MINISTÉRIO DE MINAS E ENERGIA SECRETARIA DE GEOLOGIA, MINERAÇÃO E TRANSFORMAÇÃO MINERAL

PROGRAMA GEOLOGIA DO BRASIL

LITOGEOQUÍMICA

PROJETO IGAPORÃ-MACAÚBAS

Estado da Bahia

Salvador 2012

MINISTÉRIO DE MINAS E ENERGIA SECRETARIA DE MINAS E METALURGIA CPRM- Serviço Geológico do Brasil

PROGRAMA GEOLOGIA DO BRASIL

PROJETO IGAPORÃ-MACAÚBAS

RELATÓRIO TEMÁTICO DE LITOGEOQUÍMICA

Autor Léo Rodrigues Teixeira

SALVADOR, 2012

Sumário

1	Introdução	1
2	Integridade dos dados	2
3	Magmatismo básico intrusivo no Espinhaço	4
4	Rochas ultramáficas de Botuporã	9
5	Diques máficos no Complexo Paramirim e basaltos da unidade Cristais	14
6	Rochas vulcânicas félsicas e granitóides	16
6.1	Vulcânicas	16
6.2	Granito de Boquira	18
7	Formações ferríferas bandadas (BIF)	22
8	Referências bibliográficas	25
Apêndice	Localização das amostras e resultados analíticos	

O Projeto Igaporã-Macaúbas tem uma peculiaridade quanto aos seus dados químicos. Todas as unidades amostradas já foram objetos de estudos anteriores. Assim as rochas máficas intrusivas nos metassedimentos do Espinhaço foram estudadas anteriormente no projeto Barra-Oliveira dos Brejinhos – BOB (Teixeira, 2008, Loureiro et al, 2009) e as ultrabásicas de Botuporã, as vulcânicas félsicas da borda leste do Espinhaço e os diques gabróicos do vale do Paramirim foram estudados no projeto Vale do Paramirim (Arcanjo et al, 2000, Teixeira, 2000). A única exceção são os basaltos de Cristais que somente agora foram analisados.

Os resultados serão mostrados de forma objetiva, através de tabelas com os resultados químicos e de diagramas em número suficiente para mostrar com clareza como as unidades foram interpretadas. A descrição das unidades seguirá um ordenamento sem conotação estratigráfica para facilitar o entendimento da interpretação: (i) magmatismo básico intrusivo no Espinhaço; (ii) corpo ultrabásico de Botuporã; (iii) diques do vale do Paramirim e basalto da unidade Cristais; (iv) vulcânicas félsicas e granito de Boquira e (v) formações ferríferas do greenstone belt de Riacho de Santana e de Boquira.

A interpretação foi baseada nos resultados analíticos de 81 amostras das 83 analisadas no laboratório Geosol, cujos pontos de amostragem são mostrados na figura 1.01 sobre imagem digital do terreno obtida no site da Embrapa. Os óxidos SiO₂, TiO₂, Al₂O₃, Fe₂O₃, MnO, MgO,

Figura 1.01 – Estações de amostragem. Alguns pontos contêm mais de uma amostra. Fonte da imagem: EMBRAPA.

CaO, Na₂O, K₂O, P₂O₅, Cr₂O₃ e Perda ao Fogo (PF) foram determinados por ICP-OES após abertura por fusão de metaborato de lítio (LiBO₂). Os elementos-traços: Ba, Be, Cs, Ga, Hf, Nb, Rb, Sn, Sr, Ta, Th, U, W, Y, Zr e ETR foram determinados por ICP-MS, após abertura por fusão de LiBO₂, enquanto Mo, Cu, Co, Pb, Zn, Ni, As, Cd, Sb, Bi, Ag, Au, Hg, Tl e Se foram determinados por ICP-MS e OES, após abertura por Água Régia.

Os dados analíticos das amostras utilizadas na caracterização de cada unidade estão contidos em tabelas nos capítulos respectivos, normalizados para 100% anidros. Os valores de perda ao fogo foram mantidos nas tabelas sob o nome PF orig., para que os leitores possam ter idéia do valor original deste parâmetro. Os resultados analíticos das 83 amostras, na forma apresentada pelo laboratório, estão relacionados numa tabela colocada no final deste relatório, juntamente com o tipo de rocha e as coordenadas do local amostrado.

2 - Integridade dos dados

Os resultados analíticos produzidos pelo laboratório Geosol, com muita frequência, não se mostraram muito coerentes com o tipo de material analisado, além de exibirem uma dispersão muito grande nos teores de boa parte dos elementos dosados. Esta imprecisão analítica tornou premente a comparação com outras análises de rochas similares, obtidas em outros trabalhos, com o intuito de definir até que ponto ela afetaria negativamente a interpretação geoquímica.

Inicialmente foi feita uma comparação visual com vários diagramas, entre as rochas máficas dos sills e diques intrusivos na formação Fazendinha, que foi a unidade mais amostrada e que é

também a que foi mais bem caracterizada no BOB. O magmatismo definido aqui é uma continuação do que foi definido como m2 na região norte do Espinhaço com razões Ti/Zr condríticas, em torno de 94 (Teixeira, 2008).

O diagrama da figura 2.01 (Zr-Ti) mostra as amostras de m2 obtidas anteriormente junto com as deste projeto. A melhor qualidade analítica dos dados oriundos do BOB fica evidente, e define com muita clareza o trend evolutivo do magmatismo. Já os dados da Geosol, colocados no mesmo diagrama, se apresentam bastante dispersos, embora também mostrem o mesmo padrão. A dispersão apresentada levou a necessidade de observar se não haveria algum tipo de problema com outros elementos que pudesse causar uma interpretação errônea dos dados.

Figura 2.01 – Diagrama Zr-Ti

De uma forma geral o espalhamento não apresenta modificação na interpretação, mas dois óxidos em particular têm distribuição bastante comprometida: SiO_2 e Fe₂O₃.

Na figura 2.02 estão alguns diagramas que mostram a distribuição das amostras analisadas no BOB (ACME) e neste projeto (Geosol). O SiO₂ está claramente com seus valores muito baixos, daí porque na tabela 3.01 ocorrem teores, às vezes, até inferiores ao manto. Como a soma dos óxidos fecha em 100%, esta queda será compensada pela elevação de outros óxidos. Conforme se observa na figura

Figura 2.02 – Diagramas comparativos entre análises da Geosol (vermelho), deste projeto, com do ACME (verde), do projeto BOB.

2.01 o Fe₂O₃t está elevado, sem que haja, como seria lógico, uma elevação no teor de MgO, que permanece em níveis normais para o tipo de rocha analisado. Como SiO₂ e Fe₂O₃ são muito importantes para a definição da evolução magmática, no presente caso, os resultados comprometem bastante qualquer interpretação que seja feita através de seus valores. Como a maioria das rochas estudadas são máficas/ultramáficas vários parâmetros que utilizam Fe₂O₃t em suas determinações como o número de mg# (= Mg/Mg+Fe molar), por exemplo, não poderão ser utilizados. Assim o óxido que será utilizado como fator de diferenciação será o MgO, cujos valores, quando comparados aos do BOB são análogos, sugestivos, portanto que estejam corretos.

Entre os elementos traços, chama a atenção os baixos teores de Ni nas análises da Geosol, muito menores que o esperado para o tipo de rocha em estudo. Os ETR apresentam espectros similars nos dois projetos, mas deve-se salientar a presença de várias amostras com teores de Lu muito baixos, que refletem uma provável imprecisão analítica da Geosol.

Figura 2.03 – Diagramas comparativos das análises de Geosol e Acme com os envelopes de predominância das análises de picritos e gabros de baixo K da LIP de Emeishan (vide texto).

Para reforçar a confiança nos resultados, tanto os dados do BOB quanto os deste projeto foram confrontados com as análises de derrames basálticos e intrusões máficas da LIP (Large Igneous Province) de Emeishan, localizada no SW da China e N do Vietnam (Wang et al, 2007). A maioria dos elementos nos gabros do Espinhaço tem distribuição semelhante a dos picritos, gabros e basaltos de baixo Ti daquela província. Uma característica que parece ser particular do Espinhaço é o elevado conteúdo de Al₂O₃, nas análises dos dois laboratórios, quando comparados com os da China.

As análises realizadas no ACME se posicionam dentro do envelope dos gabros e basaltos de baixo Ti chineses, de forma consistente, enquanto os dados do Geosol tendem a ficar dentro do envelope, porém com dispersão muito forte, conforme figura 2.03.

Em vista do que foi verificado acima, todos os diagramas e interpretações serão feitas através do uso, tanto das amostras do presente projeto quanto dos demais projetos, quando houver análises da mesma unidade. Devido ao problema com o conteúdo de Fe_2O_3 nas análises da Geosol, as rochas máficas deverão ser caracterizadas preferencialmente com MgO. Quando o uso de Fe for indispensável só serão utilizados os valores obtidos no BOB (Teixeira, 2008). Os elementos traços utilizados serão os que não mostraram variações significativas entre os dois laboratórios, como Cr, Zr, Y e Elementos Terras Raras (ETR).

3 – Magmatismo básico intrusivo no Espinhaço

Este magmatismo é representado por sills e diques gabróicos intrusivos, predominantemente, na formação Fazendinha. Nesta unidade as amostras foram coletadas em dois potentes sills paralelos, de direção aproximadamente N-S, que afloram desde a região de Oliveira dos Brejinhos, a norte e fora da área deste projeto, até próximo ao paralelo da cidade de Macaúbas. Outros corpos, menos expressivos, intrusivos na formação Mosquito e na região de Boquira e de Macaúbas também foram amostrados.

Os principais componentes são gabros, gabros noríticos e olivina gabros de granulação em geral média a grossa, sem deformação visível na maioria dos afloramentos, que são constituídos por inúmeros blocos que se espalham ao longo da meia encosta das elevações, em relevo positivo (foto 3.01A e B). A principal característica dos afloramentos é um acamamento, às vezes incipiente, às vezes muito bem caracterizado, sugestivo de reabastecimentos magmáticos sucessivos (foto 3.01C). As direções e mergulhos são concordantes com as atitudes das encaixantes. O hidrotermalismo afetou em maior ou menor grau estas rochas, mas não chegou a alterar, de forma perceptível, o conteúdo químico das mesmas.

Os gabros contém textura cumulática composta por clinopiroxênio, ortopiroxênio e plagioclásio onde o piroxênio ocorre como cristais grandes e os cristais de plagioclásio preenchem os espaços entre os cristais máficos ou são inclusos por estes. Texturas ofítica e subofítica também estão presentes com frequência. O conteúdo de piroxênio (predominantemente cpx) varia entre 40 e 80%, plagioclásio, entre 15 e 40% e a olivina pode chegar a 15%. **Foto 3.01** – A: aspecto de um afloramento na meia encosta; B: visão panorâmica do vale e da encosta onde afloram as máficas do sill do leste; C: Detalhe do acamamento magmático.

Os dados químicos de 41 amostras estão na tabela 3.01 sob a denominação de sill leste e oeste para as amostras da formação Fazendinha, Macaúbas para as amostras do sill a SW de Macaúbas e também Mosquito e Boquira, na região de Boquira.

Caracterização geoquímica

Como destacado acima, as razões Ti/Zr mostram valores, em torno de 94, próximas da razão condrítica que é igual a 100 (Hofman, 1988; Sun & McDonough, 1989, Wilson, 1989).

Os teores de MgO variam entre 5 e 16%, SiO_2 , entre 44 e 49% (Teixeira, 2008). A maioria dos teores de TiO₂ são inferiores a 2% e de Al₂O₃ estão entre 13 e 18% (apenas uma amostra revelou teor

de 9,3%). Os conteúdos de P_2O_5 são inferiores a 0,1% na maioria das amostras. A extensa faixa composicional verificada no BOB se repete neste segmento do Espinhaço, conforme é observado na variação expressiva dos teores de MgO (tabela 3.01).

No diagrama AFM (Irvine & Baragar, 1971) da figura 3.01A, as amostras se colocam no campo toleítico e algumas até junto à região dos cumulatos produzidos pela cristalização fracionada desta série como conseqüência da presença de horizontes ricos em minerais máficos. No diagrama de Jensen (figura 3.01B) as amostras caracterizam um magmatismo toleítico rico em Mg, sendo que as mais magnesianas se posicionam na mesma direção do trend komatilitico, reflexo tanto da acumulação de minerais máficos, como da pouca diferenciação sofrida pelo líquido que produziu estas rochas, aparentemente de composição picrítica.

Figura 3.01 – A: diagrama AFM e B: diagrama de Jensen.

Rochas com esta composição são frequentes em algumas das chamadas LIPs (Large Igneous Province) ao redor do mundo (Wang et al, 2007; Day et al, 2008), todavia, apenas a semelhança composicional deve ser considerada, pois a área daquelas províncias é muito grande, ao contrário do presente magmatismo, cujas dimensões são reduzidas.

O líquido magmático ora visto, tem um padrão evolutivo caracterizado, no inicio pelo controle de olivina e piroxênio e posteriormente pelo plagioclásio. O Cr reflete parte desta característica. Os termos com mg# entre 60 e 70 mostra uma queda contínua, compatível com o fracionamento dos piroxênios. Este mesmo comportamento seria o esperado para o Ni, contudo seus conteúdos são extremamente baixos para o nível de diferenciação observado, reflexo de algum problema analítico, pois o mesmo magmatismo analisado no projeto BOB, mostra teores bastante expressivos (vide figura 2.02). A presença de material pouco diferenciado nos níveis crustais em que se encontra, sugere um magmatismo caracterizado por uma rápida ascensão, com fracionamento ao longo do percurso.

Os elementos incompatíveis seguem os mesmos padrões observados no BOB (figura 3.02A), porém com oscilações bem maiores de teores. O segmento dos elementos mais incompatíveis e mais móveis (lado esquerdo do diagrama) esta muito irregular, ao passo que os HFSE mostram aspectos consistentes, como a ausência de anomalias negativas de Ta e Nb, anomalias pequenas de Ti e acentuado empobrecimento de Tb e Y. Tais características apontam para um magma pouco diferenciado, gerado em manto profundo aparentemente sem influência de zona de subducção, onde a granada foi um componente residual importante.

Os espectros de ETR (figura 3.02B), comparados com o envelope das análises de m2, no BOB, são muito mais dispersos, mas mantêm as mesmas características, com enriquecimento de ETR leves e empobrecimento de ETR pesados, típico de magmatismo toleítico continental. Os teores muito baixos de Lu em algumas amostras são causados por problemas analíticos, também observados em amostras de outros tipos litológicos deste projeto.

A partir de razões entre elementos incompatíveis é possível deduzir alguns fatos importantes sobre a gênese das rochas. Condie (2005) elaborou um diagrama com as razões Zr/Y e Nb/Y, mostrado na figura 3.03. Segundo este diagrama as amostras deste projeto são de um magmatismo produzido sob

o efeito de uma pluma mantélica, análogo aos de platôs oceânicos, com forte contaminação crustal, evidenciada pela distribuição horizontal das amostras. Tal contaminação confere ao magmatismo um caráter continental. Magmas pouco evoluídos são muito quentes e, portanto, sujeitos a assimilação de material crustal mais intensa (Huppert & Sparks, 1985).

Figura 3.02 – A: Diagrama multielementar e B: Espectros de ETR. Espectros das amostras deste projeto sobre o envelope composicional do magmatismo m2 do projeto BOB.

Conclusão

O magmatismo máfico presente na área do projeto representa a extensão sul do magmatismo definido como m2 no projeto BOB. O material amostrado são rochas máficas oriundas

predominantemente de sills com acamamento nítido, ricas em MgO, com razões Ti/Zr = 95. Apenas duas idades são conhecidas neste magmatismo, ambas em torno de 900 Ma. Todavia uma das idades é de uma rocha muito diferenciada da região de Gentio do Ouro, na Chapada Diamantina (Loureiro et al, 2009), portanto, fora do contexto do Espinhaço e a outra idade é de uma rocha do extremo norte do Espinhaço (Danderfer et al, 2009), também com cerca de 900 Ma. A amostra do norte do Espinhaço não contém análise química e, assim, não se sabe se pertence a m2 ou a m1 que também ocorre na área. Convém salientar que o magmatismo m1 tem idade de aproximadamente 1500 Ma.

As características químicas e petrográficas destas rochas sugerem uma colocação em regime distensivo, motivada pela atuação de uma pluma mantélica, a partir da fusão parcial de um manto com granada residual que produziu um magma toleítico, com evidências de contaminação crustal.

Figura 3.03 – Diagrama de Condie (2005). PM: manto primitivo; DEP: manto empobrecido profundo; DM: mato empobrecido raso; UC: crosta continental superior; EN: componente enriquecido; ARC: arco magmático; NMORB: MORB normal. A seta indica a direção da contaminação crustal. Mesma legenda da figura 3.01.

ID	LR-04A	LR-04B	LR-04C	LR-06A	LR-06B	LR-06C	LR-06D	LR-07A	LR-07B	LR-08	LR-10	LR-19A	LR-19B	LR-20	LR-21	Média	LR-05A	LR-05B	LR-05C	LR-09	LR-11A	LR-11B
Sill	Leste	Leste	Leste	Leste	Leste	Leste	Leste	Leste	Leste	Leste	Leste	Leste	Leste	Leste?	Leste		Oeste	Oeste	Oeste	Oeste	Oeste	Oeste
SiO2	53,80	41,26	42,74	50,72	45,06	45,26	49,27	44,70	52,17	43,78	43,94	45,25	46,47	43,55	42,53	46,03	40,92	53,33	56,76	43,86	42,56	42,92
TiO2	0,73	1,01	1,27	1,12	1,57	1,59	1,17	1,48	1,40	1,37	1,18	1,88	0,89	1,28	1,56	1,30	1,83	1,34	1,30	2,31	1,20	1,08
AI2O3	9,30	12,88	17,02	15,98	17,37	16,05	16,84	16,14	13,18	15,72	17,42	15,57	13,75	13,70	17,21	15,21	17,08	13,66	12,62	15,40	16,46	14,65
Fe2O3t	9,90	13,64	12,30	10,47	12,00	13,35	9,97	13,13	12,01	12,96	12,43	13,77	10,72	12,98	11,90	12,10	14,71	11,52	10,79	18,00	13,36	12,80
MnO MnO	0,15	0,20	0,19	0,16	0,18	0,19	0,15	0,17	0,16	0,16	0,15	0,21	0,16	0,21	0,21	0,18	0,22	0,17	0,15	0,18	0,17	0,20
MyO CaO	13,03	12 21	9,04 14.07	11 51	0,07	0,09	0,10	0,04	11.07	9,99	9,00	0,14	12,00	12,37	9,37	12.04	9,00	10.42	0,60	0,00 11 11	12.14	12,70
Na2O	0.95	1 //	2 01	1 7/	2 20	1 0/	12,33	2 12	1 50	1 50	1 81	2/3	14,02	1 30	2 25	12,94	2 03	10,42	9,00	3 12	1 81	1 65
K20	0,33	0.20	0.27	0.34	0.35	0.60	0.29	0.32	0.74	0.47	0.24	0.65	0.31	0.40	0.47	0.39	0.45	0.37	0.38	0.51	0.45	0.37
P205	0.01	0.06	0.05	0.09	0,00	0,00	0.08	0.09	0.10	0.08	0.01	0,00	0.07	0,10	0.12	0.08	0,10	0.08	0.08	0.15	0.01	0.07
Cr2O3	0.13	0.12	0.05	0.03	0.02	0.04	0.03	0.04	0.03	0.05	0.05	0.02	0.08	0.07	0.05	0.05	0.04	0.02	0.02	0.01	0.02	0.08
PF orig,	0,01	0,01	0,97	1,28	0,96	1,09	1,11	0,96	1,06	1,38	1,43	0,88	1,37	1,27	0,75	0,97	1,19	1,50	0,90	0,55	1,37	1,10
mg#	73,17	70,26	61,30	59,78	57,12	56,02	61,65	56,56	55,81	60,41	59,82	53,93	69,07	65,36	60,92	61,41	54,92	56,48	54,77	37,11	63,64	66,41
Cr	861,14	849,51	333,98	214,19	134,35	265,32	207,98	277,73	202,36	343,71	345,65	143,16	554,44	487,36	340,73	370,77	276,60	143,70	141,29	66,24	137,90	542,79
Ni	163,4	162,6	45,6	50,5	24	37,7	41,9	40	52,3	71,9	45,3	29,2	60,1	67	38,5	62,00	37,3	60,5	48,9	12,5	77,8	57,8
Co	36,4	40,9	12,8	14,3	7,5	12,2	10,8	12,1	17	20,9	11,4	11,2	11,8	15,5	11,2	16,40	14,5	19,5	15,9	13,1	16,4	11,9
Cu	40,4	56,1	85,9	88	77,8	73,1	64,3	135,9	117,2	111,4	87,2	110,8	39,6	91,2	104,1	85,53	107,6	117,8	129,8	180,2	80,6	64,8
Pb	1,4	0,8	5,2	2,4	1,8	1,2	2,2	2,1	3,2	2,1	1,5	3,7	3,9	1,9	5	2,56	2,7	2,4	1,4	1,7	2,8	3,4
Zn	29	28	17	20	19	23	19	18	23	24	32	26	18	21	18	22,33	26	30	23	32	28	16
RD	1	2,2	2,3	6,8	5,2	15	10,7	7,2	23,1	10,2	2,9	12,9	8,9	9,1	8,9	8,43	7,8	9,4	8,7	12,8	8,7	4,5
US Ro	<0.05	<0.05	0,1	0,42	102	1,03	0,34	0,14	1,29	0,51	0,12	190	0,36	0,33	176	0,44	0,34	0,35	0,44	0,34	0,82	0,00
Da Sr	44 112.5	187.6	00 275 /	217.8	303.6	201.2	258.0	230.2	100	141	44 257 7	226.1	97 184 3	18/1 8	261.0	225 74	204.4	220.2	18/15	209	257	121
Ga	77	12.2	16.8	17.9	17.4	18.2	230,3	17.6	18.4	18.2	17.2	17.7	14.5	104,0	14 9	15.84	19.2	18.2	17 7	22.3	16.4	101,9
Ta	<0.05	0.34	0.54	0.47	0.55	0 47	0 72	0.72	1 64	0.66	0.39	0.62	0.2	0.25	0.37	0.57	0.71	0.77	0.82	0.82	0.37	0.2
Nb	2.34	4.13	7.11	7.36	10.31	11.05	146.17	12.38	16.9	9.68	6.97	11.6	5.13	4.84	7.3	17.55	11.83	10.97	13.83	11.8	7.67	3.75
Hf	0,62	1,57	1,53	2,07	2,71	3	2,54	2,83	2,85	2,39	1,36	3	1,45	1,47	1,99	2,09	2,54	2,52	3,01	3,45	1,8	1,47
Zr	42,5	64,5	78,3	68,6	101,9	116,9	69,3	83,4	85,7	74,1	53,3	121,4	44,3	78,7	102,1	79,00	128,4	88,4	100,4	124	57,8	64,9
Y	8,45	13,41	15,92	16,48	20,52	21,8	17,15	21,88	23,63	22,14	14,32	22,85	11,9	13,48	15,8	17,32	23,24	22,82	21,96	26,72	15,79	10,56
Th	0,3	0,5	1,3	0,3	1,1	1,2	1,9	1,4	2,5	1,5	0,5	0,9	0,2	0,7	1,2	1,03	0,7	0,8	0,9	1,1	0,5	1,3
U	<0.05	0,09	0,15	0,12	0,32	0,24	0,15	0,17	0,34	0,22	0,09	0,24	0,21	0,15	0,15	0,19	0,18	0,3	0,26	0,33	0,15	0,19
La	2,4	7,6	9,3	7,5	11,4	12,4	8,9	10,7	26,5	13,1	7	11,8	5	6,7	8	9,89	11,3	14,7	11,8	16,4	6	4,6
Ce	8,4	16,8	18,4	18,1	24,4	25,3	20,1	21,8	38	22,5	16,7	25,8	11,7	14,4	18,5	20,06	26,2	27,5	25,8	32,9	17,1	12,6
Pr	1,19	1,83	2,74	2,65	3,17	3,53	2,93	3,48	4,65	3,59	2,2	3,61	1,66	2,08	2,39	2,78	3,77	3,79	3,61	4,4	2,63	1,77
Sm	5,0 1 3	9,1	20	27	14,5	15,0	12,1	15,6	19	20 1 2	10,5	17,4	9,5	9,0 2 7	20	3 15	15,9	10,7	3.8	20,6	3.2	0,7
Fu	0.55	0.59	2,9	1.02	3,9 1 18	1 10	1 35	1 44	1.67	4,2 1.54	2,0	4,0	0.77	0.79	2,9	1 12	4,3	4,4	1 22	1 87	0.97	0.58
Gd	17	2 94	3 16	3.88	3.98	5.01	4.03	4.8	4 62	5 48	2 85	4.6	1.88	22	37	3.66	4 98	4 51	4.8	6 18	3.63	1 81
Tb	0.23	0.38	0.45	0.41	0.68	0.58	0.59	0.68	0.71	0.73	0.44	0.88	0.29	0.42	0.49	0.53	0.64	0.65	0.62	0.85	0.48	0.27
Dy	1,65	2,43	3,56	2,77	3,79	3,94	3,11	3,56	4,32	4,56	2,71	4	1,96	2,71	2,62	3,18	4,66	3,95	4,23	5,13	2,83	2,05
Ho	0,29	0,49	0,63	0,72	0,76	0,87	0,77	0,81	0,93	0,74	0,66	0,96	0,43	, 0,5	0,6	0,68	0,79	0,85	0,8	1,08	0,6	0,45
Er	1,16	1,53	1,93	1,61	2,23	2,02	1,96	2,34	2,64	2,37	1,86	2,91	1,29	1,13	1,4	1,89	2,55	2,89	2,11	2,42	1,82	1,37
Tm	0,18	0,22	0,27	0,24	0,32	0,35	0,35	0,3	0,36	0,3	0,31	0,29	0,15	0,22	0,17	0,27	0,31	0,32	0,37	0,41	0,21	0,17
Yb	0,8	1,4	1,2	1,5	1,8	2,4	1,6	2,1	2,2	2,3	1,5	2,3	1,1	1,4	1,4	1,67	2,4	2,1	2,2	2,5	1,6	0,9
Lu	< 0.05	< 0.05	0,3	<0.05	0,25	0,36	0,27	0,24	0,33	0,17	0,31	0,3	0,09	0,12	<0.05	0,25	0,3	0,26	0,31	0,28	0,27	0,19

