PROGRAMA GESTÃO ESTRATÉGICA DA GEOLOGIA, DA MINERAÇÃO E DA TRANSFORMAÇÃO MINERAL

LEVANTAMENTOS DA GEODIVERSIDADE

ATLAS PLUMETRICO DO BRASIL

Equações Intensidade-Duração-Frequência

Estado: Pernambuco Município: Catende

Estação Pluviográfica: Catende

Código SUDENE: 3878358

MINISTÉRIO DE MINAS E ENERGIA SECRETARIA DE GEOLOGIA, MINERAÇÃO E TRANSFORMAÇÃO MINERAL CPRM - SERVIÇO GEOLÓGICO DO BRASIL

PROGRAMA GESTÃO ESTRATÉGICA DA GEOLOGIA, DA MINERAÇÃO E DA TRANSFORMAÇÃO MINERAL

LEVANTAMENTOS DA GEODIVERSIDADE

ATLAS PLUVIOMÉTRICO DO BRASIL EQUAÇÕES INTENSIDADE-DURAÇÃO-FREQÜÊNCIA

Município: Catende/PE

Estação Pluviográfica: Catende Código SUDENE: 3878358

RECIFE, PE 2013

PROGRAMA GESTÃO ESTRATÉGICA DA GEOLOGIA, DA MINERAÇÃO E DA TRANSFORMAÇÃO MINERAL

LEVANTAMENTOS DA GEODIVERSIDADE

ATLAS PLUVIOMÉTRICO DO BRASIL

EQUAÇÕES INTENSIDADE-DURAÇÃO-FREQÜÊNCIA

Executado pela Companhia de Pesquisa de Recursos Minerais - CPRM Superintendência Regional de Recife

Copyright @ 2013 CPRM - Superintendência Regional de Recife Av. Sul 2291 - Bairro Afogados

Recife - PE - 50770-011 Telefone: (81) 3316-1400

Fax: (81) 3316-1403 http://www.cprm.gov.br

Ficha Catalográfica

Companhia de Pesquisa de Recursos Minerais - CPRM

Atlas Pluviométrico do Brasil; Equações Intensidade-Duração-Frequência. Município: Catende/PE. Estação Pluviográfica: Catende, Código SUDENE 3878358. José Alexandre Moreira Farias; Eber José de Andrade Pinto – Recife: CPRM, 2013.

10p.; anexos (Série Atlas Pluviométrico do Brasil)

1. Hidrologia 2. Pluviometria 3. Equações IDF 4. I - Título II - COSTA, M. R. da;

CDU: 556.51

Direitos desta edição: CPRM - Serviço Geológico do Brasil e É permitida a reprodução desta publicação desde que mencionada a fonte

MINISTÉRIO DE MINAS E ENERGIA

MINISTRO DE ESTADO

Edison Lobão

SECRETÁRIO EXECUTIVO

Márcio Pereira Zimmermann

SECRETÁRIO DE GEOLOGIA, MINERAÇÃO E TRANSFORMAÇÃO MINERAL

Carlos Nogueira da Costa Junior

COMPANHIA DE PESQUISA DE RECURSOS MINERAIS SERVIÇO GEOLÓGICO DO BRASIL (CPRM/SGB)

CONSELHO DE ADMINISTRAÇÃO

Presidente

Carlos Nogueira da Costa Junior

Vice-Presidente

Manoel Barreto da Rocha Neto

Conselheiros

Ladice Peixoto

Luiz Gonzaga Baião

Jarbas Raimundo de Aldano Matos

Osvaldo Castanheira

DIRETORIA EXECUTIVA

Diretor-Presidente

Manoel Barreto da Rocha Neto

Diretor de Hidrologia e Gestão Territorial

Thales de Queiroz Sampaio

Diretor de Geologia e Recursos Minerais

Roberto Ventura Santos

Diretor de Relações Institucionais e Desenvolvimento

Antônio Carlos Bacelar Nunes

Diretor de Administração e Finanças

Eduardo Santa Helena

SUPERINTENDÊNCIA REGIONAL DE RECIFE

José Wilson de Castro Temoteo Superintendente

Adriano da Silva Santos Gerente de Hidrologia e Gestão Territorial

Adeilson Alves Wanderlei Gerente de Geologia e Recursos Minerais

José Pessoa Veiga Júnior Gerente de Relações Institucionais e Desenvolvimento

> Gilberto Augusto Pinto Ribeiro Junior Gerente de Administração e Finanças

PROJETO ATLAS PLUVIOMÉTRICO DO BRASIL

Departamento de Hidrologia

Frederico Cláudio Peixinho

Departamento de Gestão Territorial

Cássio Roberto da Silva

Divisão de Hidrologia Aplicada

Achiles Eduardo Guerra Castro Monteiro

Coordenação Executiva

Eber José de Andrade Pinto

Coordenadores Regionais do Projeto

Andressa Macêdo Silva de Azambuja - Sureg/BE José Alexandre Moreira Farias - REFO Karine Pickbrenner - Sureg/PA

