SETOR AQUIRI, OESTE DA PROVÍNCIA MINERAL DE CARAJÁS

áficos/magnéticos profundos interpretados a partir de dados gravimétricos e magnetométricos profundos. $eF1 = (F1a^{*}4) + (F2a^{*}4) + (F3a^{*}4) + (F3b^{*}4) + (F4a^{*}3)$

 $eC1 = (C1a^{*}4) + (C1b^{*}4) + (C2a^{*}4) + (C3a^{*}3)$

corpos graníticos e rochas vulcânicas, rochas exalativas e rochas clásticas etc.)

eG1 = (G1a*5) + (G2a*4) + (G2b*3) + (G2c*3) + (G2d*5) + (G2e*5)

ENCARTE TECTÔNICO

ASSOCIAÇÕES TECTONO-ESTRATIGRÁFICAS

Suíte de granitos cálcio-alcalinos (1,91-1,88 Ga) Suíte de granitos alcalinos (1,88 Ga) Formações vulcânicas calcioalcalinas de alto K (1,88 Ga)

Rochas gabroicas paleoproterozoicas Suítes de granitos, charnockitos e gabros (2,76-2,73 Ga) Complexos máfico-ultramáficos (2,76-2,72 Ga) Sequências vulcanossedimentares (2,76-2,70 Ga) Suítes de granitos potássicos e associados (2,90-2,85 Ga) Suítes plutônicas tipo TTG e complexos de alto grau 3,0-2,83 Ga)

Suítes plutônicas tipo TTG (3,0-2,85 Ga) Greenstone belts (3,0 Ga)

Formações vulcânicas alcalinas (1,88 Ga)

hidrotermais, ocorridos sobretudo no Neoarqueano e Paleoproterozoico. Os processos precoce, está associado às zonas de cisalhamento dúcteis regionais, de direção E-W e hidrotermais relacionados à formação da Bacia Carajás, ao desenvolvimento/reativação de WNW-ESE, possui estágios de alteração pervasivas proximais de Fe-K (biotita-gruneritagrandes estruturas regionais, bem como ao magmatismo alcalino têm sido considerados os granada-magnetita) e distais de Na-Ca (actinolita-albita-escapolita-magnetita), além de principais desencadeadores das mineralizações de Cu-Au na província. A maior parte dos cloritização em halos distais e tardios. Na assembleia sulfetada predominam calcopirita ± depósitos conhecidos estão localizados na porção leste do Domínio Carajás, ao longo da bornita ± Au ± Ag, comumente acompanhada de magnetita e minerais de U e ETRs (allanita, bacia e nas proximidades dos seus contatos norte (Cinturão Norte do Cobre) e sul (Cinturão uraninita, torita e monazita). O segundo estágio, associado a estruturas rúpteis a rúpteis-Sul do Cobre) com o embasamento (Xavier et al., 2012; Tavares; Oliveira; Lima, 2021; dúcteis, de orientações NE-SW e NW-SE, com halos de alteração mais restritos e proximais, Moreto et al., 2015). Depósitos cupro-aurífero do tipo singenético, com Zn-Co (VHMS - de quimismo Ca-Fe-K-Na (epidoto, albita, actinolita, quartzo, feldspato potássico e clorita) e Volcanic hosted massive sulfide e Sediment hosted), do tipo IOCG (iron oxide-copper-gold, caracteristicamente fissural (veios e stockwork). A assembleia sulfetada é Fe-Cu-Au-ETR-U-P) e tipo polimetálico (*intrusion-related*, Cu-Au-Bi-Sn-Mo-W) têm sido os predominantemente constituída por calcopirita + pirita ± molibdenita ± galena ± pentlandita, principais modelos interpretados para os depósitos da porção leste da província (DOCEGEO, comumente associada à hematita. Esses padrões sugerem diferenças significativas com 988; Huhn; Nascimento, 1997; Villas; Santos, 2001; Monteiro et al., 2008; Schwarz; Frantz, relação ao nível crustal (temperatura e estado de oxidação das paragêneses, natureza da 2013; Xavier *et al.*, 2012, 2017; Melo *et al.*, 2019; Pinheiro, 2019). Os dados geocronológicos deformação) entre os dois sistemas. apontam os picos das mineralizações em 2,76-2,68 Ga (predominante no Cinturão Sul), Considerando as características descritas, e, tomando por base o entendimento dos outro em torno de 2,55 Ga (Cinturão Norte), e o mais tardio em 1,90-1,88 Ga (Réquia et al., depósitos da porção leste da PMC, interpreta-se que o primeiro sistema (por exemplo, nos 2003; Tallarico; Coimbra; Costa, 2000; Tallarico et al., 2005; Moreto et al., 2015a,b; Trunfull et alvos AQW1 e AQW2), possui muitas das características observadas nos sistemas IOCG al., 2020: Hunger et al., 2021). A região do Setor Aquiri, porção NW de Carajás, representa uma nova fronteira do Cinturão Norte. As relações e dados geocronológicos escassos sugerem que esses exploratória para cobre da província. Com um contexto geológico similar ao da porção leste processos ocorreram no Neoarqueano (Silva et al., 2023). Já o segundo sistema (por da PMC (Soares et al., 1988; Fraga et al., 2020), tem sido foco de pesquisa mineral e de exemplo, alvos Angélica e Xuxa), mais raso, rúptil e oxidado, espacialmente relacionado a intensa atividade garimpeira nas últimas décadas. Os poucos trabalhos de cunho corpos graníticos e gabroicos, possui aspectos indicativos dos sistemas de Cu-Au metalogenético na área reportam mineralização de cobre-ouro associada a zonas de rochas polimetálico, com possível idade paleoproterozoica. Este sistema inclui variações menos hidrotermalizadas ao longo de estruturas regionais, e os correlacionam a depósitos do tipo singenético, IOCG e skarn (Riehl; Cabral, 2018; Costa et al., 2019; Barbosa et al., 2022; Ocorrências locais de sulfetos disseminados ao longo de possíveis estruturas primárias na Fernandes *et al.*, 2023; Silva *et al.*, 2023). O estudo de ocorrências e alvos de Cu-Au no Setor Aquiri, no âmbito do Projeto alvos AQW7, Xuxa e Urca). Ademais, os processos de enriquecimento supergênico também Geologia, Recursos Minerais e Arquitetura Crustal de Carajás, do Serviço Geológico do contribuíram para a reconcentração de cobre e ouro, com a formação de gossans, que Brasil (SGB-CPRM), permitiu avançar no entendimento dos controles dessas mineralizações representam importantes guias prospectivos na região.