Obs: * amostra com balanço químico alterado

Tabela 3.01- Dados químicos das rochas máficas do Espinhaço

Sill Oeste	30quira* 51,13 0,44 3,63 23,14 0,65 10,46 10,26 0,13
SiO2 43,94 42,75 43,07 42,24 42,87 44,62 44,06 42,08 43,23 44,62 45,08 39,39 45,03 47,86 48,72 47,49 49,03 102 1102 11,24 11,71 17,10 17,20 16,57 16,66 14,19 13,52 15,72 15,62 14,02 14,18 16,19 17,54 14,42	51,13 0,44 3,63 23,14 0,65 10,46 10,26 0,13
TiO2 1.24 1.13 1.13 1.40 1.62 1.94 1.72 1.63 1.48 1.54 1.39 1.30 1.35 1.56 1.46 1.74 2.66 2.01 1.37 1.68 Fe2O3t 12.39 13.65 12.21 13.24 13.79 14.49 14.20 11.20 11.41 16.16 17.64 14.02 14.20	0,44 3,63 23,14 0,65 10,46 10,26 0,13
AI203 18,10 14,71 17,10 17,20 16,67 16,66 14,19 15,22 15,62 14,02 14,20 14,81 16,19 17,54 14,05 13,38 16,32 15,10 15,55 PECO3t 12,39 13,65 12,21 13,24 13,79 14,49 14,20 12,38 13,27 13,64 12,66 12,46 14,62 14,42 17,79 14,17 11,94 12,63 12,40 13,59 12,41 13,20 11,14 10,05 10,07 10,07 8,85 9,99 8,65 4,98 6,09 9,21 7,02 Ca Na2O 2,08 1,54 1,84 13,59 1,72 1,54 1,32 11,11 10,75 10,72 8,98 9,99 8,65 4,98 6,09 9,21 7,02 Ca Na2O 2,08 1,54 1,88 2,01 2,01 2,44 1,32 11,54 1,41 1,40 1,02 1,40 1,01 0,10 0,01 0,01 0,01 0,01 0,01 0,01 0,03	3,63 23,14 0,65 10,46 10,26 0,13
Fe2Oxt 12,39 13,65 12,21 13,27 14,49 14,20 12,38 13,27 13,27 13,64 12,49 12,46 12,46 14,62 14,62 14,77 14,17 11,94 12,63 12,63 Mg0 0,16 0,17 0,03 10,03 11,08 8,64 6,34 10,02 10,25 9,28 11,00 11,11 10,75 10,72 8,98 9,99 8,65 4,98 6,09 9,21 7,02 CaO 13,20 13,16 13,50 11,84 13,29 12,44 17,5 19,31 19,71 17,41 1,41 1,59 1,41 1,59 1,41 1,59 1,41 1,59 1,41 1,59 1,41 1,59 1,41 1,59 1,41 1,59 1,41 1,59 1,41 1,59 1,41 1,59 1,41 1,59 1,41 1,59 1,41 1,50 1,41 1,50 0,43 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40	23,14 0,65 10,46 10,26 0,13
MnO 0.16 0.17 0.19 0.20 0.20 0.20 0.21 0.19 0.23 0.19 0.22 0.23 0.24 1.24 1.35 1.30 1.11 1.07 1.51 2.35 2.50 2.25 2.10 3.67 1.57 2.20 V20 0.32 0.29 0.33 0.44 0.44 0.42 0.20 0.03 0.27 1.63 0.30 0.40 0.40 0.44 0.42 0.20 0.03 0.40 0.44 0.42 0.20 0.03 0.40 0.44 0.42 0.40 0.40 0.40 0.47 0.40 0.40	0,65 10,46 10,26 0,13
MgO 8.45 12.46 10.43 11.08 8.64 6.34 10.02 10.25 9.28 11.00 11.11 10.75 10.72 8.98 9.99 8.65 4.98 6.09 9.21 7.02 Na20 2.08 1.3.6 13.50 11.84 13.59 12.44 13.20 11.54 12.40 13.33 13.37 13.80 14.07 12.38 13.24 13.20 9.04 8.24 12.68 11.57 2.20 K2O 0.32 0.29 0.38 0.49 0.44 0.33 0.44 0.32 0.29 0.30 0.23 0.49 0.27 1.6.8 0.30 0.44 0.32 0.29 0.30 0.23 0.49 0.07 0.66 0.44 0.32 0.23 0.49 0.07 0.66 0.44 0.32 0.02 0.03 0.01	10,46 10,26 0,13
Ca0 13,20 13,16 13,50 11,84 13,29 14,44 13,35 13,37 13,38 14,07 12,38 13,24 13,20 9,04 8,24 12,58 11,23 Na20 2,08 1,54 1,88 2,01 2,10 2,44 1,75 1,93 1,97 1,74 1,41 1,59 1,51 2,35 2,50 2,25 2,10 3,67 1,57 2,20 V200 0,32 0,29 0,38 0,49 0,44 0,39 0,43 0,44 0,32 0,29 0,30 0,02 0,03 0,01 0,01 0,01 0,02 0,03 0,02 0,03 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,05 0,02 0,02 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,05 0,02 0,01 0,05 0,02 0,01 0,01 0,05 0,02 0,01 0,02 0,01 0,01 0,01 0,01 0,00 0,02 0,01 0,02 0,01 0,01 0,0	10,26 0,13
Na20 2,08 1,54 1,88 2,01 2,10 2,10 2,14 1,75 1,93 1,97 1,74 1,41 1,59 1,51 2,35 2,20 2,25 2,10 3,67 1,57 2,20 K20 0,32 0,29 0,38 0,49 0,44 0,61 0,43 0,44 0,32 0,29 0,30 0,23 0,49 0,27 1,63 0,30 0,40 0,35 P205 0,08 0,05 0,08 0,01 0,14 0,16 0,13 0,10 0,18 0,08 0,07 0,06 0,14 0,11 -0,01 -0,01 -0,01 -0,01 -0,01 -0,01 -0,05 0,02 0,05 0,03 0,11 0,11 0,11 0,11 0,02 0,05 0,03 0,11 1,14 1,15 1,12 1,14 1,13 0,04 0,04 0,01 -0,01 -0,01 0,05 0,02 0,01 mg# 57,45 64,39 62,84 62,30 596,38 266,35 265,52 72,3 <70 <70 34	0,13
K20 0.32 0.29 0.38 0.49 0.44 0.69 0.39 0.33 0.43 0.44 0.32 0.23 0.49 0.27 1,63 0.30 0.40 0.35 0.08 0.05 0.08 0.11 0.14 0.18 0.16 0.18 0.08 0.07 0.06 0.14 0.16 0.27 0.23 0.10 0.01 0.02 0.03 0.01 0.02 0.03 0.11 0.11 0.11 0.09 0.09 0.04 0.04 0.01 -0.01 -0.01 0.02 0.05 0.02 0.03 0.01 0.02 0.05 0.11 1.15 1.21 1.14 1.03 0.87 1.1 0.93 1.31 0.9 -0.01 mg# 57.45 64.39 62.84 62.35 66.3 26.5 26.5 27.5 57.51 54.28 35.6 46.6 60.42 52.37 - - - - - - - - - - - - - - - - - -	
P205 0.08 0.05 0.08 0.11 0.14 0.18 0.10 0.08 0.00 0.06 0.14 0.16 0.27 0.23 0.10 0.16 Cr203 0.02 0.09 0.03 0.02 0.03 0.01 0.01 0.03 0.11 0.11 0.09 0.04 0.04 0.04 0.01 <0.01	0,02
Cr203 0.02 0.09 0.03 0.02 0.03 0.01 0.02 0.03 0.01 0.09 0.04 0.04 0.04 0.01 <0.01	0,10
PF orig, mg# 0.51 0.66 0.69 1.02 0.88 1.13 1.19 0.95 1.12 1.15 1.21 1.14 1.03 0.87 1.1 0.93 1.31 0.9 <0.01	0,01
mg# 57,45 64,39 62,84 62,36 55,38 46,44 58,28 62,10 56,46 61,73 63,04 62,27 57,88 57,15 54,28 35,68 40,00 61,42 52,37 40,00 61,42 52,37 40,00 61,42 52,37 40,00 61,42 52,37 40,00 61,42 52,37 40,00 61,42 52,37 40,00 61,42 52,37 40,00 61,42 52,37 40,00 61,42 52,37 40,00 61,42 52,37 40,00 61,42 52,37 40,00 61,42 52,37 40,00 61,42 52,37 40,00 61,43 40,00 61,42 52,37 40,01 61,33 56,63 48,64 46,6 48,65 32,5 30,8 28,8 35,5 34,6 43,5 20,5 14,8 41,3 18 77,1 145,7 Pb 2,3 1,3 1,4 3 1,5 2 7 56 62,2	1,13
Internal (14) Internal (14) <thinternal (14)<="" th=""> <thinternal (14)<="" t<="" th=""><th>47,24</th></thinternal></thinternal>	47,24
NI 36,5 06,3 46,8 060,3 37,8 30,3 49,3 52,6 48,02 32,5 30,8 26,8 35,5 34,0 43,5 20,5 19,9 35,6 46,6 46,6 Co 10,6 12,9 12,1 14,9 12,4 17,1 15,3 15,9 14,35 8,4 13,3 7 10 12,4 17,2 11,3 30,2 25,8 14,3 18 Cu 143,9 69,1 142,7 74,5 143,8 158,6 159,9 72,2 121,02 66,8 45,7 82 105,5 87,8 100,2 127,1 241,5 31,8 77,1 145,7 Pb 2,3 1,3 1,4 3 2,2 1,5 1,3 15,4 2,11 1,1 1,4 2,3 3,3 1,8 7,7 4 1259,6 29,3 2,6 3,4 Zn 16 17 16 22 22 2,7 2,3 2,6 3,4 2,7 5,6 62,2 3,9 6,2	68,4
Co 10,6 12,9 12,1 14,9 12,4 17,1 15,3 15,9 14,35 7 10 12,4 17,2 11,3 30,2 2,5 14,3 16 Cu 143,9 69,1 142,7 74,5 143,8 158,6 159,9 72,2 121,02 65,8 45,7 82 105,5 87,8 100,2 127,1 241,8 7,1 145,7 Pb 2,3 1,3 1,4 3 2,2 1,5 1,3 15,4 2,11 1,1 1,4 2,3 3,3 1,8 7,7 4 1259,6 29,3 2,6 3,4 Zn 16 17 16 22 22 27 23 26 22,92 20 18 13 19 23 25 26 344 71 14 23 Rb 4,7 3,3 6,2 10,6 4,7 12,2 5,1 2,1 7,5 5,6 62,2 3,9 6,2 8,6 Cs 0,14 0,21 0,41	8,1
Cu 143,9 69,1 142,7 143,6 143,6 159,9 12,2 121,02 65,6 45,7 62 105,5 67,6 100,2 127,1 241,5 51,6 77,1 143,7 Pb 2,3 1,3 1,4 3 2,2 1,5 1,3 15,4 2,11 1,1 1,4 2,3 3,3 1,8 7,7 4 1259,6 29,3 2,6 3,4 Zn 16 17 16 22 22 27 23 26 22,92 20 18 13 19 23 25 26 344 71 14 23 Rb 4,7 3,3 6,2 10,6 4,7 12,2 5,1 2,1 7,59 5,1 3,2 2,1 1,5 2 7 5,6 62,2 3,6 2 8,6 6 6 159 80 4,7 3,5,5 2,4,6 29,4 2 7 5,6 61,2 3,5,5 2,4,6 29,4 2 7 5,6 16,2,3 3,5,5	4,3
PD 2.3 1,3 1,4 3 2.2 1,3 1,3 13,4 2,11 1,4 2,3 3,3 1,6 1,7 4 1236,0 223,5 2,0 3,4 Zn 16 17 16 22 22 27 23 26 22,92 20 18 13 19 23 25 26 344 71 14 23 Rb 4,7 3,3 6,2 10,6 4,7 12,2 5,1 2,1 7,59 5,1 3,2 2,1 1,5 2 7 5,6 62,2 3,9 6,2 8,6 Cs 0,14 0,21 0,41 1,02 0,29 0,41 0,16 25,3 0,38 0,17 0,11 0,07 <0.05 0,08 0,71 0,31 54,3 35,5 24,6 29,4 23 Ba 84 73 96 167 131 242 104 47 138,23 80 147 110 64 56 159 80 468 102<	22.2
Ind I	32,2
Rd F, 1 6,5 6,2 10,5 7,7 12,2 7,1 7,10 2 7 5,6 62,2 5,7 6,2 6,7 Cs 0,14 0,21 0,41 1,02 0,29 0,41 0,16 25,3 0,38 0,17 0,11 0,07 <0.05 0,08 0,71 0,10 64 56 159 80 468 102 118 165 Sr 280,9 173,3 228 266,5 252,7 245,9 208,8 18,8 244,69 217,8 158,1 231,8 219,7 258,9 274,8 243,4 277,2 212,3 204,1 263,4 Ga 18,3 14,6 16 17,6 17,8 18,2 14,5 194,1 17,05 15,8 15,4 15,5 15,6 17,2 18,8 20,5 28,6 20,8 20,1 20,9 Ta 1,28 0,31 0,38 0,36 0,79 0,51 0,35 <0,59 0,65 0,46 4,01 0,55 0,61 0,59	0.4
Ba 84 73 96 167 131 242 104 47 138,23 80 147 110 64 56 159 80 468 102 118 165 Sr 280,9 173,3 228 266,5 252,7 245,9 208,8 18,8 244,69 217,8 158,1 231,8 219,7 258,9 274,8 243,4 277,2 212,3 204,1 263,4 Ga 18,3 14,6 16 17,6 17,8 18,2 14,5 194,1 17,05 15,8 15,4 15,6 17,2 18,8 20,5 28,6 20,8 20,1 20,9 Ta 1,28 0,31 0,38 0,36 0,79 0,51 0,35 <0,59 0,65 0,46 4,01 0,55 0,61 0,59 0,71 0,62 2,33 <0.05 0,73	287.3
Sr 280,9 173,3 228 266,5 25,7 245,9 208,8 18,8 244,69 217,8 158,1 231,8 219,7 258,9 274,8 243,4 277,2 212,3 204,1 263,4 Ga 18,3 14,6 16 17,6 17,8 18,2 14,5 194,1 17,05 15,8 15,4 15,5 15,6 17,2 18,8 20,5 28,6 20,8 20,1 20,9 Ta 1,28 0,31 0,38 0,36 0,79 0,51 0,35 <0.05 0,65 0,46 4,01 0,55 0,61 0,59 0,71 0,62 2,33 <0.05 0,73	96
Ga 18,3 14,6 16 17,6 17,8 18,2 14,5 194,1 17,05 15,8 15,4 15,5 15,6 17,2 18,8 20,5 28,6 20,8 20,1 20,9 Ta 1,28 0,31 0,38 0,36 0,79 0,51 0,35 <0.05 0,65 0,46 4,01 0,55 0,61 0,59 0,71 0,62 2,33 <0.05 0,73	101
Ta 1,28 0,31 0,38 0,36 0,79 0,51 0,35 <0.05 0,59 0,65 0,46 4,01 0,55 0,61 0,59 0,71 0,62 2,33 <0.05 0,73	15.1
	0.8
Nb 29,44 6,13 5,55 8,2 8,61 11,06 8,11 8,4 10,53 8,22 7,51 43,22 8,01 9,06 9,98 10,41 14,37 15,21 6,45 8,96	12,26
Hf 2,24 1,78 1,67 2,16 2,5 2,59 2,18 2,69 2,30 2,18 2,16 26,37 1,67 2,51 3,04 3,05 3,69 2,98 1,45 1,94	1,28
Zr 75,1 52,3 69 88,4 98,8 128 104,2 20,22 90,75 111,5 92,2 89,7 92,5 105,9 126,5 113,7 167,7 126,2 92,5 130,5	50,3
Y 17,38 14,25 14,73 17,95 19,56 22,99 19,04 118 19,00 19,27 19,52 18,87 19,19 21,17 23,3 24,12 42,16 28,4 18,52 21,86	29,39
Th 1,4 0,3 0,4 0,7 0,7 1,1 0,6 0,5 0,81 1,5 1,1 21,6 1,6 1 0,9 1,2 2,8 3 <0.1	4
U 0,24 0,12 0,1 0,19 0,33 0,19 0,24 0,17 0,22 0,36 0,18 0,28 0,23 0,34 0,25 0,28 0,66 0,05 0,35 0,36	10,48
La 12,9 4,5 5,7 10,1 9,7 11,3 12,5 14,8 10,12 14,9 8,6 9,3 11,4 10,2 11,3 13,9 27,3 11,2 22,8 8,9 2	239,2
Ce 20,3 15 16 21,1 21 26,4 22,3 25,3 21,86 27,6 20,6 19,6 19,1 22,8 24,9 27,3 54,3 35,5 24,6 29,4 35 20,4 10,1 20,1 20,1 20,1 20,1 20,1 20,1 20,1	287,3
Pr 2,77 2,11 2,28 2,9 2,98 3,8 2,99 3,38 3,06 3,24 3,04 2,87 2,72 3,4 3,7 3,78 6,26 3,6 3,03 3,9	24,24
Nd 13,3 9,9 10,4 12,9 14,4 16,4 13,3 15 13,72 15,6 13,4 14,4 12,5 15,4 18,4 17,8 28,1 17,5 13,9 18,4	62,7
Sm 3,3 2 2,4 3,1 2,6 3,6 2,4 3,2 3,23 3,1 3 2,9 4 3,1 4,2 4,8 6,1 4,7 2,8 4,4	7,2
Eu 1,31 0,9 0,92 1,33 1,31 1,41 1,09 0,93 1,19 1,03 0,89 1,19 1,21 1,23 1,44 1,31 1,83 1,83 1,06 1,57	2,84
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5,69
1b 0,5 0,5 0,49 0,63 0,52 0,7 0,54 0,69 0,57 0,49 0,7 0,52 0,46 0,7 0,72 0,69 1,22 0,88 0,37 0,86	0,9
UY 3,47 2,07 2,03 3,10 3,33 4,41 3,78 3,53 3,58 3,15 3,52 3,75 3,53 3,94 4,54 4,48 7,84 5,39 3,21 4,47	3,92
πο υρα υρος υρα υρα υρα υρα υρα ματά την	0,83
EI 1,01 1,07 1,42 2,10 2,31 2,02 2,42 2,34 2,11 2,2 2,48 1,72 2,05 2,19 2,02 2,33 4,8 3,91 2,08 2,3 Tm 0.20 0.27 0.27 0.24 0.25 0.29 0.27 0.24 0.27 0.24 0.27 0.24 0.25 0.24 0.27 0.24 0.27 0.24 0.25 0.24 0.27 0.24 0.27 0.24 0.25 0.24 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27	2,25
THE 0,22 0,24 0,21 0,21 0,24 0,25 0,20 0,29 0,21 0,54 0,25 0,50 0,25 0,51 0,55 0,56 0,57 0,42 0,06 0,51 0,51 0,55 0,56 0,51 0,55 0,56 0,51 0,55 0,56 0,51 0,55 0,56 0,56 0,57 0,56 0,56 0,57 0,56 0,57 0,56 0,57 0,56 0,57 0,56 0,57 0,56 0,57 0,56 0,57 0,56 0,57 0,56 0,57 0,56 0,57 0,57 0,56 0,57 0,57 0,57 0,57 0,57 0,57 0,57 0,57	0,33
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.25

Obs: * amostra com balanço químico alterado

Tabela 3.01- Dados químicos das rochas máficas do Espinhaço

4 – Rochas ultramáficas de Botuporã

No sul da cidade de Botuporã ocorre um corpo de rochas ultrabásicas, de dimensões aflorantes pequenas, constituído por uma série de termos cumuláticos entre eles olivina websteritos, peridotitos serpentinizados e olivina clinopiroxenitos, sempre fortemente magnéticos. As amostras foram coletadas em dois afloramentos, distantes vários quilômetros um do outro, não sendo possível saber se representam um corpo contínuo ou se são corpos separados. Em um dos afloramentos a rocha já está completamente serpentinizada e aflora como pequenos blocos; no outro, junto à estrada que liga Botuporã a Tanque Novo, a rocha está menos alterada e é possível observar até o forte acamamento ígneo do cumulato, inclusive com estratificação cruzada (fotos 4.01A e B). Uma amostra coletada próxima ao povoado de Pajeú, a sul da cidade de Macaúbas, também pode ser do mesmo evento magmático ora tratado.

Foto 4.01 - A: aspecto do afloramento em corte de estrada entre Botuporã e Tanque Novo; B: estratificação ígnea.

Da mesma forma que foi feito com as rochas máficas do Espinhaço, para a interpretação dos dados desta unidade também foram utilizadas as análises químicas originais de um projeto anterior, no caso, o Projeto Vale do Paramirim (Teixeira, 2000), no qual as rochas ultramáficas de Botuporã foram consideradas como komatiiticas, pertencentes a um greenstone belt que englobava, ainda, as rochas de Boquira e da região de Cristais (Arcanjo et al, 2000). Todavia, em um trabalho anterior, Soares et al (1995) haviam considerado Botuporã como uma intrusão máfica/ultramáfica acamadada.

No Projeto Vale do Paramirim (Teixeira, 2000) os dados químicos foram preponderantes para a caracterização komatiítica, a partir da analogia com os dados do greenstone belt de Riacho de Santana (Silveira & Garrido, 1998) e de outras partes do mundo. Quando o Projeto Vale do Paramirim foi realizado não eram frequentes, na literatura, dados químicos de corpos máficos/ultramáficos acamadados, talvez porque a composição destas rochas não representasse a composição de um líquido primitivo ou diferenciado. Atualmente tais dados são bem mais acessíveis. Alguns exemplos são os trabalhos de Day et al (2008) em Muscox (Canadá), Huang et al (2012) em Fiesknaesset (Groenlândia) e Xie et al (2012), em Heishan (China).

A presente interpretação será baseada numa abordagem que compara os dados aqui estudados com os de alguns níveis cumuláticos daquelas intrusões, cujas composições mineralógicas são semelhantes às de Botuporã, por meio dos mesmos critérios e diagramas utilizados no projeto Vale do Paramirim. Como se verá, a seguir, os dados químicos das rochas cumuláticas, embora expressem valores de sólidos, mostram variações muito semelhantes àquelas presentes nos komatiitos, que refletem a diferenciação de um líquido.

Na tabela 4.01 estão os dados de sete amostras das ultramáficas, juntamente com os de 10 amostras de rochas máficas relacionadas ao Complexo Paramirim, que serão descritas no próximo capítulo deste relatório. Três amostras desta unidade apresentaram valores de MgO acima de 30% (MgO>30%), que é o limite superior do método analítico empregado pela Geosol. Quando se trata de rochas ultramáficas este limite é indesejável e para contornar o problema o teor destas amostras foi considerado igual a 30,5%. Como as rochas também estavam com perda ao fogo (LOI) elevada, o cálculo para 100% anidro elevou o teor de MgO de forma proporcional a LOI de cada amostra. O procedimento para obtenção dos novos teores, já utilizado anteriormente por Teixeira (2012), não parece ter criado grandes distorções, como se verá na interpretação a seguir.

Caracterização geoquímica

Os teores de MgO variam entre 23 e 33%, os de TiO₂ são inferiores 0,7% e os de SiO₂ variam de pouco mais de 41 até cerca de 50%. As razões mg# (=100MgO/ (MgO+ FeO_t) molar) são superiores a 70. As razões Al_2O_3/TiO_2 são inferiores a 10 e Al_2O_3 inferiores a 7%. Em duas amostras, com teores muito baixos de TiO₂, as razões Al_2O_3 são bastante elevadas e não são consideradas representativas da unidade. Se compararmos todos estes parâmetros com aqueles estabelecidos por Arnd & Nisbet (1982), todos eles estão dentro da faixa esperada para os komatiitos. Todavia os conteúdos de amostras selecionadas de websterito, peridotito, dunito e clinopiroxenito dos níveis cíclicos n° 16 a 22 da intrusão acamada de Muscox (tabela 3 de Day et al, 2008) e de amostras de hornblendito, peridotito, dunito e piroxenito de Fiskenaesset (tabela complementar 2 de Huang et al, 2012) mostram exatamente os mesmo padrões verificados para Botuporã. Isto mostra que os parâmetros utilizados não discriminam, por si só, uma unidade komatiitica de um corpo intrusivo acamadado.

No diagrama de Jensen (1976) da figura 4.01, estão lançadas as amostras de Botuporã, coletadas tanto neste projeto, quanto no Projeto Vale do Paramirim, juntamente com os envelopes das

composições mais freqüentes das amostras de Muscox e Fiskaenesset, acima citadas. O paralelismo entre os pontos e o trend komatiítico fica evidente. Também fica evidente que as amostras de Botuporã ficam mais bem configuradas dentro do envelope composicional de Muscox. O envelope das rochas máficas toleíticas de Fazendinha também está assinalado, sobretudo para mostrar que a presença de rochas cumuláticas tende a "puxar" o alinhamento para o trend komatiitico, pois tanto o cumulato como o líquido komatiitico são produtos do fracionamento preferencial da olivina a partir de um líquido muito pouco diferenciado.

No Projeto Vale do Paramirim (Teixeira, 2000)

Fetot + Ti Legenda Fiskænesset Muskox Fazendinha Botuporā (Paraminim) Ccalc. Jensen, 1976 Al Mg

Figura 4.01 – Diagrama de Jensen.

foram utilizados dois diagramas que são clássicos nos textos que descrevem os komatiítos. O primeiro deles associa a variação de teor do Al_2O_3 com MgO (figura 4.02A). Novamente as amostras se alinham ao longo do trend de diferenciação definido pela olivina e a maioria das amostras está inclusa no campo dos "komatiítos peridotíticos" de Viljoen & Viljoen (1969). Neste diagrama, os gabros de Fazendinha mostram dois agrupamentos: o primeiro, com a maioria das amostras, no campo dos basaltos toleíticos e outro, menor, com as amostras cumuláticas, no campo dos basaltos komatiíticos. No diagrama MgO x TiO₂ (figura 4.02B) houve um alinhamento muito consistente de todas as amostras ao trend komatiítico, e os envelopes de Muscoks e Fiskenaesset puderam ser representados como linhas simples; o mesmo ocorreu com os gabros de Fazendinha, que mostrou composições desde o final da série komatiítica até o campo toleítico.

As evidências, vistas acima, mostram que o tratamento geoquímico com elementos maiores destaca apenas o trend provocado pelo fracionamento da olivina, independentemente da rocha ultramáfica ser cumulática ou não, ser plutônica ou vulcânica.