Equipe Executora

Adriana Burin Weschenfelder - Sureg/PA
Jean Ricardo da Silva do Nascimento - RETE
José Alexandre Moreira Farias - REFO
Margarida Regueira da Costa - Sureg/RE
Osvalcélio Merês Furtunato - Sureg/SA
Vanesca Sartorelli Medeiros - Sureg/SP

Sistema de Informações Geográficas e Mapa

Ivete Souza de Almeida - Sureg/BH

ApoioTécnico

Jennifer Laís Assano - Sureg/SP

Eliane Cristina Gody Moreira - Sureg/SP

João Paulo Vicente Pereira - Sureg/SP

Fabiana Ferreira Cordeiro-Sureg/SP

Juliana Oliveira - Sureg/BE

Murilo Raphael Dias Cardoso - Sureg/GO

Estagiários de Hidrologia

Cláudio Dálio Albuquerque Júnior - Sureg/MA

Diovana Daugs Borges Fortes - Sureg/PA

Fernanda Ribeiro Gonçalves Sotero de Menezes - Sureg/BH

Fernando Lourenço de Souza Júnior - Sureg/RE

Glauco Leite de Freitas – Sureg/RE

Ivo Cleiton Costa Bonfim - REFO

João Paulo Lopes Chaves Miranda - Sureg/BH

Liomar Santos da Hora - Sureg/SA

Lemia Ribeiro - Sureg/SA

Márcia Faermann - Sureg/PA

Mariana Carolina Lima de Oliveira - Sureg/BH

Mayara Luiza de Menezes Oliveira - Sureg/MA

Nayara de Lima Oliveira - Sureg/GO

Pedro da Silva Junqueira - Sureg/PA

Tatiane Maria Lafayete Goes - Sureg/RE

Taciana dos Santos Lima - RETE

Vanessa Romero - Sureg/GO

APRESENTAÇÃO

O projeto Atlas Pluviométrico é uma ação dentro do programa de Gestão Estratégica da Geologia, da Mineração e da Transformação Mineral que tem por objetivo reunir, consolidar e organizar as informações sobre chuvas obtidas na operação da rede hidrometeorológica nacional.

Dentre os vários objetivos do projeto Atlas Pluviométrico, destaca-se, a definição das relações intensidade-duração-frequência (IDF). Essas relações serão estabelecidas para os pontos da rede hidrometeorológica nacional que dispõe de registros contínuos de chuva, ou seja, estações equipadas com pluviógrafos ou estações automáticas.

As relações IDF são importantíssimas na definição das intensidades de precipitação associadas a uma frequência de ocorrência, as quais serão utilizadas no dimensionamento de diversas estruturas de drenagem pluvial ou de aproveitamento dos recursos hídricos. Também podem ser utilizadas de forma inversa, ou seja, estimar a frequência de um evento de precipitação ocorrido, definindo se o evento foi raro ou ordinário.

Este relatório apresenta a equação IDF estabelecida para o município de Catende/PE onde foram utilizados os registros contínuos da estação pluviográfica Catende, código SUDENE 3878358.

1 – INTRODUÇÃO

A equação definida pode ser utilizada no município de Catende e regiões circunvizinhas.

O município de Catende está localizado no Estado de Pernambuco na mesorregião da Mata Pernambucana e microregião da Mata Meridional de Pernambucana, na Latitude 8°40′1,00″ S e Longitude 35°43′1,00″ WGr, a 142 km de Recife/PE. O município possui área de 207,244 km², apresenta uma população estimada em 32.236 habitantes (IBGE, 2010) e localiza-se a uma altitude de 168 mts.

A estação de Catende, código SUDENE 3878358, ficava localizada na Latitude 8°40′0,12″S e Longitude 35°43′0,12″W, no município de Catende. Os dados para definição da equação IDF foram obtidos a partir de pluviogramas. A Figura 01 apresenta a localização do município. (Por motivos de falta de imagem nítida, não foi possível mostrar a localização da estação pluviométrica)

Figura 01 – Localização do município. (Fonte: Wikipédia, 2013)

2 - EQUAÇÃO

A metodologia para definição da equação está descrita em detalhes em Pinto (2013). Na definição da equação Intensidade-Duração-Frequência da estação Catende, código SUDENE 3878358, foram utilizadas séries de duração parcial e os dados utilizados constam do Anexo I. A distribuição de frequência ajustada aos dados foi a Exponencial.