Elaborado pela equipe do Projeto Geologia, Recursos Minerais e Arquitetura Crustal de Carajás.

ARTICULAÇÃO DAS FOLHAS SB.22-V-D-I SB.22-V-D-II SB.22-V-D-III SB.22-X-SERRA CABECEIRAS RIO AQUIRI RIO CINZENTO DO BACAJÁ DO BACAJÁ SB.22-V-D-IV SB.22-V-D-V SB.22-V-D-VI SB.22-X-C-IV SÃO RAIMUNDO IGARAPÉ FAZENDA RIO ITACAIÚ SÃO SEBASTIÃO ANAPORÃ SB.22-Y-B-I SB.22-Y-B-II SB.22-Y-B-III SB.22-Z-A -----RIO XINGU SÃO FÉLIX RIO BRANCO RIO CATETE SB.22-Y-B-IV SB.22-Y-B-V SB.22-Y-B-VI SB.22-Z-A-IV

COORDENAÇÃO TÉCNICA REGIONAL

Regina Célia dos Santos Silva

Chefe do Projeto:

Cíntia Maria Gaia da Silva

Chefe da Diretoria de Geologia e Recursos Minerais: Gerente de Geologia e Recursos Minerais

O Projeto Geologia, Recursos Minerais e Arquitetura Crustal de Carajás está sendo executado pela Superintendência Regional de Belém, através da Gerência de Geologia e Recursos Minerais - GEREMI, com suporte da Gerência de Infraestrutura Geocientífica - GERINF. A coordenação nacional do projeto coube ao Departamento de Recursos Minerais - DEREM e ao Departamento de Geologia - DEGEO, com supervisão e apoio técnico das Divisões de Geologia Econômica - DIGECO, Sensoriamento Remoto e Geofísica - DISEGE, e Geoquímica - DIGEOQ. BASE CARTOGRÁFICA

Base Planimétrica digital obtida das cartas SB.22-V-D-V, SB.22-V-D-VI, SB.22-Y-B-II e SB.22-Y-B-III, impressas e publicadas em primeira edição pelo IBGE em 1982, ajustadas às imagens do Mosaico GeoCover -2.000, ortorretificado e georreferenciado segundo o datum SIRGAS 2000, de imagens ETM + do Landsat 7 resultantes da fusão das bandas 7, 4, 2 e 8, com resolução espacial de 14,25 metros. Esta base foi editada e atualizada pela Superintendência Regional de Belém, com o apoio da Gerência de Relações Institucionais e Desenvolvimento, para atender ao mapeamento temático do Serviço Geológico do Brasil. O Mapa de Prospectividade para Cobre e Ouro do Setor Aquiri é suportado por banco de dados geológico e de recursos minerais, disponibilizados em versão SIG.

