MINISTÉRIO DE MINAS E ENERGIA SECRETARIA DE GEOLOGIA, MINERAÇÃO E TRANSFORMAÇÃO MINERAL

PROGRAMA GEOLOGIA DO BRASIL

LITOGEOQUÍMICA

PROJETO MÉDIO São Francisco

Estado da Bahia

Salvador 2013

MINISTÉRIO DE MINAS E ENERGIA SECRETARIA DE MINAS E METALURGIA CPRM- Serviço Geológico do Brasil

PROGRAMA GEOLOGIA DO BRASIL

PROJETO MÉDIO SÃO FRANCISCO

RELATÓRIO TEMÁTICO DE LITOGEOQUÍMICA

Autor Léo Rodrigues Teixeira

SALVADOR, 2013

Sumário

1	Introdução	1
2	Complexo Sobradinho-Remanso e Complexo Barreiro	2
3	Rochas máficas e ultramáficas	5
3.1	Introdução	5
3.2	Caracterização geoquímica	6
3.3	Conclusões	7
4	Granitóides	10
4.1	Introdução	10
4.2	Caracterização geoquímica	11
4.3	Conclusões	16
5	Formações Ferríferas Bandadas	21
5.1	Introdução	21
2.2	Caracterização geoquímica	21
5.3	Conclusões	23
6	Referências bibliográficas	25

Apêndice Localização das amostras e resultados analíticos

1 – Introdução

Como este é um relatório temático, as descrições relativas à geologia da área são sucintas, pois foi suposto que o leitor tem acesso ao relatório principal, onde a geologia está descrita detalhadamente. A litogeoquímica foi executada visando à definição petrológica das principais unidades ígneas ou ortoderivadas, bem como das formações ferríferas presentes em grandes extensões da área. O magmatismo está representado pelos ortognaisses do Complexo Sobradinho-Remanso, que constitui a unidade mais antiga presente, pelas vulcânicas intermediárias/ácidas do Complexo Barreiro, pelas rochas máficas e ultramáficas do Complexo Salitre e pelas inúmeras suítes de granitoides, tanto magnesianos (em geral calcioalcalinos de alto K), quanto ferrosos (alcalinos).

A apresentação dos resultados será feita de maneira objetiva, mediante tabelas com os resultados analíticos e diagramas, em geral bastante familiares aos leitores. A ordem de apresentação das litologias será a seguinte: (i) o embasamento representado pelo Complexo Sobradinho-Remanso, juntamente com o Complexo Barreiro; (ii) as rochas ultramáficas e máficas, a maioria pertencente ao Complexo Rio Salitre, que é uma sequência vulcano sedimentar tipo greenstone belt; (iii) as suítes de granitoides, e (iv) as formações ferríferas. Os mapas dos pontos de amostragem estão sobre imagem de relevo digital de terreno modifica a partir de imagens em http://www.relevobr.cnpm.embrapa.br/.

A interpretação foi baseada nos resultados analíticos de 130 amostras de um total de 140 analisadas no laboratório GEOSOL, cujos locais de amostragem estão mostrados nos capítulos respectivos. Os óxidos SiO₂, TiO₂, Al₂O₃, Fe₂O₃, MnO, MgO, CaO, Na₂O, K₂O, P₂O₅, Cr₂O₃ e Perda ao Fogo (LOI) foram determinados por ICP-OES após abertura por fusão de metaborato de lítio (LiBO₂). Os elementos-traços: Ba, Be, Cs, Ga, Hf, Nb, Rb, Sn, Sr, Ta, Th, U, W, Y, Zr e ETR foram determinados por ICP-MS, após abertura por fusão de LiBO₂, enquanto Mo, Cu, Co, Pb, Zn, Ni, As, Cd, Sb, Bi, Ag, Au, Hg, Tl e Se foram determinados por ICP-MS e OES, após abertura por Água Régia.

Os dados analíticos das amostras utilizadas na caracterização de cada unidade estão contidos em tabelas nos capítulos respectivos, normalizados para 100% anidros. Os valores de perda ao fogo foram mantidos nas tabelas sob o nome LOI orig., para que os leitores possam ter idéia deste parâmetro no conteúdo original. Os resultados analíticos, na forma apresentada pelo laboratório, estão relacionados numa tabela colocada no final deste relatório.

2 – Complexo Sobradinho-Remanso e Complexo Barreiro

O Complexo Sobradinho-Remanso é o conjunto litológico considerado mais antigo da área. De idade arqueana ele é composto por ortognaisses e migmatitos de composições variadas. Para a definição de sua assinatura geoquímica foram coletadas apenas sete amostras, todas elas na região a norte do Rio São Francisco, sendo quatro na folha 1:100.000 de Casa Nova e três na folha Petrolina.

A tarefa de definir o magmatismo que originou os protólitos a partir de seis amostras (uma das amostras é de paragnaisse) seria árdua se os seus teores não fossem bastante semelhantes ao de ortognaisses do mesmo tipo coletadas no Complexo Gavião, na região de Brumado (Teixeira, 2012a) e do Complexo Gnáissico-migmatítico da região de Campo Alegre de Lourdes (Leite, 1997). Nessas duas regiões os ortognaisses e migmatitos apresentam uma característica bastante marcante que é a presença de rochas tonalíticas e granodioríticas cujas razões K_2O/Na_2O são inferiores a 0,5 (sódicas), em relações bastante complexas com remobilizados e rochas graníticas com razões K_2O/Na_2O iguais ou maiores que 1,0 (potássicas).

Essa associação litológica é típica de terrenos do tipo TTG, que segundo Moyen (2011), tem no máximo 50% de ortognaisses sódicos e o restante é composto por material intrusivo, produtos de fusão parcial dos TTG e por rochas metassedimentares.

A grande diversidade litológica acabou sendo refletida nas sete amostras do Complexo-Sobradinho (tabela 2.1), pois das seis amostras de ortognaisses, duas são sódicas e as demais são potássicas, com teores bastante diversos entre si. Quando se observam estas amostras junto com as das duas regiões acima citadas, elas mostram valores similares. Assim é que as amostras sódicas são análogas aos Na-ortognaisses do Complexo Gavião e as potássicas aos K-ortognaisses do mesmo complexo estudado por Teixeira (2012a). Muitas amostras de granitóides (ex.: Suíte Juazeiro-Lagoa do Alegre) coletadas no âmbito do Projeto do Médio São Francisco exibiram essas mesmas características e foram agrupadas em conjuntos denominados Ma-1, as sódicas e Ma-2 as potássicas.

Para simplificar o trabalho e não torná-lo repetitivo, os envelopes com os teores aproximados das amostras do Complexo Sobradinho-Remanso estão lançados em vários diagramas dos granitóides do capítulo 4 (Granitóides) deste relatório. A caracterização e as conclusões lá descritas são validas para a presente unidade, ou seja, as amostras sódicas são representantes de antigas suítes de composição TTG e as potássicas são produtos de fusões parciais (anatexia) de rochas dessas suítes.

Quanto às rochas vulcânicas da área, foram coletadas cinco amostras no Complexo Barreiro (folha Tombador). Os dados estão na tabela 2.1.

Duas amostras estão com teores de SiO₂ acima de 90%, o que desaconselha sua utilização na interpretação; uma é metassedimentar e a outra talvez seja chert ou metassedimento. Todas as amostras estão com distúrbios em seus balanços químicos causados muito provavelmente por avançado estado de alteração causada pelo intemperismo. Os baixos teores de CaO, MgO e Na₂O são evidentes, aliados a valores de K₂O que aparentemente estão enriquecidos. Como a definição das séries magmáticas é feita utilizando os elementos maiores, no presente caso tal procedimento fatalmente levará a erros.

Por outro lado os elementos traços, com exceção de alguns como Ba e Sr, estão com conteúdos bastante coerentes com os valores de rochas ígneas normais. Assim para definição do magmatismo do Complexo Barreiro serão utilizados os valores dos elementos traços, em especial dos incompatíveis. No diagrama Nb/Y – Zr/Ti (Pearce, 1996b), figura 2.1A, as amostras são caracterizadas como andesito, portanto uma rocha calcioalcalina. No diagrama Y+Nb – Rb da figura 2.1B sua colocação é confirmada como em arco vulcânico.

O diagrama multielementar da figura 2.2A, normalizado pelo manto primordial, mostra espectros harmônicos entre si, que sugerem que as composições dos elementos incompatíveis estão pouco alteradas. A forma geral dos espectros, com inclinação acentuada para o lado direito é característica de rochas calcioalcalinas. A elevação dos teores dos elementos chamados LILE, no lado

esquerdo, aliada as anomalias negativas dos HFSE, em especial Nb, Ti, Y, mostra uma origem a partir da fusão parcial de cunha do manto metassomatisado, acima de uma zona de subducção.

Figura 2.1 – A: Diagrama de definição de tipo litológico; B: Diagrama de definição de ambiente.

No mesmo diagrama, as anomalias negativas de Ba e Sr devem estar relacionada ao efeito de alteração intempérica dos feldspatos, pois os valores desses elementos não deveriam estar empobrecidos, já que as rochas são andesíticas. Os espectros de ETR (figura 2.2B) mostram fracionamento com enriquecimento de ETR leves e anomalias negativas pequenas de Eu que também ressaltam a natureza andesítica das amostras.

Finalmente na tabela 2.1estão listados os teores de Sb e Bi no Complexo Barreiro. Esses elementos ocorrem em teores bastante baixos, mas na amostra VS-105A eles estão bem acima dos das demais. Provavelmente estas vulcânicas devem estar presentes na Serra da Ingrata, onde provocaram o surgimento de fortes anomalias de Antimônio em amostras de concentrado de bateia coletadas durante o Projeto Colomi, (Souza et al, 1979). Destaque-se também o teor de mais de 2800 ppm Ba na amostra EM-235A do Complexo Salitre.

Figura 2.2 – A: Diagrama multielementar; B: Espectros de ETR.

Em resumo, o Complexo Sobradinho-Remanso contém ortognaisses sódicos, peralcalinos, trondhjemíticos, prováveis equivalentes de uma suíte TTG, calcioalcalina de baixo K, equivalentes aos granitóides Ma-1 do capítulo 4 deste relatório e ortognaisses potássicos equivalentes aos Ma-2 do mesmo capítulo, produtos da fusão parcial dos primeiros.

As rochas vulcânicas do Complexo Barreiro têm assinatura química de elementos traços compatível com as de andesitos calcioalcalinos, gerados em ambiente de arco magmático.

Amostra	AS-255	AS-287B	AS-300A	AS-302	HL-068	HL-072	HL-072A	HL-048A	VS-045A	VS-101	VS-105A	VS-106	EM-235A	VS-103
Rocha	Granodiori	Granodiori	Granodiori	Granodiori	Microc. gn	Monzogranito	Monzogranito	Paragnaisse	Metadacito	Metadacito	Metavulc acid	Metadacito	Metassed.	Tufo?
Unidade	So-Re	So-Re	So-Re	So-Re	So-Re	So-Re	So-Re	So-Re	Barreiro	Barreiro	Barreiro	Barreiro	Salitre	Barreiro
SiO2	64,07	73,14	71,89	66,84	62,09	75,28	69,86	62,93	55,58	67,16	62,01	76,67	>90	>90
TiO2	0,42	0,16	0,16	0,45	0,08	0,03	0,35	0,27	1,31	0,82	1,19	0,61	0,05	0,15
Al2O3	18,10	14,89	14,79	17,46	17,15	13,59	15,36	18,58	20,90	18,95	14,63	13,73	2,83	7,41
Fe2O3t	3,91	1,74	2,77	4,96	2,96	1,56	2,96	2,99	15,42	6,92	16,31	4,53	2,96	2,12
MnO	0,05	0,02	0,04	0,07	0,06	0,03	0,04	0,05	<0,01	0,01	<0,01	0,08	0,05	<0,01
MgO	0,96	0,28	0,47	1,09	0,76	0,24	0,78	1,29	0,35	1,17	0,74	0,70	0,03	0,03
CaO	4,25	1,05	0,89	3,01	1,59	0,35	1,12	0,13	0,12	0,05	0,32	0,18	0,04	0,09
Na2O	6,64	3,91	3,07	4,49	2,04	4,61	4,18	3,61	0,29	0,37	0,19	0,87	0,04	<0,01
K2O	1,50	4,78	5,89	1,50	13,22	4,28	5,20	10,12	5,83	4,48	4,45	2,54	0,13	1,32
P2O5	0,11	0,03	0,03	0,11	0,05	0,02	0,14	0,02	0,20	0,06	0,16	0,08	0,33	0,1
Cr2O3	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	0,02	0,01	0,01	0,01	<0,01
LOI-orig	0,67	0,44	0,2	0,44	0,06	0,19	0,59	0,39	2,32	3,38	2,1	2,3	0,75	0,68
K2O/Na2O	0,23	1,22	1,92	0,33	6,47	0,93	1,24	2,80	20,39	12,23	23,68	2,93	3,25	
Ni	11,3	3,7	4,2	15,4	2,5	3,2	11,2	4,1	4,5	39,7	21	38,9	6,4	3,4
Со	9,2	2,2	2,5	11,6	0,9	0,6	6,5	2,6	0,9	9,6	5,2	13,7	2,3	0,4
v	18	4	4	35	5	<1	13	13					20	
Cu	4,7	5,1	3,7	11,8	7,2	5,2	10,2	4,4	10,4	2,8	2,6	11,8	8	<0,5
Pb	3,9	18	8,1	5	8	14,9	8,8	18,7	6,4	1,6	3,6	1,7	7,4	<0,2
Zn	78	28	57	106	4	18	81	90	<1	47	16	46	6	1
Rb	68	253	234,7	201,4	295,1	305	333,1	288	115,1	209,1	170,3	126,9	4,6	1,7
Cs	0,71	1,3	1,31	6,95	0,84	1,37	2,92	0,71	3,69	5,27	6,96	3,63	<0,05	<0,05
Ba	210	488	400	211	7516	32	595	545	480	584	402	514	2834	93
Ga	20,2	25,1	19,3	25,5	17,4	20,1	25,9	21,9	33,3	30,4	25,9	20	3,7	0,6
Sr	247,9	188,6	92,3	179,4	456,9	9,9	110,5	46,4	223,9	108,8	41,5	110,9	151,9	313,3
Та	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	1,11	1,46	0,49	0,62	<0,05	<0,05
Nb	0,91	<0,05	4,59	4,68	<0,05	3,31	4,2	5,99	7,61	10,24	6,88	6,67	<0,05	0,69
Hf	4,05	3,97	5,69	4,82	1,38	0,75	5,48	11,3	4,48	4,83	4,43	4,55	1,58	0,18
Y	8,03	17,42	4,45	17,02	20,31	27,87	13,08	31,97	38,93	26,56	19,45	19,81	19,87	0,8
Zr	235,5	154,8	251,5	311,6	83	15,1	242,6	608,4	176,9	132,6	141	164,9	72,5	127,3
Th	22,7	46,3	12,9	20,4	2,6	7,7	31,5	15,7	4,7	10,7	6,9	5,3	6,9	0,2
U	3,81	6,49	1,95	3,97	0,62	4,68	5,33	5,97	2,62	2,59	3,65	1,95	4,42	0,06
La	53,9	81,1	25,1	75	72,4	7,4	78,7	112,7	31,6	31,5	29,8	30,7	44,8	28,5
Ce	72,8	132	33,1	109,9	142,9	13,6	125,3	188,4	66,9	55	55,5	56	73,7	53,7
Pr	7,79	14,63	3,89	11,38	18,2	1,17	14,38	22,6	9,89	7,36	7,3	6,46	7,52	5,94
Nd	25,7	48,6	13,7	35,5	74,7	5,2	47,3	81,5	42,3	30,2	25,8	24,6	27,7	22,1
Sm	3,6	8	1,9	5,2	13,9	1,9	7,1	14,3	9,6	5,3	4,4	4,1	5,2	4,1
Eu	0,56	0,96	0,63	0,83	3,67	<0,05	1,08	1,24	2,28	0,92	0,76	0,97	1,3	0,68
Ga	2,86	6,67	1,61	4,78	12,51	3,07	4	10,99	9,27	4,91	2,95	3,67	5,76	3,02
10	0,24	0,88	0,08	0,58	1,32	0,71	0,39	1,39	1,04	0,59	0,4	0,54	0,55	0,42
Dy U	1,23	4,31	0,7	3,21	5,85	5,66	2,47	7,33	6,55	3,64	3,29	3,07	3,87	2,8
HO	0,22	0,85	0,08	0,6	0,84	1,08	0,43	1,34	1,28	0,79	0,59	0,62	0,62	0,52
Ef Tm	0,61	1,87	0,38	1,42	1,72	3,07	1,4	3,95	4,05	1,94	1,77	1,69	1,91	1,31
1m Vl	<0,05	0,28	<0,05	0,12	0,18	0,42	0,1	0,4	0,51	0,36	0,23	0,19	0,15	0,12
10	0,5	1,3	0,4	1,1	1,2	3,5	1,2	3,3	3,5	2,1	Ί,ὄ	1,7	1,6	1,1
Lu Mo	<0,05	0,31	<0,05	0,17	<0,05	0,26	<0,05	0,21	0,55	1.07	0,29	0,26	<0,05	0,28
Sh									30,20 ∠0.05	1,97	0.39	0,41		0,03
Bi									<0,00	0,00	0,30	0,07		<0,05
D1									<0,0Z	< 0,0∠	0,10	< 0,0∠	1	<0,0Z

So-Re: Complexo Sobradinho-Remanso Tabela 2.01 - Resultados analíticos dos complexos Sobradinho-Remanso e Barreir

3 – Rochas máficas e ultramáficas

3.1 Introdução

As rochas máficas e ultramáficas da área estão quase sempre metamorfisadas na fácies anfibolito ou xisto verde e os locais amostrados estão marcados na figura 3.1. A maioria das amostras é de rochas metamáficas integradas ao embasamento e algumas são de diques não metamorfisados. Foram analisadas 28 amostras que estão organizadas na tabela 3.1 em três tipos: (i) ultramáficas (U.M.), nove amostras; (ii) máficas, 13 amostras e (iii) indefinidas, seis amostras. As indefinidas estão marcadas com "?" na linha "Tipo" porque os teores de SiO₂ e de outros elementos são incompatíveis com rochas máficas. Por exemplo, a amostra AS-093A tem cerca de 60% de SiO₂ e ao mesmo tempo apresenta 33% de MgO, aliados a teores de elementos traços como Cr muito baixos, 68 ppm e Ni menor que 1 ppm. Tais valores seriam mais compatíveis com rochas metassedimentares como as calcosilicáticas magnesianas, supondo-se que o conteúdo não tenha sido afetado por hidrotermalismo ou intemperismo.

Figura 3.1 – Mapa dos pontos de amostragem. Alguns pontos podem representar mais de uma amostra.

No conjunto de máficas estão as amostras AS-025C e EM-173D, cujas composições de elementos maiores são mais compatíveis com rochas alcalinas subsaturadas. Todavia os elementos traços não exibem conteúdos compatíveis com tais rochas. Os teores de Ba, Sr e Zr, por exemplo, são muito baixos para rochas alcalinas. É provável que o balanço químico destas amostras também esteja comprometido por efeitos de processos pós magmáticos.

As amostras ultramáficas podem atingir altos teores de MgO, porém o método analítico empregado só detecta até 30% do óxido. Como estas amostras também são as que possuem as maiores perda ao fogo (LOI-orig, na tabela) foi utilizado o seguinte artifício para recalcular os valores de MgO: os teores maiores que 30% foram considerados como 30,5%; em seguida foi feita a correção para 100% anidra. Assim os teores subiram em função da maior ou menos perda ao fogo das amostras. Tal procedimento não criou problemas na interpretação, pois conteúdos de MgO desta ordem são indicativos de rochas com acumulação de olivina e as interpretações geoquímicas são feitas considerando apenas a parte considerada líquido, cujos teores são inferiores a 30%.

3.2 Caracterização geoquímica

As amostras de rochas ultramáficas foram coletadas em corpos situados em ambientes similares aos de greenstone belt, daí se supor que sejam representes de komatiitos. As máficas foram coletadas em vários locais e algumas representam diques gabróicos de colocação tardia.

Quando lançadas no diagrama de Jensen, 1976, figura 3.2, as amostras das rochas ultramáficas se posicionam sobre o trend komatilico e as máficas plotam no campo toleítico, predominantemente no segmento rico em MgO.

As amostras das rochas ultramáficas têm altos valores de mg# (=100MgO/(MgO+FeOt), molar), em torno de 80, que evidenciam líquidos bastante primitivos, ou a presença de cumulatos magnesianos. A evolução de líquidos com tais mg# é controlada pela atuação da olivina. Todavia,

entre os elementos maiores apenas o Al_2O_3 exibe bem tal variação (em diagrama binário contra MgO, não mostrado). A distribuição de FeOt e de TiO₂ não mostram claramente a evolução, ambos com conteúdos um pouco abaixo do esperado para os teores de MgO das amostras. A causa possível de tal comportamento seria a presença de algum outro mineral, como o piroxênio, se fracionando, ou o mais provável, as amostras estão muito alteradas por intemperismo e provavelmente, também por metassomatismo.

Na figura 3.2 as amostras ultramáficas, como dito acima se posicionam no campo dos komatiitos, contudo, o trend komatiitico mostrado

no diagrama, não discrimina as rochas vulcânicas komatiíticas das rochas cumuláticas originadas pela acumulação de olivina em intrusões acamadadas, porque em ambos os casos as amostras se posicionam ao longo do trend que caracteriza a evolução devido ao fracionamento da olivina (Teixeira, 2012b). Outras características petrográficas são necessárias, como a presença de spinifex na amostra, ou em rocha associada a ela para que seja considerada komatiito (Arndt, 2008). No presente caso, a textura spinifex está presente em algumas ultramáficas do Complexo Salitre, enquanto que nos demais locais apenas a ambiência é análoga a de sequências do tipo greenstone belt.