A Figura 02 apresenta as curvas ajustadas.

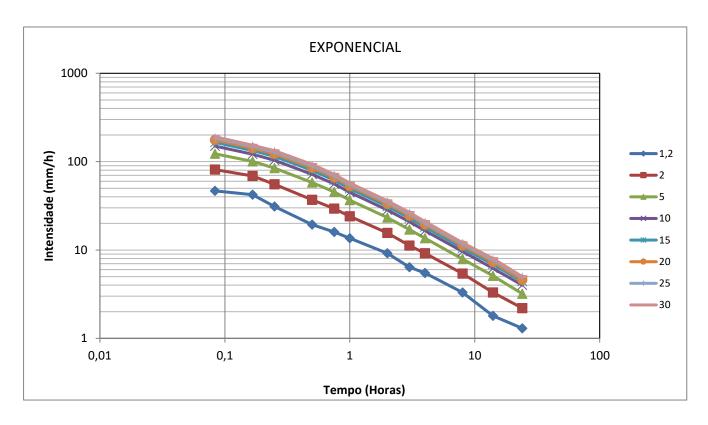


Figura 02 – Curvas intensidade-duração-frequência

A equação adotada para representar a família de curvas da Figura 02 é do tipo:

$$i = \frac{aT^b}{(t+c)^d} \tag{01}$$

Onde:

i é a intensidade da chuva (mm/h)

T é o tempo de retorno (anos)

t é a duração da precipitação (minutos)

a, b, c, d são parâmetros da equação

No caso de Catende, com durações de 5 minutos a 24 horas, os parâmetros da equação são os seguintes:

$$a = 743,4$$
; $b = 0,267$; $c = 12$ e $d = 0,8155$;
$$i = \frac{743,4T^{0,267}}{(t+12)^{0,8155}}$$
 (02)

A equação é valida para tempos de retorno de até 30 anos.

3 – EXEMPLO DE APLICAÇÃO

Suponha que em um determinado dia, em Catende, foi registrada uma chuva de 24 mm com duração de 10 minutos, a qual gerou vários problemas no sistema de drenagem pluvial da cidade. Qual é o tempo de retorno dessa precipitação?

Resp: Inicialmente, para se calcular o tempo de retorno será necessária a inversão da equação 01. Dessa forma temos:

$$T = \left[\frac{i(t+c)^d}{a}\right]^{1/b} \tag{03}$$

A intensidade da chuva registrada é a altura da chuva dividida pela duração, ou seja, 24 mm divididos por 0,167 h é igual a 144 mm/h. Substituindo os valores na equação 03 temos:

$$T = \left[\frac{144(10+12)^{0.8155}}{743.4}\right]^{1/0.267} = 27 \ anos$$

O tempo de retorno de 27 anos corresponde a uma probabilidade de que esta intensidade de chuva seja igualada ou superada em um ano qualquer de 3,7%, ou

$$P(i \ge 144mm/h) = \frac{1}{T}100 = \frac{1}{27}100 = 3.7\%$$

4 – REFERÊNCIAS BIBLIOGRÁFICAS

Google Earth, *Estação Pluviométrica de Catende*. Disponível em: http://www.google.com/earth. Acesso em setembro de 2013.

IBGE – Instituto Brasileiro de Geografia e Estatística, 2010. Cidades. Disponível em: http://www.ibge.gov.br/cidadesat/xtras/perfil.php?codmun=260420&search=pernambuco|catende. Acesso em setembro de 2013.

PINTO, E. J. A. *Metodologia para definição das equações Intensidade-Duração-Frequência do Projeto Atlas Pluviométrico*. CPRM. Belo Horizonte. Mar., 2013.

WIKIPEDIA, 2013. Ficheiro – Pernambuco - Município de Catende. Disponível em: http://pt.wikipedia.org/wiki/Catende. Acesso em: setembro de 2013.

