,71	7,02	6,39	7,07	6	5,1	7,93	4,97	3,59
Ξ		2,37	5.07	6.24	6.96	0,94	0,70	6.24	3.02	3,09
	by Ho	2.54	1.25	1.26	0,90	4,50	0.75	0,24	0.73	0.61
	Fr	7 35	3.84	3.69	4.87	3.04	2 27	3.49	22	1.85
	Tm	0.99	0.6	0.57	0.76	0.45	0.36	0,49	0.34	0.27
	Yb	6	3.97	3.54	4 75	3 11	2 43	3.04	2 14	1.91
-	Lu	0.89	0.61	0.57	0.77	0.51	0.42	0.46	0.36	0.32
	ETR totais	328,12	252,52	200,39	228,72	242,18	459,19	446.94	285,73	234,23
	FeOt/MgO	0,73	0,64	0,58	0,82	0,75	0,68	0,63	0,75	0,70
	K2 O/Na2 O	0,18	0,31	0,49	0,77	0,74	0,84	0,65	1,08	1,38
	Rb/Sr	0,02	0,08	0,08	0,25	0,22	0,18	0,17	0,33	0,32
S	Rb/Ba	0,06	0,09	0,06	0,09	0,09	0,09	0,23	0,10	0,15
azõ	Sr/Ba	3,09	1,08	0,70	0,37	0,42	0,50	1,36	0,30	0,47
Ω,	(La/Yb)N	5,09	6,66	6,25	6,17	10,71	32,21	22,73	20,86	21,21
	Eu/Eu*	0,85	0,80	0,71	1,17	0,93	0,72	0,59	0,94	0,67
	Th/La	0,03	0,03	0,06	0,18	0,28	0,36	0,32	0,25	0,33
	Zr/Yb	132,60	35,87	34,46	212,69	151,16	226,87	208,32	239,02	279,84

Tabela 29 - Dados geoquímicos de rochas da Suíte Reislândia. Abreviaturas minerais conforme Siivola & Schmid (2007) e tabela 28: mzgra - monzogranito; sng - sienogranito; dio – diorito; gnd – granodiorito.

Amostras	Sm (ppm)	Nd (ppm)	¹⁴⁷ Sm/ ¹⁴⁴ Nd	¹⁴³ Nd/ ¹⁴⁴ Nd	erro (ppm)	€ _{Nd (0)}	С _{Nd (t)}	Т _{DM} (Ма)	t
LB 58	4,498	25,626	0,1061	0,511432	22	-22,2	0,55	2290	1980
NR 09A	28,106	153,561	0,1106	0,511473	15	-22,73	-0,9	2330	1980
NR 46A	10,887	71,536	0,092	0,51129	5	-26,3	0,95	2200	1980
NR 13B (enclave)	8,656	44,525	0,1175	0,511636	12	-19,55	0,54	2240	1980

Tabela 30 - Dados isotópicos Sm-Nd de amostras da Suíte Reislândia.

Amostras	Classificação	PI	Afs	Qtz	Hbl	Bt	Срх	Орх	Ttn	Zr	Ар	Aln	Ор	Act	Cum	Chl	Ер	Ser
WW-54	Cpx-hbl qtz monzonito	33	40	5	6	8	5	-	tr	?	tr	-	3	-	tr	tr	tr	tr
NR-55	Qtz monzonito porf.	35	40	9	3	3	4	3	tr	-	tr	-	3	-	tr	tr	•	-
WW-57	Opx-cpx qtzmonzonito	32	35	10	4	3	7	5			tr	-	4	-	tr	tr	tr	tr
LB-51A	Hbl-bt qtz monzonito	40	38	5	4	8	2	?	tr	tr	tr	-	3	-	-	tr	tr	tr
AB-150A	Hbl-bt- monzonito	35	38	3	10	10	1	-	tr	tr	tr	-	3	tr	tr	-	-	tr
NR-30B	Hbl-qtz monzonito	42	30	16	7	3	1	-	tr	tr	tr	-	1	-	-	tr	-	tr
NR-31	Cpx-bt-qtz monzonito	32	36	13	4	8	5	tr	-	tr	tr	-	2	-	tr	tr	tr	tr
NR-61	Hbl-qtz sienito	24	48	15	5	2	2	-	-	-	tr	-	2	2	tr	tr	tr	tr
WW-58	Cpx-opx qtzmonzonito	33	28	15	2	3	6	7	tr	-	tr	-	4	1	1	tr	tr	tr
WW-63	Bt-hbl qtz monzonito	34	38	15	6	3	tr	?	tr	tr	tr	tr	2	2	-	tr	tr	tr
WW-65	Hbl-bt qtz monzonito	35	36	16	5	7	-	-	tr	tr	tr	tr	1	-	-	tr	tr	tr
NR-63	Bt qtz monzonito	34	37	16	2	10	-	-	tr	tr	tr	tr	1	-	-	tr	tr	tr
NR-66	Hbl-bt qtz monzonito	35	39	17	4	4	-	-	tr	tr	tr	?	1	-	-	tr	tr	tr
NR-62	Hbl qtz monzonito porf	30	40	16	8	1	-	-	tr	tr	1	-	3	-	-	tr	tr	tr
NR-54	Monzogranito com bt	34	38	27	•	1	ŀ	-	-	tr	tr	tr	tr	-	-	-	tr	tr
WW-66	Hbl-bt monzogranito	29	40	20	4	6	-	-	tr	tr	tr	?	1	-	-	tr	tr	tr
WW-64	Hbl-bt monzogranito	30	38	20	2	7	-	-	tr	tr	tr	tr	1	2	-	-	tr	tr
WW-61	Hbl-bt monzogranito	33	37	18	3	4	-	-	2	tr	tr	-	1	1	-	1	tr	tr
WW-62A	Monzogranito porf	37	37	22	1	1	-	-	tr	tr	tr	-	tr	1	-	1	tr	tr
NR-65	Hbl monzogranito	35	39	20	3	2	-	-	tr	tr	tr	-	1	-		-	-	-

Tabela 31 - Classificação petrográfica e composição mineral estimada das amostras da Suíte Tocobirém com análises químicas (amostras provenientes de Pinheiro *et al.* 1981 e deste estudo). Abreviaturas minerais de acordo com Siivola & Schmid (2007): PI: plagioclásio; Afs: feldspato alcalino; Qtz: quartzo; HbI: hornblenda; Cpx: clinopiroxênio; Opx: ortopiroxênio; Bt: biotita; Op: opacos; Ttn: titanita; Zrn: zircão; Ap: apatita; Aln: alanita; ChI: clorita; Ep: epidoto; Ser: sericita; Cum: cummingtonita; tr = traços (< 1%).