Arndt (2008) apresentou uma classificação com três tipos principais de komatiitos: (i) Barbeton, (ii) Munro e (iii) Gorgona. O tipo Barbeton predomina em greenstone belts com mais de 3,3

Ga, contém baixas razões Al_2O_3/TiO_2 , daí porque é chamado de "Al-depleted", empobrecido em Al e também em ETR pesadas, o que provoca uma elevação na razão (Gd/Yb)_N. O tipo Munro, chamado de "Al-undepleted" não é empobrecido em Al e predomina nos greenstone belts neoarqueanos e mais jovens. Suas principais características são razões Al_2O_3/TiO_2 e conteúdo de ETR pesados condríticos. O tipo Gorgona (em referência a ilha de Gorgona, na Colômbia), do Cretácio, exibe altos razões Al_2O_3/TiO_2 e baixos teores de ETR pesados.

As razões Al_2O_3/TiO_2 das amostras são compatíveis com o tipo Munro, enquanto os teores de ETR, bastante erráticos, não permitiram uma

definição segura da razão $(Gd/Yb)_N$. No diagrama mg# (=100MgO/(MgO+FeO) molar) – Al₂O₃ da figura 3.3 as amostras se posicionam sobre o líquido do tipo Munro, embora não evidenciem qualquer tipo de alinhamento. Algumas amostras ficam junto ao trend Barbeton, mas isto não é significativo, já

Figura 3.2 – Diagrama de Jensen (1976)

que pelo menos uma dessas amostras foi coletada no mesmo afloramento que outra posicionada no trend Munro.

A maioria dos elementos traços (tabela 3.1) exibe teores compatíveis com rochas komatiíticas, porém seus valores são muito dispersos, reflexo não só do elevado grau de alteração das amostras como possivelmente da rotina utilizada para as análises que não deve ter sido a mais apropriada para este tipo de rocha.

Na figura 3.4A estão os espectros de ETR normalizados pelo condrito que são muito úteis para ilustrar as afirmações anteriores. Os espectros estão fora dos padrões komatiiticos, aliados a uma forte irregularidade de teores que faz com que fiquem cheios de "dentes". O enriquecimento de ETR leves e a presença de anomalias negativas de Eu devem ter sido causadas por alterações pós magmáticas e os "dentes" por deficiência analítica. Três amostras (EM-161A, EM-161C e HL-070, na tabela 3.1) mostram espectros muito enriquecidos (linhas tracejadas), muito diferentes daqueles produzidos por rochas komatiíticas.

As rochas máficas e metamáficas se posicionam no campo dos gabros/basaltos toleíticos de alto Mg na figura 3.2. Não se observa qualquer diferença de posicionamento entre as amostras de rochas metamáficas anfibolitizadas e as de gabros, mais bem preservados, prováveis representantes de diques mais jovens.

Na figura 3.4B estão os espectros de ETR, que apesar de mostrarem as mesmas oscilações vistas no diagrama das ultramáficas, mostram conteúdos compatíveis com rochas máficas toleíticas continentais. Observar que os três espectros de diques gabróicos (linhas tracejadas), se desenvolvem de forma idêntica aos demais espectros, sugerindo que todas as amostras sejam representantes de algum magmatismo continental.

Figura 3.4 – Espectros de ETR. A: Ultramáficas; B: Máficas.

Não é conveniente tentar uma definição mais precisa de origem e ambiente porque os demais elementos traços, a exemplo dos ETR, mostram valores pouco confiáveis, como os de Th, por exemplo, que estão mais elevados que o esperado para o tipo de rocha em estudo.

3.3 Conclusões

Em que pese a qualidade dos dados analíticos que os tornam pouco confiáveis, algumas definições parecem consistentes. As rochas ultramáficas amostradas têm características compatíveis com as dos komatiitos do tipo Munro de Arndt (2008), que predominam nos greenstone belts neoproterozóicos. A composição química destes komatiítos é consequência de fusões parciais do manto a taxas em torno de 50%, em profundidades inferiores a 300 Km, onde a granada não seria um componente residual (Arnd, 2003).

As rochas máficas e metamáficas são toleíticas, com composições, sobretudo de ETR, que sugerem se tratar de magmatismo produzido em ambiente continental.

Amostra	EM-161C	EM-161D	EM-161A	HL-045	HL-044	HL-070	FR-028	FR-025	EM-259B	Média	AS-105C	AS-025C	EM-263B	EM-263A	EM-265B	EM-262A	EM-297A	EM-259C	EM-173D	HL-043
Rocha	Metamafica	Tremolitito	Metamafica	Talco xisto	Metaultrab	Talco xisto	Clor. xisto	Clor. xisto	Gabro		Mafica	Mafica	Metabasica	Metabasica	Metabasica	Metabasica	Metabasica	Gabro	Metagranito	Gabro
Tipo	U.M.	U.M.	U.M.	U.M.	U.M.	U.M.	U.M.	U.M.	U.M.	U.M.	Máfica	Máfica	Máfica	Máfica	Máfica	Máfica	Máfica	Máfica	Máfica	Máfica
SiO2	45,78	36,84	45,92	47,82	47,46	44,27	49,93	48,44	52,72	46,57	52,37	39,13	50,83	51,25	52,26	50,67	49,29	51,15	42,27	49,85
TiO2	0,33	0,25	0,33	0,30	0,31	1,73	0,27	0,33	0,22	0,45	0,97	0,70	0,81	0,89	1,06	1,00	1,25	1,11	1,35	0,92
Al2O3	4,91	8,90	4,69	6,82	7,25	7,47	7,12	8,29	3,80	6,58	6,92	17,27	13,02	13,69	13,39	14,54	15,70	13,84	15,36	15,15
Fe2O3t	14,34	15,53	12,30	12,18	11,96	15,99	12,57	11,95	8,55	12,82	15,60	13,94	11,90	12,19	12,95	12,77	13,26	14,02	21,80	13,33
MnO	0,04	0,09	0,06	0,21	0,28	0,25	0,21	0,25	0,24	0,18	0,29	0,17	0,21	0,20	0,19	0,20	0,22	0,22	0,19	0,21
MgO	32,51	32,19	31,86	25,42	24,78	23,77	23,30	22,83	18,48	26,13	12,25	12,18	10,07	8,96	7,98	7,44	7,36	7,29	7,01	6,83
CaO	1,85	5,75	4,42	7,11	7,82	5,86	5,94	7,28	14,89	6,77	9,27	11,20	10,57	9,98	8,82	10,20	10,17	10,23	7,90	10,09
Na2O	<0,01	<0,01	0,08	0,14	0,13	0,44	0,12	0,06	0,77	0,25	0,39	3,48	1,92	2,21	1,42	2,67	1,94	1,52	2,92	2,80
K20	<0,01	<0,01	<0,01	<0,01	0,02	0,10	0,05	0,04	0,30	0,10	1,61	1,85	0,63	0,58	1,87	0,46	0,70	0,53	1,05	0,79
P205	0,06	<0,01	0,18	<0,01	<0,01	0,12	0,02	<0,01	<0,01	0,10	0,08	<0,01	0,04	0,06	0,05	0,06	0,11	0,08	0,14	0,05
Cr2O3	0,16	0,44	0,16	0,49	0,54	0,21	0,46	0,53	0,28	0,36	0,26	0,09	0,09	0,06	0,05	0,05	0,04	0,05	<0,01	0,02
LOI-orig	5,91	7,97	5,23	4,81	4,91	4,51	4,93	5,62	1,09	5,00	1,41	1,21	1,25	0,78	1,61	0,65	1,21	1,01	2,38	0,58
mg#	81,95	80,59	83,83	80,69	80,58	14,85	78,77	79,27	81,24	80,20	61,12	63,63	62,89	59,55	55,25	53,83	52,64	51,01	39,18	50,65
Cr	1094	3032	1072	3352	3694	1436	3149	3649	1915	2488,01	1/64	602	136	/4	85	57	63	75 27 2	20.7	24
	435,1	10/5,1	330,8	280,8	429,1	201,5	255,8	5/8,1	82,7	414,98	155,1	05,5	52,5	20,3	40,6	20,4	59,9	37,3	38,7	25,2
Co V	23,1	55,2	22,1	54,1	43,1	38 125	51,5	45,1	11,2	55,71 (7.25	24,0	10,0	13,5	10,4	13,9	12,5	24,3	17	51,1	14,0
v Cu	27.5	20.4	20.2	4.2	25	133	16.2	27	6.2	20.20	116	517	45	17.0	56 4	49	105.2	21.1	797	42
Cu Ph	27,5	29,4 70.8	50,2 0	4,2	5,5 1.0	145,0	0.2	5,1 2.6	0,2	29,39	2 2	51,7	79,4 2.5	17,9	1.8	40	105,5	21,1 4.6	70,7	42
75	10,5	25	7	0,8	22	20	0,5	2,0 52	5,0 11	28.11	2,3	40	2,5	1,7	1,0	2,1	2,1	4,0	52,6 85	3,9
ZII Dh	15	55 1.4	15	25 <0.2	12	1.2	44	28	11	26,11	52 06.6	49 81 1	10	172	42.6	10	14.2	12	65 36 4	20
KD Cs	<0,2	0.23	<0.05	<0.05	0.12	<0.05	4,5	2,8 <0.05	4,7	2,40	1.84	2 36	0.38	0.24	43,0	9,7 0.06	0.19	0.30	1 25	~0.05
Ba	0,05	0,25	<0,05	<0,05 7	83	0,05	20	14	70	37.00	1,04	2,30	1034	68	248	35	60	47	1,25	<0,05
Ga	77	68	7	67	7.8	21.7	9.6	17	7.4	9.63	18.2	16.2	15.4	18.3	157	18	18.6	18.4	23.5	17.7
Sr	7	21.6	91	99	84	54 3	12.8	10.6	21	17 19	26	102.8	124.4	135.3	105.6	174.4	165.6	115.4	397.9	165.6
Ta	<0.05	0.59	1.82	<0.05	<0.05	1 68	<0.05	0.46	<0.05	1 14	0.87	0.07	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.7	<0.05
Nb	0.14	2.36	32.18	< 0.05	<0.05	12.16	2.72	3.56	<0.05	8.85	10.85	1.04	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	4.53	3.97
Hf	0.93	0.55	1.36	0.65	0.68	4.44	0.39	0.54	0.47	1.11	3.59	1.17	1.27	1.8	1.46	1.83	2.28	2.09	2.87	2.16
Y	8,79	6.87	11.38	8.56	9,54	26.2	6.35	8.72	10.65	10.78	24.93	18.37	16.36	21.56	19.2	19.45	24.44	22	26.43	18.39
Zr	34,1	5,8	32,5	21,7	20,3	120,7	8	13	17,9	30,44	93,3	43,5	58,4	89,7	79,8	83,2	72,9	84,2	81,9	76,5
Th	1,9	0,9	3,2	2,1	2,6	5,6	1,2	3,5	2,8	2,64	11,6	3,1	2,7	9	2,1	3,7	6,5	3,9	3,8	3,9
U	0,34	0,1	0,54	0,32	0,47	1,24	0,24	0,29	0,59	0,46	1,13	0,47	0,75	1,07	0,7	0,84	0,43	0,93	0,69	0,56
La	24,9	1	18	20,7	11,5	30,1	4,1	7,7	17,6	15,07	29,5	9,8	17,8	27,6	13,8	18,4	13,6	16,1	8,4	15,8
Ce	25,8	2,2	19,7	10,2	16,9	56	6,1	8,7	16,9	18,06	49,1	16,5	21,4	24,9	18	22,2	15,1	21,3	18,5	17,2
Pr	5,24	0,44	4,89	2,66	1,45	8,34	0,59	1,25	2,31	3,02	5,95	2,2	2,95	3,96	2,56	3,12	2,06	2,88	3	2,36
Nd	21,9	1,5	17,9	9,2	5,5	35,2	2,4	4,4	8,7	11,86	25,6	9,1	12,2	15,9	11,6	13,7	10,5	12,3	13,5	10,7
Sm	3,7	0,7	3,8	0,8	0,9	6,9	0,5	1	1,2	2,17	5,5	2,4	2,6	2,7	2,4	3,1	2,6	3,2	3,9	2,4
Eu	0,6	0,25	0,54	0,3	0,27	2,3	0,18	0,11	0,4	0,55	1,1	0,8	0,73	0,97	0,85	1,1	0,94	1,07	1,15	0,85
Gd	3,12	0,98	3,91	1,56	1,66	8,01	0,69	1,53	1,91	2,60	5,36	3,54	3,3	3,9	3,61	3,69	4,03	4,37	4,62	3,16
Tb	0,4	0,18	0,53	0,13	0,16	1,13	0,1	0,17	0,19	0,33	0,6	0,45	0,36	0,55	0,49	0,57	0,56	0,6	0,84	0,42
Dy	2,01	1,13	2,43	1,71	1,76	6,14	0,96	1,3	1,84	2,14	4,11	2,92	3,42	4,35	3,63	4,05	4,42	4	5,23	3,4
Ho	0,36	0,3	0,5	0,32	0,31	1,04	0,18	0,25	0,32	0,40	0,78	0,55	0,63	0,81	0,72	0,77	0,92	0,97	1,13	0,73
Er	0,89	0,82	1,24	0,97	1,02	3,03	0,74	0,63	1,14	1,16	1,99	1,94	2,06	2,57	1,96	2,34	3,13	2,5	2,89	2,66
Tm	0,08	0,1	0,1	<0,05	0,1	0,37	<0,05	0,06	0,06	0,12	0,26	0,19	0,18	0,26	0,19	0,26	0,32	0,3	0,28	0,24
Yb	0,8	0,7	1	0,8	0,9	2,6	0,5	0,7	0,9	0,99	1,7	1,7	1,8	2,1	1,9	2,1	2,9	2,4	3	2,1
Lu	<0,05	<0,05	<0,05	<0,05	<0,05	0,11	<0,05	0,15	<0,05	0,13	0,58	0,13	<0,05	0,08	<0,05	0,14	0,15	0,17	0,22	0,1

LOI original= perda ao fogo antes da normalização para 100% anidro U.M.: ultramáfica; ?: Amostra considerada básica, mas com quimismo muito discrepante

Amostra	EM-265A	EM-292A	FR-029	Média	AS-093A	AS-028C	AS-213	EM-267A	EM-267B	AS-258
Rocha	Metabasica	Metabasica	Anfibolito		Mafica	Mafica	Mafica	Tremolitito	Metabasica	Metamafica
Tipo	Máfica	Máfica	Máfica	Máfica	?	?	?	?	?	?
SiO2	51,58	44,10	50,18	48,84	59,66	56,94	57,25	60,00	60,79	74,02
TiO2	1,60	3,53	0,97	1,24	0,02	0,04	0,07	0,47	0,43	0,37
Al2O3	14,42	11,50	15,34	13,86	2,17	0,65	1,29	14,97	15,88	12,67
Fe2O3t	13,26	23,25	12,40	14,67	4,34	6,68	21,84	4,44	4,04	4,08
MnO	0,20	0,30	0,27	0,22	0,07	0,13	0,35	0,13	0,13	0,05
MgO	6,41	5,99	5,56	8,10	33,63	22,67	10,74	7,26	6,18	0,73
CaO	8,55	9,32	12,17	9,88	0,07	12,64	8,17	8,73	8,01	0,43
Na2O	3,15	1,42	2,58	2,19	0,01	0,14	0,19	3,15	3,81	3,05
K2O	0,62	0,33	0,45	0,88	0,02	0,13	0,11	0,74	0,67	4,61
P2O5	0,20	0,27	0,05	0,10	< 0,01	<0,01	<0,01	0,11	0,06	<0,01
Cr2O3	0,03	0,01	0,04	0,07	0,01	0,01	0,01	<0,01	<0,01	< 0,01
LOI-orig	1,74	1,35	1,56	1,29	5,35	3,28	1,13	1,29	1,33	0,31
mg#	49,19	34,02	47,31	52,33	93,94	87,17	49,61	76,61	75,39	26,39
Cr	86	67	271	275,25	68	68	68	8	5	12
Ni	62,6	81	27,7	53,57	0,8	2,1	4,2	5,7	9,4	6,3
Со	25,5	65,3	13,4	21,75	0,9	0.8	2,2	2,2	4,6	4,6
v	81	640		119,89	,			4	5	7
Cu	76,5	357,9	1,7	75,48	0,8	8,3	19	3,1	4	7,3
Pb	5	9,5	2	10,60	28,4	11,6	0,4	5,9	8,9	8,2
Zn	50	104	25	40,85	12	9	10	7	7	56
Rb	13.6	5.4	8	29.15	0.7	4.2	13.5	19.7	15.6	143.7
Cs	0.31	1.68	0.22	0.83	< 0.05	0.1	0.51	0.43	0.35	1.42
Ba	114	197	28	172.15	25	111	41	285	273	897
Ga	20.2	20.7	23.4	18.79	2.7	1.4	14.3	15.6	14.7	20.5
Sr	171.3	168.4	132.3	152.69	1	8.5	17.9	192.1	190.9	44.8
Ta	< 0.05	< 0.05	0.39	0.51	0.07	0.14	0.32	< 0.05	< 0.05	< 0.05
Nb	< 0.05	3.99	4.68	4.84	< 0.05	3.01	6.69	< 0.05	< 0.05	4.88
Hf	3.48	3.5	1.91	2.26	0.51	0.19	2.91	3.87	3.5	6.56
Y	36.04	34.1	29.7	23.92	18.31	13.02	38.63	13.04	12.65	29.21
Zr	154.7	192.2	51.9	89.40	18.2	8.2	5	221.2	184.8	357
Th	3.9	2.8	0.9	4.45	2.3	2.4	16.9	2.4	1.6	10.1
U	1.15	0.87	0.3	0.76	0.68	10.92	2.28	0.87	0.76	2.27
La	24,2	29,7	11,6	18,18	2,6	33,2	48,5	33,6	41,4	54,3
Ce	38,7	49,1	11,8	24,91	14,9	31,2	38,3	33,7	28,8	94,9
Pr	5.59	6.7	2.92	3.56	1.84	7.98	13.24	6.45	7.68	11.62
Nd	24.6	29.2	12.2	15.47	7.6	26.9	46.2	24.2	27.8	44.8
Sm	5.6	6.2	3.1	3.52	2	5.2	9.8	4.4	5.3	8.4
Eu	1.82	1.84	0.71	1.07	0.2	0.69	1.23	1.02	1.32	1.71
Gd	6.93	7.61	4.38	4.50	2.52	4.56	6.91	3.93	4.81	7.83
Tb	0,94	1	0,52	0,61	0,42	0,58	1,18	0.39	0,47	1,01
Dv	6,64	6,85	5,47	4,50	2,49	2,57	6,93	2,87	3,05	6,19
Ho	1,46	1,35	0,96	0,91	0,62	0,46	1,23	0,47	0,49	1.09
Er	4.28	3.81	3.03	2.70	2.07	0.99	3.36	1.32	1.42	3
Tm	0.59	0.51	0.28	0.30	0.21	0.12	0.55	0.1	0.08	0.26
Yb	4	3.5	3.3	2.50	2.5	0.9	3.9	1.1	1.1	2.3
Lu	0,41	0,31	0,54	0,26	0,18	0,05	0,53	<0,05	<0,05	0,31

0,410,310,540,260,18LOI original= perda ao fogo antes da normalização para 100% anidro

U.M.: ultramáfica; ?: Amostra considerada básica, mas com quimismo muito discrepante

4 – Granitoides

4.1 Introdução

A área do projeto Médio São Francisco é caracterizada por um grande número de corpos graníticos agrupados em suítes, cujas idades presumidas vão desde o Arqueano até o Neoproterozóico.

Foram analisadas 81 amostras oriundas de afloramentos localizados preferencialmente na região a norte do rio São Francisco (Figura 4.1). Mediante a aplicação dos conceitos de Frost et al (2001) para caracterização química dos granitoides, as amostras foram enquadradas em dois conjuntos magnesianos com assinatura de zona de subducção e três conjuntos ferrosos (granitoides deste tipo, em geral, são de ambientes distensivos pós colisionais ou anorogênicos). Na tabela 4.1 as amostras estão organizadas em função de sua natureza (magnesiana: Ma ou ferrosa: Fe) e também pela suíte a que pertencem.

Legenda: ▲ Ma-1 ● Ma-2 ▲ Fe-1 ■ Fe-2 ● Fe-3 ⊠ não identificada Figura 4.1 – Locais de amostragem dos granitoides. Alguns pontos representam mais de uma amostra.

O segmento cratônico da área do projeto pertence ao bloco Gavião Norte (Barbosa et al, 2012) que é uma extensão do bloco principal, presente na região central da Bahia, constituído por grandes domínios de rochas gnaissico-migmatíticas (Complexo Gavião), cujo quimismo permitiu separar três tipos de ortognaisses: (i) sódico, (ii) sódico-potássico e (iii) potássico (Teixeira, 2012a). Cinco amostras de ortognaisses do complexo Sobradinho-Remanso (vide tabela 2.1) lembram muito os ortognaisses amostrados no Complexo Gavião, todavia a mais consistente semelhança com este complexo é exibida pelos granitoides magnesianos, aqui descritos, cujas composições são análogas às dos ortognaisses sódicos e potássicos lá definidos.