CRÉDITOS DE AUTORIA

Francisco Valdir Silveira

Marcelo Esteves Almeida

laísa Bastos Abram

COORDENAÇÃO TÉCNICA NACIONAL

Chefe do Departamento de Geologia

Chefe da Divisão de Geoquímica:

Silvana de Carvalho Melo

lago Sousa Lima Costa

Chefe da Divisão de Geologia Econômica

Chefe da Divisão de Sensoriamento Remoto e Geofísica:

AUTORES Antonia Railine da Costa Silva (SUREG-BE) Geologia: Junny Kyley Mastop de Oliveira (SUREG-BE) Luciano Castro da Silva Sulsiene Machado de Souza Gaia (DIGECO) Cíntia Maria Gaia da Silva Felipe Mattos Tavares (DIGECO) Felipe Grandjean Costa Ulisses Antônio Pinheiro Costa Chefe do Departamento de Recursos Minerais: Rafael Bittencourt Lima (SUREG-SP) Cíntia Maria Gaia da Silva (SUREG-BE) Atividades de Campo: APOIO TÉCNICO José Paulo Santos de Melo Guilherme Ferreira da Silva Paulo Sérgio Ferreira Santos Chefe da Divisão de Geologia Básica: Geoquímica Prospectiva: Linaldo de Souza Mesquita Patrick Araújo dos Santos Marcely Pereira Neves (DIGEOQ) José de Arimateia da Cruz Geofísica: Vicente de Paula Pinto

Alexandre Silveira de Olivei

MINISTRO DE MINAS E ENERGIA Vitor Eduardo de Almeida Saback

SECRETÁRIO DE GEOLOGIA, MINERACÂ

E TRANSFORMAÇÃO MINERAL

SERVIÇO GEOLÓGICO DO BRASIL - CPRM

Inácio Cavalcante Melo Neto

DIRETOR-PRESIDENTE

Francisco Valdir Silveira DIRETOR DE GEOLOGIA E RECURSOS MINERAIS

Alice Silva de Castilho DIRETORA DE HIDROLOGIA E GESTÃO TERRITORIAL

Paulo Afonso Romano DIRETOR DE INFRAESTRUTURA GEOCIENTÍFICA

DIRETOR DE ADMINISTRAÇÃO E FINANÇAS

Isabelle Cavalcanti Côrrea de Oliveira Serafim (DISEGE) Geoprocessamento: Hugo de Souza Ferreira

Citação Bibliográfica: SILVA et al., 2023.

Referência Bibliográfica: SILVA, A.R. da C.; OLIVEIRA, J.K.M. de; SOUZA GAIA, S.M. de; TAVARES, F.M.; LIMA, R.B.; SILVA, C.M.G. da. Mapa de Prospectividade para Cobre e Ouro do Setor Aquiri, Oeste da Província Mineral de Carajás. 1 mapa colorido, 90,0 x 135,0 cm. Estado do Pará. Belém: SGB-CPRM, 2023. Escala: 1:100.000.

Este mapa é parte integrante do Informe de Recursos Minerais - Série Províncias Minerais do Brasil – Área: Setor Aquiri (não publicado).

Aviso Legal O conteúdo disponibilizado neste mapa foi elaborado pelo Serviço Geológico do Brasil – SGB-CPRM, com base em dados obtidos através de trabalhos próprios e de informações de domínio público. O SGB-CPRM não garante: (i) que o Conteúdo atenda ou se adeque às necessidades de todos os usuários; (ii) que o Conteúdo e o acesso a ele estejam totalmente livres de falhas; (iii) a total precisão de quaisquer dados ou informações contidas no Conteúdo, apesar das precauções de praxe tomadas pelo SGB-CPRM. Assim, o SGB-CPRM, seus representantes, dirigentes, prepostos, empregados e acionistas não podem ser responsabilizados por eventuais inconsistências ou omissões contidas no Conteúdo. Da mesma forma, o SGB-CPRM, seus representantes, dirigentes, prepostos, empregados e acionistas não podem ser responsabilizados por eventuais inconsistências ou omissões contidas no Conteúdo. Da mesma forma, o SGB-CPRM, seus representantes, dirigentes, prepostos, empregados e acionistas não traspondem pelo uso do Conteúdo, e sugere que os usuários utilizem sua própria experiência no tratamento das informações contidas no Conteúdo, ou busquem aconselhamento de profissionais independentes capazes de avaliar as informações contidas no Conteúdo. O Conteúdo não constitú aconselhamento de investimento, financeiro, fiscal ou jurídico, tampouco provê recomendações relativas a instrumentos de análise geocientífica, de investimentos ou eventuais produtos. Por fim, qualquer trabalho, estudo e/ou análise que utilize o Conteúdo deve fazer a devida referência bibliográfica.