ANEXO I Série de Dados Utilizados por Duração – Altura de Chuva (mm)

DATA	5 MIN	DATA	10 MIN	DATA	15 MIN	DATA	30 MIN	DATA	45 MIN	DATA	1 HORA
17/04/1965	5,777778	17/04/1965	11,45	17/04/1965	16,7	07/07/1965	10,88	11/06/1965	14,088889	17/04/1965	40,0285714
22/01/1966	8,638889	02/05/1965	7,553846	28/08/1965	10,05	24/01/1966	33,2	24/01/1966	34,566667	12/06/1965	17,3666667
16/02/1966	6,600568	28/08/1965	8,591667	22/01/1966	10,02778	18/04/1966	12,91304	12/04/1966	14,6	03/03/1966	14,6230769
11/09/1966	6,25	22/01/1966	9,333333	24/01/1966	23,85556	24/04/1966	13,79231	18/04/1966	17,9025	12/04/1966	17,5545455
30/03/1967	7,78	24/01/1966	17,88333	03/03/1966	7,171429	26/05/1966	10,9	28/05/1966	17,6	18/04/1966	17,94
05/04/1967	5,878571	15/04/1966	9,35	15/04/1966	10,54	25/01/1967	18,125	25/01/1967	18,620513	28/05/1966	19,1384615
12/05/1967	5,333333	25/01/1967	11,82	28/05/1966	8,625	30/03/1967	21,5	30/03/1967	21,7	13/06/1966	17,4235294
17/09/1967	5,428571	30/03/1967	12,73	13/06/1966	8,8	05/04/1967	13,9	05/04/1967	17,003226	25/01/1967	18,6589744
22/01/1968	13,68	05/04/1967	8,271429	25/01/1967	15,725	12/05/1967	15,75	12/05/1967	20	30/03/1967	21,7
26/01/1968	5,36	12/05/1967	10,00909	30/03/1967	16,56667	20/05/1967	15,00245	20/05/1967	15,011656	05/04/1967	19,2774194
05/05/1968	9,8	20/05/1967	9,8	05/04/1967	10,66429	27/12/1967	12,41538	27/12/1967	16,909091	12/05/1967	22,955
12/06/1975	3,071429	17/09/1967	9,323333	12/05/1967	12,05455	22/01/1968	55,47778	22/01/1968	73,5	27/12/1967	18,446875
11/07/1975	5,433333	22/01/1968	24,35	22/01/1968	34	22/03/1968	13,57778	22/03/1968	16,653846	22/01/1968	77,4
14/07/1975	3,316216	26/01/1968	6,66	05/05/1968	16,275	05/05/1968	22,85455	05/05/1968	23,85	22/03/1968	16,7069767
17/07/1975	4	09/07/1975	9,6	30/04/1971	8,90625	30/04/1971	12,3	30/04/1971	19,1	05/05/1968	24,1681818
11/09/1975	4,302273	17/07/1975	6,221429	09/07/1975	10,3	12/06/1975	11,95	12/06/1975	12,561538	30/04/1971	20,9636364
03/12/1975	11,5	03/12/1975	18,18	11/07/1975	10,25789	05/12/1975	14,73429	05/12/1975	14,82	05/12/1975	14,9
05/12/1975	6,571429	05/12/1975	10,17059	05/12/1975	11,78824	06/12/1975	13,475	06/12/1975	16,738462	06/12/1975	21,9416667