Os elementos traço apresentam conteúdos bastante similares nos três corpos que estão sendo comparados, embora existam algumas discrepâncias. O Cr apresenta teor médio superior a 3000 ppm

Figura 4.02 – Diagramas de Viljoen & Viljoen, 1969. Mesma legenda da figura 4.01

em Botuporã (chegando a mais de 8000 ppm em amostras coletadas no projeto Vale do Paramirim) análogo ao que ocorre em Muskox; Ni mostra valores baixos nas análises realizadas neste projeto, mas nas do Projeto Vale do Paramirim são bem elevados, superiores a 1500 ppm. Entre os elementos incompatíveis chama a atenção os teores elevados de Zr (média de 30,77 ppm) e Nb (média de 5,56 ppm) neste projeto, em comparação com os dos outros maciços aqui citados. Em Muskox os teores são de 16 e 1,1 ppm, respectivamente.

Os elementos terras raras analisados neste projeto (figura 4.03) mostram um padrão linear com fracionamento pouco acentuado entre os ETR leves e os pesados. As pequenas anomalias negativas de Eu devem ter sido causadas por alterações pós-magmáticas. Da mesma forma o aumento nos teores de ETR leves, quando comparados com o envelope de amostras de websteritos de Muscox, também pode ser atribuído a alterações pós-magmáticas e/ou à contaminação com material crustal.

A partir da sistemática de trabalho e de dados fornecidos por Xie et al (2012) na interpretação do corpo ultramáfico de Heishan, na China, as amostras de Botuporã foram lançadas em dois

diagramas das figuras 4.04A e 4.04B. Na figura 4.04A está um diagrama de MgO x Al₂O₃, já mostrado anteriormente, agora com um enfoque novo. Alinha de diferenciação causada pelo fracionamento da olivina é de Xie et al (2012) e mostra a trajetória não apenas do líquido, mas também a zona mais magnesiana, caracterizada pela mistura entre líquido e cumulato que dá origem a ortocumulatos e mesocumulatos. As amostras mais ricas em MgO de Botuporã ficam praticamente sobre a linha evolutiva, na região de mistura entre sólido cumulático e líquido. A partir destas amostras as demais vão se afastando do trend de fracionamento da olivina e os teores passam a se

Figura 4.03 – Espectros de ETR.

aproximar daqueles dos clinopiroxênios (cpx) e ortopiroxênios (opx), sugestivos da presença destes minerais no sólido que originalmente continha apenas olivina. O fracionamento de olivina+cpx+opx normalmente é responsável pela diferenciação dos líquidos toleíticos.

No diagrama da figura 4.04B, MgO x FeOt, também com dados de Xie et al (2012) que utiliza outros de Chai & Naldrett (1992) e de Roeder & Emislie (1970), a linha evolutiva para Botuporã foi traçada a partir das olivinas mais ricas em MgO, passando junto às amostras mais magnesianas como observado na figura anterior. Segundo Chai & Naldret (1992) o ponto de intersecção da reta de diferenciação com a reta de regressão com razões MgO/(MgO+FeOt) iguais a 0,66 marca o teor do líquido inicial, que no caso das ultramáficas de Botuporã, foi de aproximadamente 23% MgO. Este valor parece ser bastante factível, porém serve apenas como uma aproximação, porque não se deve negligenciar a qualidade das análises químicas e o estado de alteração das amostras que depõem contra a exatidão do modelo. Também neste diagrama a influência de cpx e opx no teor das amostras está bem caracterizada.

Figura 4.04 – Diagramas MgO versus Al₂O₃ (A) e Fe₂O₃ (B). Mesma legenda da figura 4.01

Conclusão

Resumindo tudo que foi visto acima, pode-se afirmar que apenas com considerações sobre o comportamento dos elementos maiores e dos traços não se chega a resultados consistentes sobre a natureza de um corpo ultramáfico: se representa uma intrusão acamadada ou um derrame komatiitico. Isto se deve ao fato dos komatiitos e as rochas cumuláticas exibirem teores dentro do mesmo trend motivado pelo fracionamento da olivina.

Aspectos petrográficos e mineralógicos também são essenciais na definição de komatiito e a presença de estratificações cruzadas nos cumulatos e a elevada porcentagem de clino e ortopiroxênio e ausência de texturas spinifex são fatores mais favoráveis a presença de um corpo acamadado que de um derrame komatiítico. Segundo Arndt (2008) "O termo komatiito deve ser reservado para lavas com textura spinifex de olivina, ou lavas que podem ser diretamente relacionadas a elas por meio de critérios de campo ou petrográficos." A partir dessa definição, as ultramáficas de Botuporã ficam mais bem definidas como um corpo acamadado, como definido por Soares et al (1995), que como uma seqüência komatiítica de um greenstone belt, conforme Teixeira (2000).

Unidade Botupore Botupore Botupore Botupore Botupore Botupore Botupore Botupore Botupore Neurone RS Siloz 44.85 48.5 48.5 48.5 48.5 48.3 52.30 61.21 48.34 52.30 61.21 48.34 52.30 61.21 48.34 52.30 61.21 48.34 52.30 61.21 48.34 52.30 61.21 48.35 52.30 61.21 61.	ID	LR-16A	LR-16B	LR-17A	LR-17B	LR-17C	LR-17D	KM-34A	JT-140	JT-141	KM-235	LP-121	LP-144 B	LP-168	LP-52A	VB-102	AC-134	VB-53
SiO2 48.85 48.11 41.77 45.33 45.80 47.87 45.77 48.57 48.54 52.30 51.21 48.50 50.57 CiC2 3.07 3.88 3.87 3.65 4.60 4.70 1.18 1.18 1.24 1.38 1.24 1.39 15.03 1.17 14.80 1.28 PADO1 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.17 0.22 0.16 0.23 0.26 0.22 0.16 0.18 0.24 0.22 0.16 0.18 0.24 0.22 0.16 0.23 0.25 0.21 0.22 0.16 0.23 0.25 0.21 0.22 0.16 0.23 0.25 0.21 0.22 0.26 0.36 0.24 0.36 0.24 0.36 0.24 0.36 0.24 0.36 0.24 0.36 0.24 0.36 0.24 0.36 0.24 0.36 0.24 0.36 0.24 0.36 0.26 0.36 0.36 0.36 0.36 0.36 0	Unidade	Botupora	Botupora	Botupora	Botupora	Botupora	Botupora	Botupora?	Cristais	Cristais	Cristais o	dique Vale	dique Vale d	dique Vale	dique Vale	St.Isabel	St.Isabel	RS
TiC2 0.12 0.15 0.46 0.56 0.70 0.73 0.61 1.18 1.38 1.24 1.93 0.78 2.33 1.64 1.55 2.00 0.88 Fa2O3 1368 1375 17.77 14.60 13.80 15.52 14.64 13.91 15.52 14.64 15.91 10.70 11.60 11.60 11.60 11.60 11.61	SiO2	49,85	48,11	41,77	45,33	45,90	45,84	59,46	54,66	52,20	45,86	47,87	45,57	48,34	52,30	51,21	48,50	50,57
AI2O3 3.07 3.86 3.87 3.56 4.60 4.67 1.19 15.81 13.13 13.13 15.22 14.64 13.19 15.01 10.70 11.08 14.30 12.16 MnO 0.16 0.16 0.16 0.16 0.16 0.16 0.22 0.16 0.18 0.24 0.35 0.57 0.51 5.91 7.73 7.64 6.65 9.12 GaO 0.07 0.07 7.18 6.04 6.79 7.62 0.01 0.22 0.16 0.03 5.00 6.70 4.51 5.91 7.73 7.64 6.66 9.12 K2O 0.03 0.05 0.11 0.17 0.70 0.13 0.19 0.05 0.08 3.28 1.93 0.30 0.37 0.17 0.16 0.99 0.04 0.07 0.10 0.07 0.01 0.02 0.07 0.07 0.03 0.01 0.02 0.07 0.07 0.03 0.01 0.02 0.07 0.07 0.03 0.01 0.02 0.07 0.01 0.03	TiO2	0,12	0,15	0,64	0,58	0,70	0,73	0,01	1,91	1,38	1,24	1,93	0,78	2,33	1,64	1,55	2,00	0,88
FacO3 13.68 13.75 17.75 17.68 16.31 16.31 13.12 14.39 19.13 15.03 11.77 14.50 13.78 0.22 0.21 0.23 0.22 0.21 0.23 0.42 0.33 0.02 0.01 0.03 0.02 0.02 0.01 0.03 0.02 0.02 0.01 <th>AI2O3</th> <th>3,07</th> <th>3,86</th> <th>3,87</th> <th>3,56</th> <th>4,50</th> <th>4,67</th> <th>1,19</th> <th>11,58</th> <th>13,19</th> <th>15,52</th> <th>14,64</th> <th>13,19</th> <th>15,01</th> <th>10,70</th> <th>11,08</th> <th>14,50</th> <th>12,98</th>	AI2O3	3,07	3,86	3,87	3,56	4,50	4,67	1,19	11,58	13,19	15,52	14,64	13,19	15,01	10,70	11,08	14,50	12,98
MnO 0.16 0.16 0.16 0.16 0.16 0.18 0.24 0.35 0.21 0.22 0.21 0.22 0.12 GaO 0.07 0.07 7.18 6.04 6.76 4.81 1.31 1.06 1.490 8.46 1.238 9.36 1.082 1.082 K2O 0.03 0.06 0.77 0.71 0.72 0.71 0.72 0.71 0.72 0.71 0.72 0.71 0.72 0.71 0.72 0.71 0.72	Fe2O3t	13,68	13,75	17,87	16,58	16,31	16,00	4,19	15,35	13,13	13,12	14,39	19,13	15,03	11,77	14,50	13,90	12,16
MgO 32,14 33,11 27,38 26,78 24,44 23,28 34,08 5,20 5,20 5,70 4,51 5,91 7,73 7,64 6,65 9,12 Na20 0.01 0.07 0.07 7,18 0.44 0.62 0.78 0.01 2,72 2,84 1,28 3,60 0.69 3,28 3,26 3,43 2,61 1,28 P205 0.01 0.02 0.06 0.08 0.04 0.01 0,37 0,17 0,16 0.09 0.04 0.07 0.01 0.03 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.07 0.01 0.03 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.02 0.01 <td< th=""><th>MnO</th><th>0,16</th><th>0,16</th><th>0,18</th><th>0,16</th><th>0,21</th><th>0,24</th><th>0,04</th><th>0,22</th><th>0,16</th><th>0,18</th><th>0,24</th><th>0,35</th><th>0,21</th><th>0,22</th><th>0,21</th><th>0,22</th><th>0,19</th></td<>	MnO	0,16	0,16	0,18	0,16	0,21	0,24	0,04	0,22	0,16	0,18	0,24	0,35	0,21	0,22	0,21	0,22	0,19
Ca0 0.07 0.07 7.18 6.04 6.79 7.62 0.01 9.22 17.31 10.65 14.90 8.46 12.38 9.36 10.82 12.83 K20 0.03 0.06 0.77 0.16 0.99 0.77 1.01 0.12 0.78 0.67 0.12 K20 0.03 0.06 0.04 0.07 0.13 0.19 0.77 1.01 0.02 0.07 0.13 0.19 0.07 0.13 0.19 0.07 0.13 0.19 0.07 0.13 0.14 0.02 0.07 0.01 0.03 0.02 0.02 0.01 0.03 0.01 0.03 0.02 0.02 0.01 0.03 0.01 0.03 0.02 0.01 0.03 0.01 0.03 0.02 0.01 0.01 0.01 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.	MgO	32,14	33,11	27,36	26,78	24,44	23,52	34,08	3,78	6,03	5,20	6,70	4,51	5,91	7,73	7,64	6,65	9,12
Na20 0,01 0,07 0,44 0,62 0,78 0,78 0,01 2,72 2,246 1,29 2,36 0,69 3,28 3,05 3,43 2,61 1,39 P205 0,01 0,02 0,02 0,06 0,08 0,04 0,01 0,01 0,01 0,09 0,40 0,09 0,14 0,17 0,02 0,02 0,00 0,01 0,03 0,02 0,02 0,00 0,01 0,03 0,02 0,02 0,01 0,08 1,32 0,01 0,03 0,02 0,02 0,01 0,08 1,32 0,01 0,03 0,02 0,02 0,01 0,08 1,32 0,08 1,32 0,02 0,07 0,11 0,14 0,18 0,47 0,77 1,48 1,42 1,43 1,47 0,43 1,44 0,47 0,43 1,45 1,41 1,40 2,24 1,40 1,46 2,24 1,40 1,43 1,45 1,41 0,43 1	CaO	0,07	0,07	7,18	6,04	6,79	7,62	0,01	9,22	10,80	17,31	10,65	14,90	8,46	12,38	9,36	10,82	12,58
K20 0.03 0.05 0.19 0.14 0.17 0.26 0.01 0.07 0.16 0.99 0.77 1.01 0.12 0.78 0.57 0.12 Cr203 0.91 1.04 0.37 0.32 0.27 0.30 0.47 -0.01 0.03 0.02 0.02 0.01 0.02 0.07 0.11 0.08 0.44 0.09 0.16 0.02 0.01 0.02 0.07 0.01 0.03 Proing 0.92 9.27 7.52 0 7.613 7.473 7.443 94.16 3.27 47.62 43.86 47.97 31.85 43.75 56.54 51.06 48.45 32.0 Ni 607.5 722.1 901.9 58.3 43.9 40.5 25.5 17 64.4 17.9 41.8 27.3 7.4 Ci 4.33 6.4 4.19 4.33 6.4 4.19 4.11 1.1 2.2 2.01 11.6 7.33 <th>Na2O</th> <th>0,01</th> <th>0,01</th> <th>0,57</th> <th>0,44</th> <th>0,62</th> <th>0,78</th> <th>0,05</th> <th>2,72</th> <th>2,84</th> <th>1,29</th> <th>2,36</th> <th>0,69</th> <th>3,28</th> <th>3,05</th> <th>3,43</th> <th>2,61</th> <th>1,39</th>	Na2O	0,01	0,01	0,57	0,44	0,62	0,78	0,05	2,72	2,84	1,29	2,36	0,69	3,28	3,05	3,43	2,61	1,39
P205 0.01 0.02 0.02 0.06 0.08 0.04 0.07 0.73 0.74 0.09 0.40 0.09 0.40 0.09 0.40 0.09 0.41 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.03 0.06 0.11 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.03 0.03 0.04 1.10 0.03 0.04 1.17 0.17 0.17 0.18 0.24 1.18 0.24 0.26 1.16 7.1 8.0 1.41 9.0 4.3 3.4 3.43 3.4 2.18 1.1 9.3 3.4 1.16 7.1 8.0 1.1 1.56 2.3 2.2 2.01 1.16 7.3 3.9 4.2 1.16 7.3 2.02 1.16 7.3 2.02 1.15 3.3 3.6 1.1 1.6	K2O	0,03	0,05	0,19	0,14	0,17	0,26	0,01	0,37	0,17	0,16	0,99	0,77	1,01	0,12	0,78	0,57	0,12
Cr203 0.91 1.04 0.37 0.32 0.27 0.30 0.47 <0.01	P2O5	0,01	0,02	0,02	0,06	0,08	0,04	0,01	0,17	0,07	0,13	0,19	0,09	0,40	0,09	0,16	0,22	0,01
PF origing 9.02 9.77 5.22 6.02 4.72 3.85 4.97 0.54 1.43 1.57 1.77 1.18 0.84 1.04 0.98 1.32 0.68 Gr 62.14 0.5 7089.5 274.79 71.85 136.9	Cr2O3	0,91	1,04	0,37	0,32	0,27	0,30	0,47	<0.01	0,03	0,02	0,02	0,02	0,01	0,02	0,07	0,01	0,03
mg# 82,31 82,67 75,20 76,19 74,79 74,79 74,76 47,67 73,85 43,75 56,64 51,06 48,66 59,76 Cr 624,25 708,95 224,34 709,0 836,9 136,9 136,9 136,9 136,9 136,9 136,9 136,9 136,9 136,9 136,9 136,9 136,9 136,9 136,9 136,9 143,8 141,9 23,3 7,4 Cu 2,9 12,8 7 10,4 21,9 2,2 2,1 11,1 7,3,4 39,9 50,2 10,5 57,1 7,9,7 41,9 Pb 4,3 6,4 2,7 5,7 4,8 2 2,3 2,9 3,9 62,1 6,5 52,1 15,3 33,7 7,2 7,8 3,8 7,0 2,5 16,3 2,7 1,3 2,6 3,7,7 7,3 2,3 1,4 4,6 5,6 5,4 5,16 6,3,7 6,5 </th <th>PF orig,</th> <th>9,02</th> <th>9,27</th> <th>5,22</th> <th>6,02</th> <th>4,72</th> <th>3,65</th> <th>4,97</th> <th>0,54</th> <th>1,43</th> <th>1,57</th> <th>1,77</th> <th>1,18</th> <th>0,84</th> <th>1,04</th> <th>0,98</th> <th>1,32</th> <th>0,68</th>	PF orig,	9,02	9,27	5,22	6,02	4,72	3,65	4,97	0,54	1,43	1,57	1,77	1,18	0,84	1,04	0,98	1,32	0,68
Cr 6214/25 7089,54 2247,30 2168,55 1843,77 2078,92 3234,34 <70	mg#	82,31	82,67	75,20	76,19	74,79	74,43	94,16	32,77	47,62	43,96	47,97	31,85	43,75	56,54	51,06	48,65	59,76
Ni 749.1 697.5 722.1 90.19 583.2 512.2 40 22.4 21.5 9 38.4 27.8 57.1 8.9 143.8 34.5 32.1 Cu 2.9 12.8 7 10.4 21.9 22.8 1 22.2 20.1 11.6 73.4 39.9 50.2 10.5 57.1 79.7 41.9 Zn 48 52 41 57 50 39 44 18 22 50 69 52 13 38 55 16 Rb 0.4 1.8 1 1.1 2 2.6 3.7 1.3 2.6 31.6 10.5 15.5 3 17.3 12.8 15 Ba 14 46 36 2.7 83 52 10 11.43 64.8 27.7 32.2 31.4 34.8 34.5 0.25 33 17.3 12.8 33.7 32.2 31.4 34.5 64.8 17.9 68.1 33.7 12.2 2.0 13.3 32.2	Cr	6214,25	7089,54	2547,30	2168,55	1843,77	2078,92	3234,34	<70	205,3	136,9	136,9	136,9	68,4	141,99	479,0	68,4	216,0
Co 40.9 46 49.2 55.8 43.9 40.5 2.5 17 6.4 3.9 24.4 10 24.2 15.8 17.9 23.3 7.4 Pb 4.3 6.4 2.7 10.4 21.9 22.8 2.9 3.9 62.1 6.5 52.1 15.5 1.9 11 15.6 2.8 1.6 10.6 15.5 3 17.3 12.8 1.1 1.1 2.2.6 3.7 1.3 2.6 31.6 10.5 5.5 3 17.3 12.8 1.9 1.1 1.1 2.2.6 3.7 1.3 2.6 31.6 10.5 5.5 3 17.3 12.8 1.9 1.9 1.1 1.1 2.6 3.7 1.4 1.6 5.5 3 17.3 12.8 1.1 1.9 1.1 1.9 1.1 1.9 1.1 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 <td< th=""><th>Ni</th><th>749,1</th><th>697,5</th><th>722,1</th><th>901,9</th><th>583,2</th><th>512,2</th><th>40</th><th>22,4</th><th>21,5</th><th>9</th><th>38,4</th><th>27,8</th><th>57,1</th><th>8,9</th><th>143,8</th><th>34,5</th><th>32,1</th></td<>	Ni	749,1	697,5	722,1	901,9	583,2	512,2	40	22,4	21,5	9	38,4	27,8	57,1	8,9	143,8	34,5	32,1
Cu 2.9 12.8 7 10.4 21.9 22.8 1 22.2 20.1 11.6 73.4 39.9 50.2 10.5 57.1 79.7 41.9 Zn 48 52 41 57 50 39 4 11 82.2 50 69 52.1 15.2 1.9 11 15.6 2.8 3.8 55 16 Cs 0.21 0.27 0.09 0.23 0.23 0.23 0.14 0.15 26.7 18.9 20 41.7 127 49 0.1 51.8 38.7 0.25 Ba 14 46 36 27 83 52 10 109 20 38 269 85 54.8 17 681 38.7 0.25 Ba 1.1 2.6 71.6 56 8.1 9.6 11.5 14.8 648.8 27.7 33.2 24.1 16.3 38.6 40.8 23.6 23.2 24.6 16.8 27.7 43.3 36.5 30.1 3 12.2<	Co	40,9	46	49,2	55,8	43,9	40,5	2,5	17	6,4	3,9	24,4	10	24,2	15,8	17,9	23,3	7,4
Pb 4,3 6,4 2,7 5,7 4,8 2 2,3 2,9 3,9 62,1 6,5 52,1 15,2 1,9 11 15,6 2,8 Rb 0,4 1,8 1,8 1 1,1 2 2,6 3,7 1,3 2,6 31,6 10,5 15,5 3 17,3 12,8 1,9 Cs 0,21 0,27 0,09 0,23 0,23 0,14 0,15 26,7 1,8,9 20 41,7 127 49 0,1 51,8 38,7 0,25 Ba 14 46 36 27 83 52 10 109 20 38 269 85 54.8 17 681 398 44 Sr 1,1 2,6 71,6 55 0,41 0,5 2,38 40,8 2,36 23 24.2 16.8 20,5 11,2 1,37 10,9 7,9 17,2 Ta 0,17 0,07 <0,05 0,15 2,57 0,41 0,05 40,35 10,2<	Cu	2,9	12,8	7	10,4	21,9	22,8	1	22,2	20,1	11,6	73,4	39,9	50,2	10,5	57,1	79,7	41,9
Zn 48 52 41 57 50 39 4 41 18 22 50 69 52 13 38 55 16 Rb 0.4 1.8 1.8 1.1 1 2.6 3.7 1.3 2.6 31.6 10.5 15.5 3 7.3 12.8 1.9 Cs 0.21 0.27 0.09 0.23 0.23 0.14 0.15 26.7 18.9 20 41.7 12.7 49 0.1 51.8 33.8 43 0.25 Ba 1.4 46 36 2.7 0.33 10.9 2.0 38 464.8 2.3 2.44.1 364.5 608.3 2.9 12.6 7.7 7.8 7.7 1.3 7.9 2.3 2.46.1 2.3 2.44.2 16.8 20.8 17.9 1.7.2 Ta 0.17 0.07 c.05 0.15 2.57 0.41 0.05 <0.05 0.05 1.06 2.05 1.14.5 11.4.5 11.4.5 11.5 11.5 11.5 <th>Pb</th> <th>4,3</th> <th>6,4</th> <th>2,7</th> <th>5,7</th> <th>4,8</th> <th>2</th> <th>2,3</th> <th>2,9</th> <th>3,9</th> <th>62,1</th> <th>6,5</th> <th>52,1</th> <th>15,2</th> <th>1,9</th> <th>11</th> <th>15,6</th> <th>2,8</th>	Pb	4,3	6,4	2,7	5,7	4,8	2	2,3	2,9	3,9	62,1	6,5	52,1	15,2	1,9	11	15,6	2,8
Rb 0.4 1.8 1.8 1 1.1 2 2.6 3.7 1.3 2.6 31.6 10.5 15.5 3 17.3 12.8 1.9 Ba 14 46 36 27 83 52 10 109 20 38 269 85 548 17 681 398 44 Sr 1.1 2.6 71.6 56 93.9 112.2 <0.5	Zn	48	52	41	57	50	39	4	41	18	22	50	69	52	13	38	55	16
Cs 0,21 0,27 0,09 0,23 0,24 0,14 0,15 26,7 18,9 20 41,7 127 49 0,1 51,8 38,7 0,23 Ba 14 46 36 27 83 52 10 109 20 38 269 85 548 17 681 398 44 Sr 1,1 2,6 71,6 56 93,9 112,2 <0,5 151 143,8 645,8 277,4 332,2 316,4 364,5 608,3 279 126,3 Ga 6,5 8,1 7,2 6,8 8,1 9,6 11,5 19,6 23,8 40,8 23,6 23 24,2 16,8 20,8 17,7 17,9 17,7 17,9 17,7 17,9 12,7 14,3 10,07 <0,05 0,05 10,6 <0,05 10,6 <0,05 10,1 11,3 11,8 17,7 14,9 14,7 12,7 14,3 14,9 14,9 28,3 24,9 3,23 32,9 3,25 3,	Rb	0,4	1,8	1,8	1	1,1	2	2,6	3,7	1,3	2,6	31,6	10,5	15,5	3	17,3	12,8	1,9
Ba 114 46 36 27 83 52 10 109 20 38 269 85 548 17 681 398 44 Sr 1,1 2,6 71,6 56 93,9 11,2 <0.5 151 143,8 64,8 27,4 332,2 316,4 364,5 608,3 27,9 17,9 17,2 Ta 0,17 0,07 <0.05 0,15 2,57 0,41 0,05 <0.05 0,52 <0.05 10,6 <0.05 0,74 <0.05 <0.07 <0.07 <0.05 0,16 <0.05 0,17 1,09 7,94 1,15 Hf 0,16 0.08 1.01 1,19 14,11 1,23 0.92 2,54 1,73 1,79 2,87 3,29 3,55 3,01 3 1,82 1,79 Zr 4,3 6,5 38,6 40,4 48 46 <0,5 148,9 92,9 26,3 134,8 158 213,2 2,437 21,9 2,437 21,9 2,24,37 2,437 <th>Cs</th> <th>0,21</th> <th>0,27</th> <th>0,09</th> <th>0,23</th> <th>0,23</th> <th>0,14</th> <th>0,15</th> <th>26,7</th> <th>18,9</th> <th>20</th> <th>41,7</th> <th>127</th> <th>49</th> <th>0,1</th> <th>51,8</th> <th>38,7</th> <th>0,25</th>	Cs	0,21	0,27	0,09	0,23	0,23	0,14	0,15	26,7	18,9	20	41,7	127	49	0,1	51,8	38,7	0,25
Sr 1,1 2,6 71,6 56 93,9 112,2 <0.5	Ba	14	46	36	27	83	52	10	109	20	38	269	85	548	17	681	398	44
Ga 6.5 8.1 7.2 6.8 8.1 9.6 11,5 19.6 23.8 40.8 23.6 23 24.2 16.8 20.8 17.9 17.9 17.9 Ta 0,17 0.07 <0.05 0.15 2.57 0.41 0.05 <0.05 <0.05 1.06 <0.05 0.74 <0.05 <0.05 <0.05 0.06 1.06 <0.05 .0.07 <0.05 <0.05 0.06 1.06 <0.05 .0.07 <0.05 <0.05 <0.05 0.05 1.1,5 11.12 11.37 <0.05 <0.05 <0.07 Nb 1.32 2.11 1.67 1.87 1.79 2.84 1.79 1.72 3.83 3.03 5.92 2.64 1.73 1.79 2.87 3.29 3.55 3.01 3 1.82 1.79 1.78 1.59 7.79 3.48 158 21.28 11.45 17.78 159 55.3 7.7 7.3 24.9 8.23 13.67 1.3 0.5 8.6 1.7 2.2 <0.1 0.2 <t< th=""><th>Sr</th><th>1,1</th><th>2,6</th><th>71,6</th><th>56</th><th>93,9</th><th>112,2</th><th><0.5</th><th>151</th><th>143,8</th><th>645,8</th><th>277,4</th><th>332,2</th><th>316,4</th><th>364,5</th><th>608,3</th><th>279</th><th>126,3</th></t<>	Sr	1,1	2,6	71,6	56	93,9	112,2	<0.5	151	143,8	645,8	277,4	332,2	316,4	364,5	608,3	279	126,3
Ta 0,17 0,07 <0.05	Ga	6,5	8,1	7,2	6,8	8,1	9,6	11,5	19,6	23,8	40,8	23,6	23	24,2	16,8	20,8	17,9	17,2
Nb 1,32 2,11 1,67 1,87 22,97 3,43 3,03 5,92 2,61 6,37 11,56 12,5 11,12 11,37 10,9 7,94 1,15 Hf 0,16 0,08 1,01 1,19 14,11 1,23 0,92 2,54 1,73 1,79 2,87 3,29 3,25 3,01 3 1,82 1,79 Zr 4,3 6,5 38,6 40,4 48,8 46 <0.5	Та	0,17	0,07	<0.05	0,15	2,57	0,41	0,05	<0.05	< 0.05	0,52	<0.05	1,06	<0.05	0,74	<0.05	< 0.05	0,07
Hf 0.16 0.08 1.01 1.19 14.11 1.23 0.92 2.54 1.73 1.79 2.87 3.29 3.55 3.01 3 1.82 1.79 Zr 4.3 6.5 38.6 40.4 48.8 46 <0.5 148.9 92.9 82.3 134.8 158 212.8 114.5 177.8 159 55.33 Y 3.89 7.67 8.71 7.72 9.24 10.09 10.12 39.85 49.96 32.93 26.92 44.1 31.15 21.3 24.37 21.99 22.56 U <0.05 <0.02 0.28 0.21 0.07 0.59 2.33 0.67 0.21 5.98 0.7 0.31 <0.05 0.36 0.16 La 4.3 12.9 8.2 18.6 10.9 8.6 3.2 14.9 28.3 22.5 24.2 32.9 32.5 2.07 23.4 19.9 4.3 Ce 4.9 7.2 13 36.7 12.7 16.4 10.8 26.7	Nb	1,32	2,11	1,67	1,87	22,97	3,43	3,03	5,92	2,61	6,37	11,56	12,5	11,12	11,37	10,9	7,94	1,15
Zr 4,3 6,5 38,6 40,4 48,8 46 <0.5	Hf	0,16	0,08	1,01	1,19	14,11	1,23	0,92	2,54	1,73	1,79	2,87	3,29	3,55	3,01	3	1,82	1,79
Y 3,89 7,67 8,71 7,72 9,24 10,09 10,12 39,85 49,96 32,93 26,92 44,1 31,15 21,3 24,37 21,99 22,56 Th <0.1 0,2 0,6 0,7 9,4 0,8 0,4 0,8 0,1 1,3 0,5 8,6 1,7 2,2 <0.1 0,2 0,5 0,56 0,21 5,98 0,7 0,31 <0.05 0,36 0,16 La 4,3 12,9 8,2 18,6 10,9 8,6 3,2 14,9 28,3 22,5 24,2 32,9 32,5 20,7 23,4 19,9 4,3 Ce 4,9 7,2 13 36,7 12,7 16,4 10,8 26,7 18,9 20 41,7 127 49 24,9 51,8 38,7 10,2 Pr 0,83 2,62 1,93 1,77 1,99 2,12 1,46 3,78 5,83 3,17 50,4 5,82 5,25 6,86 3,54 1,48 Nd	Zr	4,3	6,5	38,6	40,4	48,8	46	<0.5	148,9	92,9	82,3	134,8	158	212,8	114,5	177,8	159	55,3
In <0.1	Y TI	3,89	7,67	8,71	7,72	9,24	10,09	10,12	39,85	49,96	32,93	26,92	44,1	31,15	21,3	24,37	21,99	22,56
U <0.05	In 	<0.1	0,2	0,6	0,7	9,4	0,8	0,4	0,8	0,1	1,3	0,5	8,6	1,7	2,2	<0.1	0,2	0,5
La 4,3 12,9 6,2 16,6 10,9 6,6 3,2 14,9 26,3 22,3 24,2 32,5 20,7 23,4 19,9 4,3 Ce 4,9 7,2 13 36,7 12,7 16,4 10,8 26,7 18,9 20 41,7 127 49 24,9 51,8 38,7 10,2 Pr 0,83 2,62 1,93 1,77 1,99 2,12 1,46 3,78 5,83 3,17 5,04 6,34 5,82 5,25 6,86 3,54 1,49 Nd 4 8,9 7,9 7,5 9 10,5 6,9 19 26,2 12,7 22,1 25,7 25,5 20,9 30,6 18,9 7,3 Sm 0,7 1,9 2 1,9 2,2 2,5 2 4,7 6,2 3,3 4,5 6,7 5,8 3,9 5,8 3,5 2,2 Eu <0.05 0,44 0,63 0,34 0,52 0,54 0,7 1,65 2,03		<0.05	<0.05	0,29	0,28	0,28	0,21	0,07	0,59	2,33	0,67	0,21	5,98	0,7	0,31	<0.05	0,36	0,16
4,9 $7,2$ 13 $30,7$ $12,7$ $10,4$ $10,6$ $20,7$ $16,9$ 20 $41,7$ 127 49 $24,9$ $51,8$ $38,7$ $10,2$ Pr $0,83$ $2,62$ $1,93$ $1,77$ $1,99$ $2,12$ $1,46$ $3,78$ $5,83$ $3,17$ $5,04$ $6,34$ $5,82$ $5,25$ $6,86$ $3,54$ $1,48$ Nd 4 $8,9$ $7,9$ $7,5$ 9 $10,5$ $6,9$ 19 $26,2$ $12,7$ $22,1$ $25,7$ $25,5$ $20,9$ $30,6$ $18,9$ $7,3$ Sm $0,7$ $1,9$ 2 $1,9$ $2,2$ $2,5$ 2 $4,7$ $6,2$ $3,3$ $4,5$ $6,7$ $5,8$ $3,9$ $5,8$ $3,5$ $2,2$ Eu $<0,05$ $0,44$ $0,63$ $0,34$ $0,52$ $0,54$ $0,7$ $1,65$ $2,03$ $0,88$ $1,78$ $1,77$ $1,28$ $1,75$ $0,98$ $1,02$ Gd $0,57$ $1,79$ $1,37$ $1,81$ $2,54$ $2,34$ $2,33$ $5,63$ $7,32$ $4,75$ $6,04$ $5,96$ $6,5$ $4,55$ $5,24$ $4,62$ $3,33$ Tb $0,15$ $0,26$ $0,24$ $0,26$ $0,2$ $0,31$ $0,26$ $0,95$ $1,25$ $0,69$ $0,9$ $0,89$ $0,91$ $0,67$ $0,67$ $0,52$ $0,71$ Dy $0,65$ $1,83$ $1,71$ $1,61$ $1,47$ $2,24$ $1,87$ $6,74$ 8 $4,42$ $5,17$ $6,$	La	4,3	12,9	o,∠ 10	18,0	10,9	8,0	3,∠ 10.0	14,9	28,3	22,5	24,2	32,9	32,5	20,7	23,4	19,9	4,3
Pr 0.63 2.62 1.93 1.77 1.99 2.12 1.46 3.76 5.03 5.17 5.04 6.34 5.02 5.25 6.06 5.34 1.44 Nd 4 8.9 7.9 7.5 9 10.5 6.9 19 26.2 12.7 22.1 25.7 25.5 20.9 30.6 18.9 7.3 Sm 0.7 1.9 2 1.9 2.2 2.5 2 4.7 6.2 3.3 4.5 6.7 5.8 3.9 5.8 3.5 2.2 Eu <0.05	Ce Dr	4,9	7,2	102	30,7	12,7	10,4	10,0	20,7	10,9	20	41,7 5.04	6.24	49 5 00	24,9	51,0	30,7	1 40
Nu46,97,97,5910,36,91926,212,722,123,729,520,930,616,97,3Sm0,71,921,92,22,524,76,23,34,56,75,83,95,83,52,2Eu<0.05	FI	0,03	2,02	1,93	1,77	1,99	2,12	1,40	3,70	5,65	3,17	5,04 22.4	0,34	0,0Z	5,25	0,00	3,34	1,40
Sin 0,7 1,9 2 1,9 2,2 2,3 2 4,7 6,2 3,3 4,3 6,7 5,6 3,9 5,6 3,5 2,2 2,2 2,3 2 4,7 6,2 3,3 4,3 6,7 5,6 3,9 5,6 3,5 2,2 2,2 2,3 2 4,7 6,2 3,3 4,3 6,7 5,6 5,5 5,6 3,5 5,6 3,5 5,6 3,5 5,6 3,5 5,6 3,5 2,2 2,2 2,3 2,2 0,15 0,05 0,44 0,63 0,34 0,52 0,54 0,7 1,65 2,03 0,88 1,78 1,57 1,75 1,28 1,75 0,98 1,02 Gd 0,15 0,26 0,24 0,26 0,2 0,31 0,26 0,95 1,25 0,69 0,9 0,89 0,91 0,67 0,67 0,52 0,71 Dy 0,65 1,83 1,71 1,61 1,47 2,24 1,87 6,74 8 4,42 5,17	NU Sm	4	0,9	7,9	7,5	9	10,5	0,9	19	20,2	12,7	22,1	25,7	20,0	20,9	50,6	10,9	7,3
Eu Co.03 0,44 0,03 0,34 0,32 0,34 0,7 1,03 2,03 0,88 1,78 1,73 1,23 1,73 1,23 1,73 0,98 1,02 Gd 0,57 1,79 1,37 1,81 2,54 2,34 2,33 5,63 7,32 4,75 6,04 5,96 6,5 4,55 5,24 4,62 3,3 Tb 0,15 0,26 0,24 0,26 0,2 0,31 0,26 0,95 1,25 0,69 0,9 0,89 0,91 0,67 0,67 0,52 0,71 Dy 0,65 1,83 1,71 1,61 1,47 2,24 1,87 6,74 8 4,42 5,17 6,39 5,99 4,31 4,61 3,74 4,21 Ho 0,15 0,34 0,33 0,38 0,37 0,39 1,21 1,47 1,02 1,13 1,33 1,05 0,81 0,87 0,75 0,91 Er 0,65 0,78 0,87 0,74 0,84 1,17 <td< th=""><th>5m Eu</th><th><0.05</th><th>1,9</th><th>2 0.62</th><th>1,9</th><th>2,2</th><th>2,5</th><th>0.7</th><th>4,7</th><th>2.02</th><th>ى,ى م مە</th><th>4,5</th><th>0,7</th><th>0,0 1 75</th><th>3,9</th><th>5,0 1 75</th><th>3,5</th><th>2,2</th></td<>	5m Eu	<0.05	1,9	2 0.62	1,9	2,2	2,5	0.7	4,7	2.02	ى,ى م مە	4,5	0,7	0,0 1 75	3,9	5,0 1 75	3,5	2,2
0,57 1,79 1,57 1,61 2,34 2,35 3,63 7,92 4,73 6,04 5,36 6,3 4,53 5,24 4,62 5,35 Tb 0,15 0,26 0,24 0,26 0,2 0,31 0,26 0,95 1,25 0,69 0,9 0,89 0,91 0,67 0,67 0,52 0,71 Dy 0,65 1,83 1,71 1,61 1,47 2,24 1,87 6,74 8 4,42 5,17 6,39 5,99 4,31 4,61 3,74 4,21 Ho 0,15 0,34 0,33 0,3 0,38 0,37 0,39 1,21 1,47 1,02 1,13 1,33 1,05 0,81 0,87 0,75 0,91 Er 0,65 0,78 0,87 0,74 0,84 1,17 1,15 4,06 4,59 3,35 3,05 4,33 3,21 1,91 2,53 2,24 2,38 Tm 0,05 0,11 0,14 0,11 0,13 0,16 0,55 0,55 <	Eu	<0.05	0,44	0,03	0,34	0,52	0,54	2 2 2 2	1,00	2,03	0,00	6.04	1,57	1,75	1,20	5.24	0,90	1,02
Dy 0,13 0,26 0,24 0,26 0,26 0,27 0,31 0,26 0,93 1,25 0,09 0,11 0,09 0,09 0,10 0,05 0,11 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 <	Gu Th	0,57	1,79	1,37	1,01	2,54	2,34	2,33	0.05	1,52	4,75	0,04	0,90	0,0	4,55	0.67	4,02	0.71
by 0,05 1,05 1,07 1,07 1,47 2,24 1,07 0,14 0 1,03 1,01 1,17 1,07 0,14 0 1,13 1,03 1,05 0,15 0,15 0,34 0,33 0,38 0,37 0,39 1,21 1,47 1,02 1,13 1,33 1,05 0,81 0,87 0,75 0,91 Er 0,65 0,78 0,87 0,74 0,84 1,17 1,15 4,06 4,59 3,35 3,05 4,33 3,21 1,91 2,53 2,24 2,38 Tm 0,05 0,11 0,14 0,11 0,13 0,16 0,55 0,55 0,48 0,43 0,54 0,27 0,31 0,2 0,25 0,3 Yb 0,4 1 0,7 0,9 1,1 0,9 3,3 3,6 2,9 2,5 3,4 2,8 2,4 2 1,8 2,5		0,15	1.83	0,24	0,20	1 47	2.24	0,20	0,95	1,20	0,09	5 17	0,89	5 00	0,07	0,07	3.74	4 21
Image: Note of the o	Но	0,05	1,03	1,11	1,01	0.38	2,24 0 37	1,07	1 21	1 47	4,42 1 02	1 12	0,09	1.05	4,31	4,01	0.75	+,∠1 ∩ 01
Tm 0,05 0,11 0,14 0,11 0,13 0,16 0,55 0,55 0,48 0,43 0,54 0,27 0,31 0,2 0,25 0,33 Yb 0,4 1 0,77 0,9 1,1 0,9 3,3 3,6 2,9 2,5 3,4 2,8 2,4 2 1,8 2,5	Fr	0,15	0,34	0,33	0,3	0,30	1 17	1 15	4.06	4 50	3 35	3 05	1,00	3 21	1 01	2.52	2 24	2 22
Yb 0,4 1 0,7 0,9 1,1 0,9 3,3 3,6 2,9 2,5 3,4 2,8 2,4 2 1,8 2,5	Tm	0,05	0,70	0,07	0,74	0,04	0.13	0.16	4,00 0.55	4,59 0.55	0.48	0.43	4,55 0.54	0.27	0.31	2,55	2,24 0 25	2,30 0 3
	Yb	0.4	0,11	0.7	0.7	0.9	1 1	0.9	3.3	3.6	2 Q	25	3.4	28	24	2,2	1.8	2.5
LU I <0.05 0.1 <0.05 <0.05 0.13 0.05 <0.05 0.63 0.72 0.58 0.23 0.63 0.33 0.3 0.19 0.19 0.27	Lu	<0.05	0.1	< 0.05	< 0.05	0,13	0.05	<0.05	0.63	0.72	0.58	0.23	0.63	0.33	0.3	0.19	0.19	0.22

