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A B S T R A C T   

Farms use large quantities of fertilizers from many sources, making quality control a challenging task, as the 
traditional wet-chemistry analyses are expensive, time consuming and not environmentally-friendly. As an 
alternative, this work proposes the use of portable X-ray fluorescence (pXRF) spectrometry and machine learning 
algorithms for rapid and low-cost estimation of macro and micronutrient contents in mineral and organic fer
tilizers. Four machine learning algorithms were tested. Whole (i.e., as delivered by the manufacturer) (CP) and 
ground (AQ) samples (429 in total) were analyzed to test the effect of fertilizer granulometry in prediction 
performance. Model validation indicated highly accurate predictions of macro (N: R2 = 0.92; P: 0.97; K: 0.99; Ca: 
0.94, Mg: 0.98; S: 0.96) and micronutrients (B: 0.99; Cu: 0.99; Fe: 0.98; Mn: 0.91; Zn: 0.94) for both organic and 
mineral fertilizers. RPD values ranged from 2.31 to 9.23 for AQ samples, and Random Forest and Cubist 
Regression were the algorithms with the best performances. Even samples analyzed as they were received from 
the manufacturer (i.e., no grinding) provided accurate predictions, which accelerate the confirmation of nutrient 
contents contained in fertilizers. Results demonstrated the potential of pXRF data coupled with machine learning 
algorithms to assess nutrient composition in both mineral and organic fertilizers with high accuracy, allowing for 
clean, fast and accurate quality control. Sensor-driven quality assessment of fertilizers improves soil and plant 
health, crop management efficiency and food security with a reduced environmental footprint.   

1. Introduction 

Fertilizers are mineral or organic inputs applied to soil or plant tis
sues to provide one or more nutrients for improvement of plant growth. 
Worldwide, fertilizers are highly demanded products used in large 
quantities to increase and/or maintain agricultural productivity 
(Majeed, 2018). For instance, the total agricultural use of inorganic 
fertilizers surpassed 200 million tons in 2020 (FAO, 2022). The poor 
physical quality of fertilizers is easy to identify by traits such as caking, 

discoloration, presence of foreign material, powdered granules, and 
others. Conversely, chemical quality cannot be visually assessed, 
creating an opportunity for fraudsters to sell counterfeit, adulterated or 
expired fertilizers. The use of low quality fertilizers is a grave issue that 
can lead to poor plant germination, nutrient-weak soils, reduced crop 
yields, soil and water pollution, and serious problems for human and 
environmental health (Elahi et al., 2019; Teye et al., 2022). 

Organic and mineral fertilizers have heterogeneous chemical 
composition and different particle sizes and densities, which makes it 
difficult to standardize. To guarantee consistency, more frequent quality 
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assessment is needed. However, laboratory analyses are costly, requiring 
highly equipped laboratories, chemical reagents, trained personnel, and 
careful disposal of the resulting chemical waste (MAPA, 2017; McGrath 
and Cunliffe, 1985). It is therefore difficult to frequently and accurately 
verify fertilizer grade (i.e., its guaranteed content of nutrients), espe
cially when used in large quantities. For reference, Brazilian farmers 
apply around 165 kg of fertilizer per hectare (FAO, 2022), making it 
impossible to sample each batch of fertilizer and submit it to formal 
chemical analyses. Long turnaround time of traditional laboratory 
analysis further increases the problem (analysis usually takes 1–2 weeks 
after the sample is received by the laboratory) (Vuuren and Groenewald, 
2013). Therefore, a rapid and reliable detection technique to assist 
regulators and consumers to ensure fertilizers quality is necessary. 

In the last decades, proximal sensors have been successful in 
assessing chemical attributes in many scientific fields, such as food sci
ence (Herreros-Chavez et al., 2019), water resources (Yarbrough et al., 
2019), archaeology (Kim et al., 2023), concrete science (Chinchón-Payá 
et al., 2021), soil health (Liu et al., 2020), etc. Among proximal sensors, 
portable X-ray fluorescence (pXRF) spectrometer has gained popularity 
within the soil science research community (Andrade et al., 2022; 
Mancini et al., 2022; Teixeira et al., 2022). Based on the fluorescence 
technique, pXRF allows for quantitative measurement of various 
chemical elements (from Mg to U) in a quickly (60 s) and environmen
tally friendly way (Silva et al., 2021; Weindorf and Chakraborty, 2018), 
without destroying the samples. This modern greentech promotes a 
non-destructive, fast and clean analysis method that could be well suited 
for quality control of fertilizers, which demand constant and accurate 
chemical content assessment of a large number of samples. If pXRF data 
could be modeled to accurately estimate the chemical composition of 
fertilizers, costly wet-chemistry analyses may be replaced by fast 
sensor-driven assessment. 

Very few studies have reported the use of proximal sensors to assess 
fertilizer adulteration and nutrient content (Acquah et al., 2022; Han 
et al., 2009; Teye et al., 2022; Vuuren and Groenewald, 2013). Yet, most 
of them used near-infrared (NIR) spectroscopy, which is a more 
expensive tool than pXRF and that generates a large dataset requiring 
greater computational resources and time for data processing (Andrade 
et al., 2022). Acquah et al. (2022) used pXRF to determine nutrients and 
trace elements in fertilizers samples from Kenya and United Kingdom. 
However, the authors modeled fertilizer types separately and did not 
account for different particle sizes, as all their samples were ground. If 
possible, modeling all fertilizers together would make analyses more 
practical, and investigating the effect of sample grinding is needed, as 
performed in our study. 