MINISTÉRIO DE MINAS E ENERGIA SECRETARIA DE GEOLOGIA, MINERAÇÃO E TRANSFORMAÇÃO MINERAL SERVIÇO GEOLÓGICO DO BRASIL - SGB-CPRM

MODELO IOCG

Fontes de Fluidos, Ligantes e Metais (*e*F₁)

Produto gerado pela somatória dos temas relacionados às unidades hospedeiras e férteis (possíveis fontes), incluindo os polígonos das unidades sedimentares clásticas e exalativas (formações Salobo-Pojuca e Carajás), unidades máfico-ultramáficas (Formação Parauapebas e Suíte Cateté) e dos granitoides da Suíte Lavrado, além de corpos

Condutos de Migração de Fluidos (eC₁)

euclidiana das estruturas dúcteis (Dn), estruturas translitosféricas extraídas de dados gravimétricos e magnetométricos (envoltória de 500m), além do domínio de bacias (rochas

Fontes de Fluidos, Ligantes e Metais (eF₂)

Produto gerado pela somatória dos temas relacionados às unidades hospedeiras e férteis (possíveis fontes), incluindo os polígonos dos granitoides da Suíte Serra dos Carajás e vulcanoclásticas félsicas da Formação Vila Santa Rosa, gabros da Suíte Vila do T, e das rochas metavulcanossedimentares (formações Salobo-Pojuca, Carajás e Parauapebas), além de zonas previamente m lizadas (pontos de depósito ências ICOG Neoarqueano) $eF2 = (F1a^{*}4) + (F2a^{*}4) + (F3a^{*}3) + (F3b^{*}4) + (F3c^{*}3)$

Produto gerado pela somatória dos temas relacionados aos principais conjuntos de lineamentos e estruturas rúpteis a rúpteis-dúcteis da área, incluindo mapas com a densidade Kernel e distância euclidiana das estruturas dúcteis (Dn), estruturas translitosféricas extraídas de dados gravimétricas e magnetométricos (envoltória de 500m), além das zonas de contatos e cúpulas de corpos granitoides paleoproterozoicos e rochas clásticas permeáveis (Formação Águas Claras). $eC2 = (C1a^{*}4) + (C1b^{*}4) + (C2a^{*}3) + (C3a^{*}4) + (C4a^{*}3)$

Cu, Au, Mo, Bi e Pb) e contatos entre as litofácies da Formação Águas Claras. eG2 = (G1a*5) + (G1b*3) + (G1c*3) + (G1d*3)