Tabela 4.01 - Dados químicos de Botuporã e das rochas máficas do embasamento arqueano

5 - Diques máficos no Complexo Paramirim e basaltos da unidade Cristais

Fora do contexto do Espinhaço ocorrem rochas máficas que também foram amostradas pela equipe do projeto. Foram coletadas quatro amostras de diques no vale do Paramirim, duas de um dique intrusivo no contexto do Complexo Santa Isabel, três de basaltos da unidade Cristais e uma do greenstone belt de Riacho de Santana (RS).

O tratamento geoquímico destas amostras só é possível de forma bastante superficial, já que não existe nenhum tipo de relação, tanto composicional, quanto de continuidade física entre elas, que permitam alguma correlação, com exceção das duas amostras de um dique no Complexo Santa Isabel. Os dados das 10 amostras estão na tabela 4.01, do capítulo anterior.

Caracterização geoquímica

As amostras em estudo são representantes de magmas bastante diferenciados, com razões mg# de no máximo 56. Se for considerada a amostra do greenstone belt de Riacho de Santana este valor chega a 59. As razões Ti/Zr evidenciam dois conjuntos, um deles, constituído pelas amostras de diques estudados no Projeto Vale do Paramirim, tem valor médio de 132, análogo ao observado para os gabros chamados de m1 (Teixeira, 2008) da Chapada Diamantina, sugestivo que possam pertencer ao mesmo magmatismo. O restante das amostras mostra razões em torno de 92, próximas ao valor condrítico, que é o esperado para as rochas básicas (Sun & McDonough, 1989, Wilson, 1989).

Todo o conjunto é toleítico (figura 5.01),

Figura 5.01 – Diagrama de Jensen

bastante evoluído o que lhe confere um enriquecimento em ferro, com exceção da amostra de Riacho de Santana que é mais magnesiana.

Os teores da maioria dos elementos traços, conforme a tabela 4.01, são normais para rochas básicas toleíticas com o grau de diferenciação indicado pelos valores de mg#. Chamam a atenção os baixos teores de Ni em todas as amostras. Quanto aos elementos traços incompatíveis, os basaltos da unidade Cristais exibem baixos teores de Nb se comparados aos diques do vale e de Santa Isabel e inferior ao teor de Riacho de Santana. A mesma relação de grandeza é observada para o Zr e o Th. Provavelmente estes valores estão colocando em evidência a presença de contaminação crustal que foi maior nos diques que em Cristais e muito menor no gabro associado ao greenstone belt de Riacho de Santana.

Os espectros de ETR das figuras 5.02A e B são comuns nas rochas toleíticas continentais, com fracionamento dos ETR leves e sem anomalias significativas de Eu. As amostras de Cristais mostram persistente enriquecimento de ETR pesados, sugestivo de uma origem a partir de uma fusão parcial em profundidades onde a granada não era estável. A amostra de Riacho de Santana mostra espectro plano, típico das rochas máficas dos greenstone belts.

Figura 5.02 – A: diagrama multielementar e B: espectros de ETR.

As razões Zr/Y e Nb/Y mostram comportamento distinto entre as amostras no diagrama da figura 5.03. A distribuição das amostras dos diques sugere uma fonte análoga à dos basaltos dos platôs oceânicos sujeita a ação de plumas mantélicas. O posicionamento grosseiramente horizontal é sugestivo da presença de contaminação crustal que teria sido bem mais intensa nos diques de Santa Isabel. Os basaltos de Cristais e a amostra de Riacho de Santana se colocam no campo dos MORB produzidos pela fusão parcial de manto empobrecido.

Conclusão

Em resumo, e com muito cuidado em função do número de amostras e das limitações das análises, podese concluir que as rochas estudadas neste item são toleíticas; os diques são continentais com contaminação crustal acentuada e as amostras de Cristais têm características que lembram os N-MORB.

Figura 5.03 – Diagrama de Condie (2005). PM: manto primitivo; DEP: manto empobrecido profundo; DM: mato empobrecido raso; UC: crosta continental superior; EN: componente enriquecido; ARC: arco magmático; NMORB: MORB normal. A seta indica a direção da contaminação crustal. . Mesma legenda da figura 5.01.

6 – Rochas vulcânicas félsicas e granitóides

As rochas ígneas félsicas da área são de dois tipos. Rochas vulcânicas, que afloram na parte oriental da serra do Espinhaço e granitóides, associados às litologias do vale do Paramirim. Os granitos estudados neste projeto serão os de Boquira, aflorantes no interior da mina desativada de chumbo. Tanto as vulcânicas, quanto os granitos já foram objeto de estudos anteriores pelo Projeto Vale do Paramirim (Arcanjo et al, 2000; Teixeira, 2000) e os resultados aqui obtidos serão comparados com os daquele projeto. O presente estudo teve por objetivo ampliar o conhecimento que se tinha destas unidades.

6.1 Vulcânicas

As rochas vulcânicas do Espinhaço, que já vem sendo alvo de estudos há bastante tempo (McHeath et al, 1981; Teixeira, 2000), são alcalinas saturadas, peraluminosas e sua composição e idade permitiu que fossem associadas de alguma forma ao magmatismo Rio do Remédios da Chapada Diamantina, também alcalino. Dados recentes (de Danderfer et al, 2009 e deste projeto) indicam a presença de dois magmatismos alcalinos de mesma natureza no Espinhaço: o mais conhecido com idade de 1,74 Ga e outro mais recente com 1,58 Ga.

Caracterização geoquímica

Estas rochas se apresentam metassomatizadas e fortemente intemperisadas, o que causa fortes distúrbios na composição química das amostras como pode ser visto na tabela 6.01, que contém também sete amostras das formações ferríferas que serão vistas no capítulo 7. A alteração é mais visível nos teores dos elementos maiores, em especial o CaO que praticamente não ocorre em nenhuma amostra, o mesmo ocorrendo com o Na₂O. Pelo lado oposto o K₂O se encontra fortemente enriquecido, com teores acima de 10%, sugestivo da presença de uma mobilização que substituiu CaO e Na₂O por K₂O. Algumas amostras não puderam ser utilizadas em nenhum momento, pois estão com o balanço químico completamente comprometido.

Figura 6.01 – A: diagrama R1R2 modificado de La Roche et al (1980) e B: diagrama de Frost & Frost (2011).

Um dos poucos diagramas que mostram alguma coerência é o R1R2 (modificado de La Roche et al, 1980) que agrupa os vários elementos maiores e tende a diluir o efeito dos distúrbios verificados

nas análises. Na figura 6.01A, a distribuição das amostras cria um trend alcalino saturado, idêntico ao que havia sido definido com amostras do Projeto Vale do Parmirim (Teixeira, 2000), não mostrados aqui. O magmatismo Rio dos Remédios ocupa posição mais compatível com magmatismo subalcalino, no mesmo diagrama, apesar de também ser alcalino. Outra diferença entre os dois magmatismos é a pequena extensão de diferenciação no Rio dos Remédios, com forte predomínio dos termos riolíticos e dacíticos.

O diagrama SiO₂ x (Fe/Fe+Mg), da figura 6.01B, mostra valores muito elevados da razão de Fe, mas mesmo que tenha havido alguma perda no conteúdo de MgO, mostra que o magmatismo é ferroso, na conceituação de Frost & Frost (2001), compatível com sua natureza alcalina.

Os elementos traço se mostram um pouco menos móveis que os maiores, o que torna seus conteúdos mais confiáveis. Os espectros, no diagrama multielementar normalizado pelo manto primordial (figura 6.02 A), exibem enriquecimento tanto em LILE, quanto em HFSE, com fortes anomalias negativas de Sr nas amostras mais diferenciadas e um pouco menores nas mais primitivas, sugestivas de forte fracionamento do elemento. As anomalias negativas de P e Ti também são muito acentuadas. Este conjunto de características é típico de magmatismo alcalino saturado. Um fato importante é a ausência de anomalia significativa de Ta-Nb na maioria das amostras. Apenas duas amostras mostram anomalias negativas têm, freqüentemente, comportamento diverso do das demais, que pode ter sido causado pela presença de um componente crustal em sua história, a partir de fusão parcial ou de contaminação.

Na figura 6.02B estão os espectros de ETR. Sua forma geral é caracterizada por forte fracionamento dos elementos, tanto leves quanto pesados e anomalias negativas de Eu persistentes, porem pouco acentuadas. Estes espectros são mais compatíveis com magmatismo alcalino do subtipo A1de Eby (1992), cuja origem é predominantemente mantélica. O espectro da amostra KM-182 destoa do conjunto, pelos seus baixos conteúdos de ETR pesados. O espectro dela também é destoante na figura anterior, o que mostra a presença de heterogeneidade composicional neste magmatismo.

Figura 6.02 - Vulcânicas félsicas. A: diagrama multielementar; B: espectros de ETR.

Os pontos representativos das amostras no diagrama (Y+Nb)xRb (Pearce, 1996), não mostrado, se posicionam no campo do magmatismo intraplaca. No diagrama de Eby (1992) da figura 6.03A se posicionam no campo do magmatismo alcalino do tipo A1, tidos como de origem mantélica. No mesmo diagrama as amostras JT-67e KM-11B, já citadas anteriormente, se posicionam no campo A2, de características mais continentais. As razões entre elementos incompatíveis mostradas na figura 6.03B, apontam para uma fonte mantélica para estas rochas, análoga a dos basaltos de ilhas oceânicas. No mesmo diagrama as duas amostras "diferentes" se posicionam numa região do gráfico onde plotam as rochas de origem crustal, ou com componente crustal importante, como, por exemplo, o extenso magmatismo Caraguataí com 2,6 Ga (Cruz et al, 2012; Teixeira, 2012), presente a SE da área, na região de Brumado.

Figura 6.03 – Vulcânicas félsicas. A: diagrama discriminante de Eby (1992) e B: diagrama de Eby (1990).

Conclusão

As vulcânicas félsicas do Espinhaço são alcalinas saturadas, muito alteradas tanto por hidrotermalismo como por intemperismo, têm quimismo compatível com magmatismo mantélico do tipo A1 de Eby (1992), que é produzido pela fusão parcial, em ambiente anorogênico, de um manto com composição análoga à dos que dão origem aos basaltos de ilhas oceânicas.

Através do quimismo não foi possível discriminar os dois magmatismos félsicos da área com idades de 1,74 e 1,58 Ga, respectivamente, pois a maioria das amostras se colocou dentro de um padrão evolutivo comum. Contudo, ficou bastante visível a diferença de quimismo, entre este vulcanismo félsico e o seu equivalente da Chapada Diamantina.

6.2 Granito de Boquira

Este granito foi definido anteriormente (Teixeira, 2000) como calcioalcalino de alto K, com idade de 2,04 Ga, análogo a alguns termos do batólito de Guanambi, definido por Rosa (1999), como shoshonítico. No presente trabalho, diferentemente do projeto Vale do Paramirim, as amostras foram coletadas no interior da mina de Boquira e seus dados químicos estão na tabela 6.01.

Caracterização geoquímica

As quatro amostras coletadas têm granulação grossa à pegmatítica, são rosadas e suas composições de elementos maiores são muito semelhantes as do granito do exterior da mina. São meta a peraluminosos, potássicos, com valores de K_2O e de Na_2O que chegam a mais de 7% e 4%, respectivamente. Estes valores são superiores aos que haviam sido detectados no outro projeto.

