
Abstract
The Alfeu-I lamproite is one of the few alkaline rock occurrences in the South of Brazil that represents the alkaline event related to the South 
Atlantic opening and the enormous magmatic activity that formed the Paraná basalts. Alfeu-I lamproite is a diatreme facies and exhibits an 
inequigranular texture with macrocrysts of mica, spinel, garnet, and ilmenite and microcrysts of mica, pyroxene, and rare olivine, all immersed 
in a groundmass of pyroxene, spinel, perovskite, rutile, ilmenite, and, more rarely, olivine. Major element compositions of Alfeu-I pyroxene, 
garnet, ilmenite, mica, and olivine were determined by electron microprobe analyses, and trace element concentrations of clinopyroxene, 
garnet, ilmenite, and mica were measured using laser-ablation inductively coupled plasma mass spectrometry techniques. Temperature, pres-
sure, and oxygen fugacity (fO2) conditions during the crystallization of Alfeu-I lamproite were calculated with the geothermobarometers and 
olivine, spinel, garnet, and orthopyroxene. The resulting mean equilibrium temperature ranges from 1375°C at 4 GPa to 1395°C at 5 GPa, 
whereas the fO2 points to ΔFMQ = +2.4 (at 4 GPa) and ΔFMQ = +2.2 (at 5 GPa). Rb-Sr and Sm-Nd isotopic data together with the trace 
element concentrations of minerals suggest that melting of a mantle source enriched in incompatible elements and volatiles due to previous 
subduction events occurred during the Gondwana breakup around 125 Ma ago. Fluids that may have originated from subducting slabs in the 
old subduction zone are probably the cause of the high fO2 conditions in Alfeu-I lamproite. 
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INTRODUCTION
Lamproites are formed by partial melting of metasoma-

tized lithospheric mantle (Scott Smith et al. 2018) and are usu-
ally classified according to the mineralogical and geochemical 

criteria given by Mitchell and Bergman (1991). However, the 
name lamproite was recently redefined by Scott Smith et al. 
(2018) to emphasize the common petrogenesis and eliminate 
petrological confusion with petrogenetically distinct kimber-
lite. Although they are volumetrically minor components of 
continental magmatism, lamproites are rare products of the 
melting of geochemically exceptional and variable lithospheric 
mantle sources. Mitchell (1995) underlined that kimberlites 
and related rocks cannot be identified only by petrography and 
that geochemical data are scant due to metasomatism, crustal 
contamination, and, perhaps most important, weathering. 
The best studied material for rock classification is obtained 
from the hypabyssal facies of these rocks, since they contain 
less crustal xenoliths and the minerals are well crystallized to 
allow a better understanding of the primary mineral assem-
blage. Classification based on whole rock chemistry of dia-
treme facies, as in the case of Alfeu-I lamproite, is more dif-
ficult because of the predominance of fragmented lapilli and 
the tendency of these rocks to weathering. In this case, mineral 
chemistry and in situ isotope characterization provide a better 
contribution to the understanding of the origin and magmatic 
history of the lamproite rocks.

The Alfeu-I lamproite, located in the southeastern portion 
of the Sul-Riograndense Shield, southern Brazil, is one of the 
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rare occurrences of alkaline rocks that may further our under-
standing of the magma diversity production during the open-
ing of the South Atlantic. There is scarce information on the 
petrogenesis of alkaline rocks from this part of Brazil, and no 
detailed studies of the trace element geochemistry and Sr-Nd 
isotope compositions of these rocks have been published.

Pressure, temperature, and redox conditions (fO2) of lam-
proites and related rocks provide valuable insights on the man-
tle source and the melting regime of these rocks. However, the 
application of geothermobarometers and oxygen barometers in 
lamproites and related rocks is difficult due to the mostly low 
preservation grade of these rocks, which is usually the main 
obstacle, but also due to the diversified mineral assemblage, 
which sometimes does not contain all the minerals required 
for geothermobarometric calculations. In this study, we use 
pyroxene, garnet, ilmenite, mica, and olivine compositions to 
determine age, temperature, pressure, and fO2 conditions for 

the Alfeu-I lamproite to constrain its mantle source and the 
geological context related to the Atlantic opening. Moreover, 
we also use these new data to infer the potential of these melts 
to carry and preserve diamonds.

GEOLOGICAL SETTINGS AND SAMPLES
Alfeu-I lamproite is a volcanic pipe emplaced in the Pinheiro 

Machado Suite of the Pelotas Batholith domain and occurs 
in the eastern portion of the Sul-Riograndense Shield, south-
ern Brazil. Its location is around 300 km from the Rosário-6 
alnöite and the Paraná basalts (Fig. 1). The alkaline rocks in 
this region occurred in four main stages: Permian to Triassic, 
probably caused by the stress propagation related to the Cabo 
La Ventana orogeny (Gomes et al. 1996, Milani 1997); lower 
Cretaceous, associated with the rifting of the Atlantic marginal 
basin; upper Cretaceous, contemporaneous to the Atlantic 

Figure 1. Simplified geological map of the Alfeu-I lamproite based on Svisero and Chieregati (1991), Conceição et al. (2019), Morbidelli 
et al. (2000), and Carniel et al. (2020). Río de la Plata Craton limit from Santos et al. (2019).
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Ocean; and Cenozoic (Paleogene), linked to the evolution of 
continental rift systems in southeastern Brazil (Ribeiro 1980, 
Almeida 1983). The Mesozoic alkaline magmatism is condi-
tioned by shear zones and discontinuities between cratonic 
limits that were reactivated by the Gondwana breakup tectonics 
(Barbieri et al. 1987, Gomes and Comin-Chiaramonti 2017).

The Alfeu-I rocks overlap the Canguçu Dorsal Transcurrent 
Shear Zone, intruded into granodioritic to monzogranitic 
orthogneisses from the Pinheiro Machado Granite-Gneiss 
Complex (780–610 Ma) (Fragoso-César 1991, Philipp 1991) 
(Fig. 2A). The samples are quite weathered (Fig. 2B); however, 
it is possible to identify preserved minerals and the original 
texture in thin sections. These rocks are composed of mac-
rocrysts and microcrysts (pyroxene, garnet, spinel, ilmenite, 
biotite, and olivine) in an interstitial matrix with some imbri-
cated pelletal lapilli, wall rock autoliths, and crustal xenoliths. 

