PROGRAMA GESTÃO ESTRATÉGICA DA GEOLOGIA, DA MINERAÇÃO E DA TRANSFORMAÇÃO MINERAL

LEVANTAMENTOS DA GEODIVERSIDADE

ATLAS PLUMETRICO DO BRASIL

Equações Intensidade-Duração-Frequência

Estado: Rio Grande do Sul Município: Novo Hamburgo Estação Pluviográfica: Morungava

Código ANA: 0295061

Estação Pluviométrica: Sapucaia do Sul

Código ANA: 02951028

MINISTÉRIO DE MINAS E ENERGIA SECRETARIA DE GEOLOGIA, MINERAÇÃO E TRANSFORMAÇÃO MINERAL CPRM - SERVIÇO GEOLÓGICO DO BRASIL

PROGRAMA GESTÃO ESTRATÉGICA DA GEOLOGIA, DA MINERAÇÃO E DA TRANSFORMAÇÃO MINERAL

LEVANTAMENTOS DA GEODIVERSIDADE

CARTA DE SUSCETIBILIDADE A MOVIMENTOS GRAVITACIONAIS DE MASSA E INUNDAÇÃO

ATLAS PLUVIOMÉTRICO DO BRASIL
EQUAÇÕES INTENSIDADE-DURAÇÃO-FREQUÊNCIA

Município: Novo Hamburgo/RS

Estação Pluviográfica: Morungava

Código: 02950061

Estação Pluviométrica: Sapucaia do Sul

Código: 02951028

PORTO ALEGRE 2014

PROGRAMA GESTÃO ESTRATÉGICA DA GEOLOGIA, DA MINERAÇÃO E DA TRANSFORMAÇÃO MINERAL

LEVANTAMENTOS DA GEODIVERSIDADE

CARTAS DE SUSCETIBILIDADE A MOVIMENTOS GRAVITACIONAIS DE MASSA E INUNDAÇÃO

ATLAS PLUVIOMÉTRICO DO BRASIL

EQUAÇÕES INTENSIDADE-DURAÇÃO-FREQUÊNCIA (Desagregação de Precipitações Diárias)

Executado pela Companhia de Pesquisa de Recursos Minerais - CPRM Superintendência Regional de Porto Alegre

Copyright @ 2014 CPRM - Superintendência Regional de Porto Alegre Rua Banco da Província, 105 - Bairro Santa Teresa

Porto Alegre - RS - 90.840-030 Telefone: (51) 3406-7300

Fax: (51) 3233-7772 http://www.cprm.gov.br

Ficha Catalográfica

Companhia de Pesquisa de Recursos Minerais - CPRM

Atlas Pluviométrico do Brasil; Equações Intensidade-Duração-Frequência (Desagregação de Precipitações Diárias). Município: Novo Hamburgo, Estação Pluviográfica: Morungava 02950061 e Estação Pluviométrica: Sapucaia do Sul Código 02951028. Adriana B. Weschenfelder; Karine Pickbrenner e Eber José de Andrade Pinto – Porto Alegre: CPRM, 2014.

18p.; anexos (Série Atlas Pluviométrico do Brasil)

1. Hidrologia 2. Pluviometria 3. Equações IDF 4. I - Título II – WESCHENFELDER, A. B.; PICKBRENNER, K. e PINTO, E. J. A.

CDU: 556.51

Direitos desta edição: CPRM - Serviço Geológico do Brasil É permitida a reprodução desta publicação desde que mencionada a fonte

MINISTÉRIO DE MINAS E ENERGIA

MINISTRO DE ESTADO

Edison Lobão

SECRETÁRIO EXECUTIVO

Márcio Pereira Zimmermann

SECRETÁRIO DE GEOLOGIA, MINERAÇÃO E TRANSFORMAÇÃO MINERAL

Carlos Nogueira da Costa Junior

COMPANHIA DE PESQUISA DE RECURSOS MINERAIS SERVIÇO GEOLÓGICO DO BRASIL (CPRM/SGB)

CONSELHO DE ADMINISTRAÇÃO

Presidente

Carlos Nogueira da Costa Junior

Vice-Presidente

Manoel Barreto da Rocha Neto

Conselheiros

Ladice Peixoto

Luiz Gonzaga Baião

Jarbas Raimundo de Aldano Matos

Osvaldo Castanheira

DIRETORIA EXECUTIVA

Diretor-Presidente

Manoel Barreto da Rocha Neto

Diretor de Hidrologia e Gestão Territorial

Thales de Queiroz Sampaio

Diretor de Geologia e Recursos Minerais

Roberto Ventura Santos

Diretor de Relações Institucionais e Desenvolvimento

Antônio Carlos Bacelar Nunes

Diretor de Administração e Finanças

Eduardo Santa Helena

SUPERINTENDÊNCIA REGIONAL DE PORTO ALEGRE

José Leonardo Silva Andriotti Superintendente

Marcos Alexandre de Freitas Gerente de Hidrologia e Gestão Territorial

João Angelo Toniolo Gerente de Geologia e Recursos Minerais

Ana Claudia Viero
Gerente de Relações Institucionais e Desenvolvimento

Alexandre Goulart Gerente de Administração e Finanças

PROJETO ATLAS PLUVIOMÉTRICO DO BRASIL

Departamento de Hidrologia

Frederico Cláudio Peixinho

Departamento de Gestão Territorial

Cássio Roberto da Silva

Divisão de Hidrologia Aplicada

Achiles Eduardo Guerra Castro Monteiro

Coordenação Executiva do DEHID - Atlas Pluviométrico

Eber José de Andrade Pinto

Coordenaçãodo Projeto Cartas Municipais de Suscetibilidade

Sandra Fernandes da Silva

Coordenadores Regionais do Projeto Atlas Pluviométrico

Andressa Macêdo Silva de Azambuja-Sureg/BE José Alexandre Moreira Farias-REFO Karine Pickbrenner-Sureg/PA