As diferenças mais marcantes entre os dois granitos dizem respeito ao conteúdo de elementos traço. No diagrama multielementar, da figura 6.04A, estão os espectros dos granitos de Boquira, juntamente com o espectro da amostra do projeto Vale do Paramirim e de uma amostra coletada na folha Riacho de Santana, de um granito associado ao batólito de Guanambi. A semelhança entre os espectros do granito de Boquira do exterior da mina e o de Guanambi é bastante evidente. Porém os espectros do interior da mina são muito diversos. No lado esquerdo do diagrama os teores de LILE são bem parecidos, porém o Ba está fortemente empobrecido nos granitos da mina, mostrando um forte fracionamento do elemento, que não ocorreu nos outros granitos. Os teores baixos dos granitos da mina, desde o Ta-Nb até Sm, não é comum e a explicação do processo que levou a estes conteúdos não é evidente. Os espectros do granito externo e de Guanambi, na mesma região do gráfico, são muito

mais enriquecidos (e normais). No lado direito a forte anomalia negativa de Ti e o enriquecimento em Tb e Y sugerem uma alcalinidade bem maior nestas rochas que nas demais.

O diagrama de ETR da figura 6.04B mostra as diferenças mais marcantes dos granitos da mina em relação aos demais. O segmento de elementos pesados, enriquecido e plano é característico de

Figura 6.04 - Granitóides. A: diagrama multielementar; B: espectros de ETR.

magmatismo do tipo A, o mesmo ocorrendo com as fortes anomalias negativas de Eu. Contudo, os teores relativamente baixos dos ETR leves estão a indicar a atuação de algum processo sin ou pósmagmático de difícil explicação, que não afetou os outros granitos. A petrografia das amostras não evidencia a presença de qualquer processo ou de minerais que justifiquem tal fato.

Conclusão

O comportamento dos elementos traços, muito particular no granito do interior da mina, sugere que o mesmo possa pertencer a outro magmatismo (ou outra fácies), diferente daquele que originou os granitos de fora e o de Guanambi, porque, com base nos dados disponíveis, não é possível explicar as desigualdades existentes como sendo o reflexo de uma diferenciação magmática simples.

Amostra	JT-67	KM-11A	KM-11B	LP-52B	LP-52C	KM-182	JT-14*	JT-29*	KM-99 B*	KM-161*	KM-108 E	KM-108 R	KM-108 S	KM-108 T	KM-108 U
Rocha	Vulcânica	Gran Boq													
SiO2	59,74	57,50	67,94	61,38	64,97	51,85	78,13	81,36	55,48	39,86	75,27	72,91	62,59	74,74	73,90
TiO2	1,12	1,11	0,79	0,86	1,65	3,49	0,35	0,40	1,13	1,16	0,04	0,04	0,04	0,04	0,04
AI2O3	16,50	16,69	12,28	16,89	11,73	14,74	15,33	12,58	17,77	20,59	13,76	15,05	17,91	13,84	13,62
Fe2O3t	9,66	9,54	7,07	8,75	11,33	17,74	4,82	4,59	15,01	14,57	1,39	1,87	1,57	1,43	1,43
MnO	0,08	0,02	0,02	0,02	0,25	0,05	0,02	0,01	0,01	0,19	0,04	0,06	0,18	0,02	0,03
MgO	0,63	0,06	0,06	0,03	0,54	0,55	0,02	0,01	0,08	7,08	0,13	0,32	0,35	0,13	0,14
CaO	0,44	0,37	0,08	0,15	0,29	0,35	0,13	0,12	0,33	11,08	0,47	0,12	4,83	0,54	1,11
Na2O	1,10	0,55	0,39	1,01	1,30	0,19	0,08	0,08	9,82	3,32	4,27	4,25	4,94	4,91	5,18
K2O	10,48	13,92	11,34	10,94	7,92	10,79	1,02	0,56	0,13	1,99	4,63	5,39	7,56	4,34	4,55
P2O5	0,25	0,22	0,03	0,01	0,02	0,26	0,09	0,30	0,22	0,17	0,02	<0,01	0,02	0,02	0,01
Cr2O3	0,01	0,01	0,01	0,01	0,01	<0.01	0,01	0,01	0,01	0,01	<0.01	<0.01	<0.01	<0.01	<0.01
PF orig.	1,15	0,18	0,2	1,19	0,36	0,94	0,47	0,46	0,46	1,23	0,53	0,61	4,07	0,56	1,07
Cr	68,3	67,3	68,2	72,0	71,1		70,9	69,8	71,5	70,7					
Ni	2	2,9	2,5	6,8	7	9	1,6	1,4	7	33,5	2	1,1	1,4	1,1	2,1
Со	4,7	1,8	2,3	3	6,5	5,2	0,4	0,2	2,3	22,5	0,4	0,2	0,3	0,2	0,4
Cu	2	2,2	5,8	5,8	8,5	10,8	1,1	0,7	1	38,8	3,7	109,6	2,9	11,4	10,3
Pb	8,3	5,9	9,6	13,7	16,5	96,3	3,2	1,6	4,2	2,3	32	975,4	63,8	157,9	77,3
Zn	5	8	8	8	42	24	<1	<1	11	53	8	295	20	47	11
Rb	181,2	236,2	213,3	287,2	215,3	244,9	15	9,5	0,7	28,1	116,8	153	183,3	126,8	139,6
Cs	2,3	0,95	0,58	0,91	0,9	92,7	0,1	0,08	0,06	0,52	22,6	25,6	25,5	18,3	19,7
Ва	2559	931	980	680	795	1109	52	98	7	458	212	422	488	153	150
Ga	20	16,7	15,3	18,9	18,3	25	21,8	19,6	31,2	12,8	13,7	15,9	19,2	15,4	13,8
Sr	76,2	19,2	8,2	15,4	31,5	33,9	69,9	868,7	22	233,5	60,7	70,6	120,8	54,7	55,1
Та	1,12	3,65	3,3	8,16	4,24	3,55	1,79	1,57	0,53	0,34	0,06	<0.05	<0.05	3,59	2,84
Nb	24,37	73,31	56,65	136,95	167,31	41,83	31,06	24,45	17,83	3,06	4,5	4,94	5,1	6,67	7,91
Hf	11,41	9,86	8,92	15,79	9,32	3,4	11,84	11,78	3,62	2	2,79	3,19	3,16	2,72	0,65
Y	92,42	35,8	75,26	46	35,6	22,68	23,34	53,44	21,77	13,82	63,82	121,57	103,48	64,03	41,85
Zr	598,2	540,7	401,7	572,5	437,9	210	520	497	187,5	146,8	129,8	119,1	128,1	126,9	33
Th	17,8	16	13,2	22	13,8	4,2	25	16,2	2,5	1,9	10,7	20,4	14,5	7,3	6,3
U	2,23	2,75	3,64	6,92	5,02	7,51	0,63	1,94	2,92	0,49	4,63	7,69	4,74	5,02	6,37
La	116,4	80,8	139,1	129,6	70,4	59,3	124,4	70,1	33,2	10,9	11,1	12,3	15,1	10,2	10,5
Ce	187,2	139,1	166,6	207,2	113,6	92,7	203,1	121	66,9	24,2	22,6	25,6	25,5	18,3	19,7
Pr	22,6	16,54	30,1	24,87	14,22	10,48	22,5	15,79	8,19	3,11	2,14	2,85	2,83	2,18	2,05
Nd	86,8	60,4	114	83,2	52,4	42,1	75,9	62,3	34	11,6	10,2	12,2	12,4	8,9	9,8
Sm	13,5	10,6	18,7	13,1	9,7	6,9	12	12,2	6,2	3,4	3,1	3,7	4,3	2,5	2,8
Eu	2,21	1,96	3,82	2,02	1,55	1,58	1,51	1,78	1,24	0,73	0,08	0,23	0,47	0,2	0,19
Gd	13,31	8,88	18,1	10,71	9,42	5,28	6,78	10,6	5,83	2,45	6,3	8,97	7,07	5,77	4,43
ai	1,8	0,98	2,34	1,58	1,09	0,61	0,77	1,58	0,82	0,34	1,24	1,84	1,86	1,16	0,85
Uy Us	12,56	6,6	13,58	8,23	6,54	4,64	4,23	10,04	4,76	2,55	9,04	16,14	13,6	8,61	6
H0	2,54	1,29	2,51	1,54	1,36	0,71	0,89	1,84	0,86	0,51	2,08	3,34	3,32	2,05	1,5
	7,92	4,02	7,44	4,35	4,08	2,34	3,13	5,11	2,59	1,55	0,96	11,72	9,89	0,14	4,14
im Vh	0,97	0,4	0,93	0,67	0,47	0,19	0,48	0,71	0,31	0,18	0,84	1,55	1,33	0,81	0,55
10 	7,5	3,4	0,C	4,6	3,1	1,2	4	0,1	2,4	1,6	5,6	9	8,4	5,1	3,9
LU	1,02	<0.05	0,76	0,7	0,29	0,26	0,33	0,69	0,29	0,09	0,92	1,49	1,35	0,77	0,51

Obs.: Amostras não utilizadas na interpretação

Tabela 6.01 - Dados químicos das rochas vulcânicas, dos granitos e das BIFs

Amostra	VB-26	VB-50 A	VB-42	AC-120	VB-88	AC-119	VB-87	Média	AC-128
Rocha	Gran Gua	BIF-RS	BIF-RS	BIF-RS	BIF-RS	BIF-RS	BIF-RS	BIF-RS	BIF-Boq
SiO2	61,51	38,41	41,26	42,43	60,67	62,31	64,94	51,67	48,35
TiO2	0,81	0,25	0,10	0,17	0,02	0,01	0,03	0,10	<0,01
AI2O3	16,86	2,63	1,49	2,11	0,20	0,22	0,78	1,24	0,28
Fe2O3t	4,88	49,51	51,03	49,34	38,68	33,49	33,59	42,61	51,30
MnO	0,07	1,01	0,52	1,65	0,14	0,53	0,34	0,70	0,04
MgO	1,77	7,63	4,76	2,20	0,08	1,55	0,18	2,73	<0,01
CaO	3,03	0,52	0,74	2,06	0,10	1,64	0,11	0,86	0,04
Na2O	4,15	<0,01	<0,01	0,07	0,04	0,10	<0,01	0,07	<0,01
K2O	6,63	0,02	0,05	0,13	<0,01	0,03	0,06	0,06	<0,01
P2O5	0,29	0,02	0,04	0,03	0,06	0,09	<0,01	0,05	0,02
Cr2O3	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01
PF orig.	1,14	0,82	<0.01	<0.01	0,09	0,34	0,81	0,52	0,86
Cr									
Ni	22,4	14,2	3,4	18,7	7,3	11,1	16,1	11,80	5,6
Со	9,8	7,1	0,6	4,7	5,2	1,9	2,9	3,73	1,6
Cu	17	51,5	9,3	9	4,6	2,3	30,6	17,88	17,8
Pb	48,2	5,3	9,2	4	5,8	1,7	68,7	15,78	1,9
Zn	67	<1	<1	<1	<1	<1	13	13,00	6
Rb	182,3	<0.2	2,7	3,3	<0.2	<0.2	1,6	2,53	<0.2
Cs	348,2	7,3	5,4	9	5,2	<0.1	6,2	6,62	0,6
Ва	2465	69	16	207	268	94	238	148,67	34
Ga	25,4	3,9	2,3	4	<0.1	5,7	0,7	3,32	1,2
Sr	1111,6	5,4	2,3	13	7,9	5,9	3,6	6,35	2,2
Та	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05
Nb	10,89	0,86	0,73	0,84	<0.05	<0.05	<0.05	0,81	< 0.05
Hf	9,77	0,37	0,53	0,38	<0.05	<0.05	<0.05	0,43	<0.05
Y	31,25	8,28	5,06	10,3	18,27	3,11	3,22	8,04	1,71
Zr	563,5	58,5	31,2	35,3	25,3	9,2	9,6	28,18	11,1
Th	21,9	0,3	1,1	1,7	<0.1	2,6	<0.1	1,43	1,2
U	3,86	0,45	0,51	0,89	0,37	3,36	0,31	0,98	0,2
La	189,1	5,7	5,2	8,6	12,2	<0.1	4,5	7,24	0,6
Ce	348,2	7,3	5,4	9	5,2	<0.1	6,2	6,62	0,6
Pr	31,65	0,62	0,7	1,17	1,93	<0.05	0,36	0,96	0,22
Nd	117	4,6	2,6	5,5	8,4	<0.1	2,2	4,66	1,2
Sm	15,8	0,8	0,8	1,6	1,6	<0.1	0,3	1,02	0,3
Eu	2,17	0,11	0,11	0,26	0,27	<0.05	<0.05	0,19	<0.05
Gd	7,76	1,38	0,51	1,81	2,17	<0.05	0,31	1,24	0,16
Tb	0,94	0,07	0,08	0,26	0,33	<0.05	0,06	0,16	<0.05
Dy	5,85	1,2	0,53	1,75	2,47	0,09	0,5	1,09	0,26
Но	0,77	0,2	0,06	0,37	0,41	< 0.05	0,06	0,22	<0.05
Er	2,86	0,9	0,65	1,2	1,25	0,17	0,39	0,76	0,24
Tm	0,21	0,06	<0.05	0,06	0,1	< 0.05	<0.05	0,07	<0.05
Yb	1,9	0,6	0,2	1	1,5	<0.1	<0.1	0,83	<0.1
Lu	0,21	0,09	0,06	0,14	0,25	0,07	0,06	0,11	0,06

7 – Formações ferríferas bandadas (BIF)

A caracterização destes tipos litológicos foi executada a partir de seis amostras originárias do greenstone belt de Riacho de Santana (RS), cujos dados químicos estão na tabela 6.01, do capítulo anterior, juntamente com as suas médias e os dados de uma amostra original do Complexo Boquira. Por estar em contexto geológico diferente, a amostra de Boquira não foi utilizada na caracterização.

As formações ferríferas são rochas sedimentares químicas definidas dentro de três tipos: (i) Algoma, originadas de atividades vulcanoexalativas, associadas à greenstone belt. Geralmente são de dimensões relativamente pequenas; (ii) Lago Superior, originadas de sedimentação marinha em plataformas continentais e (iii) Rapitan, produzidas em função de atividades glaciogênicas no Neoproterozóico. Através de suas composições químicas é possível verificar a presença de contribuições detrítica, a fonte de Fe e de Si e as condições ambientais que prevaleciam à época de sua deposição.

Caracterização geoquímica

Conforme se depreende da tabela 6.01 existe uma forte correlação negativa entre SiO₂ e Fe₂O₃t, os principais óxidos presentes, que são clássicas neste tipo litológico. Outra correlação positiva muito acentuada ocorre entre Al₂O₃ e TiO₂. Os teores destes dois elementos são baixos, pois ambos não participam da sedimentação química. Assim sua presença com forte correlação (figura 7.01) deve ser atribuída à contribuição de material clástico. Outro elemento que mostra correlação positiva com o Al é o Mg. A presença do MgO pode estar refletindo a presença de clorita, o que é normal, pois as BIF analisadas estão junto com rochas vulcânicas máficas ricas nesse óxido. Portanto é mais um aspecto da contribuição de material terrígeno.

Figura 7.01 – Diagrama mostrando a correlação positiva entre Al_2O_3 e TiO₂.

Figura 7.02 – Diagramas mostrando a compatibilidade de Zr com Al₂O₃ e TiO₂.

Entre os elementos traço o Zr se apresenta com teores baixos, entre 10 e 60 ppm, mas exibe correlação positiva, tanto com Al_2O_3 quanto com TiO₂ (figuras 7.02A e 7.02B, respectivamente). O

conteúdo e o comportamento desse elemento nas BIF também são atribuídos a contaminação com material terrígeno.

O Y é um elemento quimicamente similar aos elementos terras raras (ETR) e a maior similaridade ocorre entre Y e Ho (Bau & Dulski, 1999) e esta similaridade tem sido utilizada em estudos recentes das BIF (Basta et al, 2011; Alexander et al, 2008; Frei et al, 2008). As soluções hidrotermais submarinas, produzidas por atividades vulcanoexalativas (fumarolas) apresentam valores condríticos para a razão Y/Ho, em torno de 28. Materiais detríticos crustais tem valores Y/Ho em torno de 26 e na água do mar a razão tem valores altos, superiores a 45. Nas amostras de formação ferrífera estudada as razões Y/Ho variam entre 35 e 60 e média igual a 35. A correlação negativa entre Zr e Y/Ho, com as amostras mais contaminadas exibindo os menores valores, sugere que os teores originais não eram condríticos, ou seja, não eram iguais aos das fumarolas. Tais valores são coerentes com a deposição das BIFs a partir de uma mistura entre água do mar, como componente predominante, e soluções hidrotermais, em menor porcentagem.

No diagrama REY (Rare Earth and Y), com dados normalizados pelos valores condríticos e também pelos valores das rochas argilosas pós arqueanas da Austrália (PAAS), as BIFs arqueanas mostram grandes anomalias positivas o Eu, normalizado pelo condrito, que é um reflexo da presença da atmosfera anóxida que prevalecia neste período e da sua origem a partir de soluções hidrotermais de alta temperatura. À medida que a idade vai ficando menor e a atmosfera vai ficando mais e mais rica em oxigênio, os teores de Eu vão ficando menores, até que no Neoproterozóico as anomalias são negativas.

Na figura 7.03A, o espectro da média de Riacho de Santana (RS) exibe anomalia negativa de Eu e uma anomalia ligeiramente positiva de Y, mais compatíveis com os espectros de BIF do tipo Algoma do Neoproterozóico (comparar com Basta et al, 2011, por exemplo). O espectro da média normalizada pelo PAAS mostra padrão com enriquecimento de ETR pesados, que normalmente é considerado como herança da água do mar, da mesma forma que a anomalia negativa de Ce, é atribuída à oxidação da água do mar superficial.

Figura 7.03 – Diagramas REY. A: média das BIFs de Riacho de Santana normalizada pelo condrito e pelo PAAS; B: Comparação entre a média e os teores das possíveis fontes de BIF.

A figura 7.03B exibe uma comparação entre a média de RS com os valores de soluções hidrotermais de alta e baixa temperatura e água do mar profunda e rasa, segundo referências em Basta et al (2011), normalizados pelo PAAS. Soluções hidrotermais de alta temperatura produzem fortes anomalias positivas de Eu, que não ocorrem nas de baixa. A água do mar que é enriquecida em ETR pesados contem anomalias negativas de Ce e positivas de Y. O espectro da média do RS sugere que as BIF se formaram a partir de uma mistura de soluções hidrotermais de baixa temperatura com água do mar (superficial?), pois mostra valores intermediários entre os dois materiais. O enriquecimento em pesados é herança da água do mar e a ausência de anomalia de Eu, herdada de soluções hidrotermais de baixa temperatura.

Conclusão

A BIF de Riacho de Santana é do tipo Algoma, produzida pela atuação de fluidos hidrotermais, provavelmente de baixa temperatura, misturadas com água marinha superficial oxidada. A contaminação com material terrígeno de origem crustal, aparentemente, foi pequena. A composição química observada é mais compatível com formações ferríferas geradas no Neoproterozóico que arqueanas ou paleoproterozóicas, apesar da idade arqueana do greenstone.

8 – Referências bibliográficas

- ALEXANDER, B.W.; BAU, M.; ANDERSSON, DULSKI, P. Continentally-derived solutes in shallow Archean seawater: rare earth element and Nd isotope evidence in iron formation from the 2.9 Ga Pongola Supergroup, South Africa. *Geochimica et Cosmochimica Acta* 72, p. 378-394. 2008.
- ARCANJO, J.B.; MARQUES-MARTINS, A.A.; LOUREIRO, H.S.C.; VARELA, P.H.L., 2000. Projeto vale do Paramirim, escala 1:100.000. Programa de Levantamentos Geológicos Básicos do Brasil. CD-ROM
- ARNDT, N. T. Komatiites. Cambridge University Press. 467 p. 2008.
- ARNDT, N. T.; NISBET, E. G. What is komatiite? In: ARNDT, N. T.; NISBET, E. G. (Eds.). *Komatiites.* Londres : George Allen, 1982. Cap. 2, p. 19-27.
- BASTA, F.F.;MAURICE, A.E.; FONTBOTÉ, L.; FAVARGER, P-Y. Petrology and geochemistry of the banded iron formation (BIF) of Wadi Karim and Um Anab, Eastern Desert, Egypt: Implications for the origin of Neoproterozoic BIF. *Precambrian Research 187*, p. 277-292. 2011
- BAU, M. & DULSKI, P. Comparing yttrium and rare earths in hydrothermal foids from the Mid-Atlantic Ridge: implication for Y and REE behavior during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater. *Chemical Geology* 155, p. 77-90. 1999.
- BOYNTON, W. V. Geochemistry of rare earth elements: meteorite studies. In: Henderson P. (ed.) *Rare earth element geochemistry*. Elsevier. p. 63-114. 1984.
- CHAI, G. & NALDRETT, A.J. The Jinchuan ultramafic intrusion: cumulate of a high-Mg basaltic magma. *Journal of Petrology 33*, p. 277–303. 1992.
- CONDIE, K. C. High field strength element ratios in Archean basalts: a window to evolving sources of
- mantle plumes? Lithos 79, p. 491-504. 2005.
- CRUZ, S. C. P.; PEUCAT, J-J.; CARNEIRO, M. A.; MARTINS, A. A. M.; TEIXEIRA, L. R.; SOUZA, J. S.; BARBOSA, J. S. F.; LEAL A. B. M. The Caraguataí syenitic suite, a *ca* 2.7 Ga-old alkaline magmatism (petrology, geochemistry and U-Pb zircon ages): a Neoarchean crustal melting event in the southern part of the Gavião block (São Francisco Craton), Brazil. *Journal of South American Earth Sciences* 37, p. 1-18. 2011
- DANDERFER, A.; WAELE, B. de; PEDREIRA, A.J.; NALINI, H.A. New geochronological constraints on the geological evolution of Espinhaço basin within the São Francisco Craton-Brazil. *Precambrian Research* 170, p. 116-128. 2009.
- DAY, J.M.D.; PEARSON, D.G.; HULBERT,L. J. Rhenium-Osmium Isotope and Platinum-Group Element Constraints on the Origin and Evolution of the 1.27 Ga Muskox Layered Intrusion. *Journal of Petrology* 49, p. 1255-1295. 2008.
- EBY, G. N. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis. *Lithos* 26. p. 115-134. 1990.
- EBY, N. E. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. *Geology 20*, p. 641-644. 1992.
- FREI, R.; DAHL, P.S.; DUKE, E.F.; FREI, K.M.; HANSEN, T.R.; FRANDSSON, M.M.; JENSEN, L.A. Trace element and isotopic characterization of Neoarchean and Paleoproterozoic iron formation in the Black Hills (South Dakota USA): assessment of chemical change during 2.9-1.9

Ga deposition bracketing the 2.4-2.2 Ga first rise of atmospheric oxygen. *Precambrian Research 162*, p. 441-474. 2008.

- FROST, C. D. & FROST, B. R. On Ferroan (A-type) Granitoids: their Compositional Variability and Modes of Origin. *Journal Petrology* 52, p. 39-53. 2011
- HOFMAN, A. W. Chemical differentiation of the Earth: the relationship between mantle, continental
- crust, and oceanic crust. Earth and Planetary Science Letters 90. p. 297-314. 1988.
- HUANG, H.; POLAT, A.; FRYER, B.J.; APPEL, P.W.U.; WINDLEY, B.F. Geochemistry of the Mesoarchean Fiskenæsset Complex at Majorqap qâva, SW Greenland: Evidence for two different magma compositions. *Chemical Geology* 314-317, p. 66-82. 2012.
- HUPPERT, H. & SPARKS, R. S. Cooling and contamination of mafic and ultramafic magmas during ascent through continental crust. *Earth and Planetary Science Letters* 74, p. 371-386. 1985.
- IRVINE, T. N.; BARAGAR, W. R. A. A guide to the chemical classification of the common volcanic rocks. *Canadian Journal of Earth Sciences* 8, p. 523-548, 1971.
- JENSEN, L. S. A new cation plot for classifying subalkalic vocanic rocks. Ontário: Div. of Mines, 1976. 22 p. (Miscellaneous Paper, 66).
- LA ROCHE, H. DE; LETERRIER, J.; GRANDCLOUDE, P. et al. A classification of volcanic and plutonic rocks using R1R2 diagram major-elements analyses its relationships with current nomenclature. *Chemical Geology* 29, p. 183-210, 1980.
- LOUREIRO, H.S.C.; LIMA, E.C.; MACEDO, E.P. et al Geologia e recursos minerais da parte norte do corredor de deformação do Paramirim (Projeto Barra-Oliveira dos Brejinhos). Série Arquivos Abertos, 33. Convênio CPRM/CBPM. 2009.
- MCREATH, I.; SÁ, E. F. J.; FRYER, B. J. et al. As vulcânicas proterozóicas da região da Bacia do Rio Paramirim – Ba. In: Geologia e Recursos Minerais do Estado da Bahia: textos básicos. Salvador : CPM, 1981. v. 4, p. 121-134.
- NANCE, W.B & TAYLOR, S. R. Rare Earth Element Patterns and Crustal Evolution I. Australian Post Archean Sedimentary Rocks. *Geochimica et Cosmochimica Acta* 40, p. 1539-1551. 1976.
- PEARCE, J. A. Sources and settings of granitic rocks. *Episodes 19*, pp. 120-125. 1996.
- ROEDER, P.L. & EMSLIE, R.F. Olivine-liquid equilibrium. *Contributions to Mineralogy and Petrology* 29, p. 275–289. 1970
- ROSA, M. L. R. Geologia, Geocronologia, Mineralogia, Litogeoquímica e Petrologia do Batólito Monzo-Sienítico Guanambi-Urandi (SW – Bahia). Tese (Doutorado)- Instituto de Geociências, Universidade Federal da Bahia. Salvador, 186 p. 1999.
- SILVEIRA, W. P.& GARRIDO, I. A. A. *Projeto Riacho de Santana :* texto e mapas. Salvador: CBPM, 72 p. 1 998
- SOARES, J. V.; OLIVEIRA, N. S.; GARRIDO, I. A. A. et al. *Projeto Macaúbas* : texto e mapas. Salvador : CBPM, 1995. 96 p. il.
- SUN, S.S & MCDONOUGH, W. F. Chemical and isotopic systematics of oceanic basalts: mplications for mantle composition and processes. In: Saunders, A. D. and Norry, M. J. (eds). Magmatism in ocean basins. *Geol. Soc. London Spec. Pub.* 42. p. 315-345. 1989.
- TEIXEIRA, L. R. Projeto Vale do Paramirim. Relatório Temático de Litogeoquímica. Convênio CPRM/ BPM. 2000.
- TEIXEIRA, L. R. Projeto Barra-Oliveira dos Brejinhos. Relatório Temático de Litogeoquímica. Convênio CPRM/CBPM. 2008.
- TEIXEIRA, L. R. Projeto Brumado-Condeúba. Relatório Temático de Litogeoquímica. CPRM. 2012.

