Please use this identifier to cite or link to this item: https://rigeo.sgb.gov.br/handle/doc/23433
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSOUZA FILHO, Carlos Roberto de-
dc.contributor.authorPRADO, Elias Martins Guerra-
dc.date.accessioned2023-01-24T18:33:34Z-
dc.date.available2023-01-24T18:33:34Z-
dc.date.issued2022-
dc.identifier.citationPRADO, Elias Martis Guerra. Evaluation of machine learning methods for prospectivity modeling and vectoring of IOCG mineralizations. 2022. Tese (Doutorado em Geociências) – Instituto de Geociências, UNICAMP, Campinas, 2022.pt_BR
dc.identifier.urihttps://rigeo.sgb.gov.br/handle/doc/23433-
dc.description.abstractO desenvolvimento da exploração mineral com foco no aumento da disponibilidade dos recursos minerais e na redução do impacto ambiental é crucial para o desenvolvimento sócio-econômico sólido e sustentável da sociedade. A sociedade está atualmente passando por um rápido crescimento na extração e consumo de recursos minerais devido ao aumento da população humana, aumento dos níveis de atividade econômica e transição para novas tecnologias. Técnicas de inteligência artificial, análise de grandes volumes de dados e outras tecnologias da Industria 4.0 são soluções promissoras para contornar muitos desses problemas. Este trabalho apresenta novas abordagens para a exploração mineral que incorpora métodos de última geração focados na aplicação de algoritmos de aprendizagem de máquina para o mapeamento da prospectividade mineral e estimativa de teor de minério por meio de dados espectrais. As abordagens são exemplificadas pela exploração de depósitos de cobre, ouro e óxido de ferro (IOCG), fonte de commodities economicamente importantes, como o cobre (Cu) e elementos de terras raras (REE), que atualmente têm uma demanda alta e crescente. Os métodos desenvolvidos neste trabalho abrangem duas etapas distintas de exploração mineral, a identificação de novas zonas mineralizadas e a mineração de jazidas conhecidas. Como estes métodos são inovadores e, ainda assim, são testes, o núcleo do projeto se concentra nos numerosos aspectos do processamento de dados, otimização de algoritmos, arquitetura de modelos e ajuste de hiperparâmetros de algoritmos de aprendizagem de máquina. Técnicas de aprendizagem de máquina foram adaptadas para processar dados geológicos e geofísicos da província mineral de Carajás, Brasil, para modelar a prospectividade dos depósitos minerais do IOCG na região. Os resultados mostram que os modelos de prospectividade desenvolvidos utilizando algoritmos de aprendizagem de máquina têm o desempenho espacial e de classificação melhores do que os métodos tradicionais baseados em dados, como peso da evidência. Este trabalho também mostra uma nova abordagem pela qual algoritmos de aprendizagem profunda são usados para prever as classes Cu no depósito Olimpic Dam, Austrália, por meio de dados hiperespectrais. Os resultados mostraram que a abordagem proposta pode ser usada em sistemas de automação para a identificação de zonas mineralizadas, permitindo mineração seletiva, diminuindo assim os custos e o impacto ambiental, e aumentando o desempenho das operações de mineração. Além disso, foi proposto um novo fluxo de trabalho para automatizar a identificação de limites litológicos e de alteração utilizando dados hiperespectrais adquiridos de testemunhos. Os resultados mostraram que os aglomerados obtidos pela abordagem proposta têm uma correlação significativa com as litologias registradas e as concentrações de Cu, foram capazes de estimar corretamente os limites litológicos e de alteração, bem como identificar padrões de alteração associados ao grau do minério que não foram identificados durante a extração visual. Os resultados desta tese indicam que as técnicas de aprendizagem de máquinas superam as técnicas tradicionais utilizadas para a modelagem de prospectividade e vetorização de mineralizações IOCG. Os métodos desenvolvidos podem ser perfeitamente adaptados e utilizados na exploração de outros tipos de depósitos minerais.pt_BR
dc.language.isoenpt_BR
dc.rightsopenpt_BR
dc.subjectMINAS E RECURSOS MINERAIS - EXPLORAÇÃOpt_BR
dc.subjectAPRENDIZADO DE MÁQUINApt_BR
dc.subjectMODELAMENTO DE PROSPECTIVIDADE MINERALpt_BR
dc.subjectESPECTROSCOPIA DE REFLECTÂNCIApt_BR
dc.subjectGEOLOGIA - ESTIMATIVASpt_BR
dc.titleEvaluation of machine learning methods for prospectivity modeling and vectoring of IOCG mineralizationspt_BR
dc.title.alternativeavaliação de métodos de aprendizagem de máquina para o modelamento da prospectividade e vetorização de mineralizações do tipo IOCGpt_BR
dc.typeThesispt_BR
dc.localCampinas
dc.degree.grantorUniversidade Estadual de Campinaspt_BR
dc.degree.departmentInstituto de Geociênciaspt_BR
dc.degree.programGeologia e Recursos Naturaispt_BR
dc.contributor.memberSOUZA FILHO, Carlos Roberto de-
dc.contributor.memberHARTMANN, Gelvam André-
dc.contributor.memberCRÓSTA, Álvaro Penteado-
dc.contributor.memberMELO, Aline Tavares-
dc.contributor.memberMONTEIRO, Lena Virgínia Soares-
dc.degree.localCampinaspt_BR
dc.subject.enMINES AND MINERAL RESOURCES - EXPLORATIONpt_BR
dc.subject.enMACHINE LEARNINGpt_BR
dc.subject.enMINERAL PROSPECTIVITY MODELINGpt_BR
dc.subject.enREFLECTANCE SPECTROSCOPYpt_BR
dc.subject.enGEOLOGY - ESTIMATESpt_BR
dc.degree.date2022-12-21-
Appears in Collections:Teses

Files in This Item:
File Description SizeFormat 
tese_elias_prado.pdfTese8,55 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.