		WW-65	NR-63	NR-66*	NR-62*	NR-54	WW-66*	WW-64*	WW-61*	WW-62A*	NR-65*
Amo	stras	Hbl-Bt qtz-	Bt qtz-	Hbl-bt qtz-	Hbl qtz-mzn	Mzg	Hbl-bt mzg	Hbl-bt mzg	Hbl-bt mzg	Mzg	Hbl mzg
	SiO2	mzn 63.67	mzg 64.80	mzn 65.60	66.40	66 59	00 33	66.90	67.50	68.10	69.10
	TiO2	03,07	04,00	03,00	0,40	00,39	00,90	00,90	07,50	00,10	0,65
	A12O2	15.22	14.01	16 10	15.60	16.05	15 10	15 10	15 10	15 10	15 10
	Fe203	13,22	/ 28	2 93	3.06	2 38	3 12	3.02	2 9/	2 55	2 10
eso)	MnO	4,50	4,20	2,93	0.06	2,30	0.06	0.06	2,94	2,55	2,10
Ē	MaQ	1 29	1.27	1 10	1.20	0,04	1.20	1.20	1 10	0,00	0,03
е %	Mig0	2.00	2.60	1,10	2.10	1.74	1,20	1,20	2.00	1.50	1.40
) so	Nh2O	2,55	2,09	1,00	2,10	4.07	3 70	3 70	2,00	3 70	4 10
Óxid	K20	5,00	5,82	+,10 6 10	5.40	5.27	5,70	5,70	5,70	5,70	+,10 6 10
¹	P205	0.65	0.56	0,10	0.36	0.1	0.21	0.32	0.47	0.22	0,10
	P203	1.2	0,50	1.40	0,30	1.5	0,31	0,32	0,47	0,22	0,23
	Total	99.54	0,50	1,40	0,00	99.57	98.85	0,00	0,50	98.76	100.25
	Rh	236.7	259.80	100,22	33,00	183.1	30,03	33,10	33,03	30,70	100,20
	Sr	324.3	301 30	500.00	300.00	460.8	300.00	300.00	300.00	300.00	300.00
	Ba	1166	11/0.00	1500.00	700.00	1755	1500.00	1000.00	700.00	1000.00	1000.00
	Cs	7.8	8 20	1000,00	100,00	3.5	1000,00	1000,00	100,00	1000,00	1000,00
	Ph	20.5	17.50	150.00	70.00	15.9	100.00	20.00	100.00	150.00	70.00
	Y Y	95.9	53.60	50.00	50.00	49.3	20.00	30.00	20.00	30.00	700.00
	7r	866.3	879.90	500.00	500.00	463.4	700.00	500.00	500.00	700.00	700.00
	Hf	21.9	22.30	000,00	000,00	12.9		000,00	000,00		
	Nb	28.3	25 10	15.00	15.00	22.3	15.00	15.00	15.00	15.00	15.00
	Ta	21	1.80	10,00	10,00	1.8	10,00	10,00	10,00	10,00	10,00
(mg	Th	47 1	47.80			24					
d) o		14.2	11.30			4.2					
traç	Ni	<20	20.00	20.00	20.00	<20	15.00	15.00	10.00	15.00	15.00
-so	Co	9.1	7.20	20.00	10.00	3.8	15.00	15.00	10.00	15.00	10.00
nent	v	119	116.00	150.00	150.00	18	150.00	150.00	150.00	150.00	150.00
Elen	Sc	12	11.00	20.00	15.00	8	15.00	15.00	15.00	15.00	15.00
	Be	5	5.00	1.50	1.50	2	1.00	2.00	1.50	1.00	1.00
	w	3.3	5.20	,	,	2	,		,		,
	Zn	39	30.00			42					
	Cu	146.1	191.10	150.00	70.00	2.2	50.00	70.00	50.00	70.00	150.00
	Mo	2.7	2.30	,	,	0.6	,	,	,	,	,
	Sn	3	3.00			3					
	Ga	16,7	17,60			17					
	Ag	<0,1	0,10			<0,1					
	Au	3,1	2,20			<0,5					
-	La	138,3	107,10			76,3					
	Ce	288,5	237,70			134,6					
	Pr	33,35	23,33			18,34					
	Nd	120,4	82,50			64,6					
	Sm	19,62	12,55			10,86					
	Eu	2,72	1,69			2,33					
	Gd	15,06	9,11			8,15					
ETR	Tb	2,4	1,49			1,42					
_	Dy	13,59	8,14			7,88					
	Ho	2,97	1,71			1,64					
	Er	9,21	5,29			4,89					
	Tm	1,52	0,85			0,76					
	Yb	10,02	5,75			4,66					
	Lu	1,63	0,90			0,73					
	ETR totais	659,29	498,11			337,16					
	FeOt/MgO+	0,74	0,75	0,71	0,68	0,86	0,70	0,69	0,71	0,71	0,70
	FeOt K20/No20	1 /6	1.64	1 /0	1 3 2	1 20	1 /6	1 51	1 /6	1 /6	1 /0
ŝ	Rh/Sr	0.73	0.86	1,43	1,52	0.40	1,40	1,51	1,40	1,40	1,43
zõe	Rh/Ba	0.20	0.00			0,40					
Ra	Sr/Ba	0.20	0.25	0.33	0.43	0.26	0.20	0.30	0.43	0.30	0.30
		0.20	12 56	0,00	0,70	11 0/	0,20	5,50	0,70	5,50	0,00
		0.3/	0.45			0.31					
	in/∟a	0,34	0,40			0,31					i

Tabela 32 - Análises químicas das amostras da Suíte Tocobirém. *Dados provenientes de Almeida *et al.* (2003). Abreviaturas minerais de acordo com Siivola & Schmid (2007) e tabela 31.

Amostras	Classificação	PI	Afs	Qtz	Hbl	Bt	Ttn	Zrn	Ар	Aln	Ор	Chl	Ep	Ser
GM-70	Bt-hbl diorito	45	tr	tr	41	10	2	tr	tr	-	1	-	1	tr
GM-33	Hbl-bt qtz-diorito	50	tr	6	16	24	tr	-	tr	tr	tr	-	4	tr
					¢	nclaves								
GM-42 B	Bt-hbl diorito	26	-	2	50	22	-	-	tr	-	tr	-	-	tr
GM-44 B	Bt-ep-hbl diorito	47	tr	1	38	6	tr	-	tr	-	tr	-	-	tr

Tabela 33 - Classificação petrográfica e composição mineral estimada das amostras da unidade Quartzo-diorito Puruê com análises químicas e da amostra GM 70 selecionada para geocronologia. Pl: plagioclásio; Afs: Feldspato alcalino; Qtz: quartzo; Hbl: hornblenda; Bt: biotita; Ttn: titanita; Zrn: zircão; Ap: apatita; Aln: allanita; Op: opacos; Chl: clorita; Ep: epidoto; Ser: sericita; x = componente importante (>1%); tr = traços (< 1%).