Equipe Executora

Adriana Burin Weschenfelder-Sureg/PA

Albert Teixeira Cardoso – Sureg/GO

Caluan Rodrigues Capozzoli-Sureg/SP

Catharina Ramos dos Prazeres Campos – Sureg/BE

Jean Ricardo da Silvado Nascimento - RETE

Luana Késsia Lucas Alves Martins – Sureg/BH

Margarida Regueira da Costa – Sureg/RE Osvalcélio Mercês Furtunato – Sureg/SA

Sistema de Informações Geográficas e Mapa

Ivete Souza de Almeida-Sureg/BH

Apoio Técnico

Amanda Elizalde Martins – Sureg/PA
Debora Gurgel – REFO
Douglas Sanches Soller – Sureg/PA
Eliane Cristina Godoy Moreira-Sureg/SP
Jennifer Laís Assano -Sureg/SP
João Paulo Vicente Pereira-Sureg/SP
Juliana Oliveira-Sureg/BE
Fabiana Ferreira Cordeiro-Sureg/SP
Luisa Collischonn – Sureg/PA
Murilo Raphael Dias Cardoso -Sureg/GO
Paulo Guilherme de Oliveira Sousa – RETE

Estagiários de Hidrologia

Caroline Centeno - Sureg/PA Cassio Pereira - Sureg/PA Cláudio Dálio Albuquerque Júnior-Sureg/MA Diovana Daugs Borges Fortes -Sureg/PA Fernanda Ribeiro Gonçalves Sotero de Menezes -Sureg/BH Fernando Lourenço de Souza Junior – Sureg/RE Ivo Cleiton Costa Bonfim -REFO João Paulo Lopes Chaves Miranda-Sureg/BH José Érico Nascimento Barros -Sureg/RE Liomar Santos da Hora-Sureg/SA Lemia Ribeiro-Sureg/SA Márcia Faermann -Sureg/PA Mariana Carolina Lima de Oliveira-Sureg/BH Mayara Luiza de Menezes Oliveira-Sureg/MA Nayara de Lima Oliveira-Sureg/GO Pedro da Silva Junqueira-Sureg/PA Rosangela de Castro - Sureg/SP Taciana dos Santos Lima-RETE Thais Danielle Oliveira Gasparin - Sureg/SP

Vanessa Romero-Sureg/GO

APRESENTAÇÃO

O projeto Atlas Pluviométrico é uma ação dentro do programa Gestão Estratégica da Geologia, da Transformação Mineral que tem por objetivo reunir, consolidar e organizar as informações sobre chuvas obtidas na operação da rede hidrometeorológica nacional.

Dentre os vários objetivos do projeto Atlas Pluviométrico, destaca-se, a definição das relações intensidade-duração-frequência (IDF). Essas relações serão estabelecidas para os pontos da rede hidrometeorológica nacional que dispõe de registros contínuos de chuva, ou seja, estações equipadas com pluviógrafos ou estações automáticas.

Entretanto, em localidades nas quais existem somente pluviômetros, ou seja, não existem registros contínuos das precipitações, obtidos com pluviógrafos ou estações automáticas, as relações IDF serão estabelecidas a partir da desagregação das precipitações máximas diárias.

As relações IDF são importantíssimas na definição das intensidades de precipitação associadas a uma frequência de ocorrência, as quais serão utilizadas no dimensionamento de diversas estruturas de drenagem pluvial ou de aproveitamento dos recursos hídricos. Também podem ser utilizadas de forma inversa, ou seja, estimar a frequência de um evento de precipitação ocorrido, definindo se o evento foi raro ou ordinário.

Na definição das relações IDF foram priorizados os municípios onde serão mapeadas, pela CPRM-Serviço Geológico do Brasil, as áreas suscetíveis a movimentos de massa e enchentes.

Este relatório, que acompanhará a carta municipal de suscetibilidade, apresenta a equação IDF estabelecida para o município de Novo Hamburgo. Foram elaboradas duas IDFs, sendo que a primeira (IDF1), foi elaborada com dados de uma estação pluviográfica e subsidiou parâmetros a serem utilizadas na segunda (IDF2), elaborada com séries de uma estação pluviométrica. A IDF1, indicada para tempos de retorno até 30 anos, foi elaborada a partir de registros contínuos de precipitação da estação pluviográfica de Morungava, código 02950061, localizada no distrito de Morungava, no município de Gravataí, a 28 km da sede de Novo Hamburgo. A segunda equação, IDF2, foi elaborada aplicando metodologia de desagregação, sendo a série levantada de registros de precipitações diárias máximas por ano civil da estação pluviométrica de Sapucaia do Sul, código 02951028, aproximadamente a 15 km da sede de Novo Hamburgo. Ambas as estações são operadas pela CPRM/ANA, sendo que a estação de Morangava foi desativada em abril de 2009.