METHODS
The Alfeu-I minerals were selected with a binocular mag-

nifying glass from the pan-concentrate that was collected 
from the altered rock. Microprobe analyses were performed 
on mineral separates of pyroxene, garnet, ilmenite, mica, 
and olivine macrocrysts (> 0.5–10 mm) and microcrysts 
(< 0.5 mm) using a CAMECA SX-five electron microprobe 
of the Laboratório de Microssonda Eletrônica (CPGq-IG/

UFRGS), Brazil. The analyses were performed using an accel-
eration voltage of 15 kV, a beam current of 10 nA, a beam 
size of 5 μm, and a counting time of 20 s on the peak and 5 s 
on each background. The standards used included sanidine 
(Si, Al), diopside (Mg, Ca), almandine (Fe), rutile (Ti), 
chromium oxide (Cr), and rhodonite (Mn). Details of the 
method are given in the Supplementary data. The fresh min-
erals were analyzed in the core and border, whereas the ones 
more altered were analyzed just in the core, as we pointed 
out in the Suppl. Data.

Trace element concentrations of the Alfeu-I minerals 
(clinopyroxene, garnet, biotite, and ilmenite) were deter-
mined with laser-ablation inductively coupled plasma mass 
spectrometry (LA-ICP-MS) at the Institut für Mineralogie, 
Münster, Germany (Beyer et al. 2013, Wijbrans et al. 2015). 
Sample ablation was performed with a pulsed 193 nm ArF 
excimer laser (Analyte G2, Photon Machines). A repetition 
rate of 5 or 10 Hz and an energy of ∼3–4 J/cm2 were used. The 
beam spot diameter varied between 15 and 30 μm. Elemental 
analysis has been carried out with an Element XR mass spec-
trometer (ThermoFisher Scientific). Forward power was 1300 
W and reflected power was < 1 W; gas flow rates were about 
1 L/min for He (carrier gas of ablated material), 0.8 L/min for 
the Ar-auxiliary gas, and 1 L/min for the sample gas, respec-
tively. The cooling gas flow rate was set to 16 L/min. Before 
starting analysis, the system has been tuned on a NIST 612 

Figure 2. (A) Alfeu-I lamproite emplaced in the Pinheiro Machado Suite of the Pelotas Batholith domain; (B) Alfeu-I weathered samples 
(Provenzano 2016).
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reference glass measuring 139La, 232Th, and 232Th16O to get sta-
ble signals and high sensitivity, as well as low oxide produc-
tion rates (232Th16O/232Th < 0.1%) during ablation. A total of 
32 elements were quantitatively analyzed. Masses monitored 
were 7Li, 29Si, 43Ca, 51V, 53Cr, 55Mn, 59Co, 60Ni, 61Ni, 63Cu, 66Zn, 
69Ga, 72Ge, 73Ge, 85Rb, 88Sr, 89Y, 90Zr, 93Nb, 118Sn, 121Sb, 133Cs, 
137Ba, 139La, 140Ce, 141Pr, 146Nd, 147Sm, 153Eu, 157Gd, 159Tb, 163Dy, 
165Ho, 166Er, 169Tm, 172Yb, 175Lu, 178Hf, 181Ta, 182W, 208Pb, 232Th, 
and 238U. The NIST 612 glass was used as an external reference 
material and 29Si, 43Ca (silicates), 47Ti (Fe-Ti oxides), and 26Mg 
(spinels) as internal standards, which have been previously 
determined by electron microprobe. The overall time of a sin-
gle analysis was 75 s (20 s for background, 40 s for peak after 
switching the laser on, 15 s washout time). Concentrations of 
measured elements were calculated using the Glitter software 
(Van Achterbergh et al. 2001, Griffin et al. 2008). Standard ref-
erence glasses BCR2-G and BIR1-G were analyzed as moni-
tors for precision and accuracy for silicate phases of this study. 
Standard analyses were repeated every 20 analyses of unknown 
minerals (Suppl. Data). The obtained results match the pub-
lished range of concentrations given in the GeoReM database 
(version 18) ( Jochum et al. 2005). 

Rb-Sr and Sm-Nd isotopic analyses were performed using 
two different thermal ionization mass spectrometers (Sector 
54, VG Scienta Holdings AB; and Triton, ThermoFisher 
Scientific) for isotopic characterization at the Laboratório de 
Geologia Isotópica (LGI-IG, UFRGS), Brazil. Around 0.5–0.8 g 
of each mineral was crushed in an agate mortar and leached 
with HCl 0.1 N in order to eliminate the crustal alteration. 
Posteriorly, 0.1 g of the leached residue was spiked with mixed 
87Rb/84Sr and 149Sm/150Nd tracers and then digested with HF, 
HNO3, and HCl until complete dissolution, followed by dry-
ing and homogenization of the residue in 3 mL of HCl 2.5N. 
Columns filled with cationic AG-50W-X8 (200–400 mesh) 
and anionic LN-B50-A (100–150 mesh) resins were used to 
separate Rb, Sr, and REE and Sm, Nd, respectively. Each sam-
ple was dried to a solid residue and then loaded with 0.25N 
H3PO4 in appropriate filaments (single Ta filaments for Rb, Sr, 
Sm, and triple Ta–Re–Ta for Nd). Sr and Nd isotopic ratios 
were normalized to 86Sr/88Sr=0.1194 and to 146Nd/144Nd = 
0.7219. Measurements of specific standards were performed 
for accurate analysis. The NIST standard NBS-987 resulted 
in 87Sr/86Sr = 0.710260 ± 0.000014, and the JNd-1 standard 
resulted in a ratio of 143Nd/144Nd = 0.512108 ± 0.000010. 
Blanks were < 60 pg for Sr, < 500 pg for Rb, < 200 pg for Sm, 
and < 500 pg for Nd. The errors do not exceed more than 1% 
of the reported value.

To determine the crystallization temperature and fO2 of 
Alfeu-I, we used the olivine-spinel oxygen geothermobarom-
eters of O’Neill and Wall (1987) and Ballhaus et al. (1991). 
The pressure of Alfeu-I was also calculated with the garnet-or-
thopyroxene geothermobarometer of Nickel and Green (1985). 
The Fe2+ and Fe3+ contents of minerals were calculated with 
the method of Droop (1987), based on stoichiometric crite-
ria. We used analyses of Alfeu-I lamproite from mineral sep-
arates, as the Alfeu-I pipe is unfortunately very altered and it 
was not possible to collect cohesive samples. 