		GM-70	GM-33	GM-44B	GM-42B
Amo	stras	Bt-hbl dio	Hbl-bt Qtz- dio	Encl.Bt-hbl dio	Encl. Bt-hbl dio
	SiO ₂	49,44	60,02	53,74	53,17
	TiO ₂	2,64	0,80	0,93	0,89
	Al2 O3	17,09	17,51	13,36	8,74
6	Fe 2 O3	8,52	5,63	9,49	10,80
bes	MnO	0,14	0,11	0,32	0,32
em	MgO	2,72	2,14	7,30	11,71
%):	CaO	9,90	7,14	9,31	9,29
idos	Na ₂ O	4,75	4,35	2,24	1,70
óx	K₂ 0	0,80	0,80	1,54	1,24
	P2 O5	2,00	0,53	0,29	0,49
	P.F.	1,6	0,6	1,1	1,0
	Total	99,60	99,63	99,62	99,35
	Rb	22,8	19,2	44,0	38,4
	Sr	955,1	1124,5	337,1	596,2
	Ва	369	559	328	1175
	Cs	1,4	0,6	1,7	0,5
	Pb	2,4	1,8	1,5	1,0
	Y	30,1	17,7	53,4	30,7
	Zr	598,3	158,3	105,6	39,8
	Hf	14,4	3,9	3,1	1,3
(mc	Nb	28,2	8,0	13,2	7,3
ld) o	Та	2,2	0,5	0,6	0,2
raço	Th	9,9	5,1	5,2	2,4
os-t	U	3,2	1,5	2,6	0,6
ient	Ni	<20	<20	76	277
Elen	Co	17,8	14,3	28,1	43,1
-	v	148	119	187	131
	Sc	19	17	50	44
	w	1,1	<0,5	0,6	<0,5
	Zn	49	34	47	39
	Cu	74,7	171,8	4,9	42,1
	Мо	0,4	0,1	0,3	0,2
	Sn	2	<1	4	<1
	Ga	19,4	17,8	16,1	12,8
(qd	Ag	<0,1	<0,1	<0,1	<0,1
d)	Au	5.6	1.1	<0.5	1.5

		GM-70	GM-33	GM-44B	GM-42B
Amo	stras	Bt-hbl dio	Hbl-bt Qtz- dio	Encl.Bt-hbl dio	Encl. Bt-hbl dio
	La	71,1	32,9	33,8	34,5
	Ce	150,2	70,4	97,8	86,5
	Pr	16,23	7,86	12,48	10,76
	Nd	60,2	31,6	53,4	45,6
	Sm Eu Gd Tb Dy Ho	9,55	5,48	12,01	9,23
	Eu	3,03	1,66	2,90	2,14
~	Gd	7,49	4,45	10,94	7,44
ЕТК	Tb	1,10	0,63	1,78	1,14
	Dy	5,34	3,20	9,90	6,07
	Но	1,07	0,65	1,99	1,16
	Ŀ	3,02	1,84	5,63	3,38
	Tm	0,44	0,28	0,86	0,52
	Yb	3,00	1,80	5,25	3,31
	Lu	0,50	0,27	0,77	0,50
	ETR totais	332,3	163,0	249,5	212,3
	FeOt/MgO +FeOt	0,74	0,70	0,54	0,45
	K2 O/Na2 O	0,17	0,18	0,69	0,73
es	Rb/Sr	0,02	0,02	0,13	0,06
łazĉ	Rb/Ba	0,06	0,03	0,13	0,03
Ľ.	Sr/Ba	2,59	2,01	1,03	0,51
	(La/Yb)N	15,98	12,32	4,34	7,03
	Th/La	0,14	0,16	0,15	0,07

Tabela 34 - Composição química das amostras do Quartzo-diorito Puruê. Abreviaturas minerais de acordo com Siivola & Schmid (2007) e tabela 33. Dio: diorito; Enc: enclave.

Amostras	Classificação	PI	Срх	Орх	Hbl	Act	Cum	Qtz	Afs	Mag	Ар	Ttn//Le	Tic	Chl	ß	Ser	Cb	Ру	Phl	Bt
RG-15	Act-cpx gabro	43	35	-	2	20		-	-	tr	-	-	-	-	tr	tr	tr	-	tr	-
RG-20 A	Act diabásio	45	-	-	7	30		1	-	4	tr	-	-	1	10	tr	-	-	-	2
RG-37 B	Hbl-opx-cpx gabro	53	26	10	4	4	tr	-	-	3	-	-	tr	-	•	-	-	-	-	-
RG-40 B	Hbl gabro alt	20	-	-	47	10	-	tr	-	1	tr	tr	-	2	10	10	-	-	-	-
HG-44*	Cpx- hornblendito	5	27		35	10		-	-	3	tr	tr	-	20	tr	tr	tr	tr	-	-
LM-53 A*	Hornblendito	5	-		40	25		-	-	2	tr	tr	3	25	-	tr	-	tr	-	-
GM-67 A	Opx-Cpx hornblendito	8	12	3	-	tr	tr	-	-	6	tr	-	tr	1	1	1	tr	-	-	tr
MF-143*	Hbl-gabro	40	-		35	20		-	-	tr	tr	tr	-	5	tr	tr	-	tr	-	-
AD-11	Hbl melagabro	tr	2	-	34	30	-	-	-	4	tr	tr	-	tr	10	20	-	-	-	-
AD-14	Cpx- hornblendito	2	7		82	-	-	-	4	tr	tr	tr	-	-	2	tr	-	-	-	-
MF-108C*	Hbl-qtz-gabro	49	-	-	34	6		5	-	-	1	2	-	3	tr	tr	-	tr	-	-
GM-59 B	Cpx-hbl melagabro	12	40	-	45	-	-	3	-	-	tr	tr	-	-	tr	tr	-	-	-	-
MF-139*	Cpx-hbl- melagabro	10	26	-	40	20		2	tr	-	tr	tr	-	2	tr	tr	tr	tr	-	
GM-56 B	Cpx-hbl gabro	52	4	-	44	-	-	-	-	tr	tr	-	-	-	tr	-	-	-	-	tr
MF-184A*	Cpx-hbl-qtz- diorito	35	5	-	30	20		6	1	-	tr	1	-	-	2	tr	-	-	-	-
MF-150*	Cpx-act-qtz- diorito	50	10	-	tr	22		7	tr	3	tr	tr	-	8	tr	tr	-	-	-	-

Tabela 35 - Classificação petrográfica e composição mineral estimada das amostras da Suíte Máfica-Ultramáfica Uraricaá com análises químicas. Abreviaturas minerais de acordo com Siivola & Schmid (2007) - PI: plagioclásio; Cpx: clinopiroxênio; Opx: ortopiroxênio; HbI: hornblenda; Act: tremolita-actinolita; Cum: cummingtonita-grunerita; Qtz: quartzo; Afs: feldspato alcalino; Mag: magnetita titanífera; Ap: apatita; Ttn / Le: titanita, leucoxênio; Tlc: talco; ChI: clorita; Ep: epidoto; Ser: sericita; Cb: carbonato; Py: pirita; PhI: phlogopita; Bt: biotita; tr: traços (< 1%).