Os dois tipos de granitoides magnesianos são os seguintes:

Ma-1 — É sódico com razão K_2O/Na_2O média inferior a 0,5. O espectro composicional de SiO₂ varia entre 63 e 72% e os teores de Al₂O₃ são superiores a 15%. É peraluminoso e calcioalcalino. Ma-1 foi definido a partir de cinco amostras da Suíte Fazenda Forte e seis da Juazeiro-Lagoa do Alegre (tabela 4.1).

Ma-2 — Os teores de SiO₂, em sua grande maioria, são maiores que 65%. O Al₂O₃ médio está em torno de 15%. As razões K_2O/Na_2O são maiores que um (são potássicas), peraluminosas e álcali-

cálcicas. Este magmatismo foi definido a partir de nove amostras da Suíte Fazenda Forte, 13 da Juazeiro-Lagoa do Alegre, uma da Petrolina e uma de unidade indefinida.

Os granitoides ferrosos são os seguintes:

Fe-1 — Definido a partir de cinco amostras da Suíte Serra da Esperança (idade de 560 Ma Rb/Sr), também chamada de granito Casa Nova e Engraçadinha por Pla-Cid et al (2000). Intrusiva no Complexo Casa Nova, com teores de SiO₂ inferiores a 70% e Al₂O₃ superior a 15%. Rico em álcalis e ligeiramente sódico (K_2O/Na_2O pouco menores que 1), metaluminoso, alcalino.

Fe-2 — Definido a partir de nove amostras da Suíte Petrolina. O espectro composicional é predominantemente superior de 66% de SiO₂ e teores de Al₂O₃ estão entre 11 e 14 %. Rico em álcalis, potássico (K₂O/Na₂O maiores que 1), metaluminoso, alcalino. Este granitoide contem muitas características análogas a de alguns tipos mapeados na Suíte Alcalina Serra do Meio (Leite, 1997, Barbosa et al, 2012) de idade possivelmente inferior a 900 Ma.

Fe-3 — Este conjunto foi definido com 14 amostras provenientes das suítes Fazenda Forte, sete da Juazeiro-Lagoa do Alegre, duas da Bom Jardim e uma da São Pedro. Todavia as três primeiras contem também amostras magnesianas. Fe-3 exibe extenso espectro composicional, que vai de 56 a 74% de SiO₂, é potássico, alcalino a alcalicálcico, com teor médio de Al₂O₃ de 15%,.

A composição química de Fe-3 é pouco comum e bastante diferente das outras unidades ferrosas, mas ela tem equivalentes em uma fácies peraluminosa da Suíte Serra do Meio (Leite, 1997) e também em um granitoide alcalino considerado sin-pós colisional descrito na Finlândia (Jurvanen et al, 2005).

Os granitoides magnesianos estão distribuídos por quase toda a área do projeto, enquanto que os ferrosos predominam na região a norte do Rio São Francisco (figura 4.1). Como existem poucas amostras na região SW do projeto, não dá para afirmar se esta distribuição está refletindo a geologia da área ou se é apenas o reflexo da amostragem mais densa realizada na região NW da área. Note-se que a única amostra ferrosa (Fe-3) nas folhas Serra do Brejinho e Sento Sé (figura 4.1) é a VS-080 (tabela 4.1), pertencente a Suíte São Pedro.

4.2 Caracterização geoquímica

A definição dos granitoides magnesianos está nos diagramas de SiO₂-FeO/(FeO/MgO) da figura 4.2A e SiO₂-MALI da figura 4.2B. Na figura 4.2A as amostras mais evoluídas mostram uma distribuição harmônica, seguindo um trend de enriquecimento de FeO, comum nos granitoides magnesianos, que se estende até além do limite com os ferrosos. Os tipos Ma-1 e Ma-2 foram individualizados a partir das razões K_2O/Na_2O . As amostras com razões inferiores a 0,6 foram denominadas Ma-1(sódicas) e as com valores próximos ou maiores que um, de Ma-2 (potássicas).

O conjunto Ma-1é peraluminoso, têm teores de SiO₂ entre 63 e 72% e Al₂O₃ em torno de 16%. A soma de Fe₂O₃ total+MgO+TiO₂+MnO é inferior a 5% e os teores de Na₂O são superiores a 4%. No diagrama da figura 4.2B é definido como calcioalcalino, com alguns pontos caindo no campo alcalicálcico. No diagrama SiO₂-K₂O de Pecerillo & Taylor (1976), não mostrado, ocupam a área onde se posicionam as amostras das séries calcioalcalina normal e de baixo potássio (trondhjemitica).

No conjunto Ma-2 a maioria dos teores de SiO₂ é superior a 65%. O Al₂O₃ médio está em torno de 15%. É potássico, com valores de K₂O/Na₂O em torno de 1e é peraluminoso. Na figura 4.2B é caracterizado como álcali-cálcico. No diagrama de Pecerillo & Taylor (1976), não mostrado, formam um aglomerado junto à parte alta do campo calcioalcalino de alto K. Neste local, frequentemente se posicionam os produtos de fusão parcial crustal, sem qualquer trend evolutivo nítido. Provavelmente a crosta continental era ígnea, mas houve participação importante de material sedimentar, evidenciada pela persistência dos termos peraluminosos e da presença de moscovita nas lâminas petrográficas.

As características químicas verificadas nos granitos Ma-1 e Ma-2 são análogas as dos ortognaisses migmatíticos pertencentes ao Complexo Gavião (Teixeira, 2012a) e ao Complexo Gnaissico-Migmatítico da região de Campo Alegre de Lourdes (Leite, 1997). Nos diagramas das figuras 4.3A, B e C, normalmente utilizados para caracterização de ortognaisses do embasamento,

estão lançadas as amostras dos granitoides Ma-1 e Ma-2. Neles também estão desenhados os envelopes composicionais das cinco amostras do Complexo Sobradinho-Remanso, tratadas no capítulo 2 deste relatório. Não há qualquer diferença de posicionamento entre as amostras que permita separar, com segurança, os granitoides ora estudados dos ortognaisses do embasamento.

Figura 4.2 – Diagramas de classificação dos granitoides magnesianos.

No diagrama 4.3A (Ab-An-Or de Barker & Arth, 1975) as amostras de Ma-1 se posicionam nos campos tonalítico e trodhjemítico realçando seu caráter sódico, enquanto Ma-2 se concentra no campo granítico. Estes dois conjuntos são persistentes também no Complexo Gavião (Teixeira, 2012a) e no Complexo Gnaissico-Migmatítico da região de Campo Alegre de Lourdes (Leite, 1997). No diagrama 4.3B, com o campo dos TTG (Martin, 1994), o conjunto Ma-1 se posiciona no campo dos TTG, enquanto Ma-2 forma um agrupamento de pontos ligeiramente afastado do trend calcioalcalino normal. A figura 4.3C (An-Qz-Or de Barker & Arth, 1975) também mostra dois agrupamentos. Um sobre o trend trondhjemítico, caracterizado pelas amostras de Ma-1 e outro calcioalcalino, formado pelas amostras de Ma-2. Existe um pequeno número de amostras de Ma-1 que cai entre os dois agrupamentos, que podem ser consideradas como Ma-1 contaminadas com material de Ma-2.

Os três diagramas da figura 4.3 mostram que os granitoides Ma-1 têm composição similar aos TTG arqueanos e que os Ma-2 são análogos aos K-ortognaisses do mesmo Complexo Gavião, considerados como produtos da fusão parcial (anatexia) de uma crosta ígnea. A mesma gênese pode então ser proposta para os granitoides da área do Projeto Médio São Francisco.

Figura 4.3 – Diagramas de discriminação entre as séries calcioalcalina de baixo K e normal. O campo tracejado marca a posição das amostras do Complexo Sobradinho-Remanso. Mesma legenda da figura 4.2.

Os granitoides ferrosos mostram evoluções distintas, sobretudo em diagramas de Harker (não mostrados). Aparentemente nenhum deles é comagmático em relação aos demais. Os teores de SiO_2 apresentam ampla variação desde pouco mais de 50% até mais de 75%. O Al_2O_3 exibe um bom

alinhamento entre Fe-1 e Fe-2, sugestivo de uma evolução de Fe-1 para Fe-2, mas esta possibilidade é desfeita quando se observam as demais características dos dois magmas.

Um importante fato observado são os índices A/CNK (=Al2O3/(CaO+Na2O+K2O molar) dos três tipos. Fe-1 e Fe-2 são metaluminosos (A/CNK<1), enquanto Fe-3 é peraluminoso (A/CNK>1), inclusive nas amostras com teores de SiO₂ mais baixos (tabela 4.1). A forma como os três tipos estão mapeados pode dar alguma indicação do que está ocorrendo. Fe-1 contém amostras apenas da Suíte Serra da Esperança, bem definida cartograficamente, intrusiva no Complexo Casa Nova; o Fe-2 contém amostras de um corpo da Suíte Petrolina, também com características intrusivas muito bem definidas. As amostras de Fe-3, ao contrário, provem de áreas onde também ocorrem granitoides magnesianos. Sua distribuição é, portanto, mais difusa e seus contatos, menos definidos, daí porque sua presença no interior de suítes magnesianas. O caráter peraluminoso pode ter sido herdado da fusão parcial de alguma rocha encaixante.

Quanto às razões K₂O/Na₂O, o Fe-1 é sódico enquanto os demais são potássicos.

Na figura 4.4 A (SiO₂-FeO/(FeO+MgO)) estão os pontos representativos das amostras que definiram os magmatismos ferrosos na área. Apenas por este diagrama não seria possível distinguir um do outro, mas através de outros parâmetros, como comportamento de elementos traços e a geologia, a separação ficou consistente. O conjunto Fe-2 é nitidamente enriquecido em ferro, com razões FeO/(FeO+MgO) superiores a 0,9. Granitoides definidos como alcalinos do tipo A (Loisele & Wones, 1979) exibem esta característica. O Fe-1, embora com menos amostras, também é definido no campo ferroso e o Fe-3, com mais amostras, mostra um amplo espectro composicional, com SiO₂ variando entre menos de 60 até 75%, que se estende paralelamente a linha divisória com os granitos magnesianos. Algumas amostras caíram no campo magnesiano, porém no conjunto de características elas ficaram mais bem definidas como ferrosas apesar do desvio composicional que pode estar indicando mistura física entre rochas de uma e de outra composição.

Na figura 4.4B está o diagrama do índice MALI (= Na_2O+K_2O-CaO) de Frost et al (2001) em função de SiO₂. Os três conjuntos evoluem desde o campo alcalino até o álcali-cálcico, com algumas amostras de Fe-2 chegando ao campo calcioalcalino. Este comportamento é normal, pois como são rochas alcalinas saturadas a diferenciação provoca a queda dos teores de Na_2O e os termos mais evoluídos podem se posicionar no campo subalcalino (Eby, 1990).

Figura 4.4 – Diagramas de classificação dos granitoides ferrosos.

As analises dos elementos traços revelaram valores bastante heterogêneos, sobretudo nas amostras representativas das rochas magnesianas e consequentemente a visualização de qualquer processo evolutivo fica muito difícil. Em termos absolutos, os teores dos elementos contidos em Ma-1 são muito parecidos com os observados em Ma-2, o que sugere que as amostras representem composições de misturas variadas entre os dois tipos de material. Como o critério para separar os dois conjuntos de granitoides magnesianos foi a razão K₂O/Na₂O, em pelo menos três amostras de Ma-1(AS-317, EM-295A e EM-295E, na tabela 3.1) os valores de elementos traços não se mostram coerentes com este conjunto, como se verá a seguir.

Os elementos traços nos diagramas multielementares normalizados pelo manto primordial das figuras 4.5A (Ma-1) e 4.5B (Ma-2) têm espectros pouco harmônicos entre si, porem a queda dos teores do lado direito é visível nos dois diagramas. Os conteúdos praticamente idênticos, com anomalias negativas de Nb, P, Ti, Tb e Y são sugestivos de origem em um arco magmático. Os espectros de ETR nas figuras 4.6A e B se comportam de maneira semelhante. Na figura 4.6A estão os espectros das amostras de Ma-1. Mesmo com a grande heterogeneidade de conteúdos, a maioria dos espectros é compatível com a série trondhjemítica definida através dos elementos maiores. Existem três espectros, com teores de Eu elevados e destoantes das demais que são das três amostras citadas acima. Apesar das razões K₂O/Na₂O baixas, estas amostras não parecem ser do mesmo tipo das demais, classificadas como Ma-1.

Figura 4.5 – Diagramas multielementares. A: de Ma-1; B: de Ma-2. As linhas tracejadas são das amostras destoantes, citadas no texto.

Os espectros de ETR dos Ma-2 mostrados na figura 4.6B são muito semelhantes aos de Ma-1, tanto na forma, como nos conteúdos dos diversos elementos, sendo impossível distinguir os dois tipos de granitoides.

A partir do conjunto de características observadas em Ma-1, ele pode se considerado como um magmatismo análogo ao dos TTG, magnesiano (calcioalcalino de baixo K), enquanto que Ma-2, com características álcali-cálcicas (ou calcioalcalinas de alto K), sem evidências de diferenciação magmática importante é compatível com rochas geradas por fusão parcial de crosta continental. A semelhança entre os espectros composicionais de elementos traços dos dois tipos sugerem a presença de uma mistura física acentuada entre eles, comum em zonas de contato entre corpos graníticos anatéticos (Ma-2) e suas encaixantes (Ma-1).

Figura 4.6 – Espectros de ETR. A: Ma-1; B: Ma-2. As linhas tracejadas são das amostras destoantes, citadas no texto.

As figuras 4.7A e B sintetizam a distribuição dos elementos traços incompatíveis nos granitoides ferrosos, normalizados pelo manto primordial. Os espectros de Fe-1 (figura 4.7A) são

muito diferentes dos demais. Apresentam anomalias positivas de Ba e Sr, aliadas a baixos conteúdos de HFSE, como Y, Tb e Ti. A forma geral dos espectros mostra uma acentuada inclinação para a direita em função do empobrecimento de HFSE em relação aos LILE. Tais características são de um granitoide gerado a partir da fusão parcial de um manto metassomatisado, portanto com assinatura de arco magmático em seu passado, conforme sugerido por Pla Cid et al (2000). A relação entre os conteúdos de Y, Nb e Ga o caracterizam como do tipo A1 de Eby (1992)

Figura 4.7 - Diagramas multielementares dos granitoides ferrosos. A: Fa-1 e Fa-2; B:Fa-3.

No mesmo diagrama o Fe-2 exibe anomalias negativas de Ba e Sr muito acentuadas em espectros com padrão bastante horizontalizado, em função dos valores elevados de HFSE, em particular de Tb e Y. Este tipo de espectro é muito comum em granitos do tipo A de Loisele & Wones (1979), mais especificamente dos A2 de Eby (1992).

O conjunto de amostras denominado Fe-3 exibe espectros inclinados para a direita, semelhante aos gnaisses magnesianos, com valores mais harmônicos que os demais granitoides ferrosos. Ba e Sr apresentam anomalias negativas muito pronunciadas e teores elevados de HFSE, sobretudo de Hf, Zr, Sm e Tb. A composição destes granitoides é compatível com granitoides alcalinos com acentuada influência de material crustal em sua composição.

Os espectros de ETR de Fe-1 (figura 4.8A) exibem valores baixos, anomalias negativas de Eu e ETR pesados muito baixos, semelhantes aos granitoides magnesianos. Por outro lado os espectros de Fe-2 mostram altos teores de ETR totais aliados a um segmento horizontalizado dos ETR pesados, típicos de granitoides do tipo A2.

Figura 4.8 - Espectros de ETR. A: Fe-1 e Fe-2, mesma legenda da figura 4.7A; B: Fe-3

Na figura 4.8B estão os espectros do Fe-3. Observa-se que de uma maneira geral eles são muito semelhantes aos observados em Ma-2, mas exibem teores de ETR leves elevados e anomalias

negativas de Eu acentuadas que não são comuns nos termos magnesianos. A semelhança com os magnesianos, juntamente com o fato de serem os únicos representantes peraluminosos entre os três tipos ferrosos, sugere que seja um produto mantélico (em virtude de seu amplo espectro composicional), fortemente contaminado com material crustal, talvez sedimentar. Sua íntima associação com granitoides magnesianos, sobretudo da Suíte Fazenda Forte (que é predominantemente do tipo Ma-2) sugere uma intrusão na mesma época da migmatização que afetou a área. Seriam, portanto, sin-pós colisionais.

Outra alternativa para a colocação de Fe-3 seria em ambiente pós colisional tardio. Porém, neste caso, embora ele pudesse continuar peraluminoso, os teores de HFSE deveriam ser mais elevados, pois sua origem não deveria estar associada à fusão de um manto metassomatisado.

4.3 Conclusões

Os dados geoquímicos definiram os granitoides da área do projeto em duas grandes categorias, segundo as definições de Frost et al (2001): Os magnesianos, denominados de Ma-1 e Ma2 e os ferrosos, denominados de Fe-1, Fe-2 e Fe-3. Os granitoides magnesianos tiveram origem em zona de subducção sob influência de manto metassomatisado ou fusão parcial de rochas deste tipo. Os granitoides ferrosos têm sua origem, na maioria das vezes, em ambientes distensivos, produzidos ou pela fusão parcial de manto profundo ou produtos da fusão parcial de crosta continental sob regime especial, ou mesmo mistura entre material mantélico e crosta. Mais raros são os produzidos pela fusão parcial de manto metassomatisado.

Ma-1 é um granitoide sódico, provável representante de suítes de composição TTG na área. Ma-2, potássico, deve ser o produto de fusão parcial de Ma-1(anatexia), durante um evento colisional.

Fe-1 representa um magmatismo alcalino, sódico do tipo A1, Fe-2 é alcalino potássico do tipo A2 colocado em ambiente distensivo. Fe-3 é alcalino peraluminoso, potássico de composição sugestiva de colocação em ambiente sin-colisional, portanto de mesma idade que Ma-2.

Dentro destes grandes conjuntos os diversos granitos analisados podem ser interpretados da seguinte forma:

Suíte Serra da Esperança – Corpos com contatos bem definidos classificados como Fe-1. Provável produto da fusão parcial de manto metassomatisado.

Suíte Bom Jardim – Caracterizada a partir de apenas duas amostras, tem característica de Fe-3. Suíte São Pedro – A única amostra desta suíte está caracterizada como Fe-3.

Suíte Fazenda Forte – Esta suíte é composta por granitoides de composições diversas onde o Fe-3 tem sua maior expressão, embora o magmatismo Ma-2 também seja um componente muito importante.

Suíte Petrolina - Caracterizada como Fe-2, representantes de um magmatismo ferroso alcalino do tipo A2, potássico, produto da fusão parcial de crosta continental e material mantélico, provavelmente colocado em regime distensivo (pós colisional ou anorogênico).

Suíte Juazeiro-Lagoa do Alegre – Esta suíte é constituída predominantemente por granitoides de composição Ma-2, interpretados como produtos da anatexia de uma crosta com composição TTG, arqueana. Além dos granitoides Ma-2, também ocorrem rochas ferrosas Fe-3 e enclaves do embasamento de composição Ma-1.