RESULTS

Petrography and mineral compositions
The Alfeu-I lamproite rocks exhibit an inequigranular texture 

with macrocrysts (> 0.5–10 mm) and microcrysts (< 0.5 mm) 
of biotite (~25 vol%), spinel (~10 vol%), garnet (~5 vol%), and 
ilmenite (~5 vol%), microcrysts of pyroxene (~3 vol%), and rare 
olivine (~2 vol%), all immersed in a groundmass (~35 vol%) 
composed of pyroxene, chromite, perovskite, rutile, ilmenite, 
and, more rarely, olivine. Perovskite and rutile were identified 
by MEV-EDS in the Alfeu-I thin sections, but not found in rock 
concentrates. The macrocrysts and microcrysts are fractured 
and show corroded edges. Macrocrysts and microcrysts of bio-
tite have curved cleavage planes that indicate the flow orien-
tation and rounded edges (Fig. 3A). Garnet macrocrysts and 
microcrysts are rounded and fractured, with corroded edges, 
and they are surrounded by mica (Fig. 3B). Groundmass spi-
nel and perovskite are rare (Figs. 3C and 3D), whereas clino-
pyroxene is also found in the pelletal lapilli (Figs. 3E and 3F). 
Olivine is rare and appears only as a serpentine pseudomorph 
and found also in pelletal lapilli (Fig. 3G). Xenoliths from the 
wall rock are rare, but two of them were observed in thin sec-
tions with an angular sub-rounded shape, from 1 to 3 mm in 
size, and with granitic composition. Xenocrysts consisting of 
polycrystalline quartz, microcline, and rare plagioclase are also 
present and occur with rounded shapes and well-defined edges, 
up to 1 mm in diameter. These xenocrysts are found aligned 
with the flow texture (Fig. 3H). Due to the lack of fresh rock 
in the Alfeu-I lamproite, we need to consider that all minerals 
underwent secondary alteration, and this open-system pro-
cess produced changes in the mineral composition, as we will 
discuss below. The xenoliths, xenocrysts, and lapilli compose 
~15 vol% of the rock.

Pyroxene
Pyroxene microcrysts are classified as augite ((Al0.2 Ti0.03 

Fe0.32 Mn0.004 Mg0.58 Ca0.62 Na0.26)2.01 (Si1.94 Al0.06)2 O6 on the basis 
of 6 oxygens) and enstatite ((Al0.03 Ti0.003 Fe0.17 Mn0.003 Mg1.74 

Ca0.03 Na0.01)1.98 (Si1.9Al0.1)2 O6 on the basis of 6 oxygens) (Fig. 4; 
Suppl. Data). Enstatites have SiO2 contents of 54–56 wt.%, 
Al2O3 contents of 3–4.4 wt.%, MgO of 32–35 wt.%, MnO up 
to 0.15 wt.%, Cr2O3 contents of 0.39–0.86 wt.%, Na2O con-
tents up to 0.17 wt.%, and Mg# ((100*Mg)/(Mg+Fe)) of 
88–93, whereas augites have CaO contents ranging from 15 
to 16 wt.%, Al2O3 contents of 4.8–6.6 wt.%, MgO from 9 to 
11 wt.%, Na2O contents of 3.2–4 wt.%, Mg# of 58–68, and 
Ca# of 49–54. Augites also have lower Cr2O3 contents than 
enstatites, up to 0.06 wt.%, and similar MnO contents, from 
0.1 to 0.18 wt.%.

Figure 5A (Cr2O3 × Al2O3 and Cr × Fe × Na molar) shows 
that Alfeu-I clinopyroxenes plot in the eclogites and Cr-poor 
megacrysts field and Alfeu-I orthopyroxenes in APIP field, 
which is the field of peridotite nodules in Alto Paranaíba 
Province. In Fig. 5B (Mg# × Ca#), Alfeu-I clinopyroxenes 
plot with lower Mg# and higher Ca# than pyroxene from 
lherzolites, wehrlites, PIC, and MARID rocks. Trace element 
contents of clinopyroxenes have homogeneous composition, 
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Figure 3. Microscope features of the Alfeu-I rocks: (A, B) uncrossed polarized image of fragments of clinopyroxene (Cpx) in pelletal lapilli 
(B is a detail of A); (C, D) uncrossed polarized image of large spinel and small perovskite (Prv) grains of the groundmass; (E) uncrossed 
polarized image of macrocryst of garnet (Grt) with corroded edges; (F) uncrossed polarized image of the flow orientation indicated by mica 
microcrysts; (G) uncrossed polarized image of pseudomorphs of olivine outlined in red; (H) crossed polarized image of granite xenolith with 
polycrystalline quartz.
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and the content for V, Sr, and Zr in augites ranges from 213 
to 326 ppm, from 91 to 142 ppm, and from 103 to 269 ppm 
(Supplementary data), respectively. Figure 6A shows that Ca 
content in orthopyroxenes increases with the increase of alka-
lis, whereas Fig. 6B shows that Ca content in clinopyroxenes 
increases with the decrease of Mg. Figure 7A shows chondrite 
normalized (McDonough and Sun 1995) trace element pat-
terns for clinopyroxenes, with positive anomalies of V, Sr, Y, 
and Zr, negative anomalies of Ni, Nb, and Pb, and an almost 
flat REE pattern, with only a slight enrichment of HREE rel-
ative to LREE (Fig. 7A).

Garnet
Alfeu-I garnets macrocrysts and microcrysts ((Mg4.44 Fe2+

0.85 

Mn0.04 Ca0.78)6.1 (Al3.67 Ti0.02 Fe3+
0.06 Cr0.24)3.99 (Al0.01 Si6)6.0 O12 on 

basis of 24 oxygens) are classified as Cr-pyrope (Supplementary 

data), which are typical in peridotites, kimberlites, and lam-
proites (Mitchell 1995). They are homogeneous, Mg-rich, 
close to the end-member Pyrope (Mg3Al2Si3O12) (Fig. 8). 
The diagrams Ca/(Ca+Mg) versus Mg/(Mg+Fe) molar and 
Cr2O3 versus CaO (wt.%) (after Schulze 2003) show that the 
garnet grains have compositions similar to mantle-derived 
garnets (Figs. 9A and 9B). The garnets have MgO contents 
of 20–22 wt.%, Al2O3 of 21–23 wt.%, Cr2O3 of 1–4 wt.%, and 
MnO of 0.2–0.4 wt.%. Trace element contents in garnets are 
very homogeneous and the content of V ranges from 104 to 
223 ppm and Ni from 54 to 90 ppm (Suppl. Data), whereas the 
trace element patterns (normalized to chondrite) show posi-
tive anomalies of V, Cr Mn, Y, and Zr, and negative anomalies 
of Ni, Sr, Nb, La, Ce, W, and Th (Fig. 7B). 