			ULTRABASICA		BASICA										INTERMEDIARIA			
		lg Tomás	lg Tomás	CPRM 1981	Uraricaá	Uraricaá	lg Tomás	Uraricaá	Uraricaá	lg Tomás	lg Tomás	CPRM 1981	lg Tomás	CPRM 1981	Uraricaá	lg Tomás	lg Tomás	lg Tomás
		HG-R-44	LM-R-53A	GM-67A	RG-15	RG-40B	MF-R-143	RG-24	RG-37B	AD-11	MF-R-1080	GM-59B	MF-R-139	GM-56B	RG-20A	AD-14	MF-R-184A	MF-R-150
	Amostras	Cpx Hornblendito	Hornblendito	Px-hbl gabronorito	Cpx-Srp-Tr- Act Gabro	Tr-Act-Ser- En Norito	Hb gabro		Tr-Act-Cpx Gabro	Hbl melagabro com di	Hbl-qtz gabro	Di-hbl melagabro porf.	Cpx-hbl melagabro	Cpx-hbl gabro fino	Bt-Am Gabro	Px hornblendito	Cpx-hbl-qtz diorito	Cpx-act-qtz diorito def.
	SiO2	41,94	43,41	44,33	45,22	45,89	46,13	46,36	46,36	46,38	49,07	49,58	50,91	50,93	52,79	53,89	54,24	55,03
	TiO2	1,17	0,64	0,94	0,23	1,26	0,82	1,47	0,92	0,78	0,67	0,74	0,32	0,76	1,02	0,52	0,68	0,77
	AI2O3	10,25	10,86	10,51	20,10	15,07	12,32	15,78	16,97	9,16	16,83	7,88	6,64	15,90	15,59	5,44	10,14	13,13
ô	Fe2O3*	14,98	12,56	16,92	8,10	12,83	11,77	12,94	12,13	14,49	9,95	11,98	7,41	9,92	11,85	9,52	7,55	9,28
ese	FeO*	13,48	11,30	15,22	7,29	11,54	10,59	11,64	10,91	13,04	8,95	10,78	6,67	8,93	10,66	8,57	6,79	8,35
Ē	MnO	0,18	0,17	0,23	0,12	0,15	0,19	0,19	0,17	0,21	0,14	0,19	0,14	0,19	0,18	0,23	0,16	0,16
% e	MgO	16,22	19,02	12,45	10,37	7,63	12,98	7,34	8,46	13,21	8,15	12,88	16,26	6,56	5,14	13,81	11,66	8,32
s (e	CaO	11,73	5,91	11,50	11,43	11,98	10,18	8,40	10,44	11,49	7,50	13,70	14,82	10,15	8,11	12,93	11,83	5,95
ido	Na2O	0,88	1,86	0,77	1,80	1,35	1,72	2,85	2,40	0,73	2,76	0,97	0,72	3,37	2,82	0,51	1,75	2,41
ŏ	K20	0,33	0,16	0,34	0,12	1,16	0,90	1,41	0,28	0,88	1,22	0,54	0,49	0,94	1,06	0,71	0,39	1,84
	P2O5	0,17	0,20	0,04	0,06	0,29	0,29	0,33	0,12	0,12	0,42	0,19	0,05	0,22	0,20	0,09	0,10	0,25
	LOI	1,80	4,70	1,50	2,10	2,10	2,30	2,60	1,50	2,00	3,10	0,80	2,00	0,70	1,00	1,80	1,30	2,50
	TOTAL	99,81	99,64	99,55	99,68	99,73	99,79	99,68	99,76	99,51	99,84	99,57	99,99	99,67	99,77	99,60	99,98	99,71
	Ni	126,00	176,40	108,00	119,90	19,90	132,40	100,10	80,90	194,00	55,60	136,00	59,10	70,00	8,20	204,00	30,40	55,50
	Co	90,00	90,90	70,00	56,20	40,10	59,60	54,20	59,70	72,70	43,50	49,90	53,20	38,90	39,40	50,10	51,50	35,80
	Sc	50,00	24,00	63,00	20,00	47,00	38,00	26,00	31,00	63,00	20,00	77,00	54,00	30,00	36,00	72,00	56,00	24,00
	v	308,00	133,00	611,00	68,00	420,00	252,00	229,00	237,00	342,00	159,00	343,00	184,00	196,00	278,00	175,00	185,00	180,00
	Cu	158,80	66,70	59,20	123,80	200,20	120,20	78,60	97,60	361,00	77,60	214,00	50,70	43,00	20,50	42,80	14,50	75,70
	Pb	0,40	0,90	1,20	1,10	2,50	1,50	3,40	0,80	2,30	1,70	1,40	1,10	1,40	1,60	1,30	1,30	7,70
	Zn	38,00	39,00	23,00	18,00	26,00	26,00	38,00	27,00	23,00	52,00	9,00	5,00	19,00	51,00	8,00	10,00	61,00
	Bi	<,1	<,1	0,10	<0.1	<0.1	0,20	<0.1	<0.1	0,20	<,1	0,10	<,1	0,10	<0.1	0,10	0,10	0,10
	Cd	<,1	<,1	0,10	<0.1	<0.1	0,10	<0.1	<0.1	0,10	0,10	0,10	0,10	0,10	<0.1	0,10	<,1	0,10
	Sn	<1	<1	1,00	<1	1,00	<1	3,00	<1	1,00	<1	1,00	<1	2,00	<1	1,00	<1	1,00
	w	0,40	0,10	0,50	<0.5	<0.5	0,80	<0.5	<0.5	3,80	0,60	0,50	0,50	0,50	< 0.5	0,60	2,50	1,30
Ê	Mo	0,10	<,1	0,20	<0.1	0,20	0,10	0,40	<0.1	0,10	0,10	0,10	<,1	0,30	0,50	0,10	<,1	0,90
dd)	As	<,5	0,50	0,50	1,80	0,80	0,50	0,90	1,50	0,50	0,70	0,50	<,5	0,50	1,60	0,50	<,5	0,90
8	Sb	<,1	<,1	0,10	<0.1	<0.1	0,20	<0.1	0,20	0,10	0,10	0,10	<,1	0,10	0,20	0,10	0,10	0,10
-tra	Se	<,5	<,5	0,50	<0.5	<0.5	<,5	<0.5	0,80	0,50	<,5	0,50	<,5	0,50	<0.5	0,50	<,5	<,5
tos	Be	<1	<1	1,00	<1	<1	1,00	2,00	<1	1,00	1,00	1,00	<1	1,00	<1	1,00	1,00	1,00
nen	Rb	12,00	2,80	13,30	2,70	35,70	33,40	38,00	6,20	33,00	39,80	8,10	18,50	10,70	34,30	11,30	5,80	51,20
llen	Cs	0,40	0,80	1,10	0,30	0,70	0,80	5,20	0,90	0,80	1,10	0,10	0,50	0,30	1,30	0,10	0,40	1,80
	Ва	187,10	1.640,70	614,00	86,00	467,00	1.348,50	731,00	194,00	195,00	774,50	240,00	123,80	297,00	348,00	285,00	123,60	887,10
	Sr	316,00	401,90	367,10	507,20	634,10	524,90	721,20	503,70	272,00	667,20	271,40	103,10	614,90	376,90	133,30	413,60	406,50
	TI	<,1	<,1	0,10	<0.1	<0.1	<,1	<0.1	<0.1	0,10	<,1	0,10	<,1	0,10	0,20	0,10	<,1	<,1
	Ga	12,50	12,10	15,90	14,70	17,20	15,40	18,40	17,00	12,20	18,00	11,90	8,10	16,30	20,70	10,10	12,70	16,40
	Та	0,10	0,10	0,10	0,10	0,40	0,20	0,80	0,10	0,20	0,20	0,10	0,10	0,30	0,30	0,20	0,20	0,70
	Nb	2,60	1,40	1,00	0,70	5,90	5,30	13,40	1,70	2,50	4,30	1,90	1,90	6,10	4,30	4,60	2,60	8,70
	Hf	1,00	1,00	0,80	0,40	1,70	1,60	3,40	1,20	1,30	2,60	1,40	1,10	3,60	2,90	4,60	1,00	4,20
	Zr	28,50	43,70	24,50	11,40	42,80	58,60	104,70	34,00	49,40	78,40	47,70	33,30	133,60	95,20	169,90	19,00	142,30
	Y	15,50	9,10	9,00	5,00	18,50	25,20	21,50	12,80	18,10	25,20	12,90	10,70	17,80	24,30	66,70	16,20	20,80
	Th	0,50	0,90	0,90	0,20	4,20	2,40	1,50	0,20	1,70	2,40	1,90	1,90	3,60	2,70	1,40	1,30	7,70
	Ŭ	0,10	0,20	0,50	0,10	1,00	0,70	0,30	0,10	0,50	0,60	0,50	0,40	1,00	0,90	0,70	1,20	2,40