Recent research has shown that pXRF can be used for rapid and ac
curate assessment of Ca and Mg in lime (Benedet et al., 2023), but 
research reporting pXRF use for inferring organic and mineral fertilizer 
quality/composition is still rare in the literature. Moreover, the inves
tigation of the effects of particle sizes of fertilizers in predictions of 
nutrient contents is a novel approach, which may drastically reduce the 
time needed for chemical evaluation of fertilizers, as they could be 
analyzed without grinding the samples, i.e., as they are received from 
the manufacturer. Hence, this work aimed to: i) develop prediction 

models through machine learning algorithms [projection pursuit 
regression (PPR), random forest (RF), extreme gradient boosting (XGB), 
and cubist regression (CR)] to estimate macro and micronutrient con
tents in mineral and organic fertilizers using data obtained from pXRF; 
and ii) test the effect of sample granulometry (i.e., ground samples vs. 
samples granulometry as delivered by the manufacturer) in prediction 
accuracy. We hypothesize that pXRF in tandem with machine learning 
algorithms will constitute a suitable method for clean, fast, and accurate 
quality control for organic and mineral fertilizers. 

2. Material and methods 

2.1. Fertilizer samples and acid digestion 

A total of 429 organic and mineral fertilizer samples were used in this 
study, including sulphates, phosphates, nitrates, animal manure, and 
others (Tables 1 and 2), from several sources and manufacturers. All 
samples were prepared in two ways: a) as they are delivered by the 
manufacturer (no preparation), and b) ground and sieved (0.3 mm 
mesh) (Fig. 1). Hereinafter, grind samples are referred to as AQ, and 
whole samples that were not ground as CP. These different sample 
preparation was performed to assess the influence of such procedure on 
pXRF results (further details on section 2.2). 

All the samples were digested in graduated Pyres tubes (150 × 20 
mm) with 5 ml of high purity Aqua Regia acid mixture (McGrath and 
Cunliffe, 1985). Total concentrations of macro (N, P, K, Ca, Mg, and S) 
and micronutrients (B, Cu, Fe, Mn, and Zn) in digested solutions were 
then determined by inductively coupled plasma optical emission spec
troscopy (ICP-OES) (Spectro Analytical Instruments Inc., Kleve, Ger
many). Further information about the determination of macro and 
micronutrients in fertilizers can be found in the Brazilian manual of 
standard methods for fertilizer and amendment analysis (MAPA - Min
istério da Agricultura and Pecuária e Abastecimento, 2017). 

2.2. PXRF scanning 

Analyses were performed in all CP and AQ samples using a Bruker 
pXRF spectrometer (Analytical Instrumentation, Billerica, MA, USA), 
model Tracer 5 g, containing a Rh X-ray tube with 50 keV and 100 μA. 
The analyses were done in triplicates in “Soil” mode for 60 s each using 
the inbuilt Geochem software, as described by Weindorf and Chakra
borty (2018). The pXRF spectrometer detected the concentration of 
twenty-six elements in the studied fertilizers: Al, As, Ba, Ca, Cd, Cr, Cu, 
Fe, Hg, K, Mg, Mn, Ni, P, Pb, Rb, S, Sb, Se, Si, Sn, Sr, Ti, V, Zn, and Zr. 

To guarantee the quality of the data generated using the pXRF 
spectrometer, pXRF manufacturer’s standard soil check sample (CS-M2) 
and a sample certified by the National Institute of Standards and 
Technology (NIST) SRM 695 fertilizer check sample had their contents 
measured using pXRF. Results from these certified check samples ob
tained by pXRF were compared with the certified values and the re
covery values obtained per element were calculated (recovery value =
elemental content obtained using pXRF/certified elemental content). 
The elements obtained using the pXRF analyses and their recovery 
values (CS-M2/SRM 695) were: Al (− /− ), As (0.99/–), Ba (0.95/–), Ca 
(0.98/0.58), Cd (− /− ), Cr (− /− ), Cu (0.93/–), Fe (0.95/0.66), Hg 
(− /− ), K (0.98/0.70), Mg (− /− ), Mn (0.96/0.71), Ni (− /− ), P (1.18/–), 
Pb (0.98/–), Rb (− /− ), S (− /− ), Sb (− /− ), Se (− /− ), Si (− /− ), Sn 
(− /− ), Sr (1.00/–), Ti (− /− ), V (− /− ), Zn (0.84/0.60), and Zr (− /− ). 
Dashes (− ) indicate that either the element has no certified content in 
the reference material, or it was not detected using the pXRF 
spectrometer. 

2.3. Data analysis and modeling 

Prior to the development of prediction models of nutrients contained 
in fertilizers based on pXRF data, an exploratory analysis was performed 

Abbreviations 

CP whole samples 
AQ ground samples 
PPR projection pursuit regression 
RF random forest 
XGB extreme gradient boosting 
CR cubist regression 
RI relative error increase  
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in order to remove outliers and better characterize the dataset. Principal 
component analysis (PCA) was used to search for trends in data from 
pXRF analysis of CP and AQ samples. PCA is commonly used to visualize 
multidimensional data and observe segregation in large datasets 
(Andrade et al., 2020, 2023). As PCA did not segregate organic from 
mineral fertilizers through pXRF results, data from both types of fertil
izers were modeled together. 

Afterwards, the entire dataset was randomly separated into modeling 
and validation sub-datasets, consisting of 70% and 30%, respectively. 
Both modeling and validation sub-datasets had samples of organic and 

chemical fertilizers. PXRF detected twenty-six elements (variables); 
however, only the optimal explanatory variables selected through 
recursive feature elimination were used to build the prediction models. 
The “boruta” package (Kursa and Rudnicki, 2010) was used to perform 
feature selection for each nutrient. The method performs a top-down 
search for relevant features and ranks their importance. Thus, the 
pXRF variables were classified as Confirmed (important feature), 
Tentative (the feature does not impact model’s accuracy) or Rejected 
(not important feature). The Rejected variables were not used in the 
prediction models. The pXRF variables selected for the prediction of 
each nutrient can be seen in Fig. 7. The same set of explanatory variables 
was used for CP and AQ samples aiming to assess granulometry influ
ence on pXRF results and, hence, accuracy delivered by the prediction 
models per nutrient. Variables’ importance was calculated for the best 
models for each predicted nutrient using the ‘caret’ package. 