1 - INTRODUÇÃO

A equação definida (IDF2) pode ser utilizada no município de Novo Hamburgo e regiões circunvizinhas.

O município de Novo Hamburgo está localizado no estado do rio Grande do Sul, na Latitude 29°41'17" S e Longitude 51°08'00" W, a 43 km de Porto Alegre, capital do estado. O município possui área de 224 Km² e a sede localiza-se a uma altitude de 22 metros. Sua população, segundo o censo de 2010 do IBGE, é de 238.940 habitantes.

A estação Morungava, código 02950061, está localizada na Latitude 29°51'03' S e Longitude 50°54'37" W e a estação Sapucaia do Sul, código 02951028, está localizada na Latitude 29°49'12" S e Longitude 51°09'40" W, ambas inserem-se a nordeste da sub-bacia 87, mais especificamente e respectivamente nas sub-bacias do rio Gravataí e rio dos Sinos, ambas operadas pela CPRM (Companhia de pesquisa de Recursos Minerais), sendo que Morungava foi desativada em abril de 2009.

A estação pluviográfica de Morungava localiza-se no distrito de Morungava no município de Gravataí, a aproximadamente 26 m de altitude e distante 28 km da sede municipal de Novo Hamburgo. Operou de agosto de 1991 a abril de 2009 a série contemplada na elaboração da IDF1 foi levantada a partir de 1993.

A estação pluviométrica de Sapucaia do Sul localiza-se no município de Sapucaia do Sul, a 20 m de altitude e distante 15 km da sede municipal de Novo Hamburgo. Encontra-se em operação desde 1964 e os dados para a elaboração da IDF2 foram utilizados a partir de 1967.

A Figura 01 apresenta a localização do município e das estações.

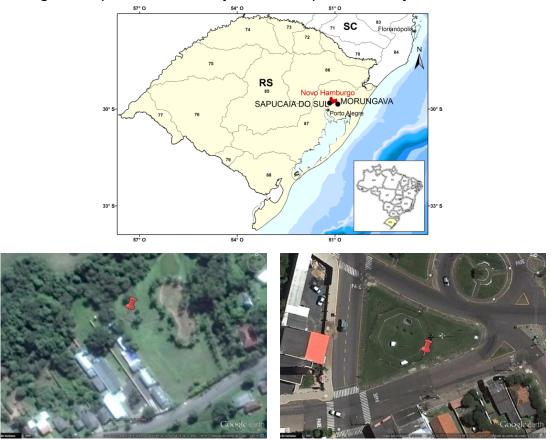


Figura 01 – Localização do Município e da Estação Pluviográfica de Morungava e Estação Pluviométrica de Sapucaia do Sul (Fonte: GOOGLE, 2014).

2 – EQUAÇÕES

2.1 - IDF1: REGISTROS CONTÍNUOS DE PRECIPITAÇÃO

A metodologia para definição da equação utilizando os dados pluviográficos está descrita em detalhes em Pinto (2013).

Na definição da equação Intensidade-Duração-Frequência da estação Morungava, código 02950061, foram utilizadas séries de duração parcial e os dados utilizados constam no Anexo I. A distribuição de frequência ajustada aos dados foi a Exponencial, com os parâmetros calculados pelo método dos momentos-L. O Anexo II apresenta as relações entre as alturas de chuvas de diferentes durações calculadas com os resultados das análises de frequência.

A Figura 02 apresenta as curvas ajustadas utilizando os dados pluviográficos.

Figura 02 – Curvas intensidade-duração-frequência

A equação adotada para representar a família de curvas da Figura 02 é do tipo:

$$i = \frac{aT^b}{(t+c)^d} \tag{01}$$

Onde:

i é a intensidade da chuva (mm/h)

T é o tempo de retorno (anos)

t é a duração da precipitação (minutos)

a, b, c, d são parâmetros da equação

No caso da estação Morungava os parâmetros da equação são os seguintes:

5min ≤ t <45min a = 7915,1 b =0,1927; c =35; d =1,2001

$$i = \frac{7915,1 \, T^{0,1927}}{(t+35)^{1,2001}} \tag{02}$$

45min ≤ t <8h a = 695,2; b =0,2207; c =0; d =0,7423

$$i = \frac{695,2T^{0,2207}}{(t)^{0,7423}} \tag{03}$$

 $8h \le t \le 24h$ a = 1586,1; b = 0,1963; c = 0; d = 0,8591

$$i = \frac{1586,17^{0,1963}}{(t+0)^{0,8591}} \tag{04}$$

As equações acima são válidas para tempos de retorno até 30 anos e durações de 5 minutos até 24 horas. A Tabela 01 apresenta as intensidades, em mm/h, calculadas para várias durações e diferentes tempos de retorno. Enquanto que na Tabela 02 constam as respectivas alturas de chuva, em mm, para as mesmas durações e os mesmos tempos de retorno.