Ilmenite
Alfeu-I macrocryst and microcryst ilmenites are ubiqui-

tous, with MgO contents of 0.36–4.9 wt.%, FeO of 42–47 
wt.%, TiO2 of 47–50 wt.%, and MnO contents of 0.2–0.6 wt.% 
(Suppl. Data). However, seven analyses of four microcryst 
grains showed higher MnO contents (from 0.62 to 4.2 wt.%), 
accompanied by lower FeO contents (29–32 wt.%) and ele-
vated TiO2 contents (54–57 wt.%) (Fig. 10). These analyses 
showed a lower total than the low-Mn ilmenites (Suppl. Data), 
which may be explained by a higher amount of trace elements 
(Kaminsky and Belousova 2009) such as Co, Nb, V, and Zr. 
The content of V in ilmenite ranges from 54 to 911 ppm, Zr 
from 17 to 646 ppm, and Nb from 15 to 463 ppm (details are 
given in Suppl. Data). According to the chondrite normalized 
trace element patterns (Fig. 7C), the low-Mn ilmenites show an 

Figure 4. Alfeu-I pyroxenes classified based on the Wo-En-Fs 
ternary, compiled after Morimoto et al. (1988). 

Diopside

Augite

Pigeonite

Clinoenstatite Clinoferrosilite

Figure 5. (A) Cr2O3 versus Al2O3 (wt.%) (modified after Nimis 1998, Barabino et al. 2007) and (B) Mg# ((100*Mg)/(Mg+Fe)) versus 
Ca# ((100*Ca)/(Ca+Mg)) (modified after Fitzpayne et  al. 2019 and 2020) with Alfeu-I clinopyroxenes plotted as green triangles and 
orthopyroxenes as purple triangles. For comparison, in (A): black circles are high- and low-Cr clinopyroxenes from Lages diatremes (Barabino 
et al. 2007); KG-1: clinopyroxenes from kimberlites of Gibeon Province (Namibia) (Franz et al. 1996, Davies et al. 2001); Premier kimberlites 
field from Kaapvaal Craton, South Africa (Grégoire et al. 2005); AB clinopyroxenes from spinel; spinel+garnet and garnet-peridotites from 
alkali basalt-like magmas after Princivalle et al. (1989, 2000), Ionov et al. (1993), and Kempton et al. (1999); APIP: peridotite nodules from 
pipes of the Alto Paranaíba Province (Meyer and Svisero 1991, Meyer et al. 1991, Araújo et al. 2001) and Lamproites field from Mitchell and 
Bergman (1991). For comparison, in diagram (B): PIC (Phlogopite-Ilmenite-Clinopyroxene rocks) and MARID (Mica-Amphibole-Rutile-
Ilmenite-Diopside rocks) (Fitzpayne et al. 2019 and 2020).

Clinopyroxene
Orthopyroxene

Hedebergite
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Figure 6. (A) (K+Na) versus Ca (molar) for Alfeu-I orthopyroxenes (inverted pink triangles); (B) Ca/(Ca+Mg) versus Mg/(Mg+Fe) 
(molar) for Alfeu-I clinopyroxenes (green triangles).

Figure 7. Chondrite normalized (McDonough and Sun 1995) trace element patterns of (A) Alfeu-I clinopyroxene, (B) garnet, (C) ilmenite, 
and (D) biotite. REE patterns are marked in the dotted squares.

enrichment in LREE relative to HREE, whereas the high-Mn 
ilmenites show the opposite pattern, which may indicate a 
depleted source. Both ilmenite groups show positive anoma-
lies of V, Zr, Nb, and Ta.

Mica
Alfeu-I mica macrocrysts and microcrysts have an aver-

age composition (Ca0.007 Na0.25 K1.8)2.06 (Ti0.9 Al0.01 Fe1.92 Mn0.008 
Mg2.38)5.23 (Al2.37 Si5.64)8.01 O10 (F,OH)4.7 on the basis of 22 oxygens, 
were classified as tri-octahedral biotite, following the ternary sys-
tem Al-Mg-FeT (Mitchell 1995) (Fig. 11), and have SiO2 contents 

of 35–40 wt.%, MgO of 8.8–12 wt.%, K2O of 8.7–9.6 wt.%, 
Al2O3 of 12–14 wt.%, and FeO of 12–17 wt.% (details are given 
in Suppl. Data). In the diagram of the end-member phlogopite 
KMg3AlSi3O10(OH)2 and annite KFe3AlSi3O10(OH)2, the com-
position of Alfeu-I mica is rather different from the groundmass 
and microphenocryst phlogopites from the Rosário-6 alnöite 
(Conceição et al. 2019). Moreover, we compare our data to 
phlogopites from Alto Paranaíba kimberlites and kamafugites, 
Arkhangelsk kimberlite province, calciocarbonatites of Mela 
Field, Jacupiranga complex carbonatites, and Canadian and 
Russian kimberlites and carbonatites (Fig. 11).
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Figure 8. Garnet classification ternary: Mg3Al2Si3O12 versus 
Fe3Al2Si3O12 versus Ca3Al2Si3O12 with Alfeu-I garnets plotted as 
orange circles. For comparison, crosses are garnets from Janjão, 
Pandolfo, and Lambedor diatremes (Brazil) (Barabino et al. 2007), 
and blue squares are from Arkhangelsk Region (Russia) (Shchukina 
et al. 2019).

Figure 9. Garnet composition Ca/(Ca+Mg) versus Mg/(Mg+Fe) molar and Cr2O3 versus CaO (wt.%) for Alfeu-I (modified from Schulze 
2003). The fields in (A) distinguish mantle-derived garnet from those from crustal rocks, and in (B) compositions of garnets from harzburgites, 
lherzolites, and wehrlites.