The prediction models were created using four different machine 
learning algorithms: projection pursuit regression (PPR), random forest 
(RF), extreme gradient boosting (XGB), and cubist regression (CR) using 
K-fold cross-validation (K = 10). All the models were built in R software 
(version 4.2.1) (R Development Core Team, 2022) using the “caret” 
package (Kuhn, 2008). Then, external validation was conducted (see 
section 2.4). These algorithms coupled with pXRF data have been suc
cessful for the development of prediction models for varying attributes 
of different materials, such as lime (Benedet et al., 2023), soils (Silva 
et al., 2021; Mancini et al., 2022), leaves (McGladdery et al., 2018; 
Andrade et al., 2023), rocks (Steiner et al., 2017), and other materials 
(Herreros-Chavez et al., 2019; Kim et al., 2023), but they have not been 
applied to fertilizers yet. Machine learning algorithms were used herein 
since they are more powerful for the identification of relationships 
among data than conventional analysis (Tang and Li, 2023). 

2.4. Evaluating model performance 

The accuracy of the predicted macro and micronutrient contents by 
the different machine learning algorithms (PPR, RF, XGB, and CR) was 
assessed by comparing predicted versus observed values through the 
coefficient of determination (R2), root mean square error (RMSE) (Eq. 
(1)), and residual prediction deviation (RPD) (Eq. (2)). Their equations 
are given as: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − mi)

2

√

(1)  

RPD= SD/RMSE (2)  

where, n: number of observations, yi: estimated value by the model, mi: 
measured value by the chemical analysis, SD: standard deviation of the 
observed values. RPD has been characterized into three classes: RPD >2, 
prediction models delivering accurate results, 1.4 ≤ RPD ≤2, prediction 
models providing moderately accurate results, and RPD <1.4, prediction 
models being non-reliable (Chang et al., 2001). The models with greater 
R2 and lower RMSE were considered optimal for predicting laboratory 
analysis. 

2.5. Relative error increase 

The percentage of RMSE increase (Eq. (3)) was calculated to compare 
how the different machine learning algorithms performed. This index 

Table 1 
Number of samples for each macro and micronutrient per fertilizer nature.  

Fertilizer N P K Ca Mg S B Cu Fe Mn Zn 

Mineral 93 81 52 88 25 63 49 24 6 11 26 
Organic 82 77 78 30 29 33 29 29 29 29 29 
Total 175 158 130 118 54 96 78 53 35 40 55  

Table 2 
Types of fertilizers analyzed through pXRF to build machine learning prediction 
models.  

Type of fertilizer Number of 
samples 

Type of fertilizer Number of 
samples 

Boron 3 NK + sulfur +
micronutrients 

45 

Castor bean 
residuum 

3 NP 12 

Cattle manure 
compost 

21 NPK 51 

Charcoal 3 NPK + micronutrients 30 
Coffee residuum 3 NPK + sulfur +

micronutrients 
27 

Compost 33 Organomineral 6 
K + micronutrients 36 Poultry litter 39 
KCl 12 Rice residuum 3 
Manure 15 Sewage sludge 3 
MAP 15 Single superphosphate 33 
Micronutrients 6 Slow-release nitrogen N, 

S and K 
3 

Nitrate 15 Urea 6 
NK 3 Wood residuum 3  

Fig. 1. Examples of the studied organic and mineral fertilizers demonstrating 
the different granulometry of the samples as they were received from the 
manufacturer (CP) and after being ground (AQ). 
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was calculated by using the lowest RMSE value achieved by the most 
accurate model as a reference to assess the Relative Increase (RI) of 
RMSE. That is, the RMSE of the most accurate model was compared to 
the RMSE values from the other models to evaluate differences in pre
diction accuracy among models (Eq. (3)). As the calculations were made 
for models trained with CP and AQ samples, the influence of fertilizer 
granulometry on the accuracy of the algorithms was also evaluated. The 
RI equation follows: 

RI=
RMSEcompared − RMSEmost accurate

RMSEmost accurate
∗ 100 (3)  

where RMSEmost accurate is the lower RMSE value achieved by a specific 
algorithm, and RMSEcompared is the RMSE values from the other 
algorithms. 

3. Results 

3.1. Chemical characterization of organic and mineral fertilizers through 
pXRF 

The summary statistics of macro and micronutrients contents in 
organic and mineral fertilizers determined via wet-chemistry analysis is 
shown in Table 3. The results showed great variability in the contents of 
both macro (N, P, K, Ca, Mg, and S) and micronutrients (B, Cu, Fe, Mn, 
and Zn) (CV% > 70). The variability reported here is similar to that 
reported by Acquah et al. (2022). This high data variability can help 
create robust models applicable to a broad variety of fertilizers, since the 
samples represent a wide range of fertilizer types. The PCA of nutrient 
contents showed no patterns that distinguished organic and mineral 
fertilizers (Fig. 2). 

3.2. Accuracy of macro and micronutrients predictions 

The prediction performance of macro and micronutrients in mineral 
and organic fertilizers calculated from the external validation (samples 
not used for calibrating the models) is shown in Table 4. All prediction 
models achieved R2 > 0.80. Sample granulometry influenced the accu
racy of predictions. For N, P, K, S, B, Cu, and Mn, the RMSE values were 
lower when training models with AQ samples, resulting in highly ac
curate predictions (N: R2 = 0.92 and RPD = 3.45; P: 0.97 and 5.37; K: 
0.99 and 9.23; S: 0.96 and 4.89; B: 0.99 and 7.29; Cu: 0.99 and 6.90; Mn: 
0.91 and 2.86) (Table 4, Fig. 3). 