	ULTRABÁSICA				BÁSICA											INTERMEDIÁRIA				
		lg Tomás	lg Tomás	CPRM 1981	Uraricaá	Uraricaá	lg Tomás	Uraricaá	Uraricaá	lg Tomás	lg Tomás	CPRM 1981	lg Tomás	CPRM 1981	Uraricaá	lg Tomás	lg Tomás	lg Tomás		
	Amostras	HG-R-44	LM-R-53A	GM-67A	RG-15	RG-40B	MF-R-143	RG-24	RG-37B	AD-11	MF-R-108C	GM-59B	MF-R-139	GM-56B	RG-20A	AD-14	MF-R-184A	MF-R-150		
		Cpx Hornblendito	Hornblendito	Px-hbl gabronorito	Cpx-Srp-Tr- Act Gabro	Tr-Act-Ser- En Norito	Hb gabro		Tr-Act-Cpx Gabro	Hbl melagabro com di	Hbl-qtz gabro	Di-hbl melagabro porf.	Cpx-hbl melagabro	Cpx-hbl gabro fino	Bt-Am Gabro	Px hornblendito	Cpx-hbl-qtz diorito	Cpx-act-qtz diorito def.		
(nnh)	Ag	<,1	<,1	0,10	0,10	<0.1	<,1	<0.1	0,10	0,10	<,1	0,10	<,1	0,10	<0.1	0,10	<,1	0,10		
(ppp)	Au	2,30	<,5	1,30	1,10	1,60	4,40	<0.5	3,40	24,00	9,30	4,60	1,40	0,70	<0.5	0,90	<,5	1,60		
	La	6,70	12,30	3,80	2,60	17,80	32,70	22,00	4,10	16,60	26,10	10,10	7,30	25,90	14,40	25,40	29,00	31,60		
	Ce	18,10	23,50	10,40	4,50	40,80	54,40	47,20	10,00	29,40	48,80	26,00	14,50	58,00	30,60	62,90	59,60	66,50		
	Pr	2,82	3,04	1,48	0,66	6,13	7,70	6,14	1,50	5,35	7,42	3,23	1,98	6,40	4,09	11,62	9,17	7,69		
	Nd	13,70	13,20	7,20	3,10	25,90	30,50	26,80	7,50	22,70	29,80	13,90	8,20	25,30	18,10	55,90	33,60	27,70		
	Sm	3,90	2,20	1,86	0,65	5,11	6,40	5,26	2,14	4,75	5,90	3,50	1,90	4,90	4,00	13,22	6,40	5,20		
-	Eu	1,13	0,86	0,54	0,42	1,31	1,77	1,75	0,90	1,25	1,66	0,97	0,40	1,62	1,23	1,84	1,67	1,17		
E	Gd	3,48	2,09	1,85	0,79	4,47	5,32	4,79	2,61	4,24	4,88	3,25	1,98	3,93	4,24	12,27	4,86	4,33		
đ	Tb	0,50	0,29	0,29	0,14	0,70	0,87	0,75	0,44	0,66	0,80	0,50	0,30	0,62	0,75	2,16	0,71	0,69		
L L	Dy	2,63	1,44	1,61	0,71	3,83	4,23	4,11	2,68	3,48	4,04	2,77	1,88	3,50	4,20	12,29	3,71	3,29		
-	Ho	0,55	0,31	0,35	0,18	0,74	0,90	0,80	0,55	0,68	0,84	0,53	0,39	0,66	0,88	2,52	0,65	0,73		
	Er	1,37	0,88	0,99	0,48	2,19	2,56	2,31	1,50	1,82	2,38	1,52	1,07	1,94	2,70	7,05	1,71	2,01		
	Tm	0,19	0,10	0,16	0,07	0,33	0,33	0,31	0,22	0,28	0,37	0,20	0,18	0,30	0,39	1,10	0,22	0,31		
	Yb	1,01	0,65	0,77	0,43	2,23	2,29	2,15	1,44	1,49	2,20	1,26	1,03	1,93	2,49	6,52	1,40	1,59		
	Lu	0,19	0,09	0,13	0,07	0,34	0,31	0,31	0,21	0,24	0,34	0,17	0,18	0,29	0,38	1,03	0,22	0,30		
	ETR total	56,27	60,95	31,43	14,80	111,88	150,28	124,68	35,79	92,94	135,53	67,90	41,29	135,29	88,45	215,82	152,92	153,11		
	Na2O/AI2O3	0,09	0,17	0,07	0,09	0,09	0,14	0,18	0,14	0,08	0,16	0,12	0,11	0,21	0,18	0,09	0,17	0,18		
es	K2O/AI2O3	0,03	0,01	0,03	0,01	0,08	0,07	0,09	0,02	0,10	0,07	0,07	0,07	0,06	0,07	0,13	0,04	0,14		
āzõ	CaO/Na2O	13,33	3,18	14,94	6,35	8,87	5,92	2,95	4,35	15,74	2,72	14,12	20,58	3,01	2,88	25,35	6,76	2,47		
ñ	AI2O3/TiO2	8,76	16,97	11,18	87,39	11,96	15,02	10,73	18,45	11,74	25,12	10,65	20,75	20,92	15,28	10,46	14,91	17,05		
	K2O/MgO	0,02	0,01	0,03	0,01	0,15	0,07	0,19	0,03	0,07	0,15	0,04	0,03	0,14	0,21	0,05	0,03	0,22		