TABELA DE ATRIBUIÇÕES AOS MAPAS DE EVIDÊNCIA

CONTROLES DOS DEPÓSITOS - MAPAS DE EVIDÊNCIA

51°0'W

Povoados

Curso d'água

Soma das pontuações

Povoados

Recursos Minerais

Cobre

Ouro

Curso d'água

Soma das pontuações

- Estrada não pavimentada

Outras Localidades

5

- Estrada não pavimentada

ecursos Minerais

Cobre

Ouro

Outras Localidades

SISTEMA MINERAL IOCG - SM1								
Critérios Mapeáveis (Proxies)	Dados de entrada (Vetores preditivos)		Justificativa	Importância (relevância do critério para o SM)	Aplicabilidade (certeza de que o <i>proxy</i> reflete o fator crítico)	Confiabilidade (distribuição espacial / qualidade dos dados)	Peso	
Formação Salobo Pojuca metapelítica e quartzítica)	F1	a. Dados geológicos - polígonos da unidade Salobo-Pojuca (shp.)	Fonte de fluidos salinos conatos e também de metais pela possível presença de depósitos VHMS distais (sediment hosted)	média-alta	alta	média-alta	4	
Granitoides com idade de 2,66-2,65 Ga (Suíte Lavrado)	F2a. D La	ados geológico- polígonos da unidade vrado (shp.) dist. Euclidiana de 1km	Granitogênese espacialmente e talvez temporalmente associada à mineralização IOCG	alta	média-alta	média-alta	4	
Rochas exalativas (FFB)	F3 unidad	a. Dados geológicos: polígonos da de Carajás com dist. Euclidiana 300 m	Possíveis fontes de Fe e outros metais (proximidade com possíveis depósitos do tipo VHMS)	alta	média-alta	média-alta	4	
Rochas máficas- ultramáficas aflorantes	F3t unidad	o. Dados geológicos∶ polígonos das des Parauapebas Máfico (vulcânicas) e Cateté (plutônicas)	Possíveis fontes de metais e S	alta	média-alta	média-alta	4	
Corpos máficos- ultramáficos ultraprofundos	F4a. D m	Dados magnetométricos de anomalias agnéticas profundas (MM, GT, AM)	Possíveis corpos alimentadores	alta	média-alta	média	3	
Falhas dúcteis extensionais e	C1a. Extensas estruturas dúcteis interpretadas, aplicada a função distância euclidiana (1km) C1b. Extensas estruturas dúcteis interpretadas - aplicada a função densidade de Kernel		Presença de minério sulfetado depositado	alta	média-alta	média-alta	4	
transtensionais coevas à evolução da bacia			ao longo de rochas deformadas ductilmente	alta	média-alta	média-alta	4	
Estruturas profundas interpretadas	C2a. produ SPI	Lineamentos interpretados a partir de tos aeromagnéticos (Euler, 1Dv, ISA e) e aerogravimétricos (1Dv bouguer, bouguer)	Principais condutos de migração de fluidos de partes profundas da crosta	alta	média-alta	média-alta	4	
Conjunto de rochas metavulcanossedimentar es e metassedimentares	C3a.	Polígono englobando os domínios de bacia	Zonas de extensão, maior porosidade, permeabilidade	alta	média	média-baixa	3	
Rochas com assinatura magnética. Minerais de magnetita (magnetititos)	G1a. <i>In</i> v	Magnetometria: <i>Magnetization Vector</i> version (MM) Slice horizontal 125 m	A abundante precipitação de magnetita em geral é precedida de sulfetação por causar mudanças de fO2	alta	média-alta	alta	5	
Contatos litológicos contrastantes	G2a. (.shp) bacia, e F	Contornos dos polígonos dos litotipos) com <i>buffer</i> de 500m: embasamento- bacia-granitos, ígneas-embasamento FB-máficas, etc. hierarquizados por importância	Zonas de contato em geral representam importantes zonas de deposição	alta	média-alta	média-alta	4	
Associação		Bacias - Fator 1 - Co-Cr-Cu-Fe-Mg-Ni- Sc-V(+)/Th(-)		alta	média-alta	média	3	
Geoquímica/Metálica	G2b.	Bacias - Fator 4 - Ce-La(-)	Assinaturas de Fe-Cu-Au-U-P-Th-Ag-Co-Ni- Mo-B-Cr-Ti-As-Ni-Zn e ETRs, típicas de					
associada às zonas hidrotermalizadas		Bacias uniciemento - Au	depósitos IOCG					
		Bacias unielemento - Zn						
Nteração hidrotermal Fe-K e Na-Ca	G2c. Zona de influência de pontos com alteraçao hidrotermal: dist. euclidiana (1km)		Alterações características de halos distais e proximais ao minério IOCG	alta	média-alta	média	3	
Zonas de alteração K-Fe (Biotita);	G2	2d. Dados gamaespectrométricos: Potássio anômalo (Kd) por ML	Alterações Fe-K ricas em biotita, grunerita, associada a zonas mineralizadas	alta	alta	alta	5	
Rochas enriquecidas em urânio (anomalias)	n G2e. Dados gamaespectrométricos:Uranio anomalo (Ud) por ML		Minerais ricos em U (especialmente uraninita) na assembleia hidrotermal	alta	alta	alta	5	