The cation exchange in the structure of the tri-octahedral 
biotite with increasing Fe and decreasing Mg and K contents 
is shown in Fig. 12. The analyzed grains have a content of 
294–839 ppm for Mn, 170–459 ppm for Zn, 322–797 for Rb, 
and 565–1611 ppm for Ba (details are given in Suppl. Data) and 
have positive anomalies of Rb, Sr, Ba, Zr, Nb, and Ta, as well 
as an enrichment in LREE (La, Ce, Pr, Nd, Sm, and Eu) com-
pared to HREE (Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) (Fig. 7D).

Olivine
Olivine microcrysts ((Fe0.2 Mg1.78 Mn0.002)1.98 SiO6 on basis of 

4 oxygens) from the Alfeu-I lamproite are rare, with a homoge-
neous composition of Fo89-90 (Suppl. Data). The analyzed min-
erals have FeO contents of 9.4–9.6 wt.%, MgO of 48–49 wt.%, 
MnO of 0.13–0.16 wt.%, and NiO of 0.36–0.4 wt.%. 

Sr-Nd isotope data
We performed Rb-Sr and Sm-Nd isotopic analyses of biotite, 

ilmenite, garnet, and clinopyroxene macrocrysts from Alfeu-I 
lamproite (Tables 1 and 2), which are used to constrain the 
Alfeu-I mantle source composition. However, the data from 
biotite and ilmenite did not result in meaningful data, which 
indicates the possibility of an open system (Workman and 
Hart 2005). The 87Rb/86Sr ratio was calculated from the ele-
mental concentrations of Rb and Sr. Isotopic data for pyrox-
ene and garnet microcrysts are plotted in Fig. 13A, where we 
consider the age of 128 Ma obtained via U-Pb in groundmass 
perovskite from the Rosário 6 alnöite, also found in southern 
Brazil (Conceição et al. 2019), to calculate the 87Sr/86Sr and 
143Nd/144Nd initial ratios for Alfeu-I minerals. The Rosário-6 
alnöite age of 128 ± 8 Ma was chosen because it is one of the 
few alkaline rocks in the area, and its age agrees well with the 
age of the Paraná flood basalts, which leads us to infer that 
Alfeu-I lamproite is probably related to both the Rosário-6 
and Paraná basalts. We compared these data with the MORB 
end-member, DMM, HIMU, and EM major mantle reser-
voirs, and worldwide rocks (Proto Tristan da Cunha plume, 
Rosário-6 alnöite, Namibia lamprophyres and carbonatites, 
Alto Paranaíba Igneous Province, Jacupiranga alkaline rocks, 
sodic and potassic rocks from Paraguay, Patagonian xenoliths, 
high- and low-Ti Paraná basalts, and Siberian meimechites). 
Alfeu-I clinopyroxenes plot on the mantle array, within the 
limits between DMM and EMI reservoirs, close to Rosário-6 
alnöite, and within the Proto Tristan da Cunha plume field, 
whereas garnet has a lower 87Sr/86Sr radiogenic ratio but also 
a lower 143Nd/144Nd radiogenic ratio. Based on trace elements 
patterns (Fig. 7), we suggest that clinopyroxene and garnet 
were equilibrated with the melt, because both minerals have 
similar partition coefficients for a range of elements as most 
REE, Sr, and Y (Harte and Kirkley 1997). If garnet and clin-
opyroxene crystallized from the same magma at a given time, 
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Figure 10. Compositions (mol%) of Alfeu-I ilmenites plotted 
in the ternary system geikielite (MgTiO3) – ilmenite (FeTiO3) 
– pyrophanite (MnTiO3) (Mitchell 1995): red squares are from 
ilmenites with low Mn contents, whereas purple squares are 
ilmenites with high Mn contents. For comparison, ilmenites from 
Janjão, Pandolfo, and Lambedor diatremes (Brazil) (Barabino 
et  al. 2007) and from diamondiferous Zolotitsa field, Ti-Fe-rich 
kimberlites, Mela carbonatites, and kimberlites (Arkhangelsk 
Region, NW Russia) (Beard et al. 2000). 

Figure 11. Compositions (22 oxygens) of micas from Alfeu-I 
lamproite plotted in the ternary diagram Al-Mg-FeT, modified after 
Mitchell (1995). Phlogopite of Rosário-6 alnöite groundmass (white 
triangles) and microphenocrysts (black triangles) (Conceição et al. 
2019); Alto Paranaíba kimberlites and kamafugites (yellow circles) 
(Melluso et  al. 2008); Arkhangelsk kimberlite province (purple 
triangles); calciocarbonatite of Mela Field (gray circles) (Beard 
et  al. 2000); Jacupiranga carbonatite complex (red circles) (Brod 
et al. 2001); and Canadian and Russian kimberlites and carbonatites 
(purple and green stars, respectively) (Reguir et al. 2009).

Figure 12. Mg+Si versus Fe+Al and K+Si versus Fe+Al showing the cation exchange in the structure of the tri-octahedral biotite of 
Alfeu-I lamproite.

Table 1. Rb-Sr isotopic and concentration data obtained through ID-TIMS for pyroxene, garnet, ilmenite, and biotite mineral separates from 
the Alfeu-I lamproite.

Sample Mineral Rb (ppm) Sr (ppm) Rb/Sr 87Rb/86Sr Error (abs) 87Sr/86Sr Error (abs)

AF-02-F Biotite 1167.3806 62.0040 18.8274 54.9073 7.0224 0.7188 0.000093

AF-03-I Ilmenite 6.6838 4.0622 1.6453 4.8552 0.8914 0.7186 0.000065

AF-04-I Ilmenite 6.6279 3.9925 1.6600 4.8975 0.9811 0.7186 0.000273

AF-07-P Pyroxene 1.7830 94.1018 0.0189 0.0552 0.0023 0.7038 0.000219

AF-08-P Pyroxene 1.4970 92.8910 0.0161 0.0469 0.0018 0.7038 0.000069

AF-05-G Garnet 6.6426 3.1623 2.1005 6.1663 0.2407 0.7146 0.000271

Table 2. Sm-Nd isotopic and concentration data obtained through ID-TIMS for pyroxene and garnet mineral separates from the 
Alfeu-I lamproite.