Similarly, models trained with CP samples were also accurate (N: R2 

= 0.91 and RPD = 3.08; P: 0.91 and 3.29; K: 0.97 and 5.59; S: 0.88 and 
2.90; B: 0.91 and 2.68; Cu: 0.86 and 1.98; Mn: 0.85 and 1.63), although 
comparatively less accurate than AQ models. Thus, both types of sample 
preparation (with and without griding) are suitable for accurate macro 
and micronutrient predictions using pXRF data. In most cases, models 

trained with AQ samples were slightly more accurate. The exceptions 
were Ca (R2 = 0.94 and RPD = 4.03), Mg (0.98 and 7.01), Fe (0.98 and 
7.19), and Zn (0.94 and 4.00), for which the best results were delivered 
by models trained with CP samples (Table 4). It is important to mention 
that even nutrients not detected by pXRF (N and B) could be accurately 
predicted based on the other elements detected by pXRF in such N- or B- 
containing samples. 

Results obtained herein were as good as those reported by Acquah 
et al. (2022), and for some elements predictions were even more accu
rate. Acquah et al. (2022) used pXRF to predict macro and micro
nutrients in fertilizer samples segregated by fertilizer type (e.g., 
sulphates, phosphates, nitrates, etc). The authors could accurately pre
dict Mg, P, S, K, Ca, Zn, and Mn contents (R2 > 0.97); however, low 
accuracy was obtained for Fe (R2 = 0.55) and Cu (R2 = 0.10). Acquah 
et al. (2022) did not analyze N and B contents in fertilizer samples. 
Similarly, Benedet et al. (2023) used pXRF to predict Ca and Mg contents 
in lime samples and obtained accurate results (R2 > 0.68). Further 
extending these other studies, our results emphasize that pXRF can be 
used to estimate the content of several elements in a wide variety of 
geochemical and organic products used in agriculture. 

The Relative Increase (RI%) of RMSE was overall higher for PPR and 
XGB models (Fig. 4), i.e., PPR and XGB had the poorest performances 
(Fig. 5). CR and RF performed better than the other algorithms (Fig. 5). 
The highest RI values for XGB were observed for P, Mg, S and B. PPR 
models presented relatively poor performance when estimating N, K, Ca, 
Fe and Mn. In most cases where high RI was observed, models trained 
with AQ samples presented comparatively higher error. Exceptions were 
PPR models trained to estimate K, Ca, Fe and Zn, and XGB models when 
estimating Mg; all of which had higher error increase when trained with 
CP samples. CR and RF consistently presented lower RI, except for Mn 
predictions, for which CR models presented high RI (Fig. 4). 

3.3. Influence of fertilizer granulometry on pXRF scanning 

The elemental composition detected by pXRF varied with sample 
granulometry. Differences were observed especially for the elements Cu, 
K, Mg, Mn, P, S, Sr, and Zn (Fig. 6). In AQ samples, comparatively lower 
contents were detected by pXRF for Cu, Mn, Sr, and Zn than that ob
tained in CP samples. In CP samples, lower contents were detected for K, 
P and S than in AQ samples. Although the total observed content varied 
depending on the granulometry of the samples (Fig. 6), prediction re
sults indicated that data acquired from both AQ and CP samples can be 
used to build accurate prediction models (Table 4, Fig. 3). 

Moreover, differences in the detection of total contents due to the 
granulometry of samples led algorithms to rank the importance of the 
explanatory variables (pXRF variables) differently (Fig. 7). Moreover, as 
expected, the algorithms defined different explanatory variables ac
cording to each nutrient predicted. Interestingly, not always the nutrient 
predicted had the content of that same element delivered by pXRF as the 
most important variable for the model to predict its content. For 
instance, while the prediction of P using CP samples had P detected by 
pXRF as the most important variable for the model (as expected), for Cu 
prediction, Ca delivered by pXRF was chosen by the model as the most 
important variable. 

4. Discussion 

4.1. Potential of pXRF to assess macro and micronutrients in fertilizers 

Despite granulometry, density, bulk density, particle shape, surface 
characteristics, flow characteristics, friability, and state of agglomera
tion of the samples of mineral and organic fertilizers used herein, models 
trained with pXRF data could accurately predict macro (N, P, K, Ca, Mg, 
and S) and micronutrients (B, Cu, Fe, Mn, and Zn) in both organic and 
mineral fertilizers (Table 4, Fig. 3), even with pXRF not detecting B and 
N (the best R2 values were 0.99 and 0.92, respectively). Benedet et al. 

Table 3 
Descriptive statistics of macro and micronutrients for organic and mineral fer
tilizers determined via wet-chemistry analysis.  

Element (%) n Min Max Mean SD CV% 

N 175 0.01 46.25 9.88 10.29 104.2 
P 158 0.00 23.83 6.43 5.72 89.0 
K 130 0.00 44.49 12.79 14.83 115.9 
Ca 118 0.00 44.70 13.38 9.53 71.3 
Mg 54 0.00 7.07 1.91 2.29 119.7 
S 96 0.00 16.68 4.88 5.15 105.4 
B 78 0.00 2.17 0.46 0.74 111.4 
Cu 53 0.00 0.71 0.18 0.22 123.5 
Fe 35 0.00 6.78 1.99 2.38 119.9 
Mn 40 0.00 0.55 0.14 0.13 93.5 
Zn 55 0.00 0.75 0.22 0.24 108.0 

n: number of samples, Min: minimum, Max: maximum, SD: standard deviation, 
CV: coefficient of variation. 

R. Andrade et al.                                                                                                                                                                                                                                



Environmental Research 236 (2023) 116753

5

(2023) used pXRF data to assess lime quality regarding the contents of 
Ca and Mg and also concluded that samples without grinding delivered 
suitable results. The literature reports studies that used a proxy analysis 
to predict other fertilizer properties (Halder et al., 2017; Vuuren and 
Groenewald, 2013), but very rare studies conducted so far used pXRF for 
the assessment of nutrient contents in fertilizers (Acquah et al., 2022), as 
the current approach. For instance, Vuuren and Groenewald (2013) used 
near-infrared spectroscopy (NIRS) as a quality control indicator for bulk 
blended inorganic fertilizers. Teye et al. (2022) used portable NIRS and 
multivariate data analysis do discriminate and quantify adulteration in 
fertilizer samples. The authors successfully used support vector machine 
(SVM) and RF for the identification of unexpired and expired fertilizers, 
and different types of partial least squares regression to quantify the 
levels (10–50%) of adulteration. However, in addition to needing 
pre-treatment of NIRS spectra (the authors used first derivative), NIRS 
generates larger datasets (wavelength range of 740–1070 nm), which 
require longer time and higher computation power (Andrade et al., 
2022) compared to pXRF-derived data (Mancini et al., 2022). 