Tabela 01 – Intensidade da chuva em mm/h.

Duração da		Te	mpo de	Retorno	T (anos))	
chuva	2	5	10	15	20	25	30
5 Minutos	108,1	129,0	147,4	159,4	168,5	175,9	182,2
10 Minutos	93,9	112,0	128,0	138,4	146,3	152,7	158,2
15 Minutos	82,7	98,7	112,8	121,9	128,9	134,6	139,4
30 Minutos	60,4	72,0	82,3	89,0	94,1	98,2	101,7
45 Minutos	48,0	58,8	68,5	74,9	79,8	83,8	87,3
1 HORA	38,8	47,5	55,3	60,5	64,5	67,7	70,5
2 HORAS	23,2	28,4	33,1	36,2	38,5	40,5	42,1
3 HORAS	17,2	21,0	24,5	26,8	28,5	30,0	31,2
4 HORAS	13,9	17,0	19,8	21,6	23,0	24,2	25,2
5 HORAS	11,7	14,4	16,8	18,3	19,5	20,5	21,3
6 HORAS	10,3	12,6	14,6	16,0	17,0	17,9	18,6
7 HORAS	9,1	11,2	13,0	14,3	15,2	16,0	16,6
8 HORAS	9,0	10,8	12,4	13,4	14,2	14,8	15,4
12 HORAS	6,4	7,6	8,7	9,5	10,0	10,5	10,9
14 HORAS	5,6	6,7	7,7	8,3	8,8	9,2	9,5
20 HORAS	4,1	4,9	5,6	6,1	6,5	6,8	7,0
24 HORAS	3,5	4,2	4,8	5,2	5,5	5,8	6,0

Tabela 02 - Altura de chuva em mm

Duração da		Te	empo de	Retorno	o, <i>T</i> (anos	s)	
chuva	2	5	10	15	20	25	30
5 Minutos	9,0	10,7	12,3	13,3	14,0	14,7	15,2
10 Minutos	15,6	18,7	21,3	23,1	24,4	25,4	26,4
15 Minutos	20,7	24,7	28,2	30,5	32,2	33,6	34,8
20 Minutos	24,6	29,3	33,5	36,3	38,3	40,0	41,4
30 Minutos	30,2	36,0	41,2	44,5	47,0	49,1	50,9
45 Minutos	36,0	44,1	51,4	56,2	59,9	62,9	65,5
1 HORA	38,8	47,5	55,3	60,5	64,5	67,7	70,5
2 HORAS	46,4	56,8	66,1	72,3	77,1	81,0	84,3
3 HORAS	51,5	63,0	73,4	80,3	85,6	89,9	93,6
4 HORAS	55,4	67,9	79,1	86,5	92,1	96,8	100,8
5 HORAS	58,7	71,9	83,8	91,6	97,6	102,5	106,7
6 HORAS	61,5	75,3	87,8	96,0	102,3	107,5	111,9
7 HORAS	64,0	78,4	91,3	99,9	106,4	111,8	116,4
8 HORAS	72,3	86,5	99,1	107,4	113,6	118,7	123,0
12 HORAS	76,5	91,6	105,0	113,7	120,3	125,7	130,2
14 HORAS	78,2	93,6	107,3	116,2	122,9	128,4	133,1
20 HORAS	82,2	98,5	112,8	122,2	129,2	135,0	140,0
24 HORAS	84,4	101,0	115,7	125,3	132,6	138,6	143,6

2.2 – IDF2: DESAGREGAÇÃO DE DADOS DIARIOS OBSERVADOS DE PRECIPITAÇÃO

A metodologia para definição da equação por desagregação das precipitações diárias está descrita em detalhes em Pinto (2013).

Na definição da equação Intensidade-Duração-Frequência da estação Sapucaia do Sul código 02951028, foi utilizada a série de precipitações diárias máximas por ano civil, apresentada no Anexo III. A distribuição de frequência ajustada aos dados diários foi a Gumbel, com os parâmetros calculados pelo método dos momentos-L.

A desagregação dos quantis diários em outras durações foi efetuada com as relações entre alturas de chuvas de diferentes durações obtidas com as relações IDF estabelecidas para a estação de Morungava, localizada no distrito de Morungava, no município de Gravataí, a aproximadamente 26 m de altitude e distante 28 km da sede de Novo Hamburgo. As relações entre as alturas de chuvas de diferentes durações constam do Anexo II.

A Figura 03 apresenta as curvas ajustadas utilizando os dados pluviométricos desagregados.