Tabela 36 - Composição química das amostras da Suíte Máfica-Ultramáfica Uraricaá. Abreviaturas minerais de acordo com Siivola & Schmid (2007) e tabela 35.

Amostra	Classificação	Pg	Ср	OI	Hb	Ac	Bi	Qz	Fa	Mt	Ap	Ti	Le	CI	Ep	Se	Ca	Am	Pi
GM-34*	Olivina diabásio	50	25	4		tr	8	σ		10	173					tr	3		353
GM-60D*	Diabásio	56	35	120		2	2	tr	tr	5	tr	-	2	2/	~	0	121	2	ŝ
HG-146B	Diabásio uralitizado	45	-	-	-	45	-	-	-	tr	1.4	-	tr	5	5	tr	-	2	tr
HG-163B	Diabásio	50	38			6	-	tr	~	6	tr	-	-				-	tr	tr
HG-19B	Oliv. Diabásio	48	35	8		1	2	17	-	6	tr	879	5	tr		tr	tr	-	ŝ.
HG-61A	Basalto microporf.	45	10	1	121	30	5	- 2	2	tr	222	100	5	10	tr	tr	123	26	82
LM-21D	Diabásio	50	45	-	-	243	tr	tr	tr	3	1.20	-	Ξ.	-	-	-	-	2	1
LM-50E	Hb microgabro	34	0	-	-	8	-	2	-	3	tr	1	-	5	25	-		-	1
LM-86C	Diabásio uralitizado	45	2		3	42	-	5	5	10	tr		5	1	tr	tr		1	tr
MF-06A	Hb (micro) qtz diorito	43	12	201	30	10	2	5	2	4	tr	2	2	6	tr	tr	tr	2	ŝ
MF-10B	Diabásio	42	40	1231		7	-		-	7	120	1321	-	3	tr	tr	100	-2	tr
MF-77	Diabásio porf. alt.	10		-	ŝ.	36	-	2	-	1		3	-	15	30	3	-	-	ĩ
MF-97	Diabásio porf.	56	15		-	24		σ		3	170			2	tr	tr			tr
WW-74A*	Diabásio	40	47	123	1	tr	1	tr	2	4	tr	-	4	24	tr	tr	228	tr	10

Tabela 37 - Classificação petrográfica e composição modal de rochas do Diabásio Avanavero. Amostras provenientes de Pinheiro et al. (1981)* e CPRM (2010). Pg - plagioclásio; Cp - clinopiroxênio; OI - olivina; Hb - hornblenda; Ac - tremolita-actinolita; Bi - biotita; Qz - quartzo; Fa - feldspato alcalino; Mt - magnetita titanífera; Ap - apatita; Ti - titanita; Le - leucoxênio; CI - clorita; Ep - epidoto; Se - sericita; Ca - carbonato; Am - argilo-minerais; Pi - pirita; tr - traço (< 1%).

(Cont.)