Amostra	VS-107	AS-054	AS-079	VS-006	AS-317	AS-279	AS-014	EM-295E	EM-295A	EM-260A	EM-266A	HL-016	HL-009	Média	AS-261	AS-283	HL-005	AS-305	AS-285A	AS-304	AS-013	AS-286
Tipo	(Ma)	(Ma)	Ma-1	Ma-1	Ma-1	Ma-1	Ma-1	Ma-1	Ma-1	Ma-1	Ma-1	Ma-1	Ma-1	Ma-1	Ma-2	Ma-2	Ma-2	Ma-2	Ma-2	Ma-2	Ma-2	Ma-2
Suíte	F. Forte	J-LA	F. Forte	F. Forte	F. Forte	F. Forte	F. Forte	J-LA	J-LA	J-LA	J-LA	J-LA	J-LA		F. Forte	F. Forte	F. Forte	F. Forte	F. Forte	F. Forte	F. Forte	F. Forte
SiO ₂	51,10	57,95	63,41	65,41	65,43	71,95	72,42	67,51	69,47	70,80	75,83	67,77	69,99	69,09	72,27	65,61	69,36	70,01	70,42	71,04	71,62	72,79
TiO ₂	2,40	0,89	0,39	0,54	0,54	0,23	0,19	0,44	0,44	0,33	0,06	0,26	0,28	0,34	0,14	0,65	0,16	0,21	0,38	0,25	0,20	0,14
Al ₂ O ₃	14,12	19,17	19,46	17,76	17,85	15,24	15,08	16,23	15,08	15,47	14,08	18,14	16,36	16,43	15,38	16,12	16,65	16,21	15,90	16,21	15,16	15,23
Fe ₂ O ₃ t	17,21	7.09	4,43	4,30	4,08	2,97	2,15	4,05	3,79	2,97	1,26	1,96	2,35	3,12	2,12	4,58	2,07	2,52	2,24	2,55	2,48	1,85
MnO	0,22	0,05	0,03	0,06	0,05	0,05	0,03	0,07	0,05	0,06	0,02	0,03	0,02	0,04	0,14	0,09	0,02	0,04	0,03	0,04	0,03	0,02
MgO	6.01	2.04	0.99	0.85	0.83	0.43	0.44	2.07	1.36	0.73	0.30	0.95	0.61	0.87	0.43	2.46	0.44	0.70	0.94	0.45	0.49	0.35
CaO	5.42	4.39	2.67	3.92	3.94	1.88	2.12	2.01	2.27	2.32	0.86	2.21	1.80	2.36	0.93	2.36	2.28	2.21	1.22	1.76	1.77	1.28
Na ₂ O	2.07	5.49	5.89	5.23	5.27	4.52	4.15	4.62	4.65	5.50	5.92	5.98	5.33	5.19	4.20	3.48	4.87	4.19	3.96	3.70	4.26	4.42
K-0	1.17	2.58	2.63	1.77	1.86	2.66	3.40	2.82	2.74	1.80	1.67	2.64	2.85	2.44	4.35	4.57	4.11	3.86	4.75	3.99	3.99	3.89
P ₂ O ₇	0.29	0.37	0.09	0.16	0.16	0.07	0.01	0.16	0.16	0.03	< 0.01	0.07	0.42	0.13	0.03	0.07	0.05	0.05	0.16	< 0.01	< 0.01	0.02
CraOa	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
LOI-orig	3 74	0.31	0.65	0.44	0.31	0.13	0.1	0.91	0.76	0.45	0.42	0.89	0.97	0.55	0.55	0.61	0.09	0.26	0.29	0.17	0.25	0.07
K O/No O	0.56	0,51	0,05	0,44	0.35	0,15	0.82	0,51	0,70	0,45	0.28	0,07	0,57	0,35	1.04	1 31	0.84	0,20	1.20	1.08	0.04	0,07
A/CNK	0,50	0,47	1.12	1.00	1.00	1 11	1.05	1 13	1.02	1.02	1.07	1.08	1.08	1.06	1,04	1,51	1.00	1.07	1,20	1,00	1.04	1 10
A/CINK	57.9	10.2	1,12	7.2	5.5	4.2	1,05	1,15	1,02	8.2	1,07	1,00	1,00	6.47	1,15	62.1	1,00	7.5	1,15	0.2	1,04	6.2
NI Co	37,0 40.1	19,2	4 5 0	1,2	5,5	4,5	10,7	12,1	12,4	0,5	4,7	2.4	20	5 70	21.6	22,1	0,8	1,5	0,2	0,2 5 7	4,0	0,5
Cu Cu	49,1	26.6	5,0 7.5	10	5	5,5	4, / 5 1	9	9,5	1,0	1,0	2,4	2,0 5	0.12	21,0	25,1	0.7	4,7	4,7	19.2	4,0	3,5
Cu DL	425	30,0 12,1	7,5 56 A	0,0	5,8 10.1	0,0	5,1	4.9	25,2	16,2	14,4	7 1	70	9,15	10.6	/,0	0,7	4,1	6,9	18,5	5,9	4,0
PD 7	1,2	15,1	50,4	1,8	10,1	0,8	4,9	4,8	7,5	9,5	9,4	/,1	7,8	11,45	19,0	8,1 126	27	7,1	0,5	29	7,4	10,8
Zn	100	90	58 125 C	8/	48	03	125 7	00	54	52	26.1	41	41	49,00	10	130	3/	54 225 5	48	2004	30	3/
KD	56,4	131,3	135,6	92,2	253,5	159,5	125,7	96,5	61,7	105,5	26,1	105,2	140	118,32	118,5	529,4	140,6	235,5	272,2	260,4	147,6	216,8
Cs	1,75	1,89	3,59	3,12	1,25	1,27	3,28	14,03	4,84	6,35	0,36	2,25	2,39	3,88	1,08	5,75	2,58	3,63	2,57	5,21	3,19	1,39
ва	204	202	288	41/	402	544	1100	545	603	366	438	306	520	502,64	/0/	912	561	/24	2513	826	569	441
Ga	18,7	27,8	29,3	30,5	24,9	23,8	18,2	21,4	19,9	21	16,5	27,5	31,7	24,06	23,7	24,8	24,7	19,2	26,4	19,9	22	23,6
Sr	281,4	270,9	192,4	370,6	364,5	162	212,9	314,6	414,7	264	139,7	292,1	244,2	270,15	146,7	182,5	184	167	379,5	179,9	166,7	269,3
Та	<0,05	1,2	3,72	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	0,28	0,78	1,59	<0,05	<0,05	0,35	<0,05	<0,05	<0,05	<0,05	<0,05
Nb	6,35	17,11	37,16	1,3	0,17	2,44	<0,05	1,84	6,09	<0,05	<0,05	6,44	7,68	7,89	<0,05	<0,05	5,13	<0,05	6,31	0,78	0,81	1,89
Hf	4,47	4,55	5,95	7,51	9,7	3,75	2,7	4,69	4,69	2,69	1,36	2,88	3,86	4,53	2,36	3,28	2,53	3,03	6,37	3,1	4,36	2,29
Y	37,79	25,07	5,08	8,86	32,65	10,83	4,47	22,35	16,39	10,85	8,68	6,41	4,25	11,89	30,15	21,9	4,7	9,53	34,26	8,11	7,05	10,53
Zr	186,6	160,6	179,3	379,4	360,2	185,8	106,5	214,9	191	103,5	50,5	106,1	138,3	183,23	112,4	139,1	89	147,1	314,6	162,8	156,7	103,6
Th	9,5	6,7	13,9	17	75,7	20,2	9,6	8,5	5,7	5,4	3,2	7,9	10,1	16,11	13	16,2	5	17,4	57,1	19	14,8	9,8
U	2,05	2,21	1,69	2,37	4,87	3,63	1,75	1,47	1,43	1,68	1	1,39	2,53	2,16	4,55	4,84	2,27	3,81	16,8	2,68	2,56	5,44
La	35,2	37,5	12,6	43,3	247,6	46,5	44,3	69,2	62,7	28,5	24,5	30,7	38,1	58,91	107,8	60,2	28,4	39	240,9	46,2	43,2	12,5
Ce	57,3	69,3	56,3	64,6	464,5	65,4	42,2	113,9	105,3	46,8	36,1	46,1	57,1	99,85	131	76,2	36,3	53,3	351,3	63,4	63,3	16,6
Pr	7,66	9,2	3,01	7,06	51,98	6,99	4,55	14,12	12,73	4,82	4,42	5,14	5,78	10,96	22,67	9,86	4,34	5,85	38,81	6,7	7,26	1,35
Nd	33,5	34	9	26,4	173,9	22,6	13,8	50,9	46,1	17,9	14,9	17	19,2	37,43	73,9	35,2	14	19,3	132,4	22,4	25,5	5,2
Sm	6,3	6,3	1,9	4,5	24,7	3,3	1,4	8,3	6,7	2,8	2,4	2,8	2,7	5,59	13	6,3	1,8	3	16,9	2,9	3,8	1
Eu	2,07	1,8	0,52	1,32	1,21	0,57	0,78	1,99	1,87	0,7	0,58	0,32	0,29	0,92	2,65	1	0,44	0,6	3,15	0,71	1,34	0,22
Gd	7,79	6,45	1,59	3,63	17,41	3,1	1,27	6,74	5,36	2,62	2,08	1,47	1,53	4,25	10,44	5,41	1,25	2,69	12,26	2,64	2,98	1,33
Tb	1,14	0,93	0,25	0,34	2	0,25	< 0,05	0,78	0,66	0,28	0,16	0,13	0,06	0,49	1,35	0,62	<0,05	0,21	1,31	0,29	0,41	0,15
Dy	7,43	5,48	1,14	1,76	9,16	2,13	0,71	4,44	3,53	2,02	1,52	1,47	0,76	2,60	6,79	4,37	0,74	1,68	6,39	1,47	1,45	1,44
Но	1,54	0,94	0,24	0,28	1,23	0,39	0,09	0,78	0,6	0,38	0,3	0,11	0,1	0,41	1,24	0,79	< 0,05	0,28	1,06	0,24	0,46	0,28
Er	4,75	2,5	0,49	0,85	3,45	0,9	0,39	2,41	1,7	0,89	0,82	0,35	0,31	1,14	2,9	2,49	0,37	0,88	2,87	0,72	0,79	1,14
Tm	0,49	0,25	< 0,05	< 0,05	0,3	0,06	< 0,05	0,27	0,15	0,08	0,06	< 0,05	< 0,05	0,15	0,31	0,21	< 0,05	< 0,05	0,33	<0,05	0,17	0,07
Yb	3,9	2,2	0,4	0,7	2,5	0,7	0,1	2,1	1,6	0,8	1	0,4	<0,1	1,03	2	1,8	0,2	0,5	2,3	0,6	0,7	1,3
Lu	0,34	0,13	< 0,05	< 0,05	0,11	0,06	< 0,05	0,06	< 0,05	< 0,05	<0,05	0,09	< 0,05	0,08	0,27	0,21	< 0,05	0,06	0,24	<0,05	0,27	0,15
Мо		1,17	0,74									<0,05	0,22	0,48			0,31					
w	3,6	<0,1	2,8	4,1	4	4,4	2,8	2,5	2,3	1,6	2,6	<0,1	5,6	3,27	4,4	3,7	<0,1	4	3,9	3,7	3,3	4,3
Sn	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	<0.3	1.7	8	4.85	< 0.3	< 0.3	4.4	< 0.3	5.3	<0.3	< 0.3	< 0.3

Suítes. F. Forte: Fazenda Forte; J-LA: Juazeiro-Lagoa do Alegre; SE: Serra da Esperança; BJ: Bom Jardim; S. Pedro: São Pedro

VS-104 e AS-054 não entraram na interpretação porque aparentemente pertencem a um magmatismo diferente dos demais **Tabela 4.1 - Dados químicos dos granitoides**

Amostra	AS-313	HL-027G	EM-295C	EM-295D	EM-177B	EM-258C	EM-261A	EM-258A	HL-067	HL-066	EM-114A	AS-058	AS-132	EM-259A	EM-174A	AS-287A	Média	EM-042	EM-032	EM-034	HL-011	HL-021*	Média
Tipo	Ma-2	Ma-2	Ma-2	Ma-2	Ma-2	Ma-2	Ma-2	Ma-2	Ma-2	Ma-2	Ma-2	Ma-2	Ma-2	Ma-2	Ma-2	Ma-2	Ma-2	Fe-1	Fe-1	Fe-1	Fe-1	Fe-1	Fe-1
Suíte	F. Forte	Petrolina	J-LA	J-LA	J-LA	J-LA	J-LA	J-LA	J-LA	J-LA	J-LA	J-LA	J-LA	J-LA	J-LA	?		SE	SE	SE	SE	SE	
SiO ₂	73,63	67,89	68,34	68,37	70,74	72,50	73,49	73,97	73,29	73,49	74,04	62,66	68,92	75,26	67,19	72,38	70,80	61,54	63,03	65,60	70,22	70,92	66,26
TiO ₂	0,05	0,44	0,44	0,44	0,12	0,21	0,19	0,12	0,12	0,09	0,17	0,48	0,22	0,05	0,28	0,21	0,24	0,17	0,36	0,24	0,08	0,10	0,19
Al ₂ O ₃	14,85	12,84	15,87	15,49	16,13	14,39	13,90	13,86	14,69	14,73	14,10	18,41	15,84	13,65	16,91	14,89	15,31	20,65	15,24	16,98	16,21	15,33	16,88
Fe ₂ O ₃ t	1,20	5,58	4,00	4,00	1,63	2,35	2,26	1,90	1,67	1,52	1,93	5,55	3,55	1,32	3,20	2,19	2,68	2,49	4,45	2,60	1,38	1,51	2,48
MnO	0,02	0,09	0,05	0,06	0,02	0,04	0,05	0,04	0,03	0,02	0,02	0,04	0,04	0,03	0,04	0,03	0,04	0,03	0,08	0,06	0,04	0,05	0,05
MgO	0,29	2,35	1,40	1,53	0,35	0,41	0,31	0,27	0,22	0,20	0,42	1,64	0,60	0,04	1,21	0,57	0,75	0,26	0,61	0,53	0,15	0,24	0,36
CaO	0,84	3,99	1,22	1,57	1,11	1,44	1,27	1,16	1,34	1,22	0,88	3,74	1,93	0,78	1,66	0,90	1,62	1,43	2,20	2,14	0,62	0,80	1,44
Na ₂ O	3,96	3,10	4,53	4,64	4,40	4,14	4,33	3,87	4,55	4,36	3,58	5,10	4,53	4,92	4,30	3,69	4,21	6,96	3,61	6,34	6,73	5,97	5,92
K ₂ O	5,15	3,70	3,98	3,75	5,43	4,46	4,19	4,81	4,09	4,36	4,77	2,23	4,28	3,94	5,07	5,09	4,28	6,33	9,49	5,32	4,52	5,02	6,14
P ₂ O ₅	<0,01	0,02	0,16	0,15	0,08	0,06	0,01	<0,01	< 0,01	< 0,01	0,09	0,16	0,11	< 0,01	0,15	0,05	0,08	0,15	0,93	0,19	0,04	0,06	0,27
Cr ₂ O ₃	< 0,01	<0,01	<0,01	< 0,01	< 0,01	<0,01	<0,01	< 0,01	< 0,01	<0,01	<0,01	<0,01	< 0,01	< 0,01	< 0,01	<0,01	< 0.01	<0,01	< 0,01	< 0,01	< 0,01	<0,01	< 0,01
LOI-orig	0,72	0,07	0,66	0,9	0,36	0,4	0,18	0,08	0,18	0,21	0,68	0,21	0,23	0,16	0,53	0,18	0,34	0,22	0,47	0,07	0,11	0,08	0,19
K ₂ O/Na ₂ O	1,30	1,19	0,88	0,81	1,23	1,08	0,97	1,24	0,90	1,00	1,34	0,44	0,95	0,80	1,18	1,38	1,04	0,91	2,63	0,84	0,67	0,84	1,18
A/CNK	1,09	0,78	1,13	1,06	1,06	1,01	0,99	1,01	1,02	1,04	1,11	1,04	1,01	0,99	1,08	1,12	1,06	0,99	0,75	0,84	0,95	0,92	0,89
Ni	3,1	12,5	11,8	12,8	2,3	5,1	7,1	4,2	3,6	4,5	5,7	20,7	4,6	4,3	11,5	4,5	9,45	2,3	<0,5	1,3	1,4	1,2	1,55
Со	0,9	5,6	9,7	9,6	1	3,4	3,2	2,3	1,9	1,7	2,4	10,1	4,1	0,5	3,2	3,5	5,53	0,8	1	1,3	0,4	0,5	0,80
Cu	3	18,3	70,5	17,9	4,7	5,8	10,7	7	5,7	6,1	21,1	53,6	3,6	3,6	9,1	12,8	12,88	3,5	11,3	11,5	<0,5	<0,5	8,77
Pb	9,2	15,4	4,4	8,7	11,2	16,1	14,7	12,3	13,3	13,5	22,8	7,1	4,1	8,2	21,7	16,1	12,09	51,3	30,7	76,7	37,2	11,9	41,56
Zn	14	19	53	53	17	31	37	28	28	21	38	64	44	15	48	48	40,67	33	16	20	28	21	23,60
Rb	283	111,2	86,1	82,2	144,1	178,7	165	167	140,8	127,1	149,8	127,2	128,6	150,6	96,5	284,3	172,63	89,9	11,5	126,2	158,8	129,6	103,20
Cs	1,51	<0,05	24,54	3,82	3,96	3,93	3,13	6,18	4,32	3,37	1,01	1,89	1,31	3,49	0,68	2,37	3,95	2,01	0,09	2,11	3,26	2,93	2,08
Ba	465	216	672	663	291	486	645	456	638	619	<5	230	738	16	514	995	647,70	3130	5241	3806	1203	1933	3062,60
Ga	21,1	20,3	21	21,2	17,5	20,4	18,3	16,2	20,3	18,9	19,3	26,6	26,8	19,7	19,6	23,8	21,47	20,7	1	23,3	26,7	21,4	18,62
Sr	81,7	84,9	227,3	232,3	142	203,2	174,6	145,6	198,9	177	<0,5	250,5	311	22,3	280,7	224,2	192,69	1486,5	638,1	1832,1	1059,2	1253,9	1253,96
Та	<0,05	<0,05	<0,05	<0,05	0,38	<0,05	<0,05	<0,05	<0,05	<0,05	0,59	0,74	0,1	<0,05	0,54	<0,05	0,45	0,82	<0,05	0,09	0,58	0,47	0,49
Nb	<0,05	11,86	4	2,98	3,6	34,85	<0,05	<0,05	<0,05	<0,05	10,22	11,22	3,85	0,2	5,29	2,65	6,60	13,88	0,78	12,23	14,2	19,51	12,12
Hf	1,23	4,74	4,94	4,39	2,7	5,02	3,83	2,75	2,67	2,33	3,78	4,14	4,29	2,01	3,57	2,99	3,45	4,38	0,12	5,04	5,05	4,44	3,81
Y	9,63	18,13	13,11	13,12	7,87	11,11	10,83	9,49	8,09	7,81	6,51	13,48	16,71	9,91	7,18	9,53	12,45	5,89	0,88	11,2	6,19	5,94	6,02
Zr	51	177,1	204,9	187,3	81,5	156,9	177,4	144,6	95,9	74,6	<0,5	123,8	191,8	49,7	105,5	139,6	138,56	154,3	115,6	193,1	125,6	131,4	144,00
Th	6,6	7,8	7,4	7	4,9	15,2	11,5	9,2	10,2	8,9	19,4	14	8,3	10,5	11,4	23,6	13,68	10,2	0,4	19	8	6,3	8,78
U	3,5	0,93	1,47	1,24	1,52	3,68	4,2	2,3	3,13	2,84	4,49	1,/4	2,8	5,57	0,55	7,59	3,77	3,16	0,18	4,51	4,93	3,1	3,18
La	13,2	33,/	66 105 8	62,8	29,9	65,/	41,9	3/	24,9	20,9	50,7	48,4	62,8	13,1	65	51,8	52,75	19,6	/8	35,5	12,5	15,/	52,26
Ce D	13,1	41,8	105,8	102,7	49	81,8	/5	51,8	31,8	27,7	81,1	89,8	80,7	14,0	109,9	81,5	/6,4/	34,8	125,2	60 7 7 5	21,9	24,5	53,28
Pr NJ	1,4	4,93	13,4	12,30	5,55 17 2	9,30	0,01	5,59	5,25	2,68	8,89	10,1	20	1,93	12,2	9,14	8,98	4,06	14,95	1,15	2,59	2,75	0,42
INU S-m	4,9	2.2	49,7	40,8	17,5	50,8	25,5	17,5	11,4	9,5	27,7	55,2	59	8,0	59,5	29,0	30,38	15,4	57,5 10.6	28,2	9,1	10,7	25,74
Sin	0,0	5,2	0,9	0,0	2,4	4	3,5	2,4	2 0.52	1,5	4,0	2,0 1 10	0,2	2	5,8	4,2	4,59	2,8	10,6	5,4	1,0	1,9	4,40
Eu	0,52	0,94	5.22	1,04	0,92	0,08	0,01	0,54	1.97	1.79	0,8	5.02	1,25	0,14	1,41	2.4	2.94	0,95	0,55	2.06	1,20	<0,05	2,17
Ga Th	<0.05	4	5,55	5,21	2,15	5,58 0,22	2,01	2,55	1,87	1,78	5,67	5,02	4,07	2,51	4,72	5,4 0.40	5,84 0.45	0.20	7,12	5,90	1,59	0.15	5,17
10 Du	<0,05	2 72	2.07	0,40	0,5	1.8	0,20	1.58	0,12	1.24	0,39	0,00	0,52	1.07	1.62	2.05	0,45	1.15	4.02	0,40	1.16	0,15	1.08
Бу Но	0.24	5,72 0,72	0.46	2,34	0.25	1,0	2,15	0.28	0.18	0.28	0.32	2,73	2,4	0.32	0.3	2,03	2,33	0.2	4,05	0.20	0.00	0,98	0.24
no En	0,24	2.1	1.41	1.25	0,25	1.02	1.06	1.02	0,18	0,28	0,32	1.22	1.10	1.22	0,5	0,52	1.22	0,2	0,49	0,29	0,09	0,11	0,24
EI Tm	0,77	2,1	0.1	1,55	0,37	1,05	0.11	1,02	<0.05	<0.05	-0.05	0.12	0.14	-0.05	0,08	0,65	0.14	0,05	0,94	0,01	<0.05	<0.02	0,71
TIII Vh	0,00	0,20	0,1	0,09	0,08	0,00	0,11	0,09	<0,05	<0,03	<0,03	0,12	1.2	<0,05	0,08	0,17	0,14	0,00	1.2	0,07	<0,05	<0,05	0,08
ID In	0,7	2,5	-0.05	-1,2	0,7	<0.05	-0.05	0,0 <0.05	<0.05	<0.05	0,4	0,9	0.18	<0.05	<0.05	0.06	0,39	<0.05	0.2	0,7	<0.05	<0.05	0.18
Mo	0,07	0,17	<0,03	<0,05	0.15	<0,05	<0,05	<0,05	<0,05	<0,05	0,09	0,05	0,10	<0,03	0.2	0,00	0.31	0.2	0.46	0.26	0.32	0.2	0.29
W	3.6	0.7	2	2	2.6	17	28	2.2	2.1	27	<0.1	<0.1	<0.1	3.1	4.4	33	3.03	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Sn	<0.3	<0.3	< 0.3	<0.3	<0.3	4.2	<0.3	0.5	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	,-+ <03	1.6	3.20	102.4	8.4	5.5	2.3	9.7	25.66

Suítes. F. Forte: Fazenda Forte; J-LA: Juazeiro-Lagoa do Alegre; SE: Serra da Esperança; BJ: Bom Jardim; S. Pedro: São Pedro

VS-104 e AS-054 não entraram na interpretação porque aparentemente pertencem a um magmatismo diferente dos demais **Tabela 4.1 - Dados químicos dos granitoides**