Besides, Acquah et al. (2022) used a pXRF to assess the certification 
and homogeneity of standard reference materials for fertilizers. Mackey 
et al. (2007) used XRF to measure the K-L2,3 characteristic X-ray lines of 
Al, Ca, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, P, S, Ti, V, and Zn and the 

L2-M4 line of Pb to develop a fertilizer reference material, namely NIST 
SRM 695. In their study, results obtained by XRF for Mo and Co showed 
much less variation than ICP-OES and instrumental neutron-activation 
analysis (INAA), respectively; those observed variations were attrib
uted to measurement reproducibility rather than material 
heterogeneity. 

In addition to overcoming some challenges regarding the fertilizer 
material, this green technology presents many advantages: no highly 
specialized personnel or sample preparation are required, the probe is 
easy to operate, and the scanning results are instantly available. Besides, 
as a handheld device, it can be taken to the field for in situ scanning. 
Calibration, preparation and especially proper maintenance are essen
tial to guarantee continued reliable results; lack of sensitivity for minor 
concentrations below the limit of detection (LOD) and intricacy in data 
treatment are some challenges of this approach, although the combi
nation of machine learning algorithms with pXRF data surpassed them. 

4.2. The effect of granulometry of fertilizers sample 

An important objective of our study was to verify if ground samples 
(AQ) would deliver more faithful data through pXRF scanning and more 
accurate models compared with no grinding samples (CP) (i.e., as they 

Fig. 2. Principal component analysis (PCA) of portable X-ray fluorescence (pXRF) spectrometer data and macro (N, P, K, Ca, Mg, and S) and micronutrients (B, Cu, 
Fe, Mn, and Zn) for samples of organic and mineral fertilizers. 
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are delivered by the manufacturer), as fertilizers are not always a ho
mogeneous material, such as granular fertilizers (lower homogeneity) 
vs. powder fertilizer (greater homogeneity). The literature has reported 
that the particle size affects the homogeneity of the generated data, with 
standard deviation values increasing as particle size increases (Touzé 
et al., 2022). Fertilizers are challenging matrices for pXRF scanning. Not 
only some fertilizers have a cover (wrap) for slow release, which may 
have interfered on total elements scanning on whole samples (CP), but 
also the different material density may have affected the depth of 
penetration for emitted X-rays returning from the samples. 

Results showed that this quick and clean approach can enable fer
tilizer quality control even without sample grinding. This can aid 
manufacturers to ensure that high quality mineral and/or organic fer
tilizer is supplied, even in the field (analyzing samples as they are 
delivered to the consumer). This method can be applied worldwide by 
enabling area-specific modeling for fertilizer formulas commonly found 
in a particular area. Furthermore, it could also be used by the final 
consumer, for example a farmer, who could make sure that the pur
chased product is not substandard. 

4.3. Green analysis in organic and mineral fertilizers: future perspectives 

Worldwide, the concern with fertilizer quality control has been 
present, such as in China (Han et al., 2009), Tanzania (Michelson et al., 
2021), USA (Mukome et al., 2013), Ghana (Teye et al., 2022), Canada 
(Verenitch and Mazumder, 2012), etc. Generally, fertilizer missing nu
trients can result from either manufacturing impurities or adulteration 
by wholesalers or agro-dealers (Michelson et al., 2021; Sanabria et al., 

2013). 
Michelson et al. (2021) reported that beliefs about adulteration push 

down farmer willingness-to-pay for fertilizer, with farmers willing to 
pay more if the fertilizer’s quality is verified. Besides, these authors also 
found some evidence of misperceived quality. Many fertilizers present 
an undesirable appearance, and farmers appear to rely on these 
observable attributes to incorrectly infer nutrient contents. Therefore, 
the method proposed here can play an important role in solving those 
issues since macro and micronutrient contents in fertilizers can be 
rapidly and accurately assessed through machine learning models 
trained with pXRF data. 

Global events, like the Covid-19 pandemic and the war in Ukraine, 
can disrupt exports, pushing fertilizer prices further up and reducing its 
availability in the global market (FAO, 2022). Thus, advances in 
research and development of technologies that can contribute to reduce 
costs throughout the fertilizer production chain are very helpful. The 
novel approach addressed in this paper has strong economic implica
tions, since it can provide reliable information about the quality of 
traded fertilizer without increasing the production costs. 

Besides economics, the use of pXRF-driven models to control fertil
izer quality also has remarkable environmental implications. By pro
moting a cleaner industrial process (without chemical waste 
generation), this approach prevents soil, water and plant pollution, and 
helps mitigate resources depletion (due to non-consumption of reagents) 
both further upstream in the supply chain (for manufacturer standards) 
and also for the end users (e.g., farmers). 

As a promising technique for fertilizer quality control, further 
research about this novel approach is encouraged. Questions about the 

Table 4 
Root mean square error (RMSE), coefficient of determination (R2) and residual prediction deviation (RPD) of the prediction of macro (N, P, K, Ca, Mg, and S) and 
micronutrients (B, Cu, Fe, Mn, and Zn) contents in whole (CP) and ground (AQ) fertilizers through portable X-ray fluorescence (pXRF) spectrometer using four machine 
learning algorithms: PPR = projection pursuit regression; RF = random forest; XGB = extreme gradient boosting; CR = cubist regression.  