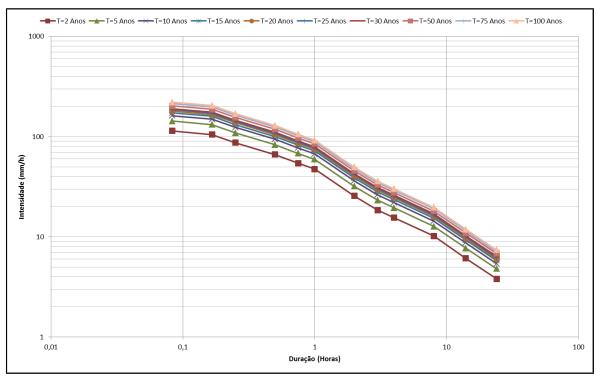


Figura 03 – Curvas intensidade-duração-frequência

A equação adotada para representar a família de curvas da Figura 03 é do tipo:

$$i = \frac{aT^b}{(t+c)^d} \tag{05}$$

Onde:

i é a intensidade da chuva (mm/h)

T é o tempo de retorno (anos)

t é a duração da precipitação (minutos)

a, b, c, d são parâmetros da equação

No caso da estação Sapucaia do Sul os parâmetros da equação são os seguintes:

5min ≤ t < 3h

a = 4732,8; b =0,1560; c =31,8; d =1,0413

$$i = \frac{4732,8T^{0,1560}}{(t+31,8)^{1,0413}} \tag{06}$$

 $3h \le t \le 24h$

a = 1497,8; b =0,1633; c =35; d =0,8217

$$i = \frac{1497,87^{0,1633}}{(t+35)^{0,8217}} \tag{07}$$

A equação acima é válida para tempos de retorno até 100 anos e durações de 5 minutos até 24 horas. A Tabela 03 apresenta as intensidades, em mm/h, calculadas para várias durações e diferentes tempos de retorno. Enquanto que na Tabela 04 constam as respectivas alturas de chuva, em mm, para as mesmas durações e os mesmos tempos de retorno.

Tabela 03 – Intensidade da chuva em mm/h.

Duração					Те	mpo de	Retorn	o, <i>T</i> (and	os)				
da Chuva	2	5	10	15	20	25	30	40	50	60	70	75	100
5 Minutos	123,5	142,4	158,7	169,1	176,8	183,1	188,4	197,0	204,0	209,9	215,0	217,3	227,3
10 Minutos	108,1	124,7	139,0	148,1	154,9	160,3	165,0	172,5	178,7	183,8	188,3	190,3	199,1
15 Minutos	96,1	110,9	123,6	131,6	137,7	142,6	146,7	153,4	158,8	163,4	167,4	169,2	177,0
20 Minutos	86,5	99,8	111,2	118,4	123,9	128,3	132,0	138,0	142,9	147,0	150,6	152,2	159,2
30 Minutos	72,0	83,0	92,5	98,5	103,1	106,7	109,8	114,8	118,9	122,3	125,3	126,7	132,5
45 Minutos	57,4	66,2	73,8	78,6	82,2	85,1	87,6	91,6	94,8	97,6	99,9	101,0	105,7
1 HORA	47,7	55,0	61,3	65,3	68,3	70,7	72,7	76,1	78,7	81,0	83,0	83,9	87,7
2 HORAS	28,2	32,6	36,3	38,7	40,4	41,9	43,1	45,0	46,6	48,0	49,2	49,7	52,0
3 HORAS	20,3	23,6	26,4	28,2	29,6	30,7	31,6	33,2	34,4	35,4	36,3	36,7	38,5
4 HORAS	16,6	19,3	21,6	23,1	24,2	25,1	25,8	27,1	28,1	28,9	29,7	30,0	31,5
5 HORAS	14,1	16,4	18,4	19,6	20,6	21,3	22,0	23,0	23,9	24,6	25,2	25,5	26,7
6 HORAS	12,3	14,3	16,0	17,1	18,0	18,6	19,2	20,1	20,9	21,5	22,0	22,3	23,4
7 HORAS	11,0	12,7	14,3	15,3	16,0	16,6	17,1	17,9	18,6	19,1	19,6	19,8	20,8
8 HORAS	9,9	11,5	12,9	13,8	14,4	15,0	15,4	16,2	16,8	17,3	17,7	17,9	18,8
12 HORAS	7,2	8,4	9,4	10,1	10,5	10,9	11,3	11,8	12,2	12,6	12,9	13,1	13,7
14 HORAS	6,4	7,4	8,3	8,9	9,3	9,7	10,0	10,5	10,9	11,2	11,5	11,6	12,2
20 HORAS	4,8	5,6	6,3	6,7	7,0	7,3	7,5	7,9	8,2	8,4	8,6	8,7	9,2
24 HORAS	4,2	4,9	5,4	5,8	6,1	6,3	6,5	6,8	7,1	7,3	7,5	7,5	7,9