Amostra	HL-027I	HL-027H	HL-027A	HL-027B	HL-027C	HL-027	HL-027F	HL-027E	HL-027D	Média	FR-007	FR-037	VS-080	AS-084	AS-023	AS-103A	AS-100	AS-253	AS-285B	AS-015	AS-315A	AS-164
Tipo	Fe-2	Fe-2	Fe-2	Fe-2	Fe-2	Fe-2	Fe-2	Fe-2	Fe-2	Fe-2	Fe-3	Fe-3	Fe-3	Fe-3	Fe-3	Fe-3	Fe-3	Fe-3	Fe-3	Fe-3	Fe-3	Fe-3
Suíte	Petrolina	Petrolina	Petrolina	Petrolina	Petrolina	Petrolina	Petrolina	Petrolina	Petrolina		BJ	BJ	S. Pedro	F. Forte	F. Forte	F. Forte	F. Forte	F. Forte	F. Forte	F. Forte	F. Forte	F. Forte
SiO ₂	53,69	66,57	70,79	72,35	72,82	75,01	76,00	76,45	77,87	71,28	72,91	73,01	70,17	59,22	64,36	66,28	72,77	73,57	56,95	61,64	67,83	69,60
TiO ₂	1,19	0,26	0,21	0,38	0,47	0,19	0,23	0,20	0,19	0,37	0,13	0,12	0,25	0,92	0,39	0,75	0,18	0,18	1,40	0,39	0,58	0,52
Al ₂ O ₃	13,30	13,79	13,90	12,52	11,39	12,24	11,62	11,48	10,87	12,35	13,76	14,53	15,68	18,45	17,86	15,52	14,63	14,23	16,85	19,35	15,46	14,87
Fe ₂ O ₃ t	17,77	5,91	3,49	4,36	5,68	2,82	2,69	2,64	2,48	5,32	2,75	1,49	2,88	6,65	3,91	5,16	2,10	2,08	8,24	3,92	4,15	3,65
MnO	0,21	0,08	0,05	0,06	0,08	0,04	0,04	0,03	0,03	0,07	0,03	0,02	0,04	0,03	0,03	0,04	0,03	0,03	0,17	0,03	0,03	0,04
MgO	3,27	2,76	0,48	0,13	0,18	0,07	0,06	0,02	0.03	0,78	0,29	0,41	0,46	1,01	0,49	0,72	0,28	0,27	5,28	0,79	0,53	0,58
CaO	0,69	0,44	0,53	1,28	1,16	0,61	0,77	0,59	0,53	0,74	1,00	0,91	0,62	2,34	1,29	1,73	0,86	1,23	3,19	1,30	1,78	1,79
Na ₂ O	2.07	3.63	3.09	3.63	2.98	3.24	3.20	3.14	2.91	3.10	3.86	3.72	3.11	3.73	4.05	3.29	3.54	3.68	2.50	4.31	3.14	3.48
K,0	7,80	6,55	7,45	5,23	5,20	5,79	5,39	5,45	5,09	5,99	5,23	5,73	6,70	7,36	7,46	6,31	5,57	4,70	5,28	8,16	6,35	5,33
P ₂ O ₅	< 0.01	0.01	< 0.01	0.06	0.05	< 0.01	< 0.01	< 0.01	< 0.01	0.04	0.04	0.05	0.09	0.30	0.15	0.20	0.04	0.04	0.13	0.11	0.14	0.14
Cr ₂ O ₂	<0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
LOI-orig	0.46	0.33	0.08	0.01	0.01	<0.01	0.01	0.01	0.01	0.12	0.29	0.43	0.85	0.66	2.55	0.34	0.3	0.26	1 12	0.47	0.55	0.44
K ₂ O/Na ₂ O	3.76	1.80	2 41	1 44	1 75	1 79	1 69	1 74	1 75	2 01	1 35	1 54	2 16	1.97	1.84	1.92	1.57	1.28	2 11	1.89	2.02	1.53
A/CNK	1.01	0.99	0.98	0.90	0.90	0.96	0.93	0.94	0.96	0.95	0.99	1,04	1 16	1,00	1,04	1,92	1,09	1,20	1.08	1,05	1.01	1,00
Ni	3.2	3.7	61	4.8	5.5	<0.5	5.1	3.2	3.3	4 36	4.8	63	3.5	4.4	3.2	62	1.3	3.7	101.1	2.7	6.2	63
Co	24	0.8	1.4	1.6	24	0.3	0.9	0.6	0.7	1 23	17	17	14	-,- 7	3.1	7.6	2.8	29	46.8	3.2	6.2	5.4
Cu	10.1	5.2	67	0.0	2,7	<0.5	6.1	5.3	82	7 55	1,7	0.5	3	14.2	5,1	1.8	<0.5	2,9	10,5	14.6	8	2.5
Ph	10,1	20	25.6	32.3	18.5	15.2	22.9	20.8	27	25 73	13.4	20.4	1	14,2	15.9	71	4.6	78	7.1	18.0	4.8	2,5
7n	1161	512	102	100	1/8	80	42	20,0	100	259,75	27	18	78	-0,7	41	02	-1,0 28	51	265	61	-,0	2,5
Zh Ph	745.7	409.6	252	153.7	152.1	10/ 8	42	160.4	155.5	259,50	108.4	216	462.1	229.6	286.3	374	20	381.0	586.1	370.1	305.7	312.2
KU Ca	11.24	409,0	0.52	0.11	0.15	0.2	<0.05	0.17	<0.05	205,55	2.2	1 49	2 97	0.72	2 4 9	1 42	4 97	4 22	12 77	1 75	0.65	2.07
CS Po	206	121	162	595	646	127	<0,05	140	<0,05	2,05	2,2	1,40	3,07	0,72 850	3,40 470	047	4,07	4,23	800	1,75	0,03	2,07
Da	55.2	41.9	20.8	20.8	20.7	25.6	24	20.0	27.1	22 79	22.4	24.1	22.2	27.1	21.6	26.9	274	222	20.6	25.5	25 5	24.2
Ga S.	17.2	41,0	29,0	29,0 57.9	52.1	19.6	24	12.9,9	12.2	26 20	108.5	175 4	53,5 52,0	121.6	51,0 86	127.2	21 82.2	27,7	29,0	33,3 76 A	122.0	54,5 174 1
51 To	17,5	13,7	21,5	2.05	52,1 <0.05	10,0	<0.05	12,0	12,5	1 20	196,5	0.27	2 00	121,0	1.54	197,5	02,5	<0.05	<0.05	2.06	<0.05	1/4,1
Ta Nh	<0,05	1,4	< 18	2,05	<0,05	22 77	<0,05	<0,05	<0,05	1,39	6.08	678	3,00 27.01	22.62	1,34	1,65	1,11	<0,05	2.44	2,90	<0,05	10.22
IND	12.07	12.04	10,40	14.20	40,10	10.7	12.96	24,10	14,72	42,02	0,08	0,78	6 27	10.56	0.24	18 70	5.04	0,9	2,44	20,97	12.52	19,52
	15,27	12,94	12,7	14,52	17,21	10,7	15,80	(0.21	11,75	15,11	2,54	2,57	0,27	19,50	9,24	18,79	5,94	4,70	3,11	7,98	12,52	26.71
Y Z	30,72	54,57	18,29	125,45	709.0	33,01	40,22	68,21	46,78	58,84	6,14	7,91	13,69	38,99	34,12	53,4	17,91	34,10	37,85	26,67	26,09	26,71
Zr	448	460,9	495,4	045,5	708,9	300,5	10.0	425,1	405,4	312,97	81,0	/0,1	1/8,4	102.0	504,9	/39,1	1/9,/	200,7	147,8	250,6	602	449,1
In	14	29,1	29,8	23,8	/1,2	12,4	18,2	21,5	20,5	26,70	18,7	16,4	38,8	105,8	59,6	89,9	5 12	43,6	9,4	87,6	88,8	6/,/
<u>U</u>	3,49	14,66	2,49	6,2	101,9	1,57	1,48	1,96	1,85	15,07	6,4	8,94	13,97	1,95	4,34	2,91	5,13	6,56	4,84	7,62	2,74	4,63
La	28,7	89,6	139,6	101,8	135,7	102,1	139,6	132,5	106,1	108,41	53 75 4	38,8	85,8	3/5,5	136,9	325,2	99,3	80,3	60,3	154,7	322,9	180,9
Ce D	48,4	155,8	232,3	162,6	241,6	187,9	230	231,3	185,1	186,78	/5,4	62,2	168,1	001,0	261,5	631,7	152,4	148,1	65,1	288	562,6	300
Pr	6,91	18,4	27,89	20,83	30,48	22,81	26,34	28,44	22,08	22,69	8,1	7,19	20,82	/3,88	29,78	68,64	18,37	15,27	11,41	31,33	66,07	33,94
Na	28,9	69,3	94,9	82,9	118,5	88,1	91,5	104,1	80,8	84,31	27,7	24,5	70,5	232,7	100	215,2	56,7	51	41,1	101,4	208,9	109
Sm	6,1	13	13,3	18	22,3	16,4	14,3	20,7	14,4	15,39	4,3	4,5	16,3	28,3	16,8	30,2	10,6	8,5	/,6	16,9	27,3	17,5
Eu	0,41	0,59	0,87	2,14	2,24	0,57	0,79	0,76	0,63	1,00	0,19	0,37	0,41	2,05	1,18	1,54	0,63	0,68	1,23	1,14	1,63	1,19
Gd	7,62	12,09	8,/1	20,17	23,23	10,34	11,65	19,39	14,2	14,16	2,54	3,41	12,55	23,91	14,04	17,62	1,57	6,83	7,58	13,94	16,96	9,35
Tb	1,04	1,/	0,93	3,7	3,9	1,14	1,56	2,96	1,85	2,09	0,19	0,27	1,92	2,22	1,53	1,81	0,79	1,02	1,05	1,57	1,63	1,06
Dy	6,97	10,99	4,27	23,55	22,37	7,77	9,03	16,91	10,49	12,48	1,42	1,56	12,44	9,07	7,59	10,42	4	6,08	6,35	6,39	6,53	6,1
Ho	1,35	2,13	0,8	5,34	4,7	1,41	1,74	3,11	2,14	2,52	0,13	0,25	2,24	1,69	1,22	1,76	0,5	1,18	1,21	1,12	1,01	0,86
Er	4,1	6,82	2,01	15,92	13,66	3,57	5	8,49	4,85	7,16	0,41	0,62	6,13	3,85	3,03	4,53	1,21	3,4	3,79	2,77	2,74	1,92
Tm	0,55	0,83	0,2	2,2	1,77	0,31	0,62	1,09	0,63	0,91	<0,05	<0,05	0,82	0,29	0,29	0,57	0,15	0,41	0,41	0,19	0,16	0,23
Yb	4,1	6,1	2	14,8	11,1	2,4	4,3	6,8	4,1	6,19	0,3	0,3	5,1	2,9	2,8	4,1	0,6	3,3	3,2	2	1,7	1,7
Lu	0,41	0,57	<0,05	1,79	1,22	0,41	0,37	0,63	0,26	0,71	0,11	0,33	0,63	0,22	0,22	0,47	0,13	0,22	0,45	0,15	<0,05	0,16
Mo						3,4	_			3,40	0,9	0,54	2,84	5,24	0,98	1,7	1			1,24		0,65
w	<0,1	1,3	<0,1	<0,1	<0,1	< 0,1	0,6	0,4	0,7	0,75	<0,1	0,3	3,8	2,2	1,7	<0,1	14,6	3,1	4,4	0,5	4,6	<0,1
Sn	1,7	<0,3	<0,3	1,7	<0,3	6,6	<0,3	<0,3	<0,3	3,33	4	4,6	12,5	<0,3	<0,3	0,9	4	3,7	4,7	2,5	<0,3	<0,3

Suítes. F. Forte: Fazenda Forte; J-LA: Juazeiro-Lagoa do Alegre; SE: Serra da Esperança; BJ: Bom Jardim; S. Pedro: São Pedro

VS-104 e AS-054 não entraram na interpretação porque aparentemente pertencem a um magmatismo diferente dos demais **Tabela 4.1 - Dados químicos dos granitoides**

AS-278	Amostra	AS-315	AS-193	AS-306	AS-288	EM-257A	HL-036A*	AS-017-1L	AS-011	AS-252	AS-017-2L	AS-291	Média	EM-295B	EM-176A	AS-004C	AS-056	AS-058B	AS-301
Fe-3	Tipo	Fe-3	Fe-3	Fe-3	Fe-3	Fe-3	Fe-3	Fe-3	Fe-3	Fe-3	Fe-3	Fe-3	Fe-3	Indef	Indef	Indef	Indef	Indef	Indef
F. Forte	Suíte	F. Forte	F. Forte	F. Forte	F. Forte	J-LA	J-LA	J-LA	J-LA	J-LA	J-LA	J-LA		J-LA	J-LA	J-LA	J-LA	J-LA	?
69,61	SiO ₂	69,68	71,89	73,88	74,19	73,78	73,04	63,04	72,22	73,69	70,99	74,27	69,53	68,30	68,49	62,62	63,04	64,19	73,95
0,33	TiO ₂	0,60	0,20	0,09	0,15	0,15	0,35	0,37	0,22	0,14	0,32	0,19	0,37	0,46	0,05	0,67	0,30	0,21	0,06
15,54	Al ₂ O ₃	14,71	14,76	14,64	14,46	13,98	13,01	17,92	14,33	13,58	14,44	14,25	15,28	15,62	16,75	17,52	19,15	19,61	15,11
3,27	Fe ₂ O ₃ t	3,98	2,32	1,69	1,86	2,15	3,65	4,45	2,86	2,32	3,21	2,46	3,38	3,89	2,43	5,60	3,71	2,66	1,56
0,04	MnO	0,03	0,03	0,02	0,02	0,06	0,03	0,02	0,04	0,04	0,03	0,04	0,04	0,05	0,01	0,06	0,02	0,02	0,02
0,52	MgO	0,54	0,30	0,18	0,22	0,29	1,17	1,01	0,26	0,48	0,73	0,48	0,72	1,42	0,20	0,76	0,84	0,65	0,14
1,13	CaO	1,46	0,94	0,73	0,98	1,17	0,25	0,50	1,15	0,45	0,34	0,43	1,15	1,80	0,93	1,87	2,21	2,04	1,09
3.81	Na ₂ O	2.96	3.95	3.87	3.77	4.37	0.52	4.25	3.47	3.23	3.23	3.01	3.45	4.19	4.42	3.86	4.44	6.02	4.40
5,64	K ₂ O	5,87	5,57	4,89	4,32	4,02	7,95	8,34	5,38	6,05	6,66	4,83	5,99	4,08	6,68	6,79	6,23	4,55	3,67
0.11	P ₂ O ₅	0.18	0.04	0.02	0.03	0.02	0.03	0.09	0.06	0.01	0.05	0.04	0.09	0.18	0.04	0.24	0.07	0.05	< 0.01
< 0.01	Cr ₂ O ₂	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
0.23	LOI-orig	0.53	0.21	0.16	0.13	0.14	0.86	0.46	0.27	0.21	0.48	0.36	0.51	0.85	0.18	0.33	0.22	0.12	0.07
1 48	K ₂ O/Na ₂ O	1.98	1 41	1 27	1 15	0.92	15.42	1.96	1.55	1.87	2.06	1.60	2.24	0.97	1 51	1 76	1 40	0.76	0.83
1.08	A/CNK	1,06	1.04	1 13	1 14	1.02	1 31	1,06	1,05	1.07	1 10	1 30	1.08	1.07	1.03	1.02	1.06	1.06	1 14
5.1	Ni	7.4	0.8	4.6	3.6	5.8	12.9	3.5	8.6	6.2	4.9	47	9.08	13.6	2.2	3.8	7.6	6.8	3
47	Co	8.4	2.8	1.9	2	41	17	3.9	44	4	57	2.6	5.67	10.3	1	47	33	2.4	1
13.1	Cu	10.6	1	4.2	69	11.8	<0.5	4 5	81	4.6	59	4.8	6.75	8.8	218.5	8.2	13.1	6.7	57
10.6	Ph	5.4	35	11.5	10.7	15.2	17	6.6	49	24	3.2	27	9.73	8.1	34.3	6.6	15	4.6	91
64	7n	67	27	27	26	3/	01	63	47	2,4 44	63	47	60.13	48	65	67	13	29	12
195.6	Rh	316.8	396.9	408.4	235.6	169	291.4	403.9	208.2	243	427.1	359.2	318 70	103.5	162	258.2	195.2	105.7	174.6
1 25	Cs	0.69	2 93	2 1	235,0	2 00	2 61	1 33	1 79	0.27	1 19	0.6	2 /8	3 57	1 32	200,2	1 3/	0.7	0.59
673	C3 Ba	768	402	316	516	329	551	470	604	8/18	559	227	501 33	656	108	818	605	480	288
24.2	Ga	26.4	31.6	25.5	23.0	20	34.9	34.5	19.7	22	28.3	25.5	28 30	20.2	19.1	28.8	28.4	26.1	200
162.2	Sr.	118.1	87	61.1	147.1	136.5	55.6	56.6	70.9	62.5	20,5 56.7	517	108 75	20,2	1/8 2	147.3	151.6	182.8	128.6
<0.05	To	<0.05	3 21	<0.05	<0.05	<0.05	2 55	3 17	<0.05	<0.05	<0.05	<0.05	2.04	11 22	0.08	1.07	0.52	1 1 2	<0.05
<0.05	Nb	8 25	18 23	7 28	<0.05	3 56	19.47	27.56	<0.05	7 82	11.85	13 71	15.46	3 18	3 74	11.00	15.8	9.56	<0.05
<0,05	Hf	12.08	5.88	284	3 77	3 15	13.50	7.56	4.48	1 20	57	1 38	7.45	5.8	0.78	0.11	5 38	3 25	20,05
20.82	v	28 71	19.46	0.88	17.14	16 32	30.14	7,50	20.69	23 10	29.79	4,58	27.89	17.02	6.51	21.98	13.87	6.29	1.13
20,02	1 7r	600 1	160.6	100.0	165.5	124.6	528.6	20,90	216.0	150.6	233.1	183	27,07	220.0	17.7	300.8	164.4	109	07 7
63.0	Th	76.1	109,0	100,9	36.6	124,0	14.8	85.3	40.2	130,0	255,1	41	50.32	7.0	18	15.6	12.2	103	92,2 8 0
4 20	III II	2 47	10.25	10.51	6 78	4.07	14,0	3 60	40,2	4.67	3 78	6.43	5.68	2 10	2.02	0.71	1 32	-,5	1.67
256.7	U Lo	2,47	65.6	30.3	57.0	50.1	104.6	165.4	110.8	98.6	163.4	80	1/1/10	2,19	4.3	0,71	25.7	12.4	1,07
250,7	La Ce	530.3	130.3	16 8	91.8	61.8	187.5	289.1	160.4	172.6	278.2	152.4	243 72	121.6	4,J 5 1	151.1	25,7 45.6	10.8	22.7
45 27	Pr	60.43	13.07	5 33	8 88	6 69	24.03	31.7	22.64	19.73	30.42	17 31	27 93	14 37	1.03	17.82	5 29	3.03	1 74
145.7	Nd	189.2	A1 1	18.5	20.0	22.7	82.4	100.8	78.9	68	103.3	59.7	90.79	51.3	1,05	57.3	18.6	8.4	67
19.7	Sm	24.5	41,1 6.5	2.0	4.0	37	14.2	14.0	11.0	12.3	14.6	11	13 70	82	11	81	3 7	2.1	0,7
1 47	5m Fu	1.53	0,5	2,9	4,9	0.51	14,2	14,9	0.07	0.76	14,0	0.32	0.07	2.06	0.5	1.55	1 10	1.50	0.26
11.35	Eu	1,55	5.2	2 71	4 71	4.15	10.02	1,24	0,97	10.36	1,1	8.02	10.08	2,00	1.24	7 17	3.85	1,39	1 30
1 13	Gu Th	1 78	0.54	0.28	4,71	4,15	1 17	1 3 8	0.86	1 21	1 23	1.41	1 12	0.76	0.14	0.85	0.40	0.49	~0.05
1,15	10 D::	6.72	2.02	1.72	2 20	2.46	6.47	6.40	2 42	6.07	6.9	7.06	5 71	2.8	0,14	4.26	2.01	1.4	0.60
4,73	Но	1.02	0.54	0.24	0.65	0.43	1.14	1.23	0.53	0.87	1.21	1.47	0.07	1.01	0,85	4,50	0.51	0.37	0,09
1.60	Fr	2.51	1.43	0.82	1.66	1.36	2 76	3.04	1.42	1.86	3 12	1,47	2 52	2.14	0,19	2.08	1.62	0,57	0.26
0.12	Er Tm	2,31	0.17	<0.05	0.17	1,50	2,70	0.26	1,42	0.12	5,12	4,5	2,32	2,14	0,39	2,08	0.12	0,79	<0.05
1	Vh	1.8	13	0.0	13	1	3	2.4	1	1.2	26	3.0	2.06	1.6	0,00	1.7	1.1	0,15	0.2
0.1	10	1,0	1,5	0,9	1,5	-0.05	5 0.51	2,4	-0.05	1,2	2,0	3,9 0.54	2,00	0.13	0,0	1,7	1,1	0,7	<0.05
0,1	Mo	0,24	0.53	0,15	<0,05	<0,05	0,51	0,15	<0,05	<0,03	0,15	0,54	1.40	0,15	0.03	0.25	0.85	0,07	<0,05
4.5	W	4.1	2.25	<0.1	3.5	2.1	0,05	<0.1	33	37	2.4	5.2	3.51	<0.1	4.2	27	0,05	6.6	4
-, <03	Sn	<03	2,2 1.4	1.8	<i>3,3</i>	<03	6.4	0.5	5,5	<03	2, 4 1.2	2.1	3,51	<0.3	4,4 <03	2,1	<0.3	<0.3	~03
~v.J	V 11	NV.J	1.7	7.0	<u></u>	<u></u>	0.7	0.0	5	NV.J	1.4	4.1	5.07	- N.J	NV.J	4	<u></u>	NV.J	<u></u>

Suítes. F. Forte: Fazenda Forte; J-LA: Juazeiro-Lagoa do Alegre; SE: Serra da Esperança; BJ: Bom Jardim; S. Pedro: São Pedro

VS-104 e AS-054 não entraram na interpretação porque aparentemente pertencem a um magmatismo diferente dos demais

Tabela 4.1 - Dados químicos dos granitoides

5 – Formações Ferríferas Bandadas

5.1 Introdução

Sob esta denominação foram coletadas 16 amostras, das quais três exibem teores de SiO_2 ou de Fe_2O_3t , ou ambos, fora da faixa composicional das BIF. Os pontos de amostragem estão na figura 5.1. Os dados químicos estão na tabela 5.1, organizados como grupo 1(sete amostras), grupo 2 (seis amostras) e três indefinidas, mostradas com uma interrogação na linha "grupo" da tabela. O motivo da separação das amostras em grupo 1 e grupo 2 está explicado abaixo.