Algorithm Granulometry RMSE R2 RPD RMSE R2 RPD RMSE R2 RPD 

N P K 

PPR CP 4.26 0.80 2.18 2.63 0.81 2.30 5.07 0.89 2.98 
RF CP 3.01 0.91 3.08 2.37 0.87 2.55 3.41 0.95 4.44 
XGB CP 3.37 0.87 2.75 2.65 0.82 2.28 3.90 0.93 3.89 
CR CP 3.49 0.86 2.66 1.84 0.91 3.29 2.71 0.97 5.59 
PPR AQ 7.12 0.60 1.30 1.78 0.91 3.41 2.37 0.98 6.40 
RF AQ 3.36 0.87 2.76 1.78 0.92 3.39 1.64 0.99 9.23 
XGB AQ 2.87 0.91 3.23 2.49 0.84 2.42 2.74 0.97 5.52 
CR AQ 2.69 0.92 3.45 1.13 0.97 5.37 2.09 0.98 7.23   

Ca Mg S 
PPR CP 6.86 0.72 1.51 0.53 0.97 4.56 2.47 0.78 2.12 
RF CP 4.28 0.89 2.42 0.35 0.98 7.01 2.14 0.84 2.44 
XGB CP 2.85 0.94 3.64 0.97 0.91 2.49 2.15 0.83 2.43 
CR CP 2.57 0.94 4.03 0.58 0.97 4.15 1.80 0.88 2.90 
PPR AQ 4.23 0.85 2.44 1.21 0.82 2.01 1.08 0.96 4.84 
RF AQ 4.80 0.83 2.16 0.65 0.94 3.71 1.75 0.89 2.98 
XGB AQ 3.93 0.88 2.64 0.88 0.94 2.74 3.13 0.66 1.67 
CR AQ 2.58 0.94 4.01 0.57 0.96 4.28 1.07 0.96 4.89   

B Cu Fe 
PPR CP 0.35 0.82 2.30 0.22 0.44 1.07 1.52 0.58 1.57 
RF CP 0.32 0.91 2.53 0.12 0.86 1.98 0.44 0.99 5.41 
XGB CP 0.52 0.80 1.53 0.21 0.13 1.11 0.33 0.99 7.17 
CR CP 0.30 0.91 2.68 0.16 0.51 1.42 0.33 0.98 7.19 
PPR AQ 0.11 0.99 7.29 0.17 0.49 1.38 1.03 0.91 2.33 
RF AQ 0.15 0.99 5.29 0.03 0.99 6.90 0.44 0.97 5.38 
XGB AQ 0.34 0.94 2.35 0.22 0.00 1.04 0.42 0.98 5.63 
CR AQ 0.13 0.99 6.35 0.05 0.95 4.50 0.51 0.97 4.67   

Mn Zn    
PPR CP 0.14 0.08 0.65 0.25 0.37 1.00    
RF CP 0.06 0.85 1.63 0.09 0.88 2.64    
XGB CP 0.10 0.00 0.96 0.11 0.88 2.18    
CR CP 0.11 0.61 0.82 0.06 0.94 4.00    
PPR AQ 0.17 0.06 0.55 0.12 0.84 2.02    
RF AQ 0.03 0.91 2.86 0.11 0.80 2.31    
XGB AQ 0.09 0.00 0.99 0.17 0.90 1.49    
CR AQ 0.17 0.05 0.56 0.11 0.80 2.31    

Optimal validation values obtained for each parameter are given in bold. 
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use of other proximal sensors (including sensor fusion), modeling 
methodologies (since the chosen algorithm interferes in prediction 
models accuracy), and the effect of moisture in predictions still require 
further investigation, especially for the development of a certified 

methodology by the competent authorities. 
Furthermore, pXRF allows for the detection of non-nutritive ele

ments (potentially toxic) in fertilizers (Acquah et al., 2022). In Brazil, 
there are established maximum limits of toxic heavy metals allowed in 

Fig. 3. Observed versus predicted scatter plots for the best prediction models for macro (N, P, K, Ca, Mg, and S) and micronutrients (B, Cu, Fe, Mn, and Zn) of whole 
(CP – no grinding) and ground (AQ) samples of mineral and organic fertilizers based on portable X-ray fluorescence (pXRF) spectrometry data and four machine 
learning algorithms. 
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Fig. 4. Relative Increase (RI) of root mean square error (RMSE) showing the increase of RMSE in all models compared to the best performing model for that nutrient. 
Models were trained using whole (CP) and ground (AQ) samples of mineral and organic fertilizers based on portable X-ray fluorescence (pXRF) spectrometry data. 
PPR = projection pursuit regression; RF = random forest; XGB = extreme gradient boosting; CR = cubist regression. 

Fig. 5. Number of times each machine learning algorithm delivered the most accurate prediction model for whole (CP) and ground (AQ) samples of mineral and 
organic fertilizers based on portable X-ray fluorescence (pXRF) spectrometry data. PPR = projection pursuit regression; RF = random forest; XGB = extreme gradient 
boosting; CR = cubist regression. 
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mineral fertilizers containing phosphorus and micronutrients. Interna
tionally, USA, Japan, China, Australia and the European Union have also 
enacted regulations that limit the amounts of non-nutritive elements in 
fertilizers, such as of As, Cd, Co, Cr, Hg, Mo, Ni, Pb, and Se. Future 
studies are encouraged to use this green analysis method to assess 
non-nutritive elements in mineral and organic fertilizers, since it could 
help fertilizer manufacturers and state regulatory authorities to rapidly 
verify these limits, after proper calibration with the traditional analyt
ical methods. 

5. Conclusions 

Fast and accurate (R2 > 0.92) estimation of macro and micronutrient 
contents in a wide variety of mineral and organic fertilizers was ach
ieved using pXRF without producing chemical waste. Grinding fertilizer 
samples was not required to obtain accurate predictions. The proposed 
method can reduce time, cost and the environmental footprint of the 
quality control of fertilizers. 