- VILJOEN, M. L.; VILJOEN, R. P. The geology and geochemistry of the lower ultramafic of the Onverwacht Group and a proposed new class of igneous rocks. *Trans. Geol. Soc. S. Afr. Spec. Publ.*, n. 2, p. 55-86, 1969.
- WANG, C.Y.; ZHOU, M-F.; QI, L. Permian flood basalts and mafic intrusions in the Jinping (SW China) – Song Da (northern Vietnam) district: Mantle sources, crustal contamination and sulfide segregation. *Chemical Geology 243*, p. 317-343. 2007.
- XIE, W; SONG, X-Y.; DENG, Y-F.; WANG, Y-S.; BA, D-H.; ZHENG, W-Q.; LI, X-B. Geochemistry and petrogenetic implications of a Late Devonian mafic–ultramafic intrusion at the southern margin of the Central Asian Orogenic Belt. *Lithos 144-145*, p. 209-230. 2012.
- WHALEN, J. B.; CURRIE, K. L.; CHAPELL, B. W. A-type granites: Geochemical characteristics, discrimination and petrogenesis. *Contribution to Mineralogy and Petrology* 95. p. 407-419. 1987.
- WILSON, M. Igneous Petrogenesis. London. 466 p. 1989.
- WOOD, D. A.; JORON, J. L.; TREUIL, M.; NORRY, M.; TARNEY, J. Elemental and Sr isotope variations in basic lavas from Iceland and the surrounding ocean floor. *Contribution to Mineralogy and Petrology* 70, p. 319-339. 1979.

Apêndice

Localização das amostras e tipo de rocha

				Localização		
Ν	ID	N. Laboratório	UTM N	UTM E	MC	Litologia
1	AC-119	HGF 089	8496720	721112	45	Formação ferrífera
2	AC-120	HGF 090	8504248	720900	45	Formação ferrífera
3	AC-128	HGF 091	8528482	765481	45	Formação ferrífera
4	AC-134	HGF 117	8463752	736441	45	Metagabro
5	JT-14	HDG 514	8469144	772130	45	Vulcânica félsica
6	JT-140	HGF 092	8544944	779968	45	Metabasalto
7	JT-141	HGF 093	8550268	779849	45	Metabasalto
8	JT-143 C	HGF 094	8560288	752928	45	Metagabro
9	JT-29	HDG 515	8473606	770709	45	Vulcânica félsica
10	JT-67	HDG 517	8524226	755512	45	Vulcânica félsica
11	KM-108 A	HGF 095	8583230	744830	45	Magnetita anfibolito
12	KM-108 E	HGF 096	8583230	744830	45	Granito
13	KM-108 H	HGF 097	8583230	744830	45	Mag anfibolito com galena
14	KM-108 R	HGF 098	8583230	744830	45	Granito
15	KM-108 S	HGF 099	8583230	744830	45	Granito
16	KM-108 T	HGF 100	8583230	744830	45	Granito
17	KM-108 U	HGF 101	8583230	744830	45	Granito
18	KM-11A	HDG 518	8552546	750102	45	Vulcânica félsica
19	KM-11B	HDG 519	8591820	733892	45	Vulcânica félsica
20	KM-161	HDG 522	8533202	758602	45	Rocha máfica/ultramáfica
21	KM-182	HGF 102	8559356	749959	45	Vulcânica félsica
22	KM-235	HGF 103	8551204	779798	45	Metabasalto
23	KM-34A	HDG 520	8551586	755187	45	Máfica talcificada
24	KM-99B	HDG 521	8560958	747717	45	Vulcânica félsica
25	LP-115	HGF 104	8608318	734054	45	Metagabro
26	LP-121	HGF 109	8615450	762256	45	Metagabro
27	LP-144 B	HGF 110	8602104	759523	45	Metagabro
28	LP-168	HGF 111	8583628	758216	45	Metagabro
29	LP-52A	HDG 523	8591190	750285	45	Rocha máfica/ultramáfica
30	LP-52B	HDG 524	8591190	750285	45	Vulcânica félsica
31	LP-52C	HDG 525	8591190	750285	45	Rocha máfica/ultramáfica
32	LP-77 B	HGF 105	8591450	749337	45	Metagabro
33	LP-78 A	HGF 106	8581370	745011	45	Metagabro
34	LP-86	HGF 107	8582414	738895	45	Metagabro
35	LP-92 A	HGF 108	8581666	735610	45	Metagabro
36	LR-01A	HDG 322	8548845	746658	45	Rocha máfica/ultramáfica
37	LR-01B	HDG 323	8548825	746642	45	Rocha máfica/ultramáfica
38	LR-01C	HDG 324	8548794	746613	45	Rocha máfica/ultramáfica
39	LR-01D	HDG 325	8548769	746629	45	Rocha máfica/ultramáfica
40	LR-02	HDG 326	8554229	746325	45	Rocha máfica/ultramáfica
41	LR-03	HDG 327	8553739	746527	45	Rocha máfica/ultramáfica
42	LR-04A	HDG 328	8605020	733097	45	Rocha máfica/ultramáfica
43	LR-04B	HDG 329	8605018	733038	45	Rocha máfica/ultramáfica
44	LR-04C	HDG 330	8604005	731796	45	Rocha máfica/ultramáfica
45	LR-05A	HDG 331	8603976	731853	45	Rocha máfica/ultramáfica
46	LR-05B	HDG 332	8604032	731784	45	Rocha máfica/ultramáfica
47	LR-05C		8604032	731784	45	Rocha máfica/ultramáfica
48	LR-06A	HDG 323	8586705	736554	45	Rocha máfica/ultramáfica
49	LR-06B	HDG 324	8586691	736532	45	Rocha máfica/ultramáfica
50	LR-06C	HDG 325	8586674	736519	45	Rocha máfica/ultramáfica

Ν	ID	N. Laboratório	UTM N	UTM E	MC	Litologia			
51	LR-06D	HDG 326	8586584	736596	45	Rocha máfica/ultramáfica			
52	LR-07A	HDG 327	8586924	736506	45	Rocha máfica/ultramáfica			
53	LR-07B	HDG 328	8586997	736513	45	Rocha máfica/ultramáfica			
54	LR-08	HDG 329	8587171	736280	45	Rocha máfica/ultramáfica			
55	LR-09	HDG 330	8587483	735004	45	Rocha máfica/ultramáfica			
56	LR-10	HDG 331	8588982	735750	45	Rocha máfica/ultramáfica			
57	LR-11A	HDG 332	8591830	733879	45	Rocha máfica/ultramáfica			
58	LR-11B	HDG 333	8591830	733879	45	Rocha máfica/ultramáfica			
59	LR-11C	HDG 334	8591802	733836	45	Rocha máfica/ultramáfica			
60	LR-12	HDG 335	8591480	733902	45	Rocha máfica/ultramáfica			
61	LR-13	HDG 336	8588766	734718	45	Rocha máfica/ultramáfica			
62	LR-14	HDG 337	8587746	735050	45	Rocha máfica/ultramáfica			
63	LR-15	HDG 338	8583218	735579	45	Rocha máfica/ultramáfica			
64	LR-16A	HDG 339	8513602	766775	45	Rocha máfica/ultramáfica			
65	LR-16B	HDG 340	8513580	766736	45	Rocha máfica/ultramáfica			
66	LR-17A	HDG 341	8517268	767923	45	Rocha máfica/ultramáfica			
67	LR-17B	HDG 342	8517257	767919	45	Rocha máfica/ultramáfica			
68	LR-17C	HDG 343	8517221	767908	45	Rocha máfica/ultramáfica			
69	LR-17D	HDG 344	8517218	767906	45	Rocha máfica/ultramáfica			
70	LR-18A	HDG 345	8609570	729771	45	Rocha máfica/ultramáfica			
71	LR-18B	HDG 346	8609588	729822	45	Rocha máfica/ultramáfica			
72	LR-19A	HDG 347	8611776	730213	45	Rocha máfica/ultramáfica			
73	LR-19B	HDG 348	8611829	730332	45	Rocha máfica/ultramáfica			
74	LR-20	HDG 349	8614510	728866	45	Rocha máfica/ultramáfica			
75	LR-21	HDG 350	8591340	735216	45	Rocha máfica/ultramáfica			
76	VB-102	HGF 116	8459880	745420	45	Metagabro			
77	VB-26	HGF 468	8487078	740954	45	Granito			
78	VB-42	HGF 112	8500660	721075	45	Formação ferrífera			
79	VB-50 A	HGF 113	8503542	721143	45	Formação ferrífera			
80	VB-53	HDG 438	8493442	762496	45	Rocha máfica/ultramáfica			
81	VB-69	HDG 439	8500950	722619	45	Rocha máfica/ultramáfica			
82	VB-87	HGF 114	8506544	720240	45	Formação ferrífera			
83	VB-88	HGF 115	8508044	721591	45	Formação ferrífera			

Resultados analíticos

Ν		1	2	3	4	5	6	7	8	9	10	11
ID	Método	AC-119	AC-120	AC-128	AC-134	JT-14	JT-140	JT-141	JT-143 C	JT-29	JT-67	KM-108 A
AI2O3	ICP95A	0,22	2,11	0,27	14,74	14,79	11,43	13,06	14,79	12,34	16,52	0,25
CaO	ICP95A	1,63	2,06	0,04	11	0,13	9,1	10,69	12,32	0,12	0,44	2,64
Cr2O3	ICP95A	< 0.01	<0.01	<0.01	0,01	<0.01	<0.01	0,03	0,05	<0.01	<0.01	<0.01
Fe2O3	ICP95A	33,21	49,41	50,35	14,13	4,65	15,15	13	11,7	4,5	9,67	41,39
K2O	ICP95A	0,03	0,13	<0.01	0,58	0,98	0,37	0,17	0,39	0,55	10,49	0,01
MgO	ICP95A	1,54	2,2	<0.01	6,76	0,02	3,73	5,97	9,02	<0.01	0,63	4,87
MnO	ICP95A	0,53	1,65	0,04	0,22	0,02	0,22	0,16	0,2	<0.01	0,08	0,49
Na2O	ICP95A	0,1	0,07	<0.01	2,65	0,08	2,68	2,81	1,54	0,08	1,1	0,02
P2O5	ICP95A	0,09	0,03	0,02	0,22	0,09	0,17	0,07	0,1	0,29	0,25	0,11
SiO2	ICP95A	61,79	42,49	47,46	49,29	75,4	53,95	51,68	46,52	79,81	59,82	50,52
TiO2	ICP95A	0,01	0,17	<0.01	2,03	0,34	1,89	1,37	1,34	0,39	1,12	0,03
LOI	ICP95A	0,34	< 0.01	0,86	1,32	0,47	0,54	1,43	0,9	0,46	1,15	1,59
Sum	ICP95A	99,5	100,15	99,01	102,95	96,97	99,25	100,44	98,86	98,56	101,28	101,92
		,	,	,	,	,	,	,	,	,	,	,
Ва	IMS95A	94	207	34	398	52	109	20	118	98	2559	29
Be	IMS95A	0.6	0.3	<0.1	<0.1	1	0.7	1.9	0.2	0.8	2.9	<0.1
Cs	IMS95A	0.11	1.59	< 0.05	0.42	0.1	< 0.05	0.68	0.33	0.08	2.3	< 0.05
Ga	IMS95A	5.7	4	1.2	17.9	21.8	19.6	23.8	20.1	19.6	20	<0.1
Hf	IMS95A	< 0.05	0.38	< 0.05	1.82	11.84	2.54	1.73	1.45	11.78	11.41	< 0.05
Nb	IMS95A	< 0.05	0.84	< 0.05	7.94	31.06	5.92	2.61	6.45	24.45	24.37	< 0.05
Rb	IMS95A	<0.2	3.3	<0.2	12.8	15	3.7	1.3	6.2	9.5	181.2	<0.2
Sn	IMS95A	< 0.3	< 0.3	3.1	< 0.3	4.5	3.8	9.4	< 0.3	3.5	3.3	1.9
Sr	IMS95A	5.9	13	2.2	279	69.9	151	143.8	204.1	868.7	76.2	8.7
Та	IMS95A	<0.05	<0.05	<0.05	<0.05	1 79	<0.05	<0.05	<0.05	1.57	1 12	<0.05
Th	IMS95A	2.6	1.7	1.2	0.2	25	0.8	0.1	<0.1	16.2	17.8	<0.1
U	IMS95A	3.36	0.89	0.2	0.36	0.63	0.59	2.33	0.35	1.94	2.23	1.71
Ŵ	IMS95A	<0.1	<0.1	<0.1	<0.1	0.3	<0.1	<0.1	0.3	14	0.8	<0.1
Y	IMS95A	3.11	10.3	1.71	21.99	23.34	39.85	49.96	18.52	53.44	92.42	5.41
Zr	IMS95A	9.2	35.3	11.1	159	520	148.9	92.9	92.5	497	598.2	14.1
		0,2	00,0	,.		020	,.	02,0	02,0		000,2	, .
Aa	ICM14B	0.29	0.17	0.07	0.53	0.02	0.07	0.16	0.33	0.02	0.01	1.04
Aŭ	ICM14B	<0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1	<0.1
As	ICM14B	3	<1	<1	<1	<1	<1	2	<1	<1	7	2
Bi	ICM14B	< 0.02	0,04	< 0.02	< 0.02	< 0.02	0,26	0,09	<0.02	<0.02	0.05	<0.02
Cd	ICM14B	0.02	0.03	0.01	0.18	0.09	0.03	0.04	0.03	0.03	0.07	0.25
Co	ICM14B	1,9	4,7	1,6	23,3	0,4	17	6,4	14,3	0,2	4,7	0,7
Cu	ICM14B	2,3	9	17,8	79,7	1,1	22,2	20,1	77,1	0,7	2	1,6
На	ICM14B	< 0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Mo	ICM14B	0.61	0.73	0.24	0.56	0.35	0.21	0.13	0.31	0.22	0.28	0.36
Ni	ICM14B	11,1	18,7	5,6	34,5	1,6	22,4	21,5	48,6	1,4	2	3,9
Pb	ICM14B	1.7	4	1.9	15.6	3.2	2.9	3.9	2.6	1.6	8.3	23
Sb	ICM14B	4.23	0.3	< 0.05	0.08	< 0.05	0.06	0.28	0.05	< 0.05	0.1	0.07
Se	ICM14B	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	7
Zn	ICM14B	<1	<1	6	55	<1	41	18	14	<1	5	24
Ce	IMS95R	<0.1	9	0,6	38,7	203,1	26,7	18,9	24,6	121	187,2	3
Dy	IMS95R	0,09	1,75	0,26	3,74	4,23	6,74	8	3,21	10,04	12,56	0,48
Er	IMS95R	0,17	1,2	0,24	2,24	3,13	4,06	4,59	2,08	5,77	7,92	0,52
Eu	IMS95R	< 0.05	0.26	< 0.05	0,98	1,51	1,65	2,03	1,06	1,78	2,21	0,08
Gd	IMS95R	< 0.05	1,81	0,16	4,62	6,78	5,63	7,32	3,17	10,6	13,31	0,31
Но	IMS95R	< 0.05	0,37	<0.05	0,75	0,89	1,21	1,47	0,58	1,84	2,54	0,06
La	IMS95R	<0.1	8,6	0,6	19,9	124,4	14,9	28.3	22.8	70.1	116.4	5.5
Lu	IMS95R	0.07	0,14	0.06	0,19	0,33	0.63	0,72	0.25	0.69	1.02	0.08
Nd	IMS95R	<0.1	5.5	1.2	18.9	75.9	19	26.2	13.9	62.3	86.8	1 4
Pr	IMS95R	< 0.05	1.17	0.22	3.54	22.5	3.78	5.83	3.03	15.79	22.6	< 0.05
Sm	IMS95R	<0.1	1.6	0.3	3.5	12	4.7	6.2	2.8	12.2	13.5	0.3
Tb	IMS95R	<0.05	0.26	<0.05	0.52	0 77	0.95	1 25	0.37	1.58	1.8	<0.05
Tm	IMS95R	<0.05	0.06	<0.05	0.25	0.48	0.55	0.55	0.08	0 71	0.97	<0.05
Yb	IMS95R	<0.1	1	<0.1	1,8	4	3,3	3,6	1,5	6,1	7,5	<0.1

ICP95A	fusão com metaborato de litio - leitura por ICP-OES
IMS95A	fusão com metaborato de litio - leitura ICP-MS
ICM14B	digestão com água régia - leitura com ICP-OES e ICP-MS
IMS95R	fusão com metaborato de litio - aleitura por ICP-MS

Ν		12	13	14	15	16	17	18	21	22	23	24
ID	Método	KM-108 E	KM-108 H	KM-108 R	KM-108 S	KM-108 T	KM-108 U	KM-11A	KM-182	KM-235	KM-34A	KM-99B
AI2O3	ICP95A	13,57	0,72	14,75	17,39	14,15	13,47	16,96	14,38	15,44	1,08	17
CaO	ICP95A	0,46	1,05	0,12	4,69	0,55	1,1	0,38	0,34	17,22	0,01	0,32
Cr2O3	ICP95A	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0,02	0,43	<0.01
Fe2O3	ICP95A	1,37	14,98	1,83	1,52	1,46	1,41	9,7	17,3	13,05	3,81	14,36
K2O	ICP95A	4,56	<0.01	5,28	7,34	4,44	4,5	14,15	10,52	0,16	<0.01	0,12
MgO	ICP95A	0,13	3,83	0,31	0,34	0,13	0,14	0,06	0,54	5,17	>30	0,08
MnO	ICP95A	0,04	0,3	0,06	0,17	0,02	0,03	0,02	0,05	0,18	0,04	0,01
Na2O	ICP95A	4,21	0,02	4,17	4,8	5,02	5,12	0,56	0,19	1,28	0,05	9,39
P2O5	ICP95A	0,02	0,04	< 0.01	0,02	0,02	0,01	0,22	0,25	0,13	< 0.01	0,21
SiO2	ICP95A	74,21	13,89	71,47	60,76	76,4	73,1	58,44	50,57	45,62	54,09	53,06
TiO2	ICP95A	0,04	0,03	0,04	0,04	0,04	0,04	1,13	3,4	1,23	0,01	1,08
LOI	ICP95A	0,53	12,28	0,61	4,07	0,56	1,07	0,18	0,94	1,57	4,97	0,46
Sum	ICP95A	99,12	47,12	98,64	101,14	102,78	99,99	101,81	98,48	101,04	95,94	96,1
Ва	IMS95A	212	<5	422	488	153	150	931	1109	38	10	7
Be	IMS95A	<0.1	1,1	2,8	2,4	1,2	2,3	5,7	0,9	3,3	<0.1	2
Cs	IMS95A	0,43	< 0.05	0,83	0,83	0,39	0,6	0,95	1,63	<0.05	0,15	0,06
Ga	IMS95A	13,7	0,5	15,9	19,2	15,4	13,8	16,7	25	40,8	11,5	31,2
Hf	IMS95A	2,79	< 0.05	3,19	3,16	2,72	0,65	9,86	3,4	1,79	0,92	3,62
Nb	IMS95A	4,5	< 0.05	4,94	5,1	6,67	7,91	73,31	41,83	6,37	3,03	17,83
Rb	IMS95A	116,8	<0.2	153	183,3	126,8	139,6	236,2	244,9	2,6	2,6	0,7
Sn	IMS95A	< 0.3	1,3	2	2,4	1,7	2,1	2,5	1,5	1,5	0,5	3
Sr	IMS95A	60,7	4,5	70,6	120,8	54,7	55,1	19,2	33,9	645,8	<0.5	22
Та	IMS95A	0,06	< 0.05	< 0.05	< 0.05	3,59	2,84	3,65	3,55	0,52	0,05	0,53
Th	IMS95A	10,7	0,5	20,4	14,5	7,3	6,3	16	4,2	1,3	0,4	2,5
U	IMS95A	4,63	4,17	7,69	4,74	5,02	6,37	2,75	7,51	0,67	0,07	2,92
w	IMS95A	<0.1	<0.1	<0.1	<0.1	0,6	<0.1	2,6	5,1	2,4	<0.1	1,6
Y	IMS95A	63,82	4,36	121,57	103,48	64,03	41,85	35,8	22,68	32,93	10,12	21,77
Zr	IMS95A	129,8	9,5	119,1	128,1	126,9	33	540,7	210	82,3	<0.5	187,5
۸a	ICM14B	2 23	>10	1.35	0.34	0.65	0.46	0.02	0.37	1	0.03	0.02
Δι	ICM14B	<0.1	1	<01	<01	<01	<01	<01	<01	-0 1	<01	<01
As	ICM14B	<0.1	3	<1	<0.1	<1	<1	8	3	<1	<1	8
Bi	ICM14B	0.07	16 74	0.05	<0.02	0.05	0 14	<0.02	0.21	0.25	<0.02	0.29
Cd	ICM14B	0.17	1914 67	4 83	0.36	0.88	0.39	<0.01	0.48	0.3	0.04	0 11
Co	ICM14B	0.4	3.2	0.2	0.3	0.2	0.4	1.8	5.2	3.9	2.5	2.3
Cu	ICM14B	3.7	>10000	109.6	2.9	11.4	10.3	2.2	10.8	11.6	_,=	_,1
На	ICM14B	< 0.01	0.75	<0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01	<0.01	<0.01
Mo	ICM14B	0,23	3,56	0,25	0,29	0,19	0,33	1,02	0,54	0,27	0,09	0,23
Ni	ICM14B	2	2,6	1,1	1,4	1,1	2,1	2,9	9	9	40	7
Pb	ICM14B	32	>10000	975,4	63,8	157,9	77,3	5,9	96,3	62,1	2,3	4,2
Sb	ICM14B	0,05	30,5	0,17	0,05	0,06	0,06	< 0.05	0,06	0,11	< 0.05	<0.05
Se	ICM14B	<1	8	<1	<1	<1	<1	<1	<1	<1	<1	<1
Zn	ICM14B	8	>10000	295	20	47	11	8	24	22	4	11
Ce	IMS05P	22 F	63	25 G	25 F	18.2	10.7	120 1	02 7	20	10.8	0 33
Dv	IMS95R	22,0	0,3	23,0	23,3	8.61	15,7	139,1	52,1 1.61	1 12	1 87	4 76
Er	IMS05R	5,04	0,30	11 72	9.80	6.14	1 11	4 02	2 34	3 35	1,07	2 50
Eu	IMS05R	0,00	0,04	0.23	0.47	0,14	0.10	1 96	1 58	0,88	0.7	1 2/
Gd	IMS05R	6.3	0,17	8 97	7.07	5 77	1 / 3	8.88	5.28	4 75	2 33	5.83
Ho	IMS95R	2 08	0,30	3.34	3.32	2 05	15	1 29	0,20	1 02	0.39	0,03
la	IMS95R	11 1	2.6	12 3	15.1	10.2	10.5	80.8	59 3	22 5	3.2	33.2
Lu	IMS95R	0 92	2,0 0.06	1 40	1.35	0.77	0.51	<0.05	0.26	0.58	<0.05	0.29
Nd	IMS95R	10.2	3.5	12.2	12 4	8 Q	9.01 9.8	60.4	42 1	12 7	6 9	.34
Pr	IMS95R	2 14	0,39	2 85	2 83	2 18	2 05	16 54	10 48	3 17	1 46	8 19
Sm	IMS95R	3.1	0.6	2,00	4.3	2.5	2.8	10.6	6.9	3.3	2	6.2
Tb	IMS95R	1.24	0.06	1.84	1.86	1.16	0.85	0.98	0.61	0.69	0.26	0.82
Tm	IMS95R	0.84	<0.05	1.55	1.33	0.81	0.55	0.4	0.19	0.48	0,16	0.31
Yb	IMS95R	5,6	0,2	9	8,4	5,1	3,9	3,4	1,2	2,9	0,9	2,4

ICP95A	fusão com metaborato de litio - leitura por ICP-OES
IMS95A	fusão com metaborato de litio - leitura ICP-MS
ICM14B	digestão com água régia - leitura com ICP-OES e ICP-MS
IMS95R	fusão com metaborato de litio - aleitura por ICP-MS