Tabela 04 – Altura de chuva em mm

Duração					Te	mpo de	Retorn	o, <i>T</i> (and	os)				
da Chuva	2	5	10	15	20	25	30	40	50	60	70	75	100
5 Minutos	10,3	11,9	13,2	14,1	14,7	15,3	15,7	16,4	17,0	17,5	17,9	18,1	18,9
10 Minutos	18,0	20,8	23,2	24,7	25,8	26,7	27,5	28,8	29,8	30,6	31,4	31,7	33,2
15 Minutos	24,0	27,7	30,9	32,9	34,4	35,6	36,7	38,3	39,7	40,9	41,8	42,3	44,2
20 Minutos	28,8	33,3	37,1	39,5	41,3	42,8	44,0	46,0	47,6	49,0	50,2	50,7	53,1
30 Minutos	36,0	41,5	46,3	49,3	51,5	53,4	54,9	57,4	59,5	61,2	62,7	63,3	66,2
45 Minutos	43,0	49,7	55,3	58,9	61,6	63,8	65,7	68,7	71,1	73,2	75,0	75,8	79,2
1 HORA	47,7	55,0	61,3	65,3	68,3	70,7	72,7	76,1	78,7	81,0	83,0	83,9	87,7
2 HORAS	56,5	65,1	72,6	77,3	80,9	83,7	86,1	90,1	93,3	96,0	98,3	99,4	103,9
3 HORAS	61,0	70,8	79,3	84,7	88,8	92,1	94,9	99,5	103,1	106,3	109,0	110,2	115,5
4 HORAS	66,4	77,1	86,4	92,3	96,7	100,3	103,4	108,3	112,3	115,7	118,7	120,0	125,8
5 HORAS	70,6	82,0	91,8	98,1	102,8	106,6	109,9	115,1	119,4	123,0	126,2	127,6	133,7
6 HORAS	74,0	85,9	96,2	102,8	107,8	111,8	115,1	120,7	125,1	128,9	132,2	133,7	140,1
7 HORAS	76,8	89,2	99,9	106,8	111,9	116,1	119,6	125,3	130,0	133,9	137,3	138,9	145,6
8 HORAS	79,3	92,1	103,2	110,2	115,5	119,8	123,4	129,4	134,2	138,2	141,8	143,4	150,3
12 HORAS	86,9	100,9	113,0	120,7	126,6	131,3	135,2	141,7	147,0	151,4	155,3	157,0	164,6
14 HORAS	89,8	104,3	116,8	124,8	130,8	135,6	139,7	146,5	151,9	156,5	160,5	162,3	170,1
20 HORAS	96,7	112,3	125,7	134,3	140,8	146,0	150,4	157,6	163,5	168,4	172,7	174,7	183,1
24 HORAS	100,2	116,4	130,4	139,3	146,0	151,4	156,0	163,5	169,6	174,7	179,1	181,2	189,9

3 – EXEMPLO DE APLICAÇÃO

Suponha que em um determinado dia, em Novo Hamburgo, foi registrada uma Chuva de 75 mm com duração de 45 min, a qual gerou vários problemas no sistema de drenagem pluvial da cidade. Qual é o tempo de retorno dessa precipitação?

Resp: Inicialmente, para se calcular o tempo de retorno será necessária a inversão da equação 05. Dessa forma temos:

$$T = \left[\frac{i(t+c)^d}{a}\right]^{1/b} \tag{08}$$

A intensidade da chuva registrada é a altura da chuva dividida pela duração, ou seja, 75 mm dividido por 0,75 h é igual a 100 mm/h. Substituindo os valores na equação 08 temos:

$$T = \left[\frac{100(45 + 31,8)^{1,0413}}{4732,8} \right]^{1/0,1560} = 70,3 \ anos$$

O tempo de retorno de 70,3 anos corresponde a uma probabilidade de que esta intensidade de chuva seja igualada ou superada em um ano qualquer de 1,4%, ou

$$P(i \ge 100 \ mm/h) = \frac{1}{T}100 = \frac{1}{70.3}100 = 1.4\%$$

5 – REFERÊNCIAS BIBLIOGRÁFICAS

GOOGLE EARTH. *Estação pluviográfica de Morungava*. Disponível em: http://www.google.com/earth. Acesso em 10 de dezembro de 2014.

GOOGLE EARTH. *Estação pluviométrica de Sapucaia do Sul*. Disponível em: http://www.google.com/earth. Acesso em 10 de dezembro de 2014.

IBGE - Instituto Brasileiro de Geografia e Estatística, 2010. Disponível em: http://www.censo2010.ibge.gov.br/sinopse/index.php. Acesso em 10 de dezembro de 2014.

PINTO, E. J. A. *Metodologia para definição das equações Intensidade-Duração-Frequência do Projeto Atlas Pluviométrico*. CPRM. Belo Horizonte. Mar., 2013.

ANEXO I Série de Dados Utilizados por Duração – Altura de Chuva (mm)

DATA	5 MIN	DATA	10 MIN	DATA	15 MIN	DATA	30 MIN	DATA	45 MIN	DATA	1 HORA
26/12/1993	11,6	26/12/1993	20,7	26/12/1993	25,6	20/02/1993	22,9	26/12/1993	51,7	04/07/1993	28,7
08/01/1994	12,9	08/01/1994	20,6	08/01/1994	26,6	26/12/1993	40,1	27/12/1993	25,3	26/12/1993	62,0
09/02/1994	9,9	09/02/1994	18,2	09/02/1994	20,5	08/01/1994	34,3	08/01/1994	36,6	08/01/1994	36,6
12/02/1994	9,8	12/02/1994	15,1	12/02/1994	19,8	09/02/1994	27,3	09/02/1994	29,7	09/02/1994	30,7
10/02/1996	9,6	05/01/1995	12,7	05/01/1995	19,0	12/02/1994	28,7	12/02/1994	34,2	12/02/1994	37,4
23/02/1996	11	10/02/1996	12,4	10/02/1996	15,2	05/01/1995	28,5	05/01/1995	31,3	05/01/1995	32,0
20/08/1997	8,1	23/02/1996	17,7	23/02/1996	22,9	23/02/1996	30,1	23/02/1996	31,1	21/10/1995	26,4
25/12/1997	9,3	30/01/1997	13,5	30/01/1997	17,0	18/10/1996	24,7	18/10/1996	30,4	23/02/1996	33,0
12/04/1998	10,1	25/12/1997	14,6	25/12/1997	20,6	30/01/1997	26,9	30/01/1997	36,3	18/10/1996	32,6
07/02/1999	8,8	12/04/1998	13,3	12/04/1998	16,4	25/12/1997	39,3	25/12/1997	48,6	30/01/1997	40,1
13/02/1999	9,1	07/02/1999	12,3	07/02/1999	15,7	12/04/1998	24,2	12/04/1998	26,1	25/12/1997	55,5
16/02/1999	10,6	13/02/1999	13,1	13/02/1999	17,0	07/02/1999	22,1	13/02/1999	27,5	13/02/1999	29,8
09/03/1999	9,9	16/02/1999	20,8	16/02/1999	23,3	16/02/1999	37,0	16/02/1999	45,7	16/02/1999	51,7