				SISTEMA N
Componentes do Sistema Mineral Mapas Evidenciais Intermediários)	Fatores Críticos (Critérios Teóricos)	Critérios Mapeáveis (Proxies)	Dados de ent (Vetores predit	
	F1.Fontes magmáticas de fluidos	Granitoides isotrópicos e rochas wilcânicas e vulcanoclásticas ácidas paleoproterozoicas	F1a polígo de 1,8	. Dados geológic nos das unidade 38 Ga e Fm. Vila \$
1. Fonte de	F2.Fontes magmáticas de metais e S	Corpos máficos intrusivos e rochas vulcânicas (Paleoproterozoicos?)	os F2a. Dados geoló polígonos da unida	
energia, fluidos, metais e ligantes (F)	DS, Rochas clásticas neoarqueanas		F3a. Dados geológicos da unidade Fm. Salo (metapelítica e qua	
	F3. Fontes rasas de metais (lixiviação / remobilização)	Rochas exalativas (FFB) e máficas neoarqueanas	F3b. Dados geológicos da unidade Carajás e F máfico	
		Depósitos IOCG arqueanos	F3c. Pontos de IOCG com buffer de 500m euclidiana 1	
	C1. Estruturas rúpteis a rúpteis-dúcteis de alta permeabilidade	Estruturas NE-SW e NS e WNW-ESE E-W reativadas	C1a. Estruturas rúpte dúcteis interpretadas (s a função distância euc	
2. Condutos para a migração de	C2. Estruturas de escala regional (Zonas translitosféricas)	Estruturas profundas interpretadas (reativadas)	C2a. Lineamentos int partir de produtos aer (Euler, 1Dv, ISA e aerogravimétricos (1 bouquer)	
fiuldos (C)	C3. Zonas de contato e cúpulas de granitos	Contatos corpos graníticos paleoproterozoicos	C3a. Contatos g paleoproterozoicos (shp (500m)	
	C4. Rochas clásticas permeáveis	ticas Formação Águas Claras C4a. Dados polígonos da u (arenít		a. Dados geológio nos da unidade Á (arenítica e pel
		Zonas enriquecidas em U	s em U G1a. Dados Uranio a	
	G1. Gradientes fisico- químicos	Contatos litológicos contrastantes (fisico- químico)	G1b. Contatos entre as Fm. Águas Claras (shp (500m)	
. Gradientes para a deposição do		Alteração hidrotermal Fe- Ca	G1c. Zona de influênc com alteração hidroterr euclidiana (1	
minério (G)		Associação Geoquímica/Metálica associada às zonas hidrotermalizadas	G1d.	Fator 2 - Lu- Bacias uniele Bacias uniele Bacias uniele Bacias uniele
				Bacias uniele

MODELO POLIMETÁLICO

Povoados

Curso d'água

Estrada não pavimentada

Soma das pontuações

0

Outras Localidades

Estrada não pavimentada

Recursos Minerais

Cobre

- Curso d'água

Soma das pontuacões

8 76

Povoados

Recursos Minerais

Cobre

Ouro

Outras Localidades

Curso d'água

Soma das pontuações

Estrada não pavimentada

Estrada não pavimentada

Ouro

Recursos Minerais

Ouro

Outras Localidades

MODELO DE POTENCIAL MINERAL IOCG (MPM1)

MODELO DE POTENCIAL MINERAL POLIMETÁLICO (MPM2) Vale da Pa ÍNDICES PROSPECTIVOS: 0 Nula

Modelo elaborado a partir da soma dos três mapas evidenciais dividida pela soma dos pesos de todos os mapas evidenciais utilizados $MPM2 = (eF2) + (eC2) + (eG2) / 50^{**}$ ** 50 representa a soma dos pesos dos mapas empregados na elaboração dos mapas evidenciais intermediários.