DATA	2 HORAS	DATA	3 HORAS	DATA	4 HORAS	DATA	8 HORAS	DATA	14 HORAS	DATA	24 HORAS
17/04/1965	48,8125	17/04/1965	51,142857	17/04/1965	57,0608696	03/04/1965	24,00566	11/06/1965	95,83125	06/05/1965	33,87143
11/06/1965	29,15294	09/05/1965	21,844444	09/05/1965	22,9684211	11/06/1965	74,04348	27/08/1965	30,68889	05/06/1965	36,464
24/01/1966	43,28889	11/06/1965	38,914286	11/06/1965	51,6037037	24/01/1966	44,13739	26/12/1965	30,525	11/06/1965	118,3367
12/04/1966	22,15385	24/01/1966	43,7	18/04/1966	23,5521739	26/05/1966	36,45	12/04/1966	33,7	26/08/1965	34,72222
24/04/1966	21,492	28/05/1966	21,485714	24/04/1966	28,9	12/06/1966	59,14118	24/04/1966	41,1	23/04/1966	41,1
26/05/1966	19,63099	12/06/1966	33,217647	28/04/1966	31,4615385	05/04/1967	38,33209	18/05/1966	41,91975	28/04/1966	48,52
28/05/1966	20,75556	05/04/1967	26,322222	18/05/1966	28,0271429	27/04/1967	22	12/06/1966	74,92414	30/05/1966	41,86905
13/06/1966	24,61429	17/04/1967	41,7	11/06/1966	25,8	30/06/1967	38,01875	18/09/1967	34,87143	12/06/1966	101,2241
25/01/1967	28,73333	12/05/1967	25,498667	12/06/1966	40,6166667	22/01/1968	86,55561	22/01/1968	87,20303	26/07/1967	45,2
30/03/1967	21,8	17/09/1967	20,343662	25/01/1967	41,0545455	30/04/1971	28,44906	26/01/1968	30,56	31/07/1967	41,3
05/04/1967	23,95385	27/12/1967	23,762857	12/05/1967	25,6258824	02/06/1971	42,08393	30/04/1971	31,13125	03/05/1968	36,8
17/04/1967	29,99	22/01/1968	83,122642	22/01/1968	83,5103093	24/07/1971	39,12	05/08/1971	30,99292	20/06/1971	38,20273
27/12/1967	21,64118	27/03/1968	21,808108	27/03/1968	22,3	14/05/1975	36,39322	02/05/1975	30,9	23/07/1971	50,47503
22/01/1968	81,72963	30/04/1971	23,737736	02/06/1971	27,1397727	02/07/1975	34,41389	11/07/1975	29,86783	05/08/1971	36,46732
30/04/1971	22,25581	02/06/1971	23,914286	24/07/1971	26,3333333	09/07/1975	32,4152	16/07/1975	76,96	29/04/1975	38,44925
17/07/1975	23,53333	09/07/1975	31,185897	29/07/1971	35,7444444	16/07/1975	53,5	16/08/1975	34,63083	02/05/1975	42,22258
03/12/1975	31,36522	11/07/1975	21,589286	03/12/1975	31,5	03/12/1975	31,5	03/12/1975	31,96981	16/07/1975	91,03333
06/12/1975	32,17391	06/12/1975	37,694737	06/12/1975	41,8444444	06/12/1975	43,3325	05/12/1975	44,2	15/08/1975	38,3997

ATLAS PLUVIOMÉTRICO DO BRASIL

O projeto Atlas Pluviométrico é uma ação dentro do programa de Gestão Estratégica da Geologia, da Mineração e da Transformação Mineral que tem por objetivo reunir, consolidar e organizar as informações sobre chuvas obtidas na operação da rede hidrometeorológica nacional. Dentre os vários objetivos do projeto Atlas Pluviométrico, destaca-se a definição das relações intensidade-duração-frequência (IDF).

As relações IDF são importantíssimas na definição das intensidades de precipitação associadas a uma frequência de ocorrência, as quais serão utilizadas no dimensionamento de diversas estruturas de drenagem pluvial ou de aproveitamento dos recursos hídricos. Também podem ser utilizadas de forma inversa, ou seja, estimar a frequência de um evento de precipitação ocorrido, definindo se o evento foi raro ou ordinário.

ENDEREÇOS

Sede

SGAN- Quadra 603 - Conjunto J - Parte A - 1° andar

Brasília – DF – CEP: 70830-030

Tel: 61 2192-8252 Fax: 61 3224-1616

Escritório Rio de Janeiro

Av Pasteur, 404 – Urca

Rio de Janeiro – RJ Cep: 22290-255 Tel: 21 2295-5337 - 21 2295-5382

Fax: 21 2542-3647

Diretoria de Hidrologia e Gestão Territorial

Tel: 61 3223-1059 - 21 2295-8248 Fax: 61 3323-6600 - 21 2295-5804

Departamento de Gestão Territorial

Tel: 21 2295-6147 - Fax: 21 2295-8094

Diretoria de Relações Institucionais e Desenvolvimento

Tel: 21 2295-5837 - 61 3223-1059 Fax: 21 2295-5947 - 61 3323-6600

www.cprm.gov.br

Superintendência Regional de Recife

Av. Sul, 2.291 - Afogados Recife - PE - CEP: 50770-011

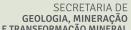
Tel.: 81 3316-1400 - Fax: 81 3316-1403

Assessoria de Comunicação

Tel: 61 3321-2949 - Fax: 61 3321-2949 E-mail: asscomdf@cprm.gov.br

Divisão de Marketing e Divulgação

Tel: 31 3878-0372 - Fax: 31 3878-0370 E-mail: marketing@cprm.gov.br


Ouvidoria

Tel: 21 2295-4697 - Fax: 21 2295-0495 E-mail: ouvidoria@cprm.gov.br

Serviço de Atendimento ao Usuário – SEUS Tel: 21 2295-5997 - Fax: 21 2295-5897 E-mail: seus@cprm.gov.br