DATA	2 HORAS	DATA	3 HORAS	DATA	4 HORAS	DATA	8 HORAS	DATA	14 HORAS	DATA	24 HORAS
04/07/1993	43,7	04/07/1993	52	04/07/1993	60,8	03/06/1993	57	03/06/1993	66,9	03/06/1993	88,3
26/12/1993	68,6	26/12/1993	68,6	22/10/1993	40,3	04/07/1993	87,1	04/07/1993	98,9	04/07/1993	100,2
08/01/1994	36,6	08/01/1994	36,8	26/12/1993	68,6	22/10/1993	68,9	22/10/1993	82,5	22/10/1993	83,0
12/02/1994	47,7	12/02/1994	55,8	14/02/1994	40,2	26/12/1993	68,6	26/12/1993	68,6	26/12/1993	96,7
19/06/1994	32,7	19/06/1994	39,1	19/06/1994	39,8	12/02/1994	96,3	12/02/1994	96,6	08/01/1994	82,4
05/01/1995	36,0	05/01/1995	36,1	17/10/1994	38,4	17/10/1994	57,6	17/10/1994	70,1	12/02/1994	108,9
21/10/1995	34,9	21/10/1995	39,4	29/12/1994	38,8	28/07/1995	73,6	28/07/1995	99,8	18/06/1994	80,7
23/02/1996	35,7	13/08/1996	36,1	29/07/1995	41,0	14/10/1996	56,5	13/10/1996	69,2	14/08/1994	80,2
18/10/1996	35,3	18/10/1996	36,0	21/10/1995	40,6	30/01/1997	73,4	30/01/1997	74,0	28/07/1995	121,9
30/01/1997	50,7	30/01/1997	59,7	30/01/1997	65,9	25/12/1997	109,6	19/08/1997	67,0	30/01/1997	82,7
25/12/1997	58,4	25/12/1997	62,5	25/12/1997	85,7	27/12/1997	58,7	24/12/1997	112,4	19/08/1997	80,0
27/12/1997	36,2	27/12/1997	36,9	27/12/1997	38,1	16/02/1999	55,3	27/12/1997	67,5	24/12/1997	112,6
16/02/1999	54,0	16/02/1999	54,7	16/02/1999	55,1	01/04/1999	56,7	09/06/1999	79,8	08/06/1999	79,8

ANEXO II

RELAÇÕES ENTRE AS ALTURAS DE PRECIPITAÇÕES DE DIFERENTES DURAÇÕES (Pd1/Pd2)

Tempos de Retorno de 2 a 30 anos

	Relação	Relação	Relação	Relação	Relação
	5 min/10 min	10 min/15 min	15 min/30 min	30 min/45 min	45 min/1h
Máxima	0,64	0,82	0,67	0,85	0,91
Mínima	0,52	0,79	0,65	0,80	0,86
Média	0,56	0,81	0,66	0,81	0,87
Mediana	0,54	0,82	0,65	0,80	0,86

	Relação	Relação	Relação	Relação	Relação
	1h/2h	2h/3h	3h/4h	4h/8h	8h/14h
Máxima	0,93	0,93	0,94	0,78	0,96
Mínima	0,87	0,92	0,88	0,71	0,88
Média	0,91	0,92	0,90	0,76	0,93
Mediana	0,92	0,92	0,89	0,77	0,94

RELAÇÕES ENTRE AS ALTURAS DE PRECIPITAÇÕES DE DIFERENTES DURAÇÕES (Pd/P1hora) Tempos de Retorno de 2 a 30 anos

	Relação	Relação	Relação	Relação	Relação
	5 min/1h	10 min/1h	15 min/1h	30 min/1h	45 min/1h
Máxima	0,26	0,41	0,52	0,78	0,91
Mínima	0,19	0,36	0,44	0,68	0,86
Média	0,21	0,38	0,46	0,71	0,87
Mediana	0,20	0,37	0,45	0,69	0,86

RELAÇÕES ENTRE AS ALTURAS DE PRECIPITAÇÕES DE DIFERENTES DURAÇÕES (Pd/P24horas) Tempos de Retorno de 2 a 30 anos