Eastonite Siderophyllite

Phlogopite Annite

Tetraferriphlogopite

Biotite

Sample Mineral Age 
(Ma)

Sm 
(ppm) Nd (ppm) 147Sm/144Nd 143Nd/144Nd 143Nd/144Nd (t) Error 

(ppm) Eps Nd TDM 
125 Ma

AF-07-P Pyroxene 128 23.43 108.71 0.130300 0.512950 0.512841 8 7.18 210

AF-08-P Pyroxene 128 23.36 90.81 0.155497 0.512830 0.512699 11 4.41 585

AF-05-G Garnet 128 1044.94 12980.88 0.048669 0.511845 0.511804 16 -13.06 1105
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Px: pyroxene; Grt: garnet; Ilm: ilmenite; Bt: biotite.
Figure 13. (A) Sr and Nd isotopic data for pyroxene (green 
diamonds) and garnet (blue diamond) from the Alfeu-I lamproite. 
Averages of mantle reservoirs from Hart et  al. (1992): DMM 
(Depleted MORB Mantle: open green triangle), MORB (Mid-
Ocean Ridge Basalt: blue triangle), HIMU (High-μ: purple circle), 
EM I (Enriched Mantle I: orange square), and EM II (Enriched 
Mantle II: red circle). For comparison, the field of Proto Tristan da 
Cunha plume (~130 Ma Paraná-Etendeka magmas) (Cohen and 
O’Nions 1982, Gibson et  al. 1999), Rosário-6 alnöite bulk rock 
(purple diamonds) (Conceição et al. 2019), Namibia lamprophyres 
and carbonatites (green squares and stars, respectively) (Le Roex 
and Lanyon 1998), Alto Paranaíba Igneous Province (yellow circles) 
(Guarino et al. 2013), Jacupiranga alkaline rocks (pink diamonds) 
(Chmyz et al. 2017), sodic and potassic rocks from Paraguay (“x” 
symbols and red squares, respectively) (Comin-Chiaramonti et al. 
1997), and Patagonian xenoliths (blue crosses) ( Jalowitzki et  al. 
2017) are calculated to 128 Ma, while high- and low-Ti Paraná 
basalts (gray diamonds and traces, respectively) (Marques et  al. 
1999) are calculated to 133 Ma and Siberian meimechites are 
calculated to 245 Ma (gray circles) (Arndt et  al. 1995). (B) Rb-
Sr mineral isochron for mineral separates (pyroxene, garnet, 
ilmenite, and biotite) from the Alfeu-I lamproite. Uncertainties are 
1σ of the mean value and given in Table 1. Isochron regressions 
considering both biotite and ilmenite (white diamonds) did not 
yield meaningful results (see text for details). 

Table 3. Alfeu-I equilibrium temperatures and oxygen fugacities 
calculated based on olivine-chromite geothermometer and 
the oxygen geobarometer of Ballhaus et  al. (1991). Olivine 
compositions are from this study. Chromite compositions from 
Chaves et al. (2014). Olivines (Ol), chromites (Chr), ΔFMQ (fO2 
relative to FMQ buffer), and standard deviations (stdev) as last 
significant digits in brackets.

Sample
Ol-sp T (°C) Ol-sp Δlog(fO2)FMQ

4 GPa 5 GPa 4 GPa 5 GPa

Ol 01 1,489 1,509 2.2 2.0

Chr Alf-Cr-01

Ol 02 1,404 1,420 2.8 2.6

Chr Alf-Cr-02

Ol 03 1,281 1,301 2.4 2.1

Chr Alf-Cr-04

Ol 04 1,322 1,341 2.4 2.1

Chr Alf-Cr-05

Ol 05 1,314 1,333 2.3 2.1

Chr Alf-Cr-06

Ol 06 1,343 1,362 2.3 2.1

Chr Alf-Cr-07

Ol 07 1,623 1,433 2.5 2.4

Chr Alf-Cr-08

Ol 08 1,415 1,439 2.3 2.1

Chr Alf-Cr-11

Ol 09 1,393 1,412 2.3 2.1

Chr Alf-Cr-12

Mean 1,375 1,395 2.4 2.2

(stdev) (65) (65)

they should display similar initial 87Sr/86Sr ratios (Nowell et al. 
2004, Blackburn et al. 2008). Radiogenic ingrowth from 87Rb 
decay through time in each phase will modify the 87Sr/86Sr 
proportionally, leading to a linear correlation on a 87Sr/86Sr 
versus 87Rb/86Sr plot that has a slope proportional to the crys-
tallization age. To perform isochron linear regressions and age 
calculation, we employed Isoplot/Ex Version 3.75 (Ludwig 

2012), which in turn uses the algorithm of York (1969) and 
error propagation via the maximum-likelihood estimation 
algorithm of Titterington and Halliday (1979). Albeit three-
point isochrons are of doubtful reliability (Ludwig 2012), the 
crystallization age for the Alfeu-I lamproite magma is 125 ± 
11 Ma (Fig. 13B), which closely matches the age of 128±8 Ma 
obtained with U-Pb dating of perovskite from the Rosário 6 
alnöite (Conceição et al. 2019).

Geothermobarometry and  
oxygen barometry results

Crystallization temperatures of Alfeu-I lamproite were 
determined using the olivine-spinel Mg-Fe2+ exchange geo-
thermometer of O’Neill and Wall (1987) and Ballhaus et al. 
(1991), who applied their geothermometer to peridotite xeno-
liths. We used chromites and olivines microcrysts analyses of 
Alfeu-I lamproite (Chaves et al. 2014, Provenzano 2016; and 
this study – Table 3 and Suppl. data) from mineral separates, 
as the Alfeu-I pipe is unfortunately very altered and it was not 
possible to collect preserved samples. The Fe2+ and Fe3+ con-
tents of chromites were calculated with the method of Droop 
(1987), based on stoichiometric criteria and assuming that 
all Fe is the only multivalent element and oxygen is the only 
anion. The calculated mean temperature of Alfeu-I lamproite 
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crystallization is 1,375(± 65)°C at 4 GPa and 1,395(± 65)°C 
at 5 GPa (Table 3). To constrain the depth at which the Alfeu-I 
lamproite melt crystallized, we used the mineral assembly, 
which suggests a crystallization pressure higher than the crys-
tallization pressure of Rosário-6 alnöite (Carniel et al. 2020). 
This depth range was confirmed by garnet-orthopyroxene 
geothermobarometry (Nickel and Green 1985). The monti-
cellite in Rosário-6 assembly indicates that the pressure limit 
for its mantle source is around 3 GPa, whereas the presence 
of garnet in Alfeu-I assembly suggests a higher source depth. 
If we compare the results of Alfeu-I lamproite and Rosário-6 
alnöite, we can conclude that Alfeu-I crystallization conditions 
are very similar to those of Rosário-6 alnöite, which gave us 
more confidence in the use of mineral separates for this geo-
thermobarometry and also suggests that these minerals should 
be in equilibrium. We also applied the garnet-orthopyroxene 
geobarometer of Nickel and Green (1985) to Alfeu-I miner-
als. Calculated Alfeu-I pressure, using temperatures between 
1,375 and 1,395°C (Ballhaus et al. 1991), is 4.0(± 0.2) GPa, 
which corresponds to a depth of around 120 km.