Para visualizar a forte relação inversa entre SiO_2 e Fe_2O_3t foi confeccionado o diagrama SiO_2 -Fe₂O3_t da figura5.2A. Para facilitar a interpretação, as amostras foram organizadas em dois grupos. No primeiro, grupo 1, as amostras se posicionam ao longo de um nítido segmento de reta e no segundo, grupo 2, mostram correlação negativa entre os óxidos porém se posicionam de forma mais dispersa.

Figura 5.1 — Imagem com pontos de amostragem. Algum ponto pode conter mais de uma mostra.

As formações ferríferas são classificadas em três tipos: (i) Algoma, originadas de atividades vulcanoexalativas, associadas à greenstone belt. Geralmente são de dimensões relativamente pequenas; (ii) Lago Superior, originadas de sedimentação marinha em plataformas continentais e (iii) Rapitan, produzidas em função de atividades glaciogênicas no Neoproterozóico. Através de suas composições químicas é possível verificar a presença de contribuições detrítica, a fonte de Fe e de Si e as condições ambientais que prevaleciam à época de sua deposição.

5.2 Caracterização geoquímica

As formações ferríferas são compostas basicamente de sílica e óxido de ferro. A presença de outros elementos nas formações ferríferas mostra a presença de impurezas assimiladas através de contribuições terrígenas estranhas à composição original. Os indicadores mais freqüentes de contribuição terrigena são Al₂O₃, MgO, TiO₂, Zr, entre outros. No grupo 1 estes elementos ocorrem com teores muito baixos, sem qualquer tipo de correlação entre eles, mostrando a ausência de

contaminação, enquanto que o grupo 2 contém MgO em quantidades pequenas (figura 5.2B). A presença do MgO pode estar refletindo a presença de clorita, originada de alguma vulcânica máfica associada, ou apenas uma contaminação muito posterior a época de deposição, que nada tem a ver com sua gênese.

A similaridade entre o Y e o Ho, que é um ETR pesado, tem sido utilizada com sucesso em estudos recentes de BIF (por exemplo: Basta et al, 2011; Alexander et al, 2008; Frei et al, 2008). As soluções hidrotermais submarinas, produzidas por atividades vulcanoexalativas (fumarolas) apresentam valores condríticos para a razão Y/Ho, em torno de 28. Materiais detríticos crustais tem valores Y/Ho em torno de 26 e na água do mar a razão tem valores maiores que 45. Nas formações ferríferas estudadas a média das razões Y/Ho do grupo 1é de 41 e no grupo 2, 30. Os valores obtidos no primeiro grupo de amostras apontam para uma contribuição maior de água do mar, ou seja, a fonte estava afastada de regiões de fumarola do fundo do mar. O grupo dois com valor médio igual a 30, semelhante à média condritica, aponta para uma contribuição hidrotermal submarina mais intensa.

Figura 5.2 — A: Diagrama $SiO_2 - Fe_2O_3t$ mostrando a forte correlação negativa entre os dois óxidos; B: Diagrama $Fe_2O_3t - MgO$, mostrando os diferentes conteúdos de MgO nos dois grupos de amostras. Legenda: círculo, grupo 1; quadrado, grupo 2.

No diagrama REY (Rare Earth and Y), com dados normalizados pelos valores condríticos e também pelos valores das rochas argilosas pós arqueanas da Austrália (PAAS), as BIFs arqueanas mostram grandes anomalias positivas de Eu, normalizado pelo condrito, que é um reflexo da presença da atmosfera anóxida presente neste período e da sua origem a partir de soluções hidrotermais de alta temperatura. Nas BIFs de idade menor, originadas em ambientes com atmosfera mais rica em oxigênio, os teores de Eu são menores. No Neoproterozóico as anomalias de Eu passam a ser negativas.

Na figura 5.3A, estão os espectros médios dos dois grupos, normalizados pelo condrito e pelo PAAS, junto a espectros de BIF do tipo Lago Superior, sendo um do Grupo Itabira, MG e outro do Grupo Hamersley, Austrália (Veríssimo, et al, 2009 e referências lá citadas). O grupo 1exibe pequena anomalia negativa de Eu e uma anomalia ligeiramente positiva de Y. O segmento dos espectros que contém os ETR leves é muito semelhante ao espectro de Hamersley, tanto na normalização pelo condrito como pelo PAAS. O grupo 2 está enriquecido em ETR leves, apresenta fortes anomalias negativas de Ce e Eu, e não contem anomalia de Y. Este tipo tem menos semelhança com o tipo Lago Superior. Ou o grupo 2 é mais compatível com o tipo Algoma de idade neoproterozóica afetada por oxidação da água do mar, ou alternativamente algum processo (intempérico?, metassomático?) mais recente causou o enriquecimento de ETR leves e provocou as anomalias de Eu e Ce.

A figura 5.3B exibe os espectros produzidos por soluções hidrotermais de alta e baixa temperatura e por água do mar profunda e rasa, segundo referências em Basta et al (2011), normalizados pelo PAAS. Soluções hidrotermais de alta temperatura produzem fortes anomalias

positivas de Eu, que não ocorrem nas de baixa. A água do mar, que é enriquecida em ETR pesados, contem anomalias negativas de Ce e positivas de Y. Os espectros dos grupos 1 e 2 e os das duas formações ferríferas do tipo Lago Superior, citadas acima, estão traçados no diagrama para comparação.

O espectro do grupo 1 se mostra compatível com a composição de água do mar rasa no segmento que contém os ETR pesados, mas exibe teores de ETR leves análogos aos da BIF tipo Lago Superior de Hamersley. O grupo 2, bem mais enriquecido, tem conteúdos mais próximos dos das

Figura 5.3 — A: Diagramas normalizados pelo condrito (espectros na parte superior do gráfico) e PAAS (espectros da parte inferior); B: Diagrama comparativo entre os espectros das fontes possíveis e as médias das BIFs estudadas.

soluções hidrotermais de baixa temperatura e é bastante diverso dos espectros exibidos pelas BIFs do tipo Lago Superior. Ajusta-se mais ao tipo Algoma produzido pela mistura de soluções hidrotermais de baixa temperatura com água do mar (superficial?), pois mostra valores intermediários entre os dois materiais, com predomínio do primeiro. A presença de anomalia negativa muito forte de Ce pode ser atribuída a ação da água do mar, que pode também ter afetado o conteúdo de Eu.

5.3 Conclusões

As conclusões a seguir devem ser consideradas com reservas, pois se baseiam em valores químicos médios que podem de alguma forma, não serem os mais corretos, em função da acentuada dispersão dos resultados analíticos.

A partir dos dados químicos foram definidos dois conjuntos de amostras que representam BIFs com características distintas, ambas com quase ausência de contaminação detrítica em suas composições.

O primeiro conjunto, grupo 1, exibe correlação negativa perfeita entre SiO_2 e Fe_2O_3t e ausência de elementos indicativos de contaminação como MgO, Al_2O_3 , CaO, Zr. Apesar de composições não perfeitamente coerentes, a formação ferrífera representada por essas amostras tem afinidade com o tipo Lago Superior, depositado em ambiente marinho de águas rasas.

O segundo conjunto, grupo 2, exibe forte correlação entre sílica e ferro, porém os teores tendem a ser menos coerentes que no conjunto anterior. Além disso, contém MgO um pouco acima do esperado para esse tipo de rocha, indicativo de uma pequena contaminação terrígena, que pode ter sido causada pela presença de rochas vulcânicas básicas. A quase ausência de anomalias positivas de Eu e de Y, e os espectros, bem diversos daqueles típicos das BIF tipo Lago Superior, são comuns em formações ferríferas do tipo Algoma produzidas pela ação de soluções hidrotermais de baixa temperatura e água do mar, compatíveis com a atmosfera oxigenada presente no Paleoproterozóico e Neoproterozóico. Contudo, este grupo precisa ser mais estudado, pois as anomalias negativas de Ce apontam para alterações pós deposicionais, que podem ter afetado os teores de Eu.

Amostra	AS-020	AS-038	AS-080	AS-093	AS-123A	AS-142	VS-008	AS-005C	AS-005D	AS-007A	AS-060	AS-102	AS-113B	HL-001	HL-004	AS-053B
Litologia	BIF	BIF	BIF	BIF	BIF	BIF	BIF	BIF	Mafica	BIF	BIF	BIF	BIF	BIF	BIF	BIF
Grupo	1	1	1	1	1	1	1	2	2	2	2	2	2	?	?	?
SiO2	50,52	48,99	48,04	37,26	56,91	62,68	43,95	45,06	49,84	51,83	38,55	47,28	53,21	55,49	>90	27,76
TiO2	<0,01	<0,01	<0,01	<0,01	<0,01	0,02	<0,01	0,03	0,02	<0,01	0,02	0,01	0,02	0,02	<0,01	0,05
Al2O3	0,42	0,20	0,23	0,52	0,07	0,84	0,11	0,30	0,55	0,29	0,94	0,48	0,81	0,79	0,18	3,46
Fe2O3t	48,74	49,89	51,25	61,78	42,79	35,60	55,36	49,67	39,52	43,05	55,25	49,48	35,77	17,32	5,47	10,24
MnO	0,02	0,09	0,16	0,21	0,02	0,03	0,06	0,15	0,12	0,21	0,10	0,10	0,71	0,44	0,05	0,59
MgO	0,14	0,42	0,18	0,17	0,06	0,14	0,21	4,30	7,52	4,09	3,22	1,81	7,99	14,40	0,07	28,72
CaO	<0,01	0,22	<0,01	<0,01	0,14	0,20	0,21	0,33	2,30	0,28	1,75	0,80	1,46	11,47	0,54	28,18
Na2O	<0,01	<0,01	0,02	<0,01	<0,01	<0,01	<0,01	0,05	0,06	0,02	0,05	<0,01	<0,01	0,03	<0,01	0,74
K2O	0,11	0,02	0,04	0,03	<0,01	0,13	0,02	0,11	0,08	0,05	0,08	0,02	0,03	0,04	<0,01	0,25
P2O5	0,05	0,18	0,08	0,03	0,02	0,36	0,10	<0,01	<0,01	0,18	0,04	0,04	<0,01	0,01	0,03	<0,01
Cr2O3	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01
LOI-orig	2,38	0,06	2,37	1,26	0,2	3,2	0,6	<0,01	0,51	1,49	0,25	0,24	<0,01	1,18	0,6	1,24
Ni	6,1	5,1	5,9	4,3	3,6	3,3	4,3	4	5,5	4	2,8	2,8	4,3	4,8	5,7	2,1
Со	0,6	0,8	1,3	2,3	0,6	0,7	0,4	0,7	2,5	0,3	0,4	0,6	1,9	3,9	1,2	2,6
Cu	14,4	24,5	5,7	4,4	3,8	8,3	2,5	30,4	8,6	10,8	17,6	3	24,4	21,6	488,8	13,3
Pb	14,9	11,7	27,4	32,6	<0,2	<0,2	0,7	79	6,2	12,2	23	0,3	0,9	2,6	3,9	78,6
Zn	10	9	4	6	<1	12	23	5	<1	2	7	6	21	7	1	12
Rb	7,6	0,6	2,5	1,2	1,9	19,3	6	5,1	3,2	1,6	4,3	7,3	7,9	4,4	1,7	0,9
Cs	0,42	<0,05	<0,05	<0,05	<0,05	0,31	<0,05	0,13	<0,05	<0,05	<0,05	0,09	0,08	0,08	<0,05	<0,05
Ba	7	20	121	211	<5	33	9	45	130	78	76	30	64	85	32	192
Ga	1	<0,1	0,3	1,7	1,4	2,1	1,2	3	6,5	<0,1	0,9	1,7	3,4	5,5	1,7	8,9
Sr	0,7	26,4	1,1	4,1	3,9	16,7	2	5,2	7,7	3,8	10,7	3,3	7,2	11,1	20,8	22,2
Та	0,13	<0,05	0,15	0,13	0,26	<0,05	1,21	0,14	0,2	0,16	0,27	0,15	0,14	0,6	<0,05	0,45
Nb	3,56	<0,05	<0,05	2,01	1,3	1,25	2,07	1,13	1,21	3,95	<0,05	1,44	2,58	6,25	1,86	2,82
Hf	0,08	<0,05	0,13	0,2	0,26	0,24	0,8	0,17	0,13	0,11	0,29	0,55	0,69	0,35	0,09	0,14
Y	5,07	2,39	1,29	2	1,66	2,34	5,39	14,21	19,87	1,76	3,11	4,23	7,12	11,07	1,86	12,54
Zr	2,2	2,4	0,05	3,7	1	0,05	7,9	0,05	0,05	0,05	5,7	1,3	1,2	0,05	0,05	0,9
Th	4,1	0,5	1,3	3,3	0,9	1,1	2,5	0,7	0,6	0,5	1,9	5,9	3,3	3,3	0,3	0,4
U	6,53	0,7	0,71	0,62	1,26	0,37	0,21	1,54	1,82	1,14	0,44	0,66	0,51	2,41	1,76	0,22
La	4,6	9,3	0,9	2,5	2,4	7,3	6,4	47,7	46,4	0,4	2,9	11,6	15,9	10,7	8,3	5,5
Ce	2,3	5,8	7,6	20,8	3	8,5	8,3	26,6	18,1	<0,1	2,9	10,9	14	33,2	9,1	8,6
Pr	0,9	1,39	0,2	0,54	0,22	1,27	0,8	9,8	9,16	0,13	0,75	1,89	3,39	2,26	1,17	1,33
Nd	3,9	4,6	0,5	2	0,9	3,7	3,5	36,2	32,9	0,9	1,9	6,3	11,4	7,5	4,3	5,9
Sm	1	0,6	0,3	0,5	0,1	0,5	0,5	6,5	6,6	0,2	0,6	1,1	2,2	1,3	0,7	1,4
Eu	0,13	0,15	0,07	0,09	<0,05	<0,05	<0,05	1	1	0,05	0,17	0,06	0,1	0,08	0,06	0,25
Ga	0,84	0,61	0,19	0,38	<0,05	0,33	0,13	6,13	6,67	0,24	0,44	0,72	1,72	1,52	0,45	1,88
TD D	0,14	0,06	<0,05	0,06	<0,05	<0,05	<0,05	0,69	0,8	<0,05	0,14	<0,05	0,1	0,15	<0,05	0,26
Dy Llo	0,78	0,43	0,18	0,29	0,24	0,35	0,46	3,43	4,04	0,18	0,6	0,64	0,97	1,58	0,32	1,//
п0 Б-	0,17	0,05	0,05	0,07	0,05	0,05	0,05	0,61	0,68	0,05	0,15	0,05	0,12	0,23	0,05	0,34
LT Two	0,48	0,17	0,12	0,2	0,06	0,2	0,19	1,49	1,99	0,19	0,5	0,32	0,61	0,87	0,06	1,33
1 III X/b	0,06	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	0,13	0,15	<0,05	0,06	<0,05	<0,05	0,08	<0,05	0,14
10 I.v.	0,5	<0,1	0,1	0,2	<0,1	0,1	0,3	1,3	1,5	0,1	0,5	<0,1	0,7	0,8	<0,1	1,4
<u>Lu</u> Eu*	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	0,06	0,07	0,07	<0,05	<0,05	0.10	0,2	0,08	<0,05	0,09
Total ETR	15,8	23,16	10,21	27,63	6,97	22,3	20,69	141,65	130,06	2,44	11,61	33,75	51,41	60,35	24,51	30,19

LOI orig.: Perda ao fogo original, anterior a normalização para 100% anidro dos dado-

Tabela 5.1 - Dados químicos das BIFs

6 – Referências bibliográficas

- ALEXANDER, B.W.; BAU, M.; ANDERSSON, DULSKI, P. Continentally-derived solutes in shallow Archean seawater: rare earth element and Nd isotope evidence in iron formation from the 2.9 Ga Pongola Supergroup, South Africa. *Geochimica et Cosmochimica Acta* 72, p. 378-394. 2008.
- ARNDT, N. T. Komatiites, Kimberlites and Boninites. J. Geophys. Res. v. 108 (B6). p. 2293. 2003.
- ARNDT, N. T. Komatiites. Cambridge University Press. 467 p. 2008.
- BARKER, F. & ART, J.G. Generation of trondhjemitic-tonalitic liquids and Archaean bimodal trondhjemite-basalt suites. *Geology*, v. 4, p. 596-600. 1976
- BARBOSA, J.S.F; CRUZ, S.P.; SOUZA, J.S. Capítulo III Terrenos Metamórficos do Embasamento, in: Barbosa, J.S.F. coord., *Geologia da Bahia Pesquisa e Atualização, vol. I.* Salvador, BA. 2012
- BASTA, F.F.;MAURICE, A.E.; FONTBOTÉ, L.; FAVARGER, P-Y. Petrology and geochemistry of the banded iron formation (BIF) of Wadi Karim and Um Anab, Eastern Desert, Egypt: Implications for the origin of Neoproterozoic BIF. *Precambrian Research* 187, p. 277-292. 2011
- BOYNTON, W. V. Geochemistry of rare earth elements: meteorite studies. In: Henderson P. (ed.) *Rare earth element geochemistry*. Elsevier. p. 63-114. 1984.
- EBY, G. N. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis. *Lithos*, v. 26. p. 115-134. 1990.
- EBY, N. E. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. *Geology*, v. 20. p. 641-644. 1992.
- FREI, R.; DAHL, P.S.; DUKE, E.F.; FREI, K.M.; HANSEN, T.R.; FRANDSSON, M.M.; JENSEN, L.A. Trace element and isotopic characterization of Neoarchean and Paleoproterozoic iron formation in the Black Hills (South Dakota USA): assessment of chemical change during 2.9-1.9 Ga deposition bracketing the 2.4-2.2 Ga first rise of atmospheric oxygen. *Precambrian Research* 162, p. 441-474. 2008.
- FROST, B. J.; BARNES, C.J.; COLLINS, W. J.; ARCULUS, R. J.; ELLIS, D. J.; FROST, C. D. A geochemical classification for Granitic Rocks. *Journal of Petrology*, v. 42. p. 2033-2048. 2001
- JENSEN, L. S. A new cation plot for classifying subalkalic vocanic rocks. Ontário : Div. of Mines, 1976. 22 p. (Miscellaneous Paper, 66).
- JURVANEN, T.; EKLUND, O.; VAISANEN, M. Generation of A-type granitic melts during the late Svecofennian metamorphism in southern Finland. *GFF*, v. 127. pp 139-147. 2005.
- LEITE, C.M.M. Campo Alegre de Lourdes folha SC.23-X-D-IV, Peixe folha SC.23-X-D-I. Estado da Bahia, escala 1:100.000. PLGB. CBPM/CPRM. Brasília, 1997.
- LOISELLE, M. C. & WONES, D. R. Caracteristics and origin of anorogenic granites. *Geol. Soc. Amer. Abstr. with Prog.* V.11. p. 468. 1979.
- MARTIN, H. The Archaean grey gneisses and the genesis of the continental crust. In. Condie, K.C. (Ed) The Archaean Crost Evolution. *Developments in Precambrian Geology*. Elsevier, Amsterdam, p. 205-259. 1994
- MOYEN, J-F. The composite Archaean grey gneisses: Petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth. *Lithos*, v.123: 21-36. 2011

- NANCE, W.B & TAYLOR, S. R. Rare Earth Element Patterns and Crustal Evolution I. Australian Post Archean Sedimentary Rocks. *Geochimica et Cosmochimica Acta 40*, p. 1539-1551. 1976.
- PEARCE, J. A. Sources and settings of granitic rocks. *Episodes*, v.19, n. 4. pp. 120-125. 1996a.
- PEARCE, J. A. A users guide to basalt discrimination diagrams. In: Wyman, D. A. (eds) *Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration. Geological Association of Canada, Short Course Notes 12*. p. 79-113. 1996b.
- PECCERILLO, R. & TAYLOR, S. R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. *Contrib. Mineral. Petrol.*, 58, p. 63-81. 1976.
- PLA CID. J.; NARDI, L.V.S.; CONCEIÇÃO, H.; BONIN, B.; JARDIM DE SÁ, E.F. 2000 The alkaline silica-saturated ultrapotassic magmatism of the Riacho do Pontal Fold Belt, NE Brasil: an example of syenite-granite Neoproterozoic association. *Journal of South American Earth Sciences*, V. 13, n 7. pp. 661-683.
- SOUZA, J. D.; TEIXEIRA, L.R.; FIGUEROA, I. et al. Projeto Colomi; Geologia e prospecção geoquímica da região de Remanso-Sento Sé. Relatório final. 10 v. CPRM. Convênio DNPM/CPRM. 1979.
- TEIXEIRA, L. R. Projeto Brumado-Condeúba. Relatório Temático de Litogeoquímica. CPRM. 2012a.
- TEIXEIRA, L. R. Projeto Igaporã-Macaúbas. Relatório Temático de Litogeoquímica. CPRM. 2012b.
- VERÍSSIMO, C.U.V.; MAGINI, C.; PARENTE, C.V.; NOGUEIRA NETO, J.A.; ALMEIDA, A.R.; MELO, O.O.; ARTHAUD, M.H.; HAMELAK, G.M.S.; AZEVEDO, L.R. Petrografia e litoquímica das formações ferríferas bandadas da região de Quixeramobim-Boa Viagem, Ceará, Brasil.*Geociências*, v.28, n. 1. pp. 43-52, UNESP, São Paulo, 2009
- WOOD, D. A.; JORON, J. L.; TREUIL, M.; NORRY, M.; TARNEY, J. Elemental and Sr isotope variations in basic lavas from Iceland and the surrounding ocean floor. *Contribution to Mineralogy and Petrology*, v. 70, p. 319-339. 1979.