	Relação	Relação	Relação	Relação	Relação	Relação
	1h/24h	2h/24h	3h/24h	4h/24h	8h/24h	14h/24h
Máxima	0,53	0,58	0,63	0,71	0,91	0,95
Mínima	0,42	0,48	0,52	0,55	0,78	0,89
Média	0,50	0,55	0,59	0,66	0,87	0,93
Mediana	0,51	0,56	0,61	0,68	0,88	0,94

ANEXO III
Série de Dados Utilizados – Altura de Chuva diária (mm)
Máximos por ano civil (01/Jan a 31/Dez)

AI	AF	Data	Precipitação Máxima Diária (mm)	AI	AF	Data	Precipitação Máxima Diária (mm)
1967	1967	19/09/67	72,0	1991	1991	18/04/91	102,5
1968	1968	26/10/68	57,0	1992	1992	24/01/92	97,0
1969	1969	21/03/69	46,0	1993	1993	05/07/93	110,0
1970	1970	17/10/70	106,0	1994	1994	19/06/94	93,4
1971	1971	05/08/71	62,0	1995	1995	29/07/95	117,1
1972	1972	10/02/72	93,0	1996	1996	14/10/96	70,5
1973	1973	11/01/73	72,0	1997	1997	25/12/97	89,0
1974	1974	09/06/74	57,5	1998	1998	06/01/98	65,3
1975	1975	06/06/75	45,5	1999	1999	10/06/99	100,3
1976	1976	26/07/76	72,0	2000	2000	13/04/00	111,6
1977	1977	19/06/77	77,0	2001	2001	01/10/01	124,0
1978	1978	04/11/78	63,0	2002	2002	27/07/02	78,9
1979	1979	15/12/79	55,0	2003	2003	09/07/03	85,3
1980	1980	29/07/80	86,0	2004	2004	15/07/04	55,3
1981	1981	19/02/81	89,5	2005	2005	08/10/05	92,3
1982	1982	15/06/82	146,0	2006	2006	19/01/06	71,0
1983	1983	18/03/83	74,5	2007	2007	23/09/07	67,3
1984	1984	20/06/84	79,0	2008	2008	03/05/08	90,5
1985	1985	10/03/85	103,0	2009	2009	08/11/09	84,9
1986	1986	24/02/86	72,0	2010	2010	17/01/10	68,6
1987	1987	12/10/87	74,0	2011	2011	22/04/11	111,0
1988	1988	25/09/88	72,0	2012	2012	19/09/12	87,5
1989	1989	30/01/89	105,0	2013	2013	11/11/13	126,5
1990	1990	12/10/90	92,5				

ATLAS PLUVIOMÉTRICO DO BRASIL

O projeto Atlas Pluviométrico é uma ação dentro do programa de Gestão Estratégica da Geologia, da Mineração e da Transformação Mineral que tem por objetivo reunir, consolidar e organizar as informações sobre chuvas obtidas na operação da rede hidrometeorológica nacional. Dentre os vários objetivos do projeto Atlas Pluviométrico, destaca-se a definição das relações intensidade-duração-frequência (IDF).

As relações IDF são importantíssimas na definição das intensidades de precipitação associadas a uma frequência de ocorrência, as quais serão utilizadas no dimensionamento de diversas estruturas de drenagem pluvial ou de aproveitamento dos recursos hídricos. Também podem ser utilizadas de forma inversa, ou seja, estimar a frequência de um evento de precipitação ocorrido, definindo se o evento foi raro ou ordinário.

ENDEREÇOS

Sede

SGAN- Quadra 603 – Conjunto J – Parte A – 1° andar

Brasília – DF – CEP: 70830-030

Tel: 61 2192-8252 Fax: 61 3224-1616

Escritório Rio de Janeiro

Av Pasteur, 404 – Urca

Rio de Janeiro – RJ Cep: 22290-255 Tel: 21 2295-5337 - 21 2295-5382

Fax: 21 2542-3647

Diretoria de Hidrologia e Gestão Territorial

Tel: 61 3223-1059 - 21 2295-8248 Fax: 61 3323-6600 - 21 2295-5804

Departamento de Gestão Territorial

Tel: 21 2295-6147 - Fax: 21 2295-8094

Diretoria de Relações Institucionais e Desenvolvimento

Tel: 21 2295-5837 - 61 3223-1059 Fax: 21 2295-5947 - 61 3323-6600

www.cprm.gov.br

Superintendência Regional de Porto Alegre

Rua Banco da Província, 105 - Santa Teresa Porto Alegre - RS - CEP: 90840-030 Tel.: 51 3406-7300 - Fax: 51 3233-7772

Assessoria de Comunicação

Tel: 61 3321-2949 - Fax: 61 3321-2949 E-mail: asscomdf@cprm.gov.br

Divisão de Marketing e Divulgação

Tel: 31 3878-0372 - Fax: 31 3878-0370 E-mail: marketing@cprm.gov.br

Ouvidoria

Tel: 21 2295-4697 - Fax: 21 2295-0495 E-mail: ouvidoria@cprm.gov.br

Serviço de Atendimento ao Usuário – SEUS Tel: 21 2295-5997 - Fax: 21 2295-5897

E-mail: seus@cprm.gov.br