Results demonstrated the remarkable potential of models trained 
with pXRF data in predicting macro (N: R2 = 0.92; P: 0.97; K: 0.99; Ca: 

0.94; Mg: 0.98; S: 0.96) and micronutrients (B: 0.99; Cu: 0.99; Fe: 0.98; 
Mn: 0.91; Zn: 0.94) in both organic and mineral fertilizers. Although for 
N, P, K, S, B, Cu and Mn the best prediction models were achieved for 
ground samples (AQ), the results for the samples without prior prepa
ration (CP – as they are received by the consumer) were also consistent 
and accurate. 

Machine learning models (mainly cubist regression and random 
forest) trained with pXRF data provided accurate estimations of the 
chemical composition of fertilizers. We have shown that this green 
technology is a promising alternative to traditional wet chemistry, 
facilitating large-scale quality control of both organic and mineral fer
tilizers. Reliable and visionary fertilizer quality control based on prox
imal sensors data can ensure the adoption of certified fertilizers, which 
can raise regional agricultural productivity and improve household and 
national food security. 

Credit author statement 

The corresponding author declares the following contributions from 
the authors: Renata Andrade: Writing – Original draft, Investigation, 

Fig. 6. Differences of chemical elemental characterization of whole (CP – no grinding) and ground (AQ) samples of mineral and organic fertilizer by portable X-ray 
fluorescence (pXRF) spectrometry. 

R. Andrade et al.                                                                                                                                                                                                                                



Environmental Research 236 (2023) 116753

10

Visualization, Software. Sérgio Henrique Godinho Silva: Conceptuali
zation, Writing – review and editing, Methodology, Supervision. Lucas 
Benedet: Conceptualization, Investigation, Resources. Marcelo Mancini: 
Writing – review and editing. Geraldo Jânio Lima: Data curation and 
Formal analysis. Kauan Nascimento: Data curation and Formal analysis. 
Francisco Hélcio Canuto Amaral: Data curation and Formal analysis. 
Douglas Ramos Guelfi Silva: Writing – review and editing. Marta Vas
concelos Ottoni: Writing – review and editing, Resources. Marco Aurélio 
Carbone Carneiro: Project administration, Supervision, Resources. Nil
ton Curi: Conceptualization, Writing – review and editing, Project 
administration, Supervision. 

Funding 

This work received support from: Mineral Resource Research Com
pany/Brazilian Geological Service (CPRM), National Council for Scien
tific and Technological Development (CNPq), Coordination for the 

Improvement of Higher Education Personnel (CAPES), and Minas Gerais 
State Agency for Research and Development (FAPEMIG). During the 
development of this research, R.A. received a postdoctoral scholarship, 
S.H.G.S. and N.C. received a research scholarship, all of them sponsored 
by the Brazilian Geological Service (CPRM) − 241/2021. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Fig. 7. Explanatory variables (portable X-ray fluorescence (pXRF) spectrometry results) and their respective importance for the best macro (N, P, K, Ca, Mg, and S) 
and micronutrients (B, Cu, Fe, Mn, and Zn) prediction of whole (CP) and ground (AQ) samples of mineral and organic fertilizers based on pXRF data. X means that the 
variable was not used for the prediction model for that nutrient. 

R. Andrade et al.                                                                                                                                                                                                                                



Environmental Research 236 (2023) 116753

11

Acknowledgements 

The authors would like to thank the Mineral Resource Research 
Company/Brazilian Geological Service (CPRM), National Council for 
Scientific and Technological Development (CNPq), Coordination for the 
Improvement of Higher Education Personnel (CAPES), and Minas Gerais 
State Agency for Research and Development (FAPEMIG) for the finan
cial support to develop this research. This research is partially supported 
by grant #2021/06968–3, São Paulo Research Foundation (FAPESP) 
and is also developed within the framework of the Sustainable Rural 
Project-Cerrado (PP-001-MG-155), which resulted from the partnership 
between the Inter-American Development Bank (IDB), the Government 
of the United Kingdom, the Ministry of Agriculture, Livestock and 
Supply (MAPA), the Brazilian Institute for Development and Sustain
ability (IABS), Embrapa and the ICLF Network Association. 

References 

Acquah, G.E., Hernandez-Allica, J., Thomas, C.L., Dunham, S.J., Towett, E.K., Drake, L. 
B., Shepherd, K.D., McGrath, S.P., Haefele, S.M., 2022. Portable X-ray fluorescence 
(pXRF) calibration for analysis of nutrient concentrations and trace element 
contaminants in fertilisers. PLoS One 17, e0262460. https://doi.org/10.1371/ 
journal.pone.0262460. 

Andrade, R., Mancini, M., Teixeira, A.F., dos, S., Silva, S.H.G., Weindorf, D.C., 
Chakraborty, S., Guilherme, L.R.G., Curi, N., 2022. Proximal sensor data fusion and 
auxiliary information for tropical soil property prediction: soil texture. Geoderma 
422, 115936. https://doi.org/10.1016/j.geoderma.2022.115936. 

Andrade, R., Silva, S.H.G., Benedet, L., de Araújo, E.F., Carneiro, M.A.C., Curi, N., 2023. 
A proximal sensor-based approach for clean, fast, and accurate assessment of the 
Eucalyptus spp. nutritional status and differentiation of clones. Plants 12, 561. 
https://doi.org/10.3390/plants12030561. 

Andrade, R., Silva, S.H.G., Weindorf, D.C., Chakraborty, S., Faria, W.M., Mesquita, L.F., 
Guilherme, L.R.G., Curi, N., 2020. Assessing models for prediction of some soil 
chemical properties from portable X-ray fluorescence (pXRF) spectrometry data in 
Brazilian Coastal Plains. Geoderma 357, 113957. https://doi.org/10.1016/j. 
geoderma.2019.113957. 

Benedet, L., Silva, S.H.G., Mancini, M., Andrade, R., Amaral, F.H.C., Lima, G.J., 
Carneiro, M.A.C., Curi, N., 2023. Clean quality control of agricultural and non- 
agricultural lime by rapid and accurate assessment of calcium and magnesium 
contents via proximal sensors. Environ. Res. 221, 115300 https://doi.org/10.1016/j. 
envres.2023.115300. 