Ν		19	20	25	26	27	32	33	34	35	36	28
ID	Método	KM-11B	KM-161	LP-115	LP-121	LP-144 B	LP-77 B	LP-78 A	LP-86	LP-92 A	LR-01A	LP-168
AI2O3	ICP95A	14,77	19,94	13,29	14,18	12,94	15,67	3,62	16,25	13,75	16,15	15,1
CaO	ICP95A	13,53	10,73	8,98	10,32	14,62	11,32	10,23	8,21	11,73	13,81	8,51
Cr2O3	ICP95A	0,08	<0.01	<0.01	0,02	0,02	0,02	0,01	<0.01	0,05	0,11	0,01
Fe2O3	ICP95A	12,91	14,11	17,67	13,94	18,77	12,73	23,06	14,11	12,59	13,72	15,12
K2O	ICP95A	0,37	1,93	1,62	0,96	0,76	0,35	0,02	0,3	0,34	0,46	1,02
MgO	ICP95A	12,89	6,86	4,95	6,49	4,43	7,07	10,43	6,07	10,42	11,38	5,94
MnO	ICP95A	0,2	0,18	0,23	0,23	0,34	0,21	0,65	0,24	0,21	0,25	0,21
Na2O	ICP95A	1,66	3,22	2,09	2,29	0,68	2,22	0,13	3,66	1,96	1,8	3,3
P2O5	ICP95A	0,07	0,16	0,27	0,18	0,09	0,16	0,1	0,23	0,13	0,19	0,4
SiO2	ICP95A	43,28	38,6	47,53	46,37	44,72	49,4	50,96	48,53	48,84	43,95	48,62
TiO2	ICP95A	1,09	1,12	2,66	1,87	0,77	1,69	0,44	2	1,66	1,59	2,34
LOI	ICP95A	1,1	1,23	0,93	1,77	1,18	<0.01	1,13	1,31	1,19	1,12	0,84
Sum	ICP95A	101,95	98,08	100,24	98,63	99,32	100,76	100,8	100,91	102,86	104,54	101,41
Ва	IMS95A	121	458	468	269	85	165	96	102	47	80	548
Ве	IMS95A	<0.1	<0.1	<0.1	0,6	7,8	3,3	10,2	<0.1	<0.1	0,2	1,9
Cs	IMS95A	0,06	0,52	3,1	1,9	0,5	< 0.05	< 0.05	0,22	0,23	0,17	0,54
Ga	IMS95A	10,8	12,8	28,6	23,6	23	20,9	15,1	20,8	18,8	15,8	24,2
Hf	IMS95A	1.47	2	3.69	2.87	3.29	1.94	1.28	2.98	2.69	2.18	3.55
Nb	IMS95A	3,75	3,06	14,37	11,56	12,5	8,96	12,26	15,21	8,4	8,22	11,12
Rb	IMS95A	4,5	28,1	62,2	31,6	10,5	8,6	0,4	3,9	2,1	5,1	15,5
Sn	IMS95A	0.8	<0.3	0.7	<0.3	9.1	2.4	17.3	<0.3	0.4	<0.3	0.4
Sr	IMS95A	181,9	233,5	277,2	277,4	332,2	263,4	101	212,3	194,1	217,8	316,4
Та	IMS95A	0.2	0.34	0.62	< 0.05	1.06	0.73	0.8	2.33	<0.05	0.65	< 0.05
Th	IMS95A	1,3	1,9	2,8	0,5	8,6	1,5	4	3	0,5	1,5	1,7
U	IMS95A	0,19	0,49	0,66	0,21	5,98	0,36	10,48	0,05	0,17	0,36	0,7
w	IMS95A	< 0.1	4.7	< 0.1	<0.1	< 0.1	<0.1	<0.1	1.2	< 0.1	1.3	<0.1
Y	IMS95A	10,56	13,82	42,16	26,92	44,1	21,86	29,39	28,4	20,22	19,27	31,15
Zr	IMS95A	64,9	146,8	167,7	134,8	158	130,5	50,3	126,2	118	111,5	212,8
		,	,	,	,		,	,	,		,	,
Ag	ICM14B	0,05	0,3	1,75	0,37	<0.01	3,86	0,53	0,16	0,36	0,04	0,23
Au	ICM14B	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	< 0.1
As	ICM14B	<1	<1	<1	<1	1	<1	1	1	2	<1	1
Bi	ICM14B	0,02	< 0.02	0,06	< 0.02	0,34	< 0.02	0,2	0,24	< 0.02	< 0.02	<0.02
Cd	ICM14B	0,04	0,07	6,18	0,08	0,28	0,08	0,23	0,15	0,11	0,02	0,1
Co	ICM14B	11,9	22,5	30,2	24,4	10	18	4,3	25,8	15,9	8,4	24,2
Cu	ICM14B	64,8	38,8	241,5	73,4	39,9	145,7	6,1	31,8	72,2	65,8	50,2
Hg	ICM14B	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Mo	ICM14B	0,93	0,36	0,78	0,61	0,62	0,5	0,32	0,44	0,19	0,78	0,6
Ni	ICM14B	57,8	33,5	19,9	38,4	27,8	46,6	8,1	35,6	52,6	32,5	57,1
Pb	ICM14B	3,4	2,3	1259,6	6,5	52,1	3,4	32,2	29,3	15,4	1,1	15,2
Sb	ICM14B	< 0.05	< 0.05	0,24	0,06	0,12	< 0.05	0,09	0,08	0,06	< 0.05	<0.05
Se	ICM14B	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Zn	ICM14B	16	53	344	50	69	23	32	71	26	20	52
Ce	IMS95R	12,6	24,2	54,3	41,7	127	29,4	287,3	35,5	25,3	27,6	49
Dy	IMS95R	2,05	2,55	7,84	5,17	6,39	4,47	3,92	5,39	3,53	3,15	5,99
Er	IMS95R	1,37	1,55	4,8	3,05	4,33	2,3	2,25	3,91	2,34	2,2	3,21
Eu	IMS95R	0,58	0,73	1,83	1,78	1,57	1,57	2,84	1,83	0,93	1,03	1,75
Gd	IMS95R	1,81	2,45	7	6,04	5,96	4,93	5,69	5,14	4,23	3,65	6,5
Но	IMS95R	0,45	0,51	1,51	1,13	1,33	0,9	0,83	1,17	0,95	0,72	1,05
La	IMS95R	4,6	10,9	27,3	24,2	32,9	8,9	239,2	11,2	14,8	14,9	32,5
Lu	IMS95R	0,19	0,09	0,55	0,23	0,63	0,22	0,25	0,31	0,15	0,19	0,33
Nd	IMS95R	6,7	11,6	28,1	22,1	25,7	18,4	62,7	17,5	15	15,6	25,5
Pr	IMS95R	1,77	3,11	6,26	5,04	6,34	3,9	24,24	3,6	3,38	3,24	5,82
Sm	IMS95R	1,9	3,4	6,1	4,5	6,7	4,4	7,2	4,7	3,2	3,1	5,8
Tb	IMS95R	0,27	0,34	1,22	0,9	0,89	0,86	0,9	0,88	0,69	0,49	0,91
Tm	IMS95R	0,17	0,18	0,57	0,43	0,54	0,31	0,33	0,42	0,29	0,34	0,27
Yb	IMS95R	0,9	1,6	3,7	2,5	3,4	2,3	2	3,1	1,8	2,1	2,8

ICP95A	fusão com metaborato de litio - leitura por ICP-OES
IMS95A	fusão com metaborato de litio - leitura ICP-MS
ICM14B	digestão com água régia - leitura com ICP-OES e ICP-MS
IMS95R	fusão com metaborato de litio - aleitura por ICP-MS

Ν		29	30	31	37	38	39	40	41	42	43	44
ID	Método	LP-52A	LP-52B	LP-52C	LR-01B	LR-01C	LR-01D	LR-02	LR-03	LR-04A	LR-04B	LR-04C
AI2O3	ICP95A	10,31	16,06	11,28	14,24	14,51	14,64	16,64	18,08	8,87	13,49	17,44
CaO	ICP95A	11,93	0,14	0,28	13,58	14,1	14,53	12,72	13,65	11,15	13,94	14,62
Cr2O3	ICP95A	0,02	< 0.01	< 0.01	0,11	0,09	0,09	0,04	0,04	0,12	0,13	0,05
Fe2O3	ICP95A	11,34	8,32	10,9	13,86	12,76	13,28	13,3	15,07	9,44	14,28	12,6
K2O	ICP95A	0,12	10,4	7,62	0,32	0.3	0,31	0,24	0.5	0,11	0,21	0,28
MqO	ICP95A	7,45	0,03	0,52	11,29	10,99	11,07	9,23	10,3	13	17,04	10,08
MnO	ICP95A	0,21	0,02	0,24	0,21	0,19	0,24	0,2	0,23	0,14	0,21	0,19
Na2O	ICP95A	2.94	0.96	1.25	1.43	1.62	1.56	2.41	2.58	0.91	1.51	2.06
P2O5	ICP95A	0,09	<0.01	0,02	0,08	0,08	0,07	0,06	0,14	< 0.01	0,06	0,05
SiO2	ICP95A	50.41	58.35	62.49	45.06	46.22	46.07	46.32	40.6	51.3	43.2	43.78
TiO2	ICP95A	1.58	0.82	1.59	1.41	1.33	1.39	1.62	1.9	0.7	1.06	1.3
LOI	ICP95A	1.04	1.19	0.36	1.15	1.21	1.14	1.03	0.87	< 0.01	<0.01	0.97
Sum	ICP95A	97 42	96.26	96.54	102 73	103.4	104 4	103 79	103,95	95.36	104 72	103 41
		,	,	,	,	,.		,	,	,		,
Ва	IMS95A	17	680	795	147	110	64	56	159	44	68	86
Be	IMS95A	16	0.6	16	1 1	0.6	<01	11	0.6	<0.1	<01	0.5
Cs	IMS95A	0,1	0.91	0.9	0 11	0.07	<0.05	0.08	0.71	<0.05	<0.05	0,0
Ga	IMS95A	16.8	18.9	18.3	15.4	15.5	15.6	17.2	18.8	77	12.2	16.8
Hf	IMS95A	3 01	15 79	9 32	2 16	26.37	1 67	2.51	3 04	0.62	1.57	1 53
Nb	IMS95A	11 37	136.95	167 31	7.51	43.22	8.01	9.06	9 98	2 34	4 13	7 11
Rh	IMS95A	3	287.2	215.3	32	2 1	15	2,00	5,50	2,04	22	23
Sn	IMS05A	03	201,2	7.2	13	2,1	1,0	0.8	11	47	0,6	1.5
Sr	IMS05A	364.5	15 /	31.5	158.1	2,3	219.7	258.0	274.8	112.5	187.6	275 /
	IMSOFA	0.74	9.16	4 24	0.46	201,0	0.55	200,9	274,0	-0.05	0.34	275,4
Th	INS95A	0,74	0,10	4,24	0,40	21.6	0,55	0,01	0,59	<0.03	0,34	1 2
	IMS95A	0.31	6.02	5.02	0.18	0.28	0.23	0.34	0,9	<0.05	0,5	0.15
w	IMS05A	0,31	2.8	3,02	2.1	1.5	0,20	4.2	7.6	<0.05	0,03	0,13
vv V	IN SOLA	21.2	2,0	2,2	2,1	1,0	10,0	4,2 01.17	7,0	<0.1	12 41	15.00
1 7r	INS95A	21,3	40 572 5	427.0	19,52	10,07	19,19	21,17	23,3	0,45 42 5	64 5	10,92
21	11VIS95A	114,5	572,5	437,9	92,2	09,7	92,5	105,9	120,5	42,5	04,5	10,5
۸a		-0.01	0.06	0.11	0.05	0.02	0.02	0.03	0 10	0.03	0.04	0.1
Ag Au		<0.01	-0.1	<0.1	<0.0	<0.1	-0.1	-0.1	-0.1	-0.1	0,04 ∠0.1	-0.1
Au		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
AS Di		-0.02	0.02	9	< 0.02	< 1	<0.02	<0.02	-0.03	<0.02	< 1	ے 10 02
64		<0.02	-0.01	0,02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02 0.12
Cu		0,02	<0.01	0,09	12.2	0,03	0,00	0,00	0,10	0,00	40.0	12 0
C0 Cu		10,6	5	0,5	13,3	ر دە	105.5	12,4	100.2	30,4	40,9	12,0
Ua		10,5	-0.01	-0.01	40,7	-0.01	105,5	-0.01	100,2	40,4	-0.01	-0.01
пу		< 0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	< 0.01
		0,29	0,43	1,23	20.81	0,52	0,30	0,39	0,07	162 4	162.6	0,40
		0,9	10,0	10 5	30,8	20,0	30,0	34,0	43,5	103,4	102,0	45,0
FD Sh		1,9	13,7	10,5	1,4	2,3	3,3 -0.05	1,0	7,7	1,4	-0.05	0.00
So		0,07	<0.05	<0.05	<0.05	<0.05	<0.05	0,08	0,1	<0.05	<0.05	0,00
3e 7n		<1	< 1	<1	<1	<1	<1	<1	<1	<1	<1	<1
20		15	0	42	10	15	19	23	25	29	20	17
6.	INCOLD	24.0	207.2	112.6	20.6	10.6	10.1	22.0	24.0	0.4	10.0	10.4
Ce	INS95R	24,9	207,2	113,0	20,6	19,6	19,1	22,0	24,9	0,4	10,0	10,4
Dy E	INS95R	4,31	0,23	0,54	3,02	3,75	3,33	3,94	4,64	1,00	2,43	3,30
Er	IN S95R	1,91	4,35	4,06	2,40	1,72	2,05	2,19	2,62	1,16	1,53	1,93
Eu	IN S95R	1,20	2,02	1,55	0,69	1,19	1,21	1,23	1,44	0,55	0,59	1,15
Ga	INS95R	4,55	10,71	9,42	3,91	3,91	4,20	4,51	5,21	1,7	2,94	3,10
	INCOLD	0,81	1,54	1,30	0,82	0,69	0,74	0,80	0,82	0,29	0,49	0,63
∟a'	INSSE	20,7	129,6	70,4	ö,6	9,3	11,4	10,2	11,3	2,4	7,6	9,3
LU	INIS95K	0,3	0,7	0,29	0,16	0,28	0,11	0,3	0,22	<0.05	<0.05	0,3
Nd	IMS95R	20,9	83,2	52,4	13,4	14,4	12,5	15,4	18,4	5,6	9,1	11,9
Pr	IMS95R	5,25	24,87	14,22	3,04	2,87	2,72	3,4	3,7	1,19	1,83	2,74
Sm	IMS95R	3,9	13,1	9,7	3	2,9	4	3,1	4,2	1,3	2,1	2,9
ľb	IMS95R	0,67	1,58	1,09	0,7	0,52	0,46	0,7	0,72	0,23	0,38	0,45
Tm	IMS95R	0,31	0,67	0,47	0,23	0,36	0,25	0,31	0,33	0,18	0,22	0,27
Yb	IMS95R	2,4	4,6	3,1	2,2	1,8	1,6	2,2	2,3	0,8	1,4	1,2

ICP95A	fusão com metaborato de litio - leitura por ICP-OES
IMS95A	fusão com metaborato de litio - leitura ICP-MS
ICM14B	digestão com água régia - leitura com ICP-OES e ICP-MS
IMS95R	fusão com metaborato de litio - aleitura por ICP-MS

Ν		45	46	47	48	49	50	51	52	53	54	55
ID	Método	LR-05A	LR-05B	LR-05C	LR-06A	LR-06B	LR-06C	LR-06D	LR-07A	LR-07B	LR-08	LR-09
AI2O3	ICP95A	16,9	13,01	12,22	15,32	17,69	16,56	16,62	15,91	13,37	15,65	15,91
CaO	ICP95A	13,36	9,92	9,38	11,03	13,32	12,68	12,17	12,95	11,23	13,77	11,48
Cr2O3	ICP95A	0,04	0,02	0,02	0,03	0,02	0,04	0,03	0,04	0,03	0,05	<0.01
Fe2O3	ICP95A	14,56	10,97	10,45	10,03	12,22	13,77	9,84	12,94	12,18	12,9	18,59
K2O	ICP95A	0,45	0,35	0,37	0,33	0,36	0,62	0,29	0,32	0,75	0,47	0,53
MqO	ICP95A	8,96	7,19	6,39	7,53	8,22	8,86	7,99	8,51	7,77	9,94	5,54
MnO	ICP95A	0,22	0,16	0,15	0,15	0,18	0,2	0,15	0,17	0,16	0,16	0,19
Na2O	ICP95A	2.01	1.47	1.54	1.67	2.24	2	1.74	2.09	1.52	1.58	3.22
P2O5	ICP95A	0,15	0,08	0,08	0,09	0,1	0,1	0,08	0,09	0,1	0,08	0,15
SiO2	ICP95A	40.49	50,79	54.98	48.61	45.9	46.69	48.63	44.05	52.92	43.58	45.31
TiO2	ICP95A	1.81	1.28	1.26	1.07	1.6	1.64	1.15	1.46	1.42	1.36	2.39
LOI	ICP95A	1,19	1.5	0.9	1.28	0.96	1.09	1,11	0.96	1.06	1.38	0.55
Sum	ICP95A	100 14	96 73	97 76	97 12	102 82	104 25	99.81	99.51	102.5	100.92	103 85
		,.	,			,.		,	,- :	,.	,	,
Ва	IMS95A	116	112	117	140	103	133	90	175	166	141	269
Be	IMS95A	0.4	0.4	<0.1	1	0.5	0.3	01	0.6	<01	<0.1	0.5
Cs	IMS95A	0.34	0.35	0 44	0.42	0.21	1 03	0.34	0 14	1 29	0.51	0.34
Ga	IMS95A	19.2	18.2	17.7	17.9	17.4	18.2	18	17.6	18.4	18.2	22.3
Hf	IMS95A	2 54	2 52	3.01	2 07	2 71	3	2 54	2.83	2.85	2 39	3 45
Nb	IMS95A	11.83	10.97	13.83	7 36	10 31	11.05	146 17	12 38	16.9	9.68	11.8
Rh	IMS95A	7.8	94	87	6.8	5.2	11,00	10.7	7.2	23.1	10.2	12.8
Sn	IMS05A	21	0.8	0,7	<0,0	0,2	16	0.8	2,1	1/ 2	0.8	2 1
Sr	IMS05A	201 1	220.2	184.5	217.8	303.6	201.2	258.0	230.2	102.2	102.0	377 0
	IMSOFA	0.71	0.77	0.82	0.47	0.55	0.47	230,3	233,2	1 64	0.66	0 92
Th	IMS95A	0,71	0,77	0,02	0,47	0,55	1.2	1.0	0,72	1,04	0,00	0,02
	IMS95A	0,7	0,8	0,9	0,3	0.32	0.24	0.15	0.17	2,5	0.22	0 33
w	INS95A	0,18	-0.1	0,20	0,12	0,32	0,24 <0.1	0,13	0,17	19.54	0,22	1.2
vv V	IN SOLA	7,0	<0.1	21.06	<0.1 16.49	20 52	<0.1	1,4	21.99	40,0	22.14	26 72
1 7r	INS95A	23,24	22,02	21,90	69.6	20,52	21,0	60.2	21,00	23,03	22,14	20,72
21	11VIS95A	120,4	00,4	100,4	00,0	101,9	110,9	09,5	03,4	05,7	74,1	124
٨		0.04	0.04	0.11	0.03	0.05	0.04	0.04	0.06	0.04	0.08	0.07
Ag Au		<0.1	-0 1	-0.1	-0.1	<0.0	-0 1	-0 1	0,00	-0 1	<0.1	-0 1
Au		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0,1	<0.1	<0.1	<0.1
AS Di		< 1	< 1	< 0.02	< 0.02	< 1	<0.02	< 1	< 1	<0.02	< 1	< 1
		0,09	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Cu		0,05	0,09	<0.01	0,00	0,04	12.2	0,05	0,05	0,2	0,10	12.1
C0 Cu		14,5	19,5	10,9	14,3	7,3	72.4	10,0	12,1	117 0	20,9	100.0
Cu Lla		107,0	117,0	129,0	-0.01	-0.01	73,1	04,3	135,9	117,2	-0.01	100,2
пд		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01
		0,75	0,40	0,55	0,30	0,52	0,52	0,29	0,42	0,47	0,55	10.62
		37,3	00,5	40,9	50,5	24	37,7	41,9	40	52,5	71,9	12,0
PD		2,7	2,4	1,4	2,4	1,0	1,2	2,2	2,1	-0.0E	2,1	1,7
30 So		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0,05
3e 7n		<1	< 1	< 1	< 1	<1	< 1	<1	<1	< 1	<1	<1
20		20	30	23	20	19	23	19	10	23	24	32
6.	INCOED	26.2	07 F	05.0	10.1	24.4	05.0	20.4	01.0	20	20 F	22.0
Ce	IN SOFR	20,2	27,5	20,0	10,1	24,4	25,3	20,1	21,0	30	22,5	52,9
Dy E	IN SOFT	4,00	3,95	4,23	2,11	3,79	3,94	3,11	3,50	4,32	4,50	5,13
Er	IN S95R	2,55	2,09	2,11	1,01	2,23	2,02	1,96	2,34	2,04	2,37	2,42
Eu	IN S95R	1,29	1,24	1,22	1,02	1,10	1,19	1,35	1,44	1,07	1,54	1,07
Ga	INS95R	4,98	4,51	4,0	3,00	3,90	5,01	4,03	4,0	4,02	5,46	0,10
	INCOLD	0,79	0,85	0,8	0,72	0,76	0,87	0,77	0,81	0,93	0,74	1,08
∟a L	INSSE	11,3	14,7	11,8	1,5	11,4	12,4	8,9	10,7	∠0,5 0.00	13,1	16,4
LU	INIS95K	0,3	0,26	0,31	<0.05	0,25	0,36	0,27	0,24	0,33	0,17	0,28
Nd	IMS95R	15,9	16,7	16,2	11	14,3	15,6	12,1	15,6	19	20	20,6
Pr	IMS95R	3,77	3,79	3,61	2,65	3,17	3,53	2,93	3,48	4,65	3,59	4,4
Sm	IMS95R	4,3	4,4	3,8	2,7	3,9	3,7	3,4	4	3,7	4,2	5
ľb	IMS95R	0,64	0,65	0,62	0,41	0,68	0,58	0,59	0,68	0,71	0,73	0,85
Tm	IMS95R	0,31	0,32	0,37	0,24	0,32	0,35	0,35	0,3	0,36	0,3	0,41
Yb	IMS95R	2,4	2,1	2,2	1,5	1,8	2,4	1,6	2,1	2,2	2,3	2,5

ICP95A	fusão com metaborato de litio - leitura por ICP-OES
IMS95A	fusão com metaborato de litio - leitura ICP-MS
ICM14B	digestão com água régia - leitura com ICP-OES e ICP-MS
IMS95R	fusão com metaborato de litio - aleitura por ICP-MS

Ν		56	57	58	59	60	61	62	63	65	66	67
ID	Método	LR-10	LR-11A	LR-11B	LR-11C	LR-12	LR-13	LR-14	LR-15	LR-16B	LR-17A	LR-17B
AI2O3	ICP95A	17,24	16,33	12,33	17,46	14,54	17,56	17,76	17,01	3,61	3,53	3,37
CaO	ICP95A	13,29	12,05	0,08	12,74	13,01	13,86	12,23	13,95	0,07	6,56	5,72
Cr2O3	ICP95A	0,05	0,02	<0.01	0,02	0,09	0,03	0,02	0,03	0,97	0,34	0,3
Fe2O3	ICP95A	12,3	13,26	7,1	11,95	13,49	12,54	13,67	14,15	12,87	16,32	15,69
K2O	ICP95A	0,24	0,45	11,39	0,31	0,29	0,39	0,51	0,45	0,05	0,17	0,13
MgO	ICP95A	9,25	11,72	0,06	8,15	12,32	10,71	11,44	8,87	>30	24,99	25,35
MnO	ICP95A	0,15	0,17	0,02	0,15	0,17	0,19	0,21	0,21	0,15	0,16	0,15
Na2O	ICP95A	1.79	1.8	0.39	2.01	1.52	1.93	2.08	2.16	<0.01	0.52	0.42
P2O5	ICP95A	0.01	0.01	0.03	0.08	0.05	0.08	0.11	0.14	0.02	0.02	0.06
SiO2	ICP95A	43.49	42.24	68.21	42.39	42.26	44.23	43.81	44	45.04	38.15	42.91
TiO2	ICP95A	1.17	1,19	0.79	1.2	1,12	1,16	1.45	1.66	0.14	0.58	0.55
LOI	ICP95A	1 43	1.37	0.2	0.51	0.66	0.69	1 02	0.85	9 27	5 22	6 02
Sum	ICP95A	100.41	100.61	100.6	96,99	99.51	103 38	104 3	103.48	102.89	96 55	100.68
ouiii	101 00/1	100,11	100,01	100,0	00,00	00,01	100,00	101,0	100,10	102,00	00,00	100,00
Ba	IMS954	44	165	980	84	73	96	167	131	46	36	27
Bo	IMS05A	0.8	0.2	4.4	0 9	-01	~0.1	0.4	0.2	1 /	~0.1	-0 1
Ce	IMS95A	0,0	0,2	4,4	0,9	0.21	0.11	1 02	0,2	0.27	0.00	0.22
Ga	IMS95A	17.2	16.4	15.3	19.2	14.6	16	1,02	17.9	9.1	0,09	6.8
Ga	IN SOLA	17,2	10,4	15,5	10,3	14,0	10	17,0	17,0	0,1	1,2	0,0
	11VIS95A	1,30	1,0	0,92	2,24	1,70	1,67	2,10	2,5	0,08	1,01	1,19
ND	INS95A	6,97	7,67	56,65	29,44	6,13	5,55	8,2	8,61	2,11	1,67	1,87
RD	INS95A	2,9	8,7	213,3	4,7	3,3	6,2	10,6	4,7	1,8	1,8	1
Sn	IMS95A	0,3	0,6	2,2	1,5	<0.3	0,7	0,8	1,2	1,5	2,3	1
Sr	IMS95A	257,7	257	8,2	280,9	173,3	228	266,5	252,7	2,6	71,6	56
Ta	IMS95A	0,39	0,37	3,3	1,28	0,31	0,38	0,36	0,79	0,07	< 0.05	0,15
Th	IMS95A	0,5	0,5	13,2	1,4	0,3	0,4	0,7	0,7	0,2	0,6	0,7
U	IMS95A	0,09	0,15	3,64	0,24	0,12	0,1	0,19	0,33	<0.05	0,29	0,28
w	IMS95A	<0.1	<0.1	3	0,9	<0.1	<0.1	1,7	3,5	<0.1	<0.1	0,9
Y	IMS95A	14,32	15,79	75,26	17,38	14,25	14,73	17,95	19,56	7,67	8,71	7,72
Zr	IMS95A	53,3	57,8	401,7	75,1	52,3	69	88,4	98,8	6,5	38,6	40,4
Ag	ICM14B	0,04	0,02	0,07	0,07	0,23	0,16	0,12	0,07	0,1	0,03	0,09
Au	ICM14B	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
As	ICM14B	1	<1	4	<1	<1	1	<1	2	2	2	3
Bi	ICM14B	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0,26	0,28	0,52
Cd	ICM14B	0,02	0,04	0,02	0,06	0,02	0,03	0,07	0,06	0,17	0,02	0,13
Co	ICM14B	11,4	16,4	2,3	10,6	12,9	12,1	14,9	12,4	46	49,2	55,8
Cu	ICM14B	87,2	80,6	5,8	143,9	69,1	142,7	74,5	143,8	12,8	7	10,4
Hg	ICM14B	<0.01	0,01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Мо	ICM14B	0,38	0,75	0,87	0,78	0,66	0,63	0,55	0,75	0,13	0,37	0,2
Ni	ICM14B	45,3	77,8	2,5	38,5	66,3	48,8	66,3	37,8	697,5	722,1	901,9
Pb	ICM14B	1,5	2,8	9,6	2,3	1,3	1,4	3	2,2	6,4	2,7	5,7
Sb	ICM14B	0,06	0,05	<0.05	<0.05	<0.05	<0.05	<0.05	0,08	<0.05	<0.05	0,06
Se	ICM14B	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Zn	ICM14B	32	28	8	16	17	16	22	22	52	41	57
Ce	IMS95R	16,7	17,1	166,6	20,3	15	16	21,1	21	7,2	13	36,7
Dy	IMS95R	2,71	2,83	13,58	3,47	2,67	2,83	3,16	3,33	1,83	1,71	1,61
Er	IMS95R	1,86	1,82	7,44	1,81	1,57	1,42	2,18	2,31	0,78	0,87	0,74
Eu	IMS95R	0,9	0,97	3,82	1,31	0,9	0,92	1,33	1,31	0,44	0,63	0,34
Gd	IMS95R	2.85	3.63	18.1	4.13	2.78	2.79	3.38	3.5	1.79	1.37	1.81
Но	IMS95R	0.66	0.6	2.51	0.69	0.65	0.5	0.57	0.83	0.34	0.33	0.3
La	IMS95R	7	6	139.1	12.9	4.5	5.7	10.1	9.7	12.9	8.2	18.6
Lu	IMS95R	0.31	0.27	0.76	0.19	0.2	0.07	0.11	0.06	0.1	< 0.05	< 0.05
Nd	IMS95R	10.5	11 7	114	13.3	9.9	10.4	12.9	14 4	8.9	7.9	7.5
Pr	IMS95R	22	2 63	30.1	2 77	2 11	2 28	29	2 98	2 62	1 93	1 77
Sm	IMS95R	2.6	2,00	18 7	33	2,11	2,20	2,5	2.00	1 9	1,00	1 9
Th	IMS05P	0.44	0,2 0 / P	2 21	0,5	0.5	0 /0	0,1	0.52	0.26	∩ 2/	0.26
Tm	IMSOFD	0,44	0,40	2,04 0 02	0,0	0,0	0,43	0,03	0,52	0,20	0,24	0,20
Yh	IMS05P	1.5	16	0,93 5 6	17	0,24 1 /	1 2	15	0,24	0,11	0,14	0,11
	mooon	1,5	1,0	5,5	1,1	·, ·	1,5	1,5	4	1	0,1	0,1