INTEGRAÇÃO DE DADOS E MODELAMENTO

Para a elaboração do Mapa de Prospectividade de Cu-Au do setor Aguiri utilizou-se a abordagem de integração de dados guiada pelo conhecimento (knowledge-driven), e o conceito de Sistemas Minerais (Wyborn et al., 1994; Mccuaig: Hronsky, 2014; Skirrow et al., 2019), Assim. com base no entendimento das mineralizações da área, bem como no estado da arte dos sistemas cupro-auríferos da PMC (vide item "Metalogenia e Evolução Geodinâmica"), definiu-se um conjunto de fatores críticos à geração de minério, organizados em três componentes principais: 1) fontes de fluidos, metais e ligantes; 2) condutos canalizadores de fluidos; 3) radientes de deposição do minério. Como no setor Aquiri ocorre a sobreposição de processos nineralizantes, o modelamento foi realizado em duas etapas (correspondentes aos sistemas minerais IOCG – SM1, e Polimetálico – SM2). Para cada sistema mineral (SM) foram definidos os fatores críticos (critérios teóricos) à mineralização, e suas expressões cartográficas (critérios mapeáveis) foram então rastreadas dentro do banco de dados geológicos, geofísicos e geoquímicos disponíveis (vide tabelas SM1 e SM2), e convertidas em dados (rasters) de entrada e) compostos de vetores preditivos (V) A integração de dados foi realizada em ambiente SIG (ArcMap, ESRI), pelo método de sobreposição de múltiplas classes (multi-class index overlay; Carranza, 2009), que utiliza um conceito matemático semelhante ao da álgebra booleana, onde o valor de cada classe de evidência é adicionado quando existe uma interseção de dois ou mais vetores preditivos. Quanto mais interseções de vetores preditivos ocorrerem em uma área do mapa, maior a pontuação atribuída à zona de interseção. A cada vetor (V) em um mapa de entrada de dados (e), foi atribuída uma pontuação. P(ve), entre 0 e 10, de acordo com a importância do processo mapeado na formação do depósito mineral, a saber: i) 0 significa que não há perspectividade alguma, ou nenhuma chance para encontrar depósitos minerais: ii) 1 a 3 significa que o processo é incerto ou de menor importância; iii) 4 a 6, um processo desejável; iv) 7 a 9 significa que os processos relacionados são de grande importância; v) 10 significa que o processo mapeado é essencial para a previsão de depósitos minerais. Ademais, para cada um dos mapas de evidência foi definido um peso W(e), de 1 a 5, que deriva das seguintes variáveis: a importância (I) do fator crítico para o SM, a aplicabilidade (A) da correspondência entre o fator crítico e a feição mapeável, e a confiabilidade (C) da base de dados (em termos de distribuição e gualidade) que originou cada mapa de evidência (vide Tabela SM1 e SM2). Os diversos dados de entrada foram somados (S), de acordo com a equação:

 $S = \sum ne(Pve)(We),$ para a produção de três mapas evidenciais coerentes a cada modelo (Mapa evidencial de Fontes de Fluidos, ligantes e Metais - eF, Mapa evidencial de Corredores de migração - eC, e Mapa evidencial de Gradientes de Deposição - eG; vide encartes), e então combinados, para a geração dos Modelos de Potencial Mineral IOCG e Polimetálico (MPM1 e 2) por meio da fórmula: $MPM = eF + eC + eG / \sum neWe.$ O Mapa Integrado de Prospectividade (MIP) é produto da média entre os dois modelos previamente gerados, segundo a álgebra: MIP = (eMPM1) + (eMPM2) / 2

PROJETO GEOLOGIA. RECURSOS MINERAIS E ARQUITETURA CRUSTAL DE CARAJÁS MAPA DE PROSPECTIVIDADE PARA COBRE E OURO DO SETOR AQUIRI, ESCALA 1:100.000

MAPA DE PROSPECTIVIDADE PARA COBRE E OURO

ESCALA 1:100.000 - SGB-CPRM, 2023

SETOR AQUIR

Convenções Geológicas Falha ou zona de cisalhamento contracional D3 Dique máfico interpretado da Magnetometria Eixo de anticlinal D2 — Falha ou zona de cisalhamento dúctil-rúptil D3 Eixo de anticlinal D3 ---- Fratura ——— Falha Lineamentos magnetométricos ----- Falha com componente transcorrente dextral Lineamentos estruturais Zona de cisalhamento transcorrente contracional D1/D2 Falha com componente transcorrente sinistral Zona de cisalhamento transcorrente sinistral D1/D2 ------ Falha ou fratura interpretada da magnetometria

RECURSOS MINERAIS

	Cubati		Tamanho do depósito (ton)				
	Substa	ancia mineral	pequeno	médio	grande		
	Cobre (Cu)		até 10.000	>10.000 a 100.000	>100.000 a 1.000.000.000		
•	Ouro (Au)		1 a 10	>10 a 50	>50 a 300		
Grau	u de importância	Status	Tamanho	Morfologia	Classe genética		
\bigcirc	Depósito Ocorrência	Garimpo	 Pequeno ou indeterminado Médio Grande 	X Indeterminada Venular Stratiforme	⊢		
25 N	úmero de identificação o	dos recursos minerais do pro	pieto no mapa.				