Apêndice

Localização das amostras e tipo de rocha

 AS-004C					Entoround
	HGE760	8999457	194786	39	Ortogn granod a sienogranitico
AS-005C	HGE761	8990513	208429	39	BIF
AS-005D	HGE762	8990513	208429	39	Mafica
AS-007A	HGE763	8986504	206982	39	BIF
AS-011	HGG471	8972908	230860	39	Ortogn granod a sienogranitico
AS-013	HGG472	8973952	243367	39	Ortogn monzongranitico
AS-014	HGG473	8973470	239037	39	Ortogn monzongranitico
AS-015	HGE764	8973978	170545	39	Ortogn monzongranitico
AS-017-1L	HGE765	8971948	174113	39	Ortogn granod a sienogranitico
AS-017-2L	HGG474	8971948	174113	39	Ortogn granod
AS-020	HGE766	8971319	179841	39	BIF
AS-023	HGE767	8968950	191497	39	Ortogn sienogranitico
AS-025C	HGE768	8969028	193120	39	Mafica
AS-028C	HGE769	8968855	199602	39	Mafica
AS-038	HGE770	8994599	207572	39	BIF
AS-053B	HGE771	8973903	216589	39	BIF
AS-054	HGE772	8975505	215799	39	Ortogn granod a sienogranitico
AS-056	HGE773	8979445	213461	39	Ortogn granod a sienogranitico
AS-058	HGE774	8982175	212534	39	Ortogn granod a sienogranitico
AS-058B	HGE775	8982175	212534	39	Ortogn granod a sienogranitico
AS-060	HGE776	8985069	209272	39	BIF
AS-079	HGE777	8988951	195071	39	Ortogn sienogranitico
AS-080	HGE778	8989657	196804	39	BIF
AS-084	HGE779	8991234	200679	39	Ortogn sienogranitico
AS-093	HGE780	8964673	211028	39	BIF
AS-093A	HGE781	8964673	211028	39	Mafica
AS-100	HGE782	8998258	199898	39	Ortogn sienogranitico
AS-102	HGE783	8996352	201808	39	BIF
AS-103A	HGE784	8995949	202133	39	Ortogn sienogranitico
AS-105C	HGE785	8994282	203369	39	Mafica
AS-113B	HGE786	8988072	204354	39	BIF
AS-123A	HGE787	8978931	202693	39	BIF
AS-132	HGE788	8968698	198182	39	Ortogn granod a sienogranitico
AS-142	HGE789	8991040	208684	39	BIF
AS-164	HGE790	8976643	176646	39	Ortogn monzongranitico
AS-193	HGE791	8970225	185011	39	Ortogn monzongranitico
AS-213	HGE792	8974269	206306	39	Mafica
AS-252	HGG475	8972906	229508	39	Ortogn granod a signogranitico
AS-253	HGG476	8973000	232755	39	Ortogn sienogranitico
AS-255	HGG477	8973375	237518	39	Ortogn granod TTG
AS-258	HGG478	8974090	247365	39	Metamafica
AS-261	HGG479	8974341	253908	39	metamáfica
AS-278	HGG480	9002391	242236	39	Ortogn monzongranitico
AS-279	HGG481	8999349	240246	39	Ortogn monzongranitico
AS-283	HGG482	8994515	237806	39	Ortogn monzongranitico
AS-285A	HGG483	8992815	238220	39	Ortogn monzongranitico
AS-285B	HGG484	8992815	238220	39	Ortogn monzongranitico
AS-286	HGG485	8991847	238778	39	Ortogn monzongranitico
AS-287A	HGG486	8990705	237404	39	Granito alcalino
AS-287B	HGG487	8990705	237404	39	Ortogn granod TTG
AS-288	HGG488	8990814	236482	39	Ortogn monzongrapitico
AS-291	HGG489	8986300	231725	39	Ortogn granod a signogranitico
AS-300A	HGG490	8988805	244052	39	Ortogn granod TTG
AS-301	HGG401	8989316	247307	39	Granito alcalino
AS-302	HGG402	8988036	240557	39	Ortogn grapod TTG
AS-304	HGG403	8986636	237170	30	Ortogn monzongrapitico
AS-305	HCC/0/	8086030	237170	30	Ortogn monzongrapitico
AS-306	HGC/05	897367/	233714	39	Ortogn monzongrapitico
AS-313	HCCV06	8080332	200222	30	Ortogn monzongrapitico
AC 015	100400	0000002	474400	30	
AS-315	HGG497	8954086	174193	00	Ortogn monzongranitico
AS-315A	HGG498	8954086	174193	39	Ortogn monzongranitico
AS-317	HGG499	8954532	172225	39	Ortogn monzongranitico
EM-032	HGE793	8978252	291041	39	Sienito a guartzomonzongranito
FM-034	HGE794	8979380	292019	39	Sienito a quartzomonzongranito
		0070040	201000	39	Signito a quartzomonzongrafilito
EIVI-042	HGE/95	8979042	291906	09	Sienito a quartzomonzongranito
EM-114A	HGE796	8949312	296915	39	Ortogn leucotonalitico
EM-161A	HGE797	8946316	315949	39	Metamafica (komatiito)
EM-161C	HGE798	8946316	315949	39	Metamafica (komatiito)
FM-161D	HGE700	8946316	3159/0	39	Tremolitito
		0047740	000407	30	Matagrapita
EM-1/3D	HGE800	8947712	322167	39	ivietagranito
EM-174A	HGE801	8947722	322860	39	Metagranito
EM-176A	HGE802	8943164	324416	39	Metagranito/granod
EM-177B	HGE803	8942056	325252	39	Metagranito/granod

			L	ocalização		
Ν	ID	N. Laboratório	UTM N	UTM E	MC	Litologia
74	EM-235A	HGG447	8912856	326341	39	Metavulcanica intermediaria
75	EM-257A	HGG448	8934698	312132	39	Metagranito/granod
76 77	EM-258A	HGG449	8934528	311921	39	Metagranito/granod
70	EM-2580		8934528	311921	39	Metagranito/granod
70	EM 250P		0933000	310253	39	Gabro
79 90	EM-259D	HGG452	8933600	310253	39	Gabro
81	EM-2604	HGG453	8932730	309/69	39	Biot metagro a metagrapod
82	EM-261A	HGG454	8932200	309409	39	Biot metagro a metagranod
83	EM-262A	HGG456	8935272	315908	39	Metabasica anfibolitizada
84	EM-263A	HGG457	8935026	315666	39	Metabasica fina
85	EM-263B	HGG458	8935026	315666	39	Metabasica
86	EM-265A	HGG459	8934112	314715	39	Metabasica fina
87	EM-265B	HGG460	8934112	314715	39	Metabasica
88	EM-266A	HGG461	8934170	316158	39	Biotita metagranito
89	EM-267A	HGG462	8933730	316071	39	Tremolitito
90	EM-267B	HGG463	8933730	316071	39	Metabasica
91	EM-292A	HGG464	8927702	324987	39	Metabasica
92	EM-295A	HGG465	8927714	326481	39	Biotita metagranito
93	EM-295B	HGG466	8927714	326481	39	Biotita metagranito
94	EM-295C	HGG467	8927714	326481	39	Biotita metagranito
95	EM-295D	HGG468	8927714	326481	39	Biotita metagranito
96	EM-295E	HGG469	8927714	326481	39	Biotita metagranito
97	EM-297A	HGG470	8926414	326680	39	Metabasica
98	FR-007	HGE 804	8990880	301936	39	Metamonzogranito
99	FR-025	HGG427	8993073	312601	39	Clorita + antof.+clino anf. xisto
100	FR-025-bis	HGE 805	8993073	312601	39	Clorita + antof.+clino anf. xisto
101	FR-028	HGE 806	8991639	312083	39	Clorita + antof.+clino anf. xisto
102	FR-029	HGE 807	8990347	320078	39	Anfibolito
103	FR-037	HGE 808	8988482	300868	39	Metamonzogranito
104	HL-001	HGE 809	8977362	251523	39	BIF
105	HL-004	HGE 810	8984730	249880	39	BIF
106	HL-005	HGE 811	8982956	250305	39	Metamonzogranito
107	HL-009		8978308	263200	39	Nietamonzogranito
108			8076011	207001	39	Motomonzograpito
109	HL-010	HGE 815	8006486	203097	30	horphlenda monzongranito
110	HL-027	HGE 816	8967175	203003	39	homblenda monzongranito
112	HL-027	HGG428	8967175	328409	39	Hornblenda metassienogranito
113	HL-027B	HGG429	8967175	328409	39	Hornblenda metassienogranito
114	HL-027C	HGG430	8967175	328409	39	Hornblenda metassienogranito
115	HL-027D	HGG431	8967175	328409	39	Hornblenda metassienogranito
116	HL-027E	HGG432	8967175	328409	39	Hornblenda metassienogranito
117	HL-027F	HGG433	8967175	328409	39	Hornblenda metassienogranito
118	HL-027G	HGG434	8967175	328409	39	Hornblenda metassienogranito
119	HL-027H	HGG435	8967175	328409	39	Hornblenda metassienogranito
120	HL-0271	HGG436	8967175	328409	39	Hornblenda metassienogranito
121	HL-036A	HGE 817	8954800	314600	39	hornblenda monzongranito
122	HL-043	HGG437	8976624	307883	39	Gabro
123	HL-044	HGG438	8980183	309436	39	Metaultrabásica
124	HL-045	HGG439	8995835	316510	39	Antof.,talc, clor, clino anf. xisto
125	HL-048A	HGG440	8978248	314197	39	Microclina paragnaisse
126	HL-066	HGG441	8954765	292895	39	Metamonzogranito
127	HL-067	HGG442	8953660	292530	39	Metamonzogranito
128	HL-068	HGG443	8950558	281671	39	Microclina gnaisse
129			0901223 8054009	234030	39	Horphonda metamonzograpite
130			0904900 805/000	230302 208022	20 29	
132	VS-006	HGG500	8011079	230302 220165	20	arandiorito
102			0311070	402400	39	
133	VS-008		0919032	182406	20	
134	VS-045A	HGE 819	8889636	179777	39	Metadacito
135	VS-080	HGE 820	8904748	248365	39	Leucomonzogranito
136	VS-101	HGE 821	8904726	202429	39	Metadacito
137	VS-103	HGE 822	8904086	206707	39	Tufo?
138	VS-105A	HGE 823	8904292	207714	39	Metavulcanica acida
139	VS-106	HGG500	8907334	205787	39	Metadacito
140	VS-107	HGG501	8917756	242411	39	Tonalito
1-10		100001	0011100	<u>_</u>		- Gridino

Resultados analíticos

Ν	Método	1	2	3	4	5	6	7	8	9	10	11
ID		AS-004C	AS-005C	AS-005D	AS-007A	AS-011	AS-013	AS-014	AS-015	AS-017	AS-017	AS-020
AI2O3	ICP95A	17,23	0,31	0,57	0,3	14,71	15,41	15,63	19,83	18,19	14,4	0,43
CaO	ICP95A	1,84	0,34	2,38	0,29	1,18	1,8	2,2	1,33	0,51	0,34	<0.01
Cr2O3	ICP95A	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fe2O3	ICP95A	5,51	50,5	40,95	44,12	2,94	2,52	2,23	4,02	4,52	3,2	49,54
K2O	ICP95A	6,68	0,11	0,08	0,05	5,52	4,06	3,52	8,36	8,46	6,64	0,11
MgO	ICP95A	0,75	4,37	7,79	4,19	0,27	0,5	0,46	0,81	1,03	0,73	0,14
MnO	ICP95A	0,06	0,15	0,12	0,22	0,04	0,03	0,03	0,03	0,02	0,03	0,02
Na2O	ICP95A	3,8	0,05	0,06	0,02	3,56	4,33	4,3	4,42	4,31	3,22	<0.01
P2O5	ICP95A	0,24	<0.01	<0.01	0,18	0,06	<0.01	0,01	0,11	0,09	0,05	0,05
SiO2	ICP95A	61,59	45,81	51,64	53,12	74,13	72,8	75,06	63,16	63,97	70,79	51,35
TiO2	ICP95A	0,66	0,03	0,02	<0.01	0,23	0,2	0,2	0,4	0,38	0,32	<0.01
LOI	ICP95A	0,33	<0.01	0,51	1,49	0,27	0,25	0,1	0,47	0,46	0,48	2,38
Sum	ICP95A	98,69	101,46	104,11	103,98	102,94	101,9	103,74	102,94	101,94	100,21	104,02
Ra		919	45	120	79	604	560	1100	475	470	550	7
Bo	IMSOFA	2.5	43	1	0.5	1 4	303	16	475	470	25	11
Ce	IMS95A	2,3	0,4	<0.05	-0.05	1,4	3,2	3.28	4,7	4,5	2,5	0.42
Ga	IMS95A	28.8	3	<0.05 6.5	<0.05	1,75	22	18.2	35.5	34.5	28.3	0,42
ы	IMS95A	20,0	0.17	0,5	0.11	1 / 18	1 36	27	7 98	7 56	57	0.08
Nb	IMS95A	11 00	1 13	1 21	3.95	~0.05	4,50	2,7	28.97	27.56	11.85	3.56
Rh	IMS95A	258.2	5 1	3.2	1.6	208.2	147.6	125 7	379.1	27,50 403 Q	11,05	7.6
Sn	IMS95A	200,2	<0.3	-03	-0.3	200,2	<03	<0.3	25	403,5	12	7,0 ~0.3
Sr	IMS95A	147.3	52	77	3.8	70.9	166.7	212.9	76.4	56.6	56.7	0.7
Ta	IMS95A	1 07	0.14	0.2	0.16	<0.05	<0.05	<0.05	2 96	3 17	<0.05	0.13
Th	IMS95A	15.6	0.7	0,2	0.5	40.00	14.8	9.6	87.6	85.3	66.5	4 1
U	IMS95A	0 71	1 54	1 82	1 14	4 77	2.56	1 75	7 62	3 69	3 78	6.53
Ŵ	IMS95A	2.7	1.4	1.5	1.7	3.3	3.3	2.8	0.5	< 0.1	2.4	0.9
Ŷ	IMS95A	21.98	14.21	19.87	1.76	20.69	7.05	4.47	26.67	28.98	29.79	5.07
Zr	IMS95A	300.8	<0.5	<0.5	<0.5	216.9	156.7	106.5	250.6	229.1	233.1	2.2
		,					,	,	,		,	,
Ce	IMS95R	151,1	26,6	18,1	<0.1	160,4	63,3	42,2	288	289,1	278,2	2,3
Dy	IMS95R	4,36	3,43	4,04	0,18	3,42	1,45	0,71	6,39	6,49	6,8	0,78
Er	IMS95R	2,08	1,49	1,99	0,19	1,42	0,79	0,39	2,77	3,04	3,12	0,48
Eu	IMS95R	1,55	1	1	0,05	0,97	1,34	0,78	1,14	1,24	1,1	0,13
Gd	IMS95R	7,17	6,13	6,67	0,24	9,44	2,98	1,27	13,94	11,49	10,69	0,84
Но	IMS95R	0,88	0,61	0,68	0,05	0,53	0,46	0,09	1,12	1,23	1,21	0,17
La	IMS95R	90,9	47,7	46,4	0,4	119,8	43,2	44,3	154,7	165,4	163,4	4,6
Lu	IMS95R	0,09	0,07	0,07	<0.05	<0.05	0,27	<0.05	0,15	0,15	0,13	<0.05
Nd	IMS95R	57,3	36,2	32,9	0,9	78,9	25,5	13,8	101,4	100,8	103,3	3,9
Pr	IMS95R	17,82	9,8	9,16	0,13	22,64	7,26	4,55	31,33	31,7	30,42	0,9
Sm	IMS95R	8,4	6,5	6,6	0,2	11,9	3,8	1,4	16,9	14,9	14,6	1
	IMS95R	0,85	0,69	0,8	<0.05	0,86	0,41	<0.05	1,57	1,38	1,23	0,14
Tm	IMS95R	0,2	0,13	0,15	<0.05	0,07	0,17	<0.05	0,19	0,26	0,37	0,06
Yb	IMS95R	1,7	1,3	1,5	0,1	1	0,7	0,1	2	2,4	2,6	0,5
Αα	ICM14B	0.26	0.37	1 21	0.21	0.08	0.06	0.06	0 12	0.21	0 14	0.37
Au	ICM14B	<0.1	< 0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1	< 0.1	< 0.1
As	ICM14B	<1	1	1	<1	<1	<1	<1	<1	<1	<1	<1
Bi	ICM14B	0.03	0.09	0.02	0.03	7.74	2.53	1.36	1.77	0.41	0.99	0.23
Cd	ICM14B	0.2	4.87	0.32	0.65	0.09	0.03	0.02	0.26	0.33	0.15	1.08
Co	ICM14B	4.7	0.7	2.5	0.3	4.4	4.6	4.7	3.2	3.9	5.7	0.6
Cu	ICM14B	8,2	30,4	8,6	10.8	8,1	5.9	5,1	14,6	4,5	5,9	14,4
Hg	ICM14B	<0.01	<0.01	<0.01	0,03	0,02	0,02	<0.01	0,02	0,01	<0.01	<0.01
Mo	ICM14B	0,25	0,76	0,58	1,6	0,92	0,5	0,44	1,24	0,58	0,44	1
Ni	ICM14B	3,8	4	5,5	4	8,6	4,6	10,7	2,7	3,5	4,9	6,1
Pb	ICM14B	6,6	79	6,2	12,2	4,9	7,4	4,9	18,9	6,6	3,2	14,9
Sb	ICM14B	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Se	ICM14B	<1	<1	<1	<1	<1	<1	<1	1	<1	1	<1
Zn	ICM14B	67	5	<1	2	47	35	22	61	63	63	10

ICP95A	fusão com metaborato de litio - leitura por ICP-OES
IMS95A	fusão com metaborato de litio - leitura ICP-MS
ICM14B	digestão com água régia - leitura com ICP-OES e ICP-MS
IMS95R	fusão com metaborato de litio - aleitura por ICP-MS