The oxygen barometer developed by Ballhaus et al. (1991) 
can be applied to a variety of mantle-derived rocks and spi-
nel-bearing primitive melts. However, the equation is valid 
only if the silica activity (aSiO2) is buffered by the presence of 
both olivine and orthopyroxene. In this case, the calculated 
mean of Alfeu-I oxygen fugacity relative to the fayalite-mag-
netite-quartz buffer (ΔFMQ) for 4 GPa is 2.4, and for 5 GPa 
it is 2.2 (Table 3).

DISCUSSION

Alfeu-I mantle source constraints based 
on mineral composition and isotope data

Based on the major and trace elements of Alfeu-I miner-
als, we can interpret that its mantle source has been metaso-
matized, which is reflected by the almost flat REE pattern of 
clinopyroxene, with a slight enrichment of MREE relative to 
LREE and HREE (McDonough and Frey 1989) (Fig. 7A). 
The Alfeu-I pyroxenes suggest two distinct genetic episodes, 
as the clinopyroxenes have an eclogite signature and the ortho-
pyroxenes contain a peridotite signature (Fig. 5A), which is 
associated with the high Cr content. Figure 5A (Cr2O3 versus 
Al2O3 and Cr versus Fe versus Na molar) shows that Alfeu-I 
clinopyroxenes plot in the eclogites and Cr-poor megacrysts 
fields, which indicates that their mantle source may have been 
metasomatized by fluids derived from a subducted slab (Shu 
et al. 2018, Skuzovatov et al. 2022). The chondrite-normalized 
garnet and clinopyroxene trace element patterns are similar 
(Figs. 7A and 7B), which may suggest that both minerals were 
equilibrated in the melt (Harte and Kirkley 1997). The Alfeu-I 
pyropes have a depleted mantle signature, evidenced by the 
enrichment in HREE relative to LREE, and this reflects the 
incompatible element-depleted nature of the upper mantle 
from which these magmas are derived or passed by (Klein-
BenDavid and Pearson 2009). The positive anomalies of Rb, 
Sr, Ba, Zr, Nb, and Ta in high-Mn ilmenites and the enrichment 

of LREE relative to HREE of low-Mn ilmenites occur due to 
structural reasons. However, it may also indicate a metaso-
matic process that may be caused by slab contamination of 
the mantle. The slabs may have been partially melted at high 
temperature and pressure, releasing HFS elements and causing 
the positive anomalies of, for example, Nb and Ta. 

These metasomatic processes in the depleted mantle may 
have been caused by fluids from recycled oceanic crust, low 
degree melts in the upper mantle that act as enriching agents 
for the peridotite source region, or the presence of detached 
sub-continental lithospheric mantle that remained in the 
asthenosphere after the breakup (Hawkesworth et al. 1986, 
Peate et al. 1999). The Gondwana breakup probably initiated 
in the mid-Jurassic; however, the exact timing is uncertain, 
considering that the oldest magnetic anomalies on the South 
Atlantic oceanic crust have associated ages from 135 and 126 
Ma (Nürnberg and Müller 1991, Turner et al. 1994, Hall et al. 
2018). The Paraná flood basalts are one of the most important 
events that occurred during the continental separation, and 
they provide significant information about the sub-continental 
mantle in this region. These basalts are divided into low- and 
high-Ti groups, the latter with higher Fe, P, Ti, Zr, Ce, La, Ba, 
and Sr concentrations (Bellieni et al. 1984). This composi-
tional variation is interpreted by the authors as evidence of a 
large-scale heterogeneous mantle source beneath this region 
during the breakup. In addition to previous studies (Marques 
et al. 1999, Peate et al. 1999) that proposed heterogeneous 
lithospheric mantle melting as the source of the Paraná flood 
basalts, Rocha-Júnior et al. (2012, 2013) demonstrated, based 
on Re-Os and Sr-Nd-Pb isotopic data, that the asthenospheric 
source of the basalts was enriched by fluids or magmas related 
to the Neoproterozoic subduction processes. The authors also 
suggested that the Tristan da Cunha mantle plume could have 
acted as a heat source that may have triggered the generation 
of the Paraná flood basalts ( Jennings et al. 2019). According to 
a number of authors (Comin-Chiaramonti et al. 1997, 2002, 
Gibson et al. 1995, 2006, Marques et al. 2016), extensional 
tectonic movements caused by the Gondwana breakup trig-
gered the basaltic lava eruption that covered the Paraná basin 
sediments. These movements may also have been responsi-
ble for smaller alkaline events such as the Rosário-6 alnöite 
(Conceição et al. 2019, Carniel et al. 2020) and the Alfeu-I 
lamproite in greater depths.

As clinopyroxene prefers to incorporate Sr over Rb (Beattie 
1993, Foley et al. 1996, Leitzke et al. 2017), the low Rb/Sr ratio 
of clinopyroxene will constraint the initial 87Sr/86Sr for the 
kimberlite and other-alkaline related magmas (Blackburn et al. 
2008). Pyroxenes plot between DMM and EMI plots, close to 
Rosário-6 alnöite and inside the Proto Tristan da Cunha plume 
field, whereas garnet has a lower 87Sr/86Sr and 143Nd/144Nd 
radiogenic ratio. The values for Sr isotopes acquired in biotite 
are high, indicating upper continental crust origin. It is likely 
that clinopyroxene reflects the source of the kimberlite, while 
biotite was generated in a shallower, crustal environment due to 
metasomatic processes. The crystallization age suggested in this 
study (125 Ma) also indicates a possible correlation between 
Alfeu-I lamproite and Rosário-6 alnöite (128 Ma) events. 
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Alfeu-I lamproite tectonic settings
The fO2 conditions during Paraná flood basalt genesis are 

representative of the mantle redox conditions in this region 
during the beginning of the continental breakup. As the most 
expressive event that occurred during the Gondwana breakup 
in southern Brazil, its redox conditions may contribute to eval-
uating how oxidized the Alfeu-I lamproite is compared to this 
mantle source. The fO2 conditions calculated for the Alfeu-I 
lamproite and Rosário-6 alnöite are significantly higher than 
the fO2 of the Paraná flood basalts, as described by Bellieni 
et al. (1984) (Fig. 14). The latter authors used the method of 

Figure 15. Stability fields of graphite and CO2 in logfO2 versus temperature diagram at 4 and 5 GPa. D/GCO buffer from Frost and Wood 
(1997); EMOD/G buffer from Zhao et al. (1999); and NNO buffer from Ballhaus et al. (1991). The D/G (diamond/graphite) limit is from 
Kennedy and Kennedy (1976). Alfeu-I results are plotted as inverted orange triangles.