	RELAÇÃO DOS RECURSOS MINERAIS DO SETOR AQUIRI							
N.	TOPONÍMIA	ABREV.	STATUS	SISTEMA	ROCHA ENCAIXANTE	ASSOCIAÇÃO MINERAL	MORFOLOGIA	
1	Alvo AQW7	Cu, Au	Ocorrência	IOCG	Máfica/BIF	Pirita, Calcopirita	Venular, Semi-maciço	
2	Alvo AQW1	Cu, Au, Fe	Ocorrência	IOCG/Polimetálico	Máfica/Metassedimentares/Granito	Calcopirita, Bornita, (Ouro)	Venular, Semi-maciço	
3	Vicinal do Goianos 1	Au, Cu	Garimpo	Incerto	Rocha Metavulcânica Máfica	Calcopirita, Bornita	Indeterminada	
4	Vicinal do Goianos 2	Cu, Au	Garimpo	Polimetálico	Tufos/Gabros	Calcopirita, Pirita, Malaquita	Venular	
5	Fazenda Serra Dourada	Cu, Au	Garimpo	Polimetálico	Tufo felsico	Malaquita	Venular, Stockwork	
6	Garimpo do Juvenal	Cu, Au	Garimpo	IOCG	Máfica	Calcopirita, Malaquita	Indeterminada	
7	Alvo AQW2	Cu, Au, Fe	Ocorrência	IOCG	Máfica/Vulcânica máfica/Granada-biotita xisto	Calcopirita, Bornita	Venular, Semi-maciço	
8	Alvo 64	Cu, Au	Ocorrência	Polimetálico	Gabro/Filito	Calcopirita	Venular, Stockwork	
9	Alvo Açaí - FD38	Cu, Au	Ocorrência	IOCG/Polimetálico	Pegmatoides graníticos/Rochas silicificadas/Máfica	Calcopirita, Pirita, Molibdenita	Venular, Semi-maciço	
10	Alvo Açaí - FD39	Cu, Au	Ocorrência	IOCG/Polimetálico	Pegmatoides graníticos/Rochas silicificadas/Máfica	Calcopirita, Pirita, Molibdenita	Venular, Semi-maciço	
11	Alvo Angélica -FD07	Cu, Au, Fe	Ocorrência	IOCG/Polimetálico	Máfica/Granito/Brechas hidrotermais	Pirita, Calcopirita, Molibdenita, Galena	Venular, Semi-maciço	
12	Alvo Angélica -FD01	Cu, Au	Ocorrência	IOCG/Polimetálico	Gabros	Calcopirita, Bornita	Venular, Stockwork	
13	Alvo Xuxa	Cu, Au, Fe	Ocorrência	IOCG/Polimetálico	Máfica/Vulcânica foliada	Pirita, Calcopirita, Pirrotita	Venular, Semi-maciço	
14	Fazenda Bonita	Cu, Au	Garimpo	Incerto	Ígneas Intrusivas	Pirita, Calcopirita, Malaquita, Azurita	Indeterminada	
15	Região do Alvo 55	Cu, Au	Ocorrência	Incerto	Rocha Metassedimentar	Malaquita	Estratiforme	
16	Alvo Urca	Cu, Au	Ocorrência	IOCG/Polimetálico	Conglomerado/Diamictito/Gabro	Pirita, Calcopirita	Venular, Semi-maciço	
17	Garimpo do Carlos	Cu, Au	Garimpo	Polimetálico	Rocha Metassedimentar	Pirita, Calcopirita, Molibdenita	Estratiforme	
18	Alvo Urânio - FD03	Cu, Au	Ocorrência	IOCG	Metarenito/Filito Cinza/Microgabro	Calcopirita	Venular, Stockwork	
19	Alvo Urânio - FD01	Cu, Au	Ocorrência	IOCG	Filitos cinza/Metarenito	Calcopirita	Venular, Stockwork	

REFERÊNCIAS

MAPA DE PROSPECTIVIDADE PARA COBRE E OURO SETOR AQUIRI, OESTE DA PROVÍNCIA MINERAL DE CARAJÁS

> ESCALA 1:100.000 PROJEÇÃO UNIVERSAL TRANSVERSA DE MERCATOR

Origem da quilometragem UTM: Equador e Meridiano Central 51°W.Gr, acrescidas as constantes: 10.000 Km e 500 Km, respectivamente. Datum horizontal: SIRGAS2000 Declinação magnética do centro da Área em 01/12/2023: 20°25'48" W variação anual de 0°4'12'' W FONTE: NOAA National Geophysical Data Center

2023