Amostra		MF-R-97	GM-R- 34*	GM-R- 60D*	HG-R- 146B	MF-R-77	MF-R- 10B	HG-R- 19B	LM-R- 86C	MF-R- 06A	WW-R- 74A*	HG-R- 61A	HG-R- 163B	LM-R- 50E	LM-R- 21D
Am	ostra	Diabásio porfirítico	Olivina diabásio porfir.	Diabásio	Diabásio porfir. uralit.	Diabásio porfirítico	Diabásio	Olivina diabásio	Diabásio uralit.	Hb micro qz- diorito	Diabásio	Basalto micropor fir.	Diabásio	microga bro	Diabásio
	SiO ₂	45,92	46,82	47,12	47,73	48,20	48,31	48,42	48,68	48,76	49,15	49,55	51,40	52,23	52,33
	TiO₂	0,82	1,45	3,51	1,31	0,88	1,18	0,72	0,70	1,27	2,08	0,89	1,22	1,11	1,16
_	Al ₂ O ₃	18,22	16,72	13,45	16,49	15,58	16,18	16,85	14,59	14,47	14,65	15,33	14,11	14,79	14,33
so)	Fe ₂ O ₃	11,92	12,98	17,57	14,75	10,15	11,28	10,37	10,12	11,59	14,73	10,79	12,80	11,21	12,07
be	MnO	0,16	0,19	0,23	0,20	0,20	0,16	0,15	0,16	0,25	0,21	0,17	0,18	0,16	0,17
m	MgO	8,63	6,78	4,01	6,87	7,87	6,88	8,08	10,21	7,93	5,28	8,15	6,27	6,28	5,85
%	CaO	9,42	8,52	8,69	8,36	10,66	9,13	11,97	9,16	8,52	9,62	10,16	9,24	9,83	9,32
) si	Na₂O	2,32	3,14	2,55	2,53	2,11	2,79	2,21	2,23	2,36	2,54	2,43	2,51	2,46	2,56
ido	K₂O	0,23	1,28	1,56	0,69	0,91	0,95	0,30	1,00	1,20	0,75	0,80	0,44	0,73	0,85
,õ	P ₂ O ₅	0,07	0,29	1,21	0,19	0,36	0,25	0,10	0,21	0,76	0,33	0,32	0,15	0,18	0,16
	LOI	2,1	1,4	-0,3	0,8	2,7	2,6	0,6	2,6	2,6	0,3	1,1	1,6	0,8	1,0
	Cr ₂ O ₃	0,004	0,009	0,009	0,009	0,092	0,025	0,043	0,089	0,036	0,014	0,040	0,005	0,007	0,005
-	TOTAL	99,81	99,58	99,61	99,93	99,71	99,74	99,81	99,75	99,75	99,65	99,73	99,93	99,79	99,81
	(ppm) Rb	6,30	24,1	46,3	14,60	20,80	37,80	5,70	53,90	49,70	17,6	14,60	16,10	25,40	23,80
	Sr	358,10	912,3	314,7	356,60	601,70	586,00	377,70	576,70	595,00	291,8	642,60	247,70	258,50	230,50
	Ba	146,90	802	731	282,50	834,90	445,20	169,50	375,80	1489,30	301	391,70	172,00	193,10	231,50
	Cs	0,70	1,1	1,3	0,90	1,90	2,00	0,70	5,40	1,60	0,9	1,20	1,80	0,90	1,30
	Pb	0,40	2,7	3,4	1,00	0,60	2,30	0,70	1,70	1,80	2,4	1,10	2,00	1,60	1,80
	Y TI	20,70	20,1	59,4	24,60	18,60	22,20	14,30	13,10	27,80	35,9	17,80	33,50	54,40	27,30
		<,1	<0,1	0,2	0,10	<,1	0,10	<,1	0,20	0,10	<0,1	<,1	0,10	<,1	<,1
	Zr	36,30	96,2	236,2	82,80	68,90	90,10	39,00	57,30	113,50	138,2	69,90	111,30	111,60	104,80
		1,30	3,0	6,0	2,70	2,20	2,30	1,10	1,80	3,30	3,7	2,10	3,50	3,00	3,20
	ND To	1,10	13,8	13,5	3,60	2,70	0.70	1,60	1,90	6,70	0,0	2,90	7,10	0,00	7,00
-	Th Th	<,1	0,0	0,0	0,20	0,10	1.20	0,10	<,1	0,50	0,3	0,20	0,40	1,70	0,50
Шd		0,20	1,3	0,1 1.1	0,90	0,70	0.20	0,40	1,00	2,90	2,5	0,90	2,60	2,40	2,00
a	Ni	107.00	10,5	1,1	72.10	0,30	0,30	76 10	76.00	20,30	57	26.10	22.50	0,00	17.10
gÇ		59.20	54.0	4J 51.7	62.20	46.50	47.40	51.00	16,00	23,70	19.2	20,10	56.00	42.20	17,10
, tr	v	203.00	220	/83	2/6 00	244.00	226.00	201.00	204.00	208.00	40,2 427	213.00	294.00	276.00	270.00
tos	Sc	23.00	25	40	29.00	34 00	26.00	31.00	27.00	29.00	43	35.00	34.00	33.00	33.00
nen	Be	<1	1	2	1 00	1 00	1 00	1 00	<1	1 00	<1	<1	1 00	1 00	1 00
lem	Ŵ	0.20	<0.5	<0.5	6.90	0.40	0.30	0.60	0.40	0.50	<0.5	0.60	<.1	0.50	0.60
Ξ	Zn	45.00	38	58	75.00	30.00	82.00	18.00	23.00	55.00	30	71.00	44.00	42.00	60.00
	Se	<.5	<0.5	0.9	<.5	<.5	<.5	<.5	<.5	<.5	<0.5	<.5	<.5	<.5	<.5
	Sb	<.1	<0.1	<0.1	<.1	<.1	<.1	<.1	0.60	0.10	<0.1	0.10	0.10	<.1	0.10
	Cu	87.90	85.7	86.9	73.80	103.30	128.60	100.00	60.50	32.60	84.0	64.90	233.90	167.70	150.90
	Hg	<,01	<0,01	<0,01	<,01	<,01	<,01	<,01	<,01	<,01	<0,01	<,01	<,01	<,01	<,01
	Mo	0,10	0,4	1,0	0,20	0,10	0,40	0,10	0,30	0,40	0,4	0,10	0,50	0,30	0,40
	Bi	<,1	<0,1	<0,1	<,1	<,1	<,1	<,1	0,10	0,10	<0,1	<,1	0,10	<,1	<,1
	Cd	<,1	<0,1	<0,1	0,10	<,1	<,1	<,1	<,1	0,10	<0,1	0,10	0,20	0,20	0,20
	As	<,5	<0,5	0,7	2,70	2,70	<,5	<,5	0,70	0,50	<0,5	2,80	<,5	<,5	0,70
	Sn	<1	<1	2	<1	1,00	<1	<1	<1	1,00	1	<1	<1	<1	<1
	Ga	17,90	18,1	22,2	20,70	16,90	17,80	16,50	17,00	18,30	21,3	17,80	20,40	17,90	17,70

		MF-R-97	GM-R- 34*	GM-R- 60D*	HG-R- 146B	MF-R-77	MF-R- 10B	HG-R- 19B	LM-R- 86C	MF-R- 06A	WW-R- 74A*	HG-R- 61A	HG-R- 163B	LM-R- 50E	LM-R- 21D
Am	ostra	Diabásio porfirítico	Olivina diabásio porfir.	Diabásio	Diabásio porfir. uralit.	Diabásio porfirítico	Diabásio	Olivina diabásio	Diabásio uralit.	Hb micro qz- diorito	Diabásio	Basalto micropor fir.	Diabásio	Hb microga bro alter.	Diabásio
(nnh)	Ag	<,1	<0,1	<0,1	<,1	<,1	<,1	<,1	<,1	0,10	<0,1	<,1	0,30	0,40	<,1
(hhp)	Au	<,5	<0,5	0,9	1,50	1,70	3,00	<,5	1,80	2,00	<0,5	2,40	4,40	2,40	2,00
	La	3,60	19,9	37,5	8,60	12,90	18,10	5,20	10,70	25,60	17,3	14,00	15,00	15,90	14,70
	Ce	8,00	48,6	95,2	20,40	30,20	39,80	12,00	25,20	58,60	45,2	32,20	34,10	30,30	35,60
ETR	Pr	1,29	5,81	11,27	2,79	4,12	5,12	1,54	3,29	7,57	5,31	4,58	4,51	4,87	4,07
	Nd	6,40	25,1	49,0	11,70	17,60	21,80	7,30	15,00	29,70	23,6	20,20	17,40	22,20	17,40
	Sm	2,00	5,23	11,24	3,70	3,80	5,00	2,10	2,80	6,30	5,80	4,60	4,60	5,60	3,90
	Eu	0,89	1,81	3,32	1,20	1,23	1,60	0,72	0,94	1,94	1,77	1,23	1,42	1,93	1,20
	Gd	3,08	4,79	12,29	4,14	3,65	4,22	2,24	2,78	5,09	5,98	3,80	5,53	8,47	5,06
	Tb	0,48	0,74	1,96	0,71	0,63	0,64	0,38	0,36	0,91	1,10	0,64	0,95	1,39	0,82
	Dy	3,01	4,12	11,13	4,32	3,38	3,77	2,15	2,12	5,13	6,30	3,58	5,24	7,93	4,40
	Но	0,72	0,78	2,29	0,96	0,64	0,77	0,62	0,44	0,93	1,33	0,66	1,09	1,78	1,00
	Fr	2,10	2,21	6,60	2,79	1,93	2,17	1,49	1,27	2,74	3,82	1,88	3,01	5,28	2,78
	Tm	0,29	0,32	0,93	0,37	0,29	0,29	0,21	0,18	0,48	0,58	0,23	0,43	0,71	0,42
ŀ	Yb	1,73	1,98	5,91	2,37	1,61	1,82	1,18	1,15	2,29	3,57	1,76	2,55	4,21	2,50
	Lu	0,27	0,29	0,86	0,40	0,25	0,29	0,20	0,21	0,35	0,53	0,27	0,43	0,70	0,39
	ETR total	33,86	121,68	249,5	64,45	82,23	105,39	37,33	66,44	147,63	122,19	89,63	96,26	111,27	94,24
Razões	La/Yb	2,08	10,05	6,35	3,63	8,01	9,95	4,41	9,30	11,18	4,85	7,95	5,88	3,78	5,88
	La/Nb	3,27	1,44	2,78	2,39	4,78	1,62	3,25	5,63	3,82	2,66	4,83	2,11	2,41	2,10