Figure 14. LogfO2 versus temperature with calculated T and fO2 
for Alfeu-I lamproite (inverted orange triangles); Rosário-6 (purple 
triangles); high-Ti Serra Geral basalts (green circles); and low-Ti Serra 
Geral basalts (yellow circles) (Bellieni et  al. 1984) results. Buffers: 
NNO (nickel-nickel oxide); FMQ (fayalite-magnetite-quartz) 
(Ballhaus et al. 1991); and WM (wüstite-magnetite) (O’Neill 1988).

Buddington and Lindsley (1964) to determine the fO2 of the 
Serra Geral basalts based on ilmenite and Ti-magnetite com-
positions. They found that high-Ti basalts, which have fO2 val-
ues between the nickel-nickel oxide (NNO) and fayalite-mag-
netite-quartz (FMQ) buffers, are slightly more oxidized than 
the low-Ti basalts, with fO2 values between the FMQ and wüs-
tite-magnetite (WM) buffers, which can be correlated to the 
Ti-enrichment and the source depth of these rocks. High-Ti 
basalts have been derived from greater depths (90–120 km 
depth), with a lower degree of melting than the low-Ti basalts 
(30–60 km depth) (Garland et al. 1996).

Recent studies (Conceição et al. 2019, Carniel et al. 2020) 
on the mantle source of alkaline rocks in southern Brazil show 
a close link between these occurrences and the Gondwana 
continental breakup and the opening South Atlantic, which 
started at ca. 135 Ma ago (Hall et al. 2018). Following these 
authors, subducting slabs that contained carbonated sedi-
ments and metabasalts could be responsible for metasomatic 
processes in the mantle, which may have been oxidized and 
chemically enriched by carbonatite and/or silicate melt metaso-
matism (Fumagalli and Klemme 2015, Gervasoni et al. 2017). 
The origin of these hydrated and carbonated fluids or melts that 
caused such a melt oxidation process in Alfeu-I lamproite may 
be related to subducting materials from old subduction pro-
cesses similar to the Rosário-6 alnöite (Conceição et al. 2019).

Based on our calculations, Alfeu-I lamproite may have 
crystallized at a pressure of 4–5 GPa, which corresponds to 
around 120–150 km depth, temperatures between 1,375 and 
1,395°C, and at ΔFMQ = 2.4–2.2. Alfeu-I temperatures and 
fO2 are plotted in the diagram (Fig. 15), where D/GCO is the 
diamond/graphite-carbon oxide buffer from Frost and Wood 
(1997), EMOD/G is the enstatite-magnesite-olivine-diamond/
graphite buffer from Zhao et al. (1999), and NNO is the nick-
el-nickel oxide buffer from Ballhaus et al. (1991). The GCO 
and DCO oxygen buffers describe the upper fO2 stability of 

12/16

Braz. J. Geol. (2023), 53(3): e20220092



graphite or diamond with respect to a free C-O fluid (Frost 
and Wood 1997). The EMOD/G curve defines the stability 
field between diamond/graphite and magnesite (MgCO3) in 
the mantle. Considering this, the area below this curve rep-
resents the oxygen fugacity for melts in equilibrium with dia-
mond or graphite, and the Alfeu-I oxygen fugacity plots above 
the graphite stability curve (Fig. 15). At such conditions, 
carbon can be oxidized to produce carbonate melt through 
the reduction of Fe3+ in silicate minerals during upwelling 
(Rohrbach and Schmidt 2011, Stagno et al. 2013). From 4 to 
5 GPa (120–150 km depth), diamonds can be stable only at 
very low oxygen fugacities and at low temperatures (see D/G 
limit in Fig. 15). 

CONCLUSION
We present new mineralogical and geochemical data 

on the Alfeu-I lamproite. It exhibits an inequigranular tex-
ture with macrocrysts of mica, chromite, garnet, and ilmen-
ite and microcrysts of mica, pyroxene, and rare olivine, all 
immersed in a groundmass composed of pyroxene, chro-
mite, perovskite, rutile, ilmenite, and, more rarely, olivine. 
Major and trace elements of Alfeu-I minerals indicate a 
depleted mantle source that was re-fertilized by metaso-
matic processes in the lithosphere. The Sr-Nd isotopic data 
and the Rb-Sr isochron, based on the pyroxene and garnet 
isotope compositions, indicate a metasomatized mantle 
source and crystallization age close to Rosário-6 alnöite. An 
enriched mantle source is considered to have been the prod-
uct, for example, of metasomatism acting on the subconti-
nental lithospheric mantle after subduction ceases, which 

would lead to the formation of alkali-enriched magmas that 
can have a mantle signature. Therefore, we consider that the 
negative εNd values imply an enriched mantle source, i.e., a 
mantle that was metasomatized by fluids in a previous sub-
duction setting (Zi et al. 2012). Garnet and clinopyroxene 
could come from two distinct sources, which would not 
be surprising given that this rock occurs in diatremes and 
the mantle beneath Gondwana during the breakup was not 
homogeneous. The Alfeu-I lamproite may have crystallized 
at pressures between 4 and 5 GPa, which corresponds to 
around 120–50 km depth, at high temperatures (from 1,375 
to 1,395°C) and relatively oxidized conditions, at ΔFMQ 
= +2.4 to +2.2. The origin of the metasomatic agents that 
caused such a melt oxidation process in Alfeu-I lamproite 
may be related to subducted slab materials from old subduc-
tion processes in the mantle source. 
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