ICP95A	fusão com metaborato de litio - leitura por ICP-OES
IMS95A	fusão com metaborato de litio - leitura ICP-MS
ICM14B	digestão com água régia - leitura com ICP-OES e ICP-MS
IMS95R	fusão com metaborato de litio - aleitura por ICP-MS

Ν		64	68	69	70	71	76	77	78	79	80	72
ID	Método	LR-16A	LR-17C	LR-17D	LR-18A	LR-18B	VB-102	VB-26	VB-42	VB-50 A	VB-53	LR-19A
AI2O3	ICP95A	2,77	4,34	4,46	16,47	13,44	10,95	17,11	1,48	2,67	12,34	14,88
CaO	ICP95A	0,06	6,55	7,27	12,3	12,5	9,25	3,08	0,74	0,53	11,96	11,41
Cr2O3	ICP95A	0,82	0,26	0,29	<0.01	0,02	0,07	<0.01	<0.01	<0.01	0,03	0,02
Fe2O3	ICP95A	12,35	15,74	15,27	14,32	13,45	14,33	4,95	50,83	50,29	11,56	13,16
K2O	ICP95A	0,03	0,16	0,25	0,68	0,37	0,77	6,73	0,05	0,02	0,11	0,62
MgO	ICP95A	29,02	23,58	22,45	6,27	9,49	7,55	1,8	4,74	7,75	8,67	7,78
MnO	ICP95A	0,14	0,2	0,23	0,2	0,2	0,21	0,07	0,52	1,03	0,18	0,2
Na2O	ICP95A	< 0.01	0,6	0,74	2,41	1,66	3,39	4,21	<0.01	<0.01	1,32	2,32
P2O5	ICP95A	<0.01	0,08	0,04	0,18	0,15	0,16	0,29	0,04	0,02	<0.01	0,16
SiO2	ICP95A	45,01	44,29	43,75	44,11	41,8	50,6	62,43	41,1	39,02	48,07	43,25
TiO2	ICP95A	0,11	0,68	0,7	1,92	1,63	1,53	0,82	0,1	0,25	0,84	1,8
LOI	ICP95A	9,02	4,72	3,65	0,88	1,13	0,98	1,14	<0.01	0,82	0,68	0,88
Sum	ICP95A	99,31	101,21	99,1	99,74	95,83	99,79	102,63	99,61	102,4	95,73	96,47
Ва	IMS95A	14	83	52	242	104	681	2465	16	69	44	180
Be	IMS95A	<0.1	0,1	<0.1	0,7	<0.1	0,7	2,3	<0.1	<0.1	0,5	0.5
Cs	IMS95A	0,21	0,23	0,14	0,41	0,16	0,41	2,61	2,88	0,09	0,25	0,51
Ga	IMS95A	6,5	8,1	9,6	18,2	14,5	20,8	25,4	2,3	3,9	17,2	17,7
Hf	IMS95A	0.16	14.11	1.23	2.59	2.18	3	9.77	0.53	0.37	1.79	3
Nb	IMS95A	1.32	22.97	3.43	11.06	8,11	10.9	10.89	0.73	0.86	1.15	11.6
Rb	IMS95A	0.4	1.1	2	12.2	5.1	17.3	182.3	2.7	<0.2	1.9	12.9
Sn	IMS95A	1.8	2.1	1.7	0.7	0.9	1.5	1	<0.3	< 0.3	1	2.1
Sr	IMS95A	1.1	93.9	112.2	245.9	208.8	608.3	1111.6	2.3	5.4	126.3	226.1
Та	IMS95A	0.17	2.57	0.41	0.51	0.35	< 0.05	< 0.05	< 0.05	< 0.05	0.07	0.62
Th	IMS95A	< 0.1	9.4	0.8	1.1	0.6	< 0.1	21.9	1.1	0.3	0.5	0.9
U	IMS95A	< 0.05	0.28	0.21	0.19	0.24	< 0.05	3.86	0.51	0.45	0.16	0.24
w	IMS95A	0.6	1.7	3	5.6	0.2	< 0.1	<0.1	<0.1	<0.1	0.7	< 0.1
Y	IMS95A	3.89	9.24	10.09	22.99	19.04	24.37	31.25	5.06	8.28	22.56	22.85
Zr	IMS95A	4.3	48.8	46	128	104.2	177.8	563.5	31.2	58.5	55.3	121.4
		.,-	,-				,-	,-	•••,=	,-	,-	,.
Aq	ICM14B	0,18	0,02	0.02	0,07	0,08	0,47	1,49	0.8	0,33	0,03	0,11
Au	ICM14B	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1
As	ICM14B	1	2	<1	<1	<1	<1	<1	<1	2	2	<1
Bi	ICM14B	0,2	0,42	0,52	< 0.02	<0.02	<0.02	0,07	0,11	0,65	0,05	<0.02
Cd	ICM14B	0.12	0.05	0.04	0.04	0.04	0.15	0.12	0.04	0.04	0.03	0.09
Co	ICM14B	40,9	43,9	40,5	17,1	15,3	17,9	9,8	0,6	7,1	7,4	11,2
Cu	ICM14B	2,9	21,9	22,8	158,6	159,9	57,1	17	9,3	51,5	41,9	110,8
Hq	ICM14B	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01
Mo	ICM14B	0,09	0,28	0,36	0,59	0,58	0,41	1,34	0,22	0,37	0,28	0,57
Ni	ICM14B	749,1	583,2	512,2	30,3	49,3	143,8	22,4	3,4	14,2	32,1	29,2
Pb	ICM14B	4,3	4,8	2	1,5	1,3	11	48,2	9,2	5,3	2,8	3,7
Sb	ICM14B	< 0.05	0,06	<0.05	<0.05	<0.05	<0.05	<0.05	0,45	1,23	0,05	0,06
Se	ICM14B	<1	<1	<1	<1	<1	<1	<1		<1	<1	
Zn	ICM14B	48	50	39	27	23	38	67	<1	<1	16	26
Ce	IMS95R	4,9	12,7	16,4	26,4	22,3	51,8	348,2	5,4	7,3	10,2	25,8
Dy	IMS95R	0,65	1,47	2,24	4,41	3,78	4,61	5,85	0,53	1,2	4,21	4
Er	IMS95R	0,65	0,84	1,17	2,62	2,42	2,53	2,86	0,65	0,9	2,38	2,91
Eu	IMS95R	< 0.05	0,52	0,54	1,41	1,09	1,75	2,17	0,11	0,11	1,02	1,53
Gd	IMS95R	0,57	2,54	2,34	3,92	3,9	5,24	7,76	0,51	1,38	3,3	4,6
Но	IMS95R	0,15	0,38	0,37	0,83	0,78	0,87	0,77	0,06	0,2	0,91	0,96
La	IMS95R	4,3	10,9	8,6	11,3	12,5	23,4	189,1	5,2	5,7	4,3	11,8
Lu	IMS95R	< 0.05	0,13	0,05	0,18	0,3	0,19	0,21	0,06	0,09	0,22	0,3
Nd	IMS95R	4	9	10,5	16,4	13,3	30,6	117	2,6	4,6	7,3	17,4
Pr	IMS95R	0,83	1,99	2,12	3,8	2,99	6,86	31,65	0,7	0,62	1,48	3,61
Sm	IMS95R	0,7	2,2	2,5	3,6	2,4	5,8	15,8	0,8	0,8	2,2	4.6
Tb	IMS95R	0.15	0.2	0.31	0,7	0.54	0.67	0.94	0.08	0.07	0,71	0,88
Tm	IMS95R	0.05	0.13	0.13	0.25	0.28	0,2	0.21	< 0.05	0,06	0.3	0,29
Yb	IMS95R	0,4	0,9	, 1,1	2,3	1,9	2	1,9	0,2	0,6	2,5	2,3

ICP95A	fusão com metaborato de litio - leitura por ICP-OES
IMS95A	fusão com metaborato de litio - leitura ICP-MS
ICM14B	digestão com água régia - leitura com ICP-OES e ICP-MS
IMS95R	fusão com metaborato de litio - aleitura por ICP-MS

N		73	74	75	81	82	83
ID	Método	LR-19B	LR-20	LR-21	VB-69	VB-87	VB-88
AI2O3	ICP95A	13,58	13,46	17,28	13,31	0,77	0,21
CaO	ICP95A	13,84	13,69	14,38	12,5	0,11	0,1
Cr2O3	ICP95A	0,08	0,07	0,05	<0.01	<0.01	< 0.01
Fe2O3	ICP95A	10,58	12,76	11,95	13,66	33,13	39,69
K2O	ICP95A	0,31	0,39	0,47	0,26	0,06	< 0.01
MgO	ICP95A	11,93	12,16	9,41	8,19	0,18	0,08
MnO	ICP95A	0,16	0,21	0,21	0,22	0,34	0,14
Na2O	ICP95A	1,42	1,37	2,26	2,13	<0.01	0,04
P2O5	ICP95A	0,07	0,1	0,12	0,15	<0.01	0,06
SiO2	ICP95A	45,88	42,8	42,7	42,64	64,05	62,25
TiO2	ICP95A	0,88	1,26	1,57	1,65	0,03	0,02
LOI	ICP95A	1,37	1,27	0,75	1,1	0,81	0,09
Sum	ICP95A	100,1	99,55	101,16	95,8	99,44	102,7
Ba	IMS95A	97	101	176	80	238	268
Be	IMS95A	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Cs	IMS95A	0,36	0,33	0,31	0,31	0,98	0,16
Ga	IMS95A	14,5	10,9	14,9	20,5	0,7	<0.1
Hf	IMS95A	1,45	1,47	1,99	3,05	<0.05	< 0.05
Nb	IMS95A	5,13	4,84	7,3	10,41	<0.05	<0.05
Rb	IMS95A	8,9	9,1	8,9	5,6	1,6	<0.2
Sn	IMS95A	1	0,5	1,5	1,6	<0.3	<0.3
Sr	IMS95A	184,3	184,8	261,9	243,4	3,6	7,9
Та	IMS95A	0,2	0,25	0,37	0,71	<0.05	<0.05
Th	IMS95A	0,2	0,7	1,2	1,2	<0.1	<0.1
U	IMS95A	0,21	0,15	0,15	0,28	0,31	0,37
w	IMS95A	2	<0.1	0,6	<0.1	<0.1	<0.1
Y	IMS95A	11,9	13,48	15,8	24,12	3,22	18,27
Zr	IMS95A	44,3	78,7	102,1	113,7	9,6	25,3
٨a	ICM14B	0.04	0.08	0.05	0.25	~0.01	1 11
Ay Au		<0.1	<0.1	-0.1	-0.1	<0.01	~0.1
Au	ICM14B	<0.1	<0.1	<0.1	۲0.1	<0.1 Q	<0.1 2
Ri	ICM14B	~0.02	<0.02	~0.02	~0.02	0 15	0.04
Cd		<0.02 0 1	<0.0Z	0.02	0.12	0,13	0,04
Co	ICM14B	11.9	15.5	11.2	11.2	2.0	5.2
Cu	ICM14B	39.6	13,3 01.2	104.1	127.1	2,9	J,Z 4 6
Ua la		<0.01	-0.01	<0.01	0.02	0.01	-0.01
Mo	ICM14B	0.01	0.01	0.71	0,02	1 39	0.01
Ni	ICM14B	60.1	67	38.5	20.5	1,55	73
Ph	ICM14B	3.0	1 0	50,5	20,5	68.7	5.8
Sh	ICM14B	~0.05	~0.05	~0.05	0 1 1	0.57	5,0 6 0
So	ICM14B	<0.05	<0.05	<0.05	0,11	0,57	-1
Zn	ICM14B	18	21	18	26	13	<1
					20		
Ce	IMS95R	11,7	14,4	18,5	27,3	6,2	5,2
Dy	IMS95R	1,96	2,71	2,62	4,48	0,5	2,47
Er	IMS95R	1,29	1,13	1,4	2,33	0,39	1,25
Eu	IMS95R	0,77	0,79	1,11	1,31	<0.05	0,27
Gd	IMS95R	1,88	2,2	3,7	5,2	0,31	2,17
Но	IMS95R	0,43	0,5	0,6	0,9	0,06	0,41
La	IMS95R	5	6,7	8	13,9	4,5	12,2
Lu	IMS95R	0,09	0,12	<0.05	0,27	0,06	0,25
Nd	IMS95R	9,5	9,8	12,3	17,8	2,2	8,4
Pr	IMS95R	1,66	2,08	2,39	3,78	0,36	1,93
Sm	IMS95R	2,6	2,7	2,9	4,8	0,3	1,6
Tb	IMS95R	0,29	0,42	0,49	0,69	0,06	0,33
Tm	IMS95R	0,15	0,22	0,17	0,38	<0.05	0,1
Yb	IMS95R	1.1	1.4	1.4	2.1	<0.1	1.5

IMS95R	fusão com metaborato de litio - aleitura por ICP-MS
ICM14B	digestão com água régia - leitura com ICP-OES e ICP-MS
IMS95A	fusão com metaborato de litio - leitura ICP-MS
ICP95A	fusão com metaborato de litio - leitura por ICP-OES

Outras análises

N		1	2	3	4	5	6	7	8	9	10
ID	Método	AC-119	AC-120	AC-128	JT-140	JT-141	JT-143 C	KM-108 A	KM-108 E	KM-108 H	KM-108 R
Ca	ICM14B	0,25	0,45	<0.01	2,7	1,68	2,3	1,58	0,25	0,13	0,02
AI	ICM14B	0,04	0,7	0,12	1,78	1,38	2,2	0,07	0,24	0,19	0,34
В	ICM14B	<10	<10	<10	<10	<10	<10	<10	12	<10	14
Ва	ICM14B	49	188	39	70	19	78	32	43	8	95
Be	ICM14B	0,2	0,6	0,7	1,4	0,3	0,2	0,4	0,5	0,1	0,5
Ce	ICM14B	0,95	6,84	1,51	18,19	9,29	6,13	2,02	24,68	6,92	25,75
Cr	ICM14B	3	17	14	23	63	51	<1	6	<1	3
Cs	ICM14B	0,23	1,59	<0.05	0,1	0,73	0,32	0,22	0,12	0,06	0,09
Fe	ICM14B	>15	>15	>15	4,4	2,84	2,1	>15	0,63	7,34	0,65
Ga	ICM14B	0,3	2,6	0,5	5,5	3,2	3,6	0,3	0,9	0,5	1,1
Ge	ICM14B	0,4	0,1	0,4	<0.1	<0.1	<0.1	<0.1	<0.1	0,1	<0.1
Hf	ICM14B	<0.05	0,12	<0.05	0,29	0,11	0,13	<0.05	0,74	<0.05	0,23
In	ICM14B	<0.02	<0.02	<0.02	0,03	<0.02	<0.02	<0.02	<0.02	8,47	<0.02
K	ICM14B	0,01	0,08	<0.01	0,14	0,06	0,16	0,01	0,16	<0.01	0,25
La	ICM14B	0,9	4,1	2	9,7	16,3	3,1	1,3	12,6	4,9	13,1
Li	ICM14B	1	3	<1	2	5	4	<1	<1	<1	<1
Mg	ICM14B	0,08	0,2	<0.01	0,93	0,64	1,26	0,41	0,03	0,31	0,04
Mn	ICM14B	1600	4005	237	685	274	360	1463	249	693	360
Na	ICM14B	0,01	0,04	<0.01	0,28	0,13	0,29	0,05	0,09	<0.01	0,09
Nb	ICM14B	0,07	0,15	0,16	0,68	0,27	0,58	0,07	0,92	<0.05	0,17
Р	ICM14B	436	187	201	857	351	606	608	59	329	<50
Rb	ICM14B	0,7	4,7	<0.2	2,5	2,1	5,6	0,9	7,7	0,2	10,6
Re	ICM14B	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
S	ICM14B	<0.01	<0.01	<0.01	<0.01	<0.01	0,01	0,04	0,01	>5	0,05
Sc	ICM14B	<0.1	1,1	0,4	14,1	12,2	7,6	<0.1	0,1	<0.1	0,2
Sn	ICM14B	0,5	0,5	1,8	1,5	1,9	0,6	0,8	0,4	1,2	0,9
Sr	ICM14B	4,2	5,6	0,9	30,6	19,7	45,8	7,2	3,9	3,5	3,6
Та	ICM14B	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Te	ICM14B	< 0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	6,13	< 0.05
Th	ICM14B	0,2	1	0,8	0,9	0,3	0,4	0,2	23,2	0,9	34,2
TI	ICM14B	<0.01	0,06	<0.01	0,48	0,36	0,28	0,01	<0.01	< 0.01	<0.01
U	ICM14B	0,12	0,71	0,31	0,21	0,06	0,06	2,52	4,96	5,34	6,8
V	ICM14B	63	59	24	162	102	68	21	1	2	1
W	ICM14B	1,4	0,7	<0.1	1,2	0,4	<0.1	<0.1	_0,2	1	_0,4
Y	ICM14B	2,65	7,46	1,63	19,02	28,17	4,7	4,09	7,83	1,1	7,91
Zr	ICM14B	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	16,9	<0.5	4

ICM14B

digestão com água régia - leitura com ICP-OES e ICP-MS

N		11	12	13	14	15	16	17	18	21	22
ID	Método	KM-108 S	KM-108 T I	KM-108 U	KM-182	KM-235	LP-115	LP-77 B	LP-78 A	LP-121	LP-144 B
Ca	ICM14B	3,16	0,29	0,7	0,2	2,46	2,54	2,96	1,1	1,82	3,41
AI	ICM14B	0,35	0,25	0,21	0,38	1,58	2,69	4,39	0,51	2,71	2,47
В	ICM14B	15	13	11	<10	<10	<10	<10	<10	<10	<10
Ва	ICM14B	29	16	19	181	20	428	81	91	239	64
Be	ICM14B	0,5	0,4	0,4	0,5	1	0,6	0,2	3	0,3	6,9
Ce	ICM14B	21,62	17,71	14,69	47,88	6,68	13,86	16,92	214,25	15,06	102,42
Cr	ICM14B	4	4	7	<1	22	17	14	27	16	66
Cs	ICM14B	0,14	0,12	0,16	0,06	0,07	2,73	0,15	<0.05	1,97	0,36
Fe	ICM14B	0,53	0,63	0,71	6,12	1,6	5,31	3,51	6,93	4,4	4,95
Ga	ICM14B	1,1	0,9	0,6	2,2	5,8	7,4	7,7	5,9	5,3	8,1
Ge	ICM14B	<0.1	<0.1	<0.1	<0.1	0,1	<0.1	<0.1	0,4	<0.1	0,3
Hf	ICM14B	0,3	0,66	0,25	0,41	0,22	0,14	0,18	0,19	0,2	0,28
In	ICM14B	<0.02	<0.02	<0.02	<0.02	<0.02	0,06	<0.02	0,06	<0.02	0,05
ĸ	ICM14B	0,25	0,17	0,14	0,26	0,02	1,17	0,22	0,02	0,72	0,3
La	ICM14B	13,5	9,6	7,9	23,7	5,9	7,1	8	206,9	6,8	26,4
Li	ICM14B	<1	<1	<1	<1	<1	7	4	<1	35	1
Mg	ICM14B	0,08	0,03	0,03	0,03	0,24	1,7	0,91	0,48	1,66	0,85
Mn	ICM14B	1072	129	215	319	203	599	272	1509	602	933
Na	ICM14B	0,08	0,1	0,08	0,01	0,05	0,26	0,76	0,03	0,13	0,23
Nb	ICM14B	0,19	0,98	0,6	0,14	1,05	0,29	1,04	1,28	0,87	1,11
Р	ICM14B	61	<50	<50	1005	600	1309	825	548	897	432
Rb	ICM14B	10,6	8,1	6,2	8,5	0,7	54,5	5,4	1	29,4	3,3
Re	ICM14B	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
S	ICM14B	0,03	0,02	<0.01	<0.01	<0.01	0,19	0,11	<0.01	0,13	<0.01
Sc	ICM14B	0,2	<0.1	<0.1	1,1	5,9	12,6	3,7	1,2	5,9	4,9
Sn	ICM14B	0,6	0,5	0,4	0,4	1,1	0,8	0,7	7	0,6	6,3
Sr	ICM14B	25,6	3,7	6,8	8,7	139	47	121,2	43,9	42,1	86
Та	ICM14B	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05
Те	ICM14B	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Th	ICM14B	24	20	14,2	2,8	0,4	1,3	1	5,4	0,9	14
Ti	ICM14B	<0.01	<0.01	<0.01	0,1	0,35	0,32	0,25	0,13	0,54	0,2
U	ICM14B	4,31	4,74	6	2,45	0,23	0,14	0,19	9,62	0,11	4,38
V	ICM14B	1	<1	1	33	92	131	171	32	117	75
W	ICM14B	0,2	<0.1	0,1	0,2	0,9	<0.1	<0.1	0,2	<0.1	0,6
Y	ICM14B	18,99	6,2	5,88	13,48	12,34	10,32	9,79	16,25	9,74	29,74
Zr	ICM14B	3,6	14,9	5,2	13	0,8	<0.5	4,3	<0.5	<0.5	0,9

ICM14B

digestão com água régia - leitura com ICP-OES e ICP-MS

N		23	24	19	20	25	26	27	28	29	30
ID	Método	LP-168	VB-42	LP-86	LP-92 A	VB-50 A	VB-87	VB-88	VB-102	AC-134	VB-26
Ca	ICM14B	1,8	0,1	1,91	2,15	0,11	0,02	0,02	0,62	2,21	1,23
AI	ICM14B	2,51	0,5	2,32	1,95	0,8	0,29	0,07	0,83	3,39	1,52
В	ICM14B	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Ва	ICM14B	423	18	72	26	67	219	231	469	227	224
Be	ICM14B	0,4	0,6	0,3	0,2	0,4	0,5	1	0,5	0,3	1,2
Ce	ICM14B	25,52	3,9	31,67	6,62	7,23	7,09	5,02	23,64	24,59	241,58
Cr	ICM14B	11	12	15	61	38	21	2	392	9	28
Cs	ICM14B	0,45	2,52	0,16	0,3	0,28	1,09	0,24	0,44	0,4	2,99
Fe	ICM14B	4,08	>15	3,81	2,51	13,64	>15	>15	5,17	4,74	2,55
Ga	ICM14B	6,3	1,7	7,8	3,6	3,3	1,1	0,4	4,5	7,3	10,1
Ge	ICM14B	<0.1	0,4	<0.1	<0.1	0,1	1	0,6	<0.1	<0.1	0,3
Hf	ICM14B	0,21	0,07	0,16	0,21	0,07	<0.05	<0.05	0,07	0,4	0,77
In	ICM14B	0,02	<0.02	0,05	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
к	ICM14B	0,69	0,03	0,1	0,11	0,01	0,04	<0.01	0,21	0,1	1,15
La	ICM14B	12	2,6	12,8	3,5	4,5	3,8	10	11	12,4	164
Li	ICM14B	12	<1	4	5	2	2	<1	4	18	24
Mg	ICM14B	1,39	0,17	1,46	1,71	0,21	0,02	<0.01	0,87	1,29	1,04
Mn	ICM14B	429	537	729	392	2518	1674	864	331	420	422
Na	ICM14B	0,31	0,02	0,3	0,25	<0.01	<0.01	<0.01	0,07	0,37	0,07
Nb	ICM14B	0,37	0,14	0,28	0,26	0,08	0,14	0,11	0,2	0,53	2,48
Р	ICM14B	1768	215	1017	688	214	107	264	772	962	1390
Rb	ICM14B	15,1	5,4	2,2	2,5	0,8	5,2	0,3	15,1	5,9	99,8
Re	ICM14B	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
S	ICM14B	0,02	< 0.01	< 0.01	<0.01	<0.01	< 0.01	< 0.01	0,01	0,09	0,07
Sc	ICM14B	5,2	0,1	11,9	9,7	1,7	<0.1	<0.1	2,1	3,5	2,6
Sn	ICM14B	0,8	0,8	1	0,5	0,6	0,7	<0.3	0,8	0,8	2,9
Sr	ICM14B	43,4	1,2	12,5	17,2	2,4	1,4	5,7	38,2	75,9	225,5
Ta	ICM14B	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Te	ICM14B	<0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05
Th Th	ICM14B	1,2	1,5	2,3	0,5	1,1	0,5	0,2	0,2	1,3	39,6
11	ICM14B	0,26	0,03	0,23	0,2	0,04	0,01	<0.01	0,17	0,46	0,35
U	ICM14B	0,14	0,3	0,19	0,06	0,2	0,41	0,44	< 0.05	0,18	3,42
V	ICM14B	71	29	104	78	68	96	24	152	153	39
W	ICM14B	<0.1	0,4	<0.1	<0.1	0,5	1,2	0,9	0,1	0,1	0,5
Y	ICM14B	14,07	2,87	15,39	5,52	6	2,34	19,85	5,37	12,13	25,81
Zr	ICM14B	1,2	<0.5	<0.5	2,7	<0.5	<0.5	<0.5	<0.5	4	11,9

ICM14B

digestão com água régia - leitura com ICP-OES e ICP-MS