 Tabela 38 - Composição química das amostras do Diabásio Avanavero. Abreviaturas minerais de acordo com Siivola & Schmid (2007) e tabela 37.

Amo	ostras	Classificação	PI	Срх	Hbl	Act	Bt	Qtz	Afs	Mag	Ар	Ttn	Chl	Ер	Ser	Cb
e	HG-50B	Act microdiorito porf	55	-	-	33	-	4	?	4	-	-	4	tr	tr	-
Lavas e Rochas de diqu	HG-60C	Andesito	Х	-	-	-	-	-	-	Х	-	-	Х	Х	tr	-
	HG-23A	Espessartito	50	-	33	5	-	7	2	3	tr	tr	tr	tr	tr	-
	HG-07	Act micro-qtz- monzodior porf	46	-	-	32	3	6	7	1	tr	tr	tr	5	tr	-
	HG-21C	Hbl-microdiorito porf	50	-	28	tr	2	8	7	2	tr	-	3	tr	tr	tr
	HG-196	Cpx andesito porf	Х	Х	•	•	-	-	-	Х	•	-	х	х	tr	-
	HG-62	Brecha andesítica alt	35	•	•	•	-	4	-	3	•	tr	20	38	tr	-
	LM- 172C	Cpx andesito amigdaloidal	Х	Х	-	Х	-	х	-	Х	-	-	х	х	tr	-
	HG-190	Hbl andesito	Х	Х	Х	-	-	-	-	Х	-	tr	Х	Х	tr	-

Tabela 39 - Classificação e composição mineralógica aproximada de rochas da unidade Lamprófiro Serra do Cupim (extraído de CPRM, 2010). Abreviaturas minerais de acordo com Siivola & Schmid (2007). Pg: plagioclásio; Cpx: clinopiroxênio; Hbl: hornblenda; Act: tremolita-actinolita; Bt: biotita; Qtz: quartzo; Afs: feldspato alcalino; Mag: magnetita; Ap: apatita; Ttn: titanita; Chl: clorita; Ep: epidoto; Ser: sericita; Cb: carbonato; X: componente importante (>1%); tr: traços (< 1%).

A elaboração do Projeto Geologia e Recursos Minerais da Ilha de Maracá - NA.20-X-A, escala 1:250.000, resulta de uma ação do Servico Geológico do Brasil – CPRM, empresa pública vinculada à Secretaria de Geologia, Mineração e Transformação Mineral, do Ministério de Minas e Energia. Esse empreendimento, inserido no "Projeto Cartografia da Amazônia", é coordenado pelo Centro Gestor e Operacional do Sistema de Proteção da Amazônia - CENSIPAM, e executado pelas Forças Armadas Brasileiras (Exército, Marinha e Aeronáutica) e pela CPRM. O objetivo do projeto é o de registrar novas informações no chamado Vazio Cartográfico da Amazônia, com ênfase nas cartografias terrestre, náutica e geológica, insumos estratégicos e de suporte ao planejamento de políticas públicas, defesa nacional e execução de projetos de infraestrutura a serem desenvolvidos na região.

O produto foi executado pela Superintendência Regional de Manaus, no âmbito do Programa Geologia do Brasil, Projeto Ilha de Maracá.

Conta com levantamentos e análises de dados geológicos, petrográficos, químicos, isotópicos e aerogeofísicos de alta resolução (magnetometria, gamaespectrometria) importantíssimos em áreas cobertas pela floresta Amazônica, isoladas, de difícil acesso e de operações onerosas.

E sse projeto deverá auxiliar os órgãos de planejamento das esferas governamentais, em especial ao governo do estado de Roraima e município de Amajarí, no estabelecimento de políticas públicas de desenvolvimento regional, na medida em que serve de base para novos estudos mais detalhados de prospecção e exploração mineral, como atesta o potencial para ouro, e diamante da serra Tepequém, além de indícios de manganês, cassiterita, cromo, platinoides e demais ocorrências de rochas ornamentais, areia e cascalho para construção civil.

O conhecimento geológico e a divulgação de áreas potencialmente favoráveis para a presença de substâncias minerais de valor econômico deverão atrair investimentos por parte de empresas de prospecção e pesquisa mineral, com vistas a contribuir e alavancar a atividade de mineração no País e para o melhor entendimento da evolução geológica da região norte de Roraima

SERVIÇO DE ATENDIMENTO AO USUÁRIO - SEUS Tel: 21 2295-5997 – Fax: 21 2295-5897 E-mail: seus@cprm.gov.br

GEOLOGIA E RECURSOS MINERAIS DA PROJETO ILHA DE MARACÁ - NA.20-X-A

Escala: 1:250.000

ESTADO DE RORAIMA

FOLHA ILHA DE MARACÁ – NA.20-X-A

JUNHO DE 2017

www.cprm.gov.br

OUVIDORIA Tel: 21 2295-4697 – Fax: 21 2295-0495 E-mail: ouvidoria@cprm.gov.br

Secretaria de Geologia, Mineração e Transformação Mineral

Ministério de **Minas e Energia**