Chang, C.-W., Laird, D.A., Mausbach, M.J., Hurburgh, C.R., 2001. Near-infrared 
reflectance spectroscopy–principal components regression analyses of soil 
properties. Soil Sci. Soc. Am. J. 65, 480. https://doi.org/10.2136/ 
sssaj2001.652480x. 
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Touzé, S., Laperche, V., Hubau, A., Moreau, P., 2022. pXRF on printed circuit boards: 
methodology, applications, and challenges. Waste Manag. 146, 66–76. https://doi. 
org/10.1016/j.wasman.2022.05.001. 

Verenitch, S., Mazumder, A., 2012. Carbon and Nitrogen isotopic signatures and 
Nitrogen profile to identify adulteration in organic fertilizers. J. Agric. Food Chem. 
60, 8278–8285. https://doi.org/10.1021/jf302938s. 

Vuuren, J.A.J.V., Groenewald, C.A., 2013. Use of scanning Near-Infrared spectroscopy as 
a quality control indicator for bulk blended inorganic fertilizers. Commun. Soil Sci. 
Plant Anal. 44, 120–135. https://doi.org/10.1080/00103624.2013.736141. 

Weindorf, D.C., Chakraborty, S., 2018. Portable Apparatus for Soil Chemical 
Characterization, US10107770B2. 

Yarbrough, L.D., Carr, R., Lentz, N., 2019. X-ray fluorescence analysis of the Bakken and 
Three Forks Formations and logging applications. J. Petrol. Sci. Eng. 172, 764–775. 
https://doi.org/10.1016/j.petrol.2018.08.070. 

R. Andrade et al.                                                                                                                                                                                                                                

https://doi.org/10.1371/journal.pone.0262460
https://doi.org/10.1371/journal.pone.0262460
https://doi.org/10.1016/j.geoderma.2022.115936
https://doi.org/10.3390/plants12030561
https://doi.org/10.1016/j.geoderma.2019.113957
https://doi.org/10.1016/j.geoderma.2019.113957
https://doi.org/10.1016/j.envres.2023.115300
https://doi.org/10.1016/j.envres.2023.115300
https://doi.org/10.2136/sssaj2001.652480x
https://doi.org/10.2136/sssaj2001.652480x
https://doi.org/10.3390/ma14247892
https://doi.org/10.1016/j.landusepol.2019.02.023
https://doi.org/10.1016/j.landusepol.2019.02.023
http://refhub.elsevier.com/S0013-9351(23)01557-8/sref9
https://doi.org/10.5109/1801784
http://refhub.elsevier.com/S0013-9351(23)01557-8/sref11
http://refhub.elsevier.com/S0013-9351(23)01557-8/sref11
http://refhub.elsevier.com/S0013-9351(23)01557-8/sref11
https://doi.org/10.1016/j.foodchem.2018.11.065
https://doi.org/10.1016/j.jasrep.2022.103788
https://doi.org/10.18637/jss.v028.i05
https://doi.org/10.18637/jss.v036.i11
https://doi.org/10.1007/s11356-020-07674-y
https://doi.org/10.1007/s00216-007-1124-3
https://doi.org/10.1007/s00216-007-1124-3
http://refhub.elsevier.com/S0013-9351(23)01557-8/sref18
http://refhub.elsevier.com/S0013-9351(23)01557-8/sref18
https://doi.org/10.1016/j.geodrs.2022.e00573
https://doi.org/10.1016/j.geodrs.2022.e00573
http://refhub.elsevier.com/S0013-9351(23)01557-8/sref20
http://refhub.elsevier.com/S0013-9351(23)01557-8/sref20
https://doi.org/10.1016/j.jenvman.2018.01.003
https://doi.org/10.1002/jsfa.2740360906
https://doi.org/10.1016/j.jdeveco.2020.102579
https://doi.org/10.1016/j.jdeveco.2020.102579
https://doi.org/10.3733/ca.v067n04p210
http://refhub.elsevier.com/S0013-9351(23)01557-8/sref25
http://refhub.elsevier.com/S0013-9351(23)01557-8/sref25
http://refhub.elsevier.com/S0013-9351(23)01557-8/sref26
http://refhub.elsevier.com/S0013-9351(23)01557-8/sref26
http://refhub.elsevier.com/S0013-9351(23)01557-8/sref26
https://doi.org/10.1016/bs.agron.2020.12.001
https://doi.org/10.1016/j.chemgeo.2017.01.023
https://doi.org/10.1016/j.ecoinf.2023.102188
https://doi.org/10.1016/j.ecoinf.2023.102188
https://doi.org/10.1016/j.jsames.2022.103873
https://doi.org/10.1016/j.jsames.2022.103873
https://doi.org/10.1155/2022/1412526
https://doi.org/10.1016/j.wasman.2022.05.001
https://doi.org/10.1016/j.wasman.2022.05.001
https://doi.org/10.1021/jf302938s
https://doi.org/10.1080/00103624.2013.736141
http://refhub.elsevier.com/S0013-9351(23)01557-8/sref35
http://refhub.elsevier.com/S0013-9351(23)01557-8/sref35
https://doi.org/10.1016/j.petrol.2018.08.070

	Proximal sensing provides clean, fast, and accurate quality control of organic and mineral fertilizers
	1 Introduction
	2 Material and methods
	2.1 Fertilizer samples and acid digestion
	2.2 PXRF scanning
	2.3 Data analysis and modeling
	2.4 Evaluating model performance
	2.5 Relative error increase

	3 Results
	3.1 Chemical characterization of organic and mineral fertilizers through pXRF
	3.2 Accuracy of macro and micronutrients predictions
	3.3 Influence of fertilizer granulometry on pXRF scanning

	4 Discussion
	4.1 Potential of pXRF to assess macro and micronutrients in fertilizers
	4.2 The effect of granulometry of fertilizers sample
	4.3 Green analysis in organic and mineral fertilizers: future perspectives

	5 Conclusions
	Credit author statement
	Funding
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