Ν	Método	12	13	14	15	16	17	18	19	20	21	22
ID		AS-023	AS-025C	AS-028C	AS-038	AS-053B	AS-054	AS-056	AS-058	AS-058B	AS-060	AS-079
AI2O3	ICP95A	18,1	17,67	0,62	0,2	3,68	19,25	19,45	18,01	18,82	0,96	19,01
CaO	ICP95A	1,31	11,46	12,05	0,22	29,93	4,41	2,25	3,66	1,96	1,79	2,61
Cr2O3	ICP95A	<0.01	0,09	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fe2O3	ICP95A	3,96	14,26	6,37	50,98	10,88	7,12	3,77	5,43	2,55	56,38	4,33
K2O	ICP95A	7,56	1,89	0,12	0,02	0,27	2,59	6,33	2,18	4,37	0,08	2,57
MgO	ICP95A	0,5	12,46	21,62	0,43	>30	2,05	0,85	1,6	0,62	3,29	0,97
MnO	ICP95A	0,03	0,17	0,12	0,09	0,63	0,05	0,02	0,04	0,02	0,1	0,03
Na2O	ICP95A	4,11	3,56	0,13	<0.01	0,79	5,51	4,51	4,99	5,78	0,05	5,75
P2O5	ICP95A	0,15	<0.01	<0.01	0,18	<0.01	0,37	0,07	0,16	0,05	0,04	0,09
SiO2	ICP95A	65,24	40,03	54,3	50,06	29,48	58,2	64,04	61,31	61,6	39,34	61,94
TiO2	ICP95A	0,4	0,72	0,04	<0.01	0,05	0,89	0,3	0,47	0,2	0,02	0,38
LOI	ICP95A	2,55	1,21	3,28	0,06	1,24	0,31	0,22	0,21	0,12	0,25	0,65
Sum	ICP95A	103,91	103,53	98,66	102,22	N.A.	100,74	101,81	98,07	96,08	102,3	98,33
Ba		470	E A	444	20	100	202	COF	220	400	70	200
ва	IIVIS95A	479	54	111	20	192	202	605	230	480	/6	288
Бе	INS95A	3,1	0,9	4,3	0,0	5,2	3,0	2,5	4	3,4	0,7	3,2
Cs Ca	INS95A	3,40	2,30	0,1	<0.05	<0.05	1,09	1,34	1,69	0,7	<0.05	3,59
Ga	INS95A	31,0	10,2	1,4	<0.1	8,9	21,0	20,4	20,0	20,1	0,9	29,3
	INS95A	9,24	1,17	0,19	<0.05	0,14	4,00	0,30 15 9	4,14	3,25	0,29	5,95 27.16
ND Ph	INS95A	10,09	1,04	3,01	<0.05	2,02	121 2	105.0	107.0	9,50	<0.05	125.6
KD Sn	INS95A	200,3	<0.3	4,2	-0,0 -0,2	0,9	-03	195,2	<0.3	<0.3	4,3	-0.3
Sr	IMS95A	×0.5 86	102.8	<0.3 8.5	26.4	22.2	270.0	151.6	250.5	182.8	10.7	102 /
31 To	IMS95A	1 5/	0.07	0,5	20,4 <0.05	22,2	1 2	0.52	230,3	1 1 2	0.27	3 72
Th	IMS95A	59.6	3 1	24	0.00	0,40	6.7	12.2	14	43	19	13.9
u	IMS95A	4 34	0.47	10.92	0,0	0.22	2 21	1.32	1 74	0.81	0.44	1 69
Ŵ	IMS95A	17	0.5	0.8	<0.1	0.8	<0.1	0.3	<0.1	66	4 1	2.8
Y	IMS95A	34.12	18.37	13.02	2.39	12.54	25.07	13.87	13.48	6.29	3.11	5.08
Zr	IMS95A	304.9	43.5	8.2	2.4	0.9	160.6	164.4	123.8	109	5.7	179.3
		/-	- / -	- /	,	- , -	/ -	- ,	- / -		- /	- / -
Ce	IMS95R	261,5	16,5	31,2	5,8	8,6	69,3	45,6	89,8	19,8	2,9	56,3
Dy	IMS95R	7,59	2,92	2,57	0,43	1,77	5,48	3,01	2,73	1,4	0,6	1,14
Er	IMS95R	3,03	1,94	0,99	0,17	1,33	2,5	1,62	1,33	0,79	0,5	0,49
Eu	IMS95R	1,18	0,8	0,69	0,15	0,25	1,8	1,19	1,18	1,59	0,17	0,52
Gd	IMS95R	14,04	3,54	4,56	0,61	1,88	6,45	3,85	5,02	1,97	0,44	1,59
Но	IMS95R	1,22	0,55	0,46	<0.05	0,34	0,94	0,51	0,52	0,37	0,15	0,24
La	IMS95R	136,9	9,8	33,2	9,3	5,5	37,5	25,7	48,4	12,4	2,9	12,6
Lu	IMS95R	0,22	0,13	0,05	<0.05	0,09	0,13	0,05	0,05	0,07	<0.05	<0.05
Nd	IMS95R	100	9,1	26,9	4,6	5,9	34	18,6	33,2	8,4	1,9	9
Pr	IMS95R	29,78	2,2	7,98	1,39	1,33	9,2	5,29	10,1	3,03	0,75	3,01
Sm	IMS95R	16,8	2,4	5,2	0,6	1,4	6,3	3,7	5,6	2,1	0,6	1,9
Tb	IMS95R	1,53	0,45	0,58	0,06	0,26	0,93	0,49	0,68	0,49	0,14	0,25
Tm	IMS95R	0,29	0,19	0,12	<0.05	0,14	0,25	0,12	0,12	0,15	0,06	<0.05
Yb	IMS95R	2,8	1,7	0,9	<0.1	1,4	2,2	1,1	0,9	0,7	0,5	0,4
٨		<0.01	0.22	0.44	0.38	1.9/	0.0	0.38	0.55	0.06	0.2	1 1 2
Ay	ICM14B	<0.01	0,22 <0.1	0,44 ∠0.1	0,30 ∠0 1	-0.1	_0,9 ∠0.1	0,38 ~0.1	0,33 ∠0.1	0,00 ~0.1	01	-0.1
Au	ICM14B	<1	<1	<1	<1	<1	<1	<1	4	<1	1	1
Bi	ICM14B	0.13	0 11	0.38	0.12	0.06	0.05	0.03	0.05	0.03	0.06	0.12
Cd	ICM14B	0,10	4 54	0,36	0.4	3.3	0.38	0,59	0.38	0,00	2.31	51
Co	ICM14B	31	16.6	0.8	0.8	2.6	10 1	3.3	10 1	2.4	0.4	5.8
Cu	ICM14B	6.6	51.7	8.3	24.5	13.3	36.6	13.1	53.6	6.7	17.6	7,5
Ha	ICM14B	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01
Mo	ICM14B	0.98	0.33	1.38	1.24	0.28	1.17	0.85	0.48	0.22	0.73	0.74
Ni	ICM14B	3.2	65.3	2,1	5.1	2.1	19.2	7.6	20.7	6.8	2,8	4
Pb	ICM14B	15,9	67.5	11.6	11,7	78.6	13,1	15	7,1	4,6	23	56,4
Sb	ICM14B	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	0,07	<0.05	<0.05	<0.05
Se	ICM14B	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Zn	ICM14B	41	49	9	9	12	90	43	64	29	7	58

ICP95A	fusão com metaborato de litio - leitura por ICP-OES
IMS95A	fusão com metaborato de litio - leitura ICP-MS
ICM14B	digestão com água régia - leitura com ICP-OES e ICP-MS
IMS95R	fusão com metaborato de litio - aleitura por ICP-MS

N	Método	23	24	25	26	27	28	29	30	31	32	33
ID		AS-080	AS-084	AS-093	AS-093A	AS-100	AS-102	AS-103A	AS-105C	AS-113B	AS-123A	AS-132
AI2O3	ICP95A	0,23	18,09	0,53	1,97	13,96	0,49	15,79	6,98	0,84	0,07	16,16
CaO	ICP95A	<0.01	2,29	<0.01	0,06	0,82	0,82	1,76	9,35	1,51	0,14	1,97
Cr2O3	ICP95A	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0,26	<0.01	<0.01	<0.01
Fe2O3	ICP95A	51,02	6,52	62,94	3,94	2	50,94	5,25	15,73	37,09	43,71	3,62
K2O	ICP95A	0,04	7,22	0,03	0,02	5,31	0,02	6,42	1,62	0,03	<0.01	4,37
MgO	ICP95A	0,18	0,99	0,17	>30	0,27	1,86	0,73	12,35	8,28	0,06	0,61
MnO	ICP95A	0,16	0,03	0,21	0,06	0,03	0,1	0,04	0,29	0,74	0,02	0,04
Na2O	ICP95A	0,02	3,66	<0.01	0,01	3,38	<0.01	3,35	0,39	<0.01	<0.01	4,62
P2O5	ICP95A	0,08	0,29	0,03	<0.01	0,04	0,04	0,2	0,08	<0.01	0,02	0,11
SiO2	ICP95A	47,83	58,08	37,96	54,1	69,43	48,67	67,43	52,81	55,17	58,13	70,33
TiO2	ICP95A	< 0.01	0,9	< 0.01	0,02	0,17	0,01	0,76	0,98	0,02	<0.01	0,22
LOI	ICP95A	2,37	0,66	1,26	5,35	0,3	0,24	0,34	1,41	< 0.01	0,2	0,23
Sum	ICP95A	101,93	98,74	103,13	N.A.	95,71	103,12	102,07	102,24	103,22	102,21	102,29
Ba	IMS05A	121	850	211	25	304	30	0/7	187	64	~5	738
Be	IMS954	0.8	2 1	1 1	2	3.2	21	3.8	37	2	~0.1	35
Cs	IMS95A	<0.05	0.72	<0.05	<0.05	4 87	0.09	1 42	1 84	0.08	<0.05	1.31
Ga	IMS95A	0.3	37.1	17	27	27	17	36.8	18.2	3.4	1 4	26.8
Hf	IMS95A	0.13	19.56	0.2	0.51	5 94	0.55	18 79	3 59	0.69	0.26	4 29
Nb	IMS95A	<0.05	32 63	2 01	<0.05	7 87	1 44	29.7	10.85	2 58	1.3	3.85
Rb	IMS95A	2.5	229.6	12	0.7	262.3	7.3	374	96.6	7.9	1.9	128.6
Sn	IMS95A	< 0.3	< 0.3	< 0.3	< 0.3	4	2.5	0.9	5	< 0.3	< 0.3	< 0.3
Sr	IMS95A	1.1	121.6	4.1	1	82.3	3.3	137.3	26	7.2	3.9	311
Та	IMS95A	0.15	1.67	0.13	0.07	1.11	0.15	1.85	0.87	0.14	0.26	0.1
Th	IMS95A	1,3	103,8	3,3	2,3	36,1	5,9	89,9	11,6	3,3	0,9	8,3
U	IMS95A	0,71	1,95	0,62	0,68	5,13	0,66	2,91	1,13	0,51	1,26	2,8
w	IMS95A	4,9	2,2	1	0,8	14,6	1,9	<0.1	<0.1	<0.1	<0.1	<0.1
Y	IMS95A	1,29	38,99	2	18,31	17,91	4,23	53,4	24,93	7,12	1,66	16,71
Zr	IMS95A	<0.5	759,9	3,7	18,2	179,7	1,3	759,1	93,3	1,2	1	191,8
												~~ -
Ce	IMS95R	7,6	661,6	20,8	14,9	152,4	10,9	631,7	49,1	14	3	86,7
Dy	IMS95R	0,18	9,07	0,29	2,49	4	0,64	10,42	4,11	0,97	0,24	2,4
Er	IMS95R	0,12	3,85	0,2	2,07	1,21	0,32	4,53	1,99	0,61	0,06	1,19
Eu	IN S95R	0,07	2,05	0,09	0,2	0,63	0,06	1,54	1,1	0,1	<0.05	1,23
Ga	INS95R	0,19	23,91	0,38	2,52	1,57	0,72	17,62	5,36	1,72	<0.05	4,07
	INS95R	0,05	1,09	0,07	0,62	0,5	<0.05	1,70	0,78	0,12	<0.05	0,52
	INSOFR	0,9	0.22	2,5	2,0	99,3	0.17	323,2	29,5	15,9	2,4	02,0
Lu	INS95R	<0.05	0,22	<0.05	0,10	0,13 56 7	63	0,47	0,00	0,2	<0.05	20
Dr	IMS95R	0,3	72 99	2 0.54	1.94	19.27	1 90	213,2	23,0 5.05	2 20	0,9	11 /1
Sm	IMS95R	0,2	28.3	0,54	1,04	10,57	1,05	30.2	5,95	3,39	0,22	62
Th	IMS95R	<0.05	20,5	0,0	0.42	0.79	<0.05	1 81	0.6	0.1	<0.05	0,2
Tm	IMS05R	<0.05	0.20	<0.05	0,42	0,75	<0.05	0.57	0.26	<0.05	<0.05	0,02
Yh	IMS95R	0.00	29	0.00	2.5	0,15	<0.00	4 1	1 7	0.00	<0.05	12
	mooor	0,1	2,0	0,2	2,0	0,0	50.1	.,.	.,.	0,1	\$0.1	1,2
Ag	ICM14B	0,36	0,55	0,23	0,1	0,02	<0.01	<0.01	0,05	<0.01	<0.01	0,12
Au	ICM14B	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
As	ICM14B	<1	<1	1	<1	<1	<1	<1	<1	<1	<1	<1
Bi	ICM14B	0,03	0,02	0,03	0,03	3,5	1,56	0,77	0,3	0,34	0,21	0,05
Cd	ICM14B	0,67	1,91	0,69	0,9	0,04	0,02	0,1	0,04	0,04	0,02	0,04
Co	ICM14B	1,3	7	2,3	0,9	2,8	0,6	7,6	24,6	1,9	0,6	4,1
Cu	ICM14B	5,7	14,2	4,4	0,8	<0.5	3	4,8	44,6	24,4	3,8	3,6
Hg	ICM14B	0,02	<0.01	<0.01	<0.01	0,02	0,04	0,01	<0.01	0,01	0,02	0,01
Mo	ICM14B	0,64	5,24	1,26	0,16	1	1,09	1,7	0,63	0,65	2,67	0,51
Ni	ICM14B	5,9	4,4	4,3	0,8	1,3	2,8	6,2	153,1	4,3	3,6	4,6
Pb	ICM14B	27,4	48,7	32,6	28,4	4,6	0,3	7,1	2,3	0,9	<0.2	4,1
Sb	ICM14B	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0,07	<0.05	<0.05
50	ICM14B	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
∠n	ICIVI14B	4	94	0	12	28	0	92	52	∠1	<1	44

ICP95A	fusão com metaborato de litio - leitura por ICP-OES
IMS95A	fusão com metaborato de litio - leitura ICP-MS
ICM14B	digestão com água régia - leitura com ICP-OES e ICP-MS
IMS95R	fusão com metaborato de litio - aleitura por ICP-MS

Ν	Método	34	35	36	37	38	39	40	41	42	43	44
ID		AS-142	AS-164	AS-193	AS-213	AS-252	AS-253	AS-255	AS-258	AS-261	AS-278	AS-279
AI2O3	ICP95A	0,84	15,3	14,19	1,32	14,1	14,05	17,77	12,14	15,06	16,11	15,47
CaO	ICP95A	0,2	1,84	0,9	8,38	0,47	1,21	4,17	0,41	0,91	1,17	1,91
Cr2O3	ICP95A	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fe2O3	ICP95A	35,67	3,76	2,23	22,41	2,41	2,05	3,84	3,91	2,08	3,39	3,02
K2O	ICP95A	0,13	5,48	5,35	0,11	6,28	4,64	1,47	4,42	4,26	5,85	2,7
MgO	ICP95A	0,14	0,6	0,29	11,02	0,5	0,27	0,94	0,7	0,42	0,54	0,44
MnO	ICP95A	0,03	0,04	0,03	0,36	0,04	0,03	0,05	0,05	0,14	0,04	0,05
Na2O	ICP95A	< 0.01	3,58	3,8	0,2	3,35	3,63	6,52	2,92	4,11	3,95	4,59
P2O5	ICP95A	0,36	0,14	0,04	<0.01	0,01	0,04	0,11	<0.01	0,03	0,11	0,07
SiO2	ICP95A	62,8	71,63	69,1	58,75	76,49	72,65	62,92	70,94	70,75	72,16	73,05
TiO2	ICP95A	0,02	0,54	0,19	0,07	0,15	0,18	0,41	0,35	0,14	0,34	0,23
LOI	ICP95A	3,2	0,44	0,21	1,13	0,21	0,26	0,67	0,31	0,55	0,23	0,13
Sum	ICP95A	103,3	103,34	96,34	103,76	104,01	99,01	98,89	96,16	98,44	103,88	101,68
Ва	IMS95A	33	860	402	41	848	338	210	897	707	673	544
Ве	IMS95A	1,2	3,8	11,9	19,2	<0.1	1,1	1,9	1,2	3,6	0,4	1,8
Cs	IMS95A	0,31	2,07	2,93	0,51	0,27	4,23	0,71	1,42	1,08	1,25	1,27
Ga	IMS95A	2,1	34,3	31,6	14,3	22	27,7	20,2	20,5	23,7	24,2	23,8
Hf	IMS95A	0,24	11,26	5,88	2,91	4,29	4,76	4,05	6,56	2,36	6,6	3,75
Nb	IMS95A	1,25	19,32	18,23	6,69	7,82	8,9	0,91	4,88	<0.05	< 0.05	2,44
Rb	IMS95A	19,3	312,2	396,9	13,5	243	381,9	68	143,7	118,3	195,6	159,5
Sn	IMS95A	1	<0.3	1,4	8,5	<0.3	3,7	<0.3	<0.3	<0.3	<0.3	<0.3
Sr	IMS95A	16,7	174,1	87	17,9	62,5	83,9	247,9	44,8	146,7	162,2	162
Та	IMS95A	< 0.05	1,66	3,21	0,32	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Th	IMS95A	1,1	67,7	45	16,9	42,8	43,6	22,7	10,1	13	63,9	20,2
U	IMS95A	0,37	4,63	10,25	2,28	4,67	6,56	3,81	2,27	4,55	4,29	3,63
w	IMS95A	<0.1	<0.1	2,2	<0.1	3,7	3,1	3,6	3,5	4,4	4,5	4,4
Y	IMS95A	2,34	26,71	19,46	38,63	23,19	34,16	8,03	29,21	30,15	20,82	10,83
Zr	IMS95A	<0.5	449,1	169,6	5	150,6	200,7	235,5	357	112,4	343,5	185,8
Ce	IMS95R	8,5	300	139,3	38,3	172,6	148,1	72,8	94,9	131	362,4	65,4
Dy	IMS95R	0,35	6,1	3,02	6,93	6,07	6,08	1,23	6,19	6,79	4,73	2,13
Er	IMS95R	0,2	1,92	1,43	3,36	1,86	3,4	0,61	3	2,9	1,69	0,9
Eu	IMS95R	< 0.05	1,19	0,62	1,23	0,76	0,68	0,56	1,71	2,65	1,47	0,57
Gd	IMS95R	0,33	9,35	5,2	6,91	10,36	6,83	2,86	7,83	10,44	11,35	3,1
Но	IMS95R	< 0.05	0,86	0,54	1,23	0,87	1,18	0,22	1,09	1,24	0,72	0,39
La	IMS95R	7,3	180,9	65,6	48,5	98,6	80,3	53,9	54,3	107,8	256,7	46,5
Lu	IMS95R	<0.05	0,16	0,21	0,53	<0.05	0,22	<0.05	0,31	0,27	0,1	0,06
Nd	IMS95R	3,7	109	41,1	46,2	68	51	25,7	44,8	73,9	145,7	22,6
Pr	IMS95R	1,27	33,94	13,07	13,24	19,73	15,27	7,79	11,62	22,67	45,27	6,99
Sm	IMS95R	0,5	17,5	6,5	9,8	12,3	8,5	3,6	8,4	13	18,7	3,3
Tb	IMS95R	<0.05	1,06	0,54	1,18	1,21	1,02	0,24	1,01	1,35	1,13	0,25
Tm	IMS95R	<0.05	0,23	0,17	0,55	0,13	0,41	<0.05	0,26	0,31	0,12	0,06
Yb	IMS95R	0,1	1,7	1,3	3,9	1,2	3,3	0,5	2,3	2	1	0,7
Ag	ICM14B	0,02	0,11	0,03	<0.01	<0.01	<0.01	0,04	0,02	0,04	0,03	0,03
Au	ICM14B	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
As	ICM14B	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bi	ICM14B	< 0.02	0,04	12,04	1,07	0,62	0,56	0,62	0,26	0,26	0,25	0,21
Cd	ICM14B	0,03	0,1	<0.01	0,03	0,04	0,03	0,06	0,02	0,05	0,06	0,05
Co	ICM14B	0,7	5,4	2,8	2,2	4	2,9	9,2	4,6	21,6	4,7	5,3
Cu	ICM14B	8,3	2,5	1	19	4,6	4	4,7	7,3	7,6	13,1	6,6
Hg	ICM14B	0,02	0,01	< 0.01	0,01	0,01	<0.01	0,02	0,02	0,02	0,02	0,02
Mo	ICM14B	0,94	0,65	0,53	0,34	0,4	0,33	0,29	0,34	0,25	0,66	0,29
Ni	ICM14B	3,3	6,3	0,8	4,2	6,2	3,7	11,3	6,3	10,7	5,1	4,3
Pb	ICM14B	<0.2	2,5	3,5	0,4	2,4	7,8	3,9	8,2	19,6	10,6	6,8
Sb	ICM14B	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Se	ICM14B	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Zn	ICM14B	12	72	27	10	44	51	78	56	16	64	63

ICP95A	fusão com metaborato de litio - leitura por ICP-OES
IMS95A	fusão com metaborato de litio - leitura ICP-MS
ICM14B	digestão com água régia - leitura com ICP-OES e ICP-MS
IMS95R	fusão com metaborato de litio - aleitura por ICP-MS

Ν	Método	45	46	47	48	49	50	51	52	53	54	55
ID		AS-283	AS-285A	AS-285B	AS-286	AS-287A	AS-287B	AS-288	AS-291	AS-300A	AS-301	AS-302
AI2O3	ICP95A	16,25	15,11	16,5	14,78	14,51	14,18	14,42	13,62	15,05	14,54	16,71
CaO	ICP95A	2,38	1,16	3,12	1,24	0,88	1	0,98	0,41	0,91	1,05	2,88
Cr2O3	ICP95A	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fe2O3	ICP95A	4,62	2,13	8,07	1,8	2,13	1,66	1,85	2,35	2,82	1,5	4,75
K2O	ICP95A	4,61	4,51	5,17	3,78	4,96	4,55	4,31	4,62	5,99	3,53	1,44
MgO	ICP95A	2,48	0,89	5,17	0,34	0,56	0,27	0,22	0,46	0,48	0,13	1,04
MnO	ICP95A	0,09	0,03	0,17	0,02	0,03	0,02	0,02	0,04	0,04	0,02	0,07
Na2O	ICP95A	3,51	3,76	2,45	4,29	3,6	3,72	3,76	2,88	3,12	4,23	4,3
P2O5	ICP95A	0,07	0,15	0,13	0,02	0,05	0,03	0,03	0,04	0,03	<0.01	0,11
SiO2	ICP95A	66,14	66,91	55,77	70,64	70,54	69,65	73,99	70,99	73,16	71,15	63,96
TiO2	ICP95A	0,66	0,36	1,37	0,14	0,2	0,15	0,15	0,18	0,16	0,06	0,43
LOI	ICP95A	0,61	0,29	1,12	0,07	0,18	0,44	0,13	0,36	0,2	0,07	0,44
Sum	ICP95A	101,43	95,31	99,05	97,12	97,64	95,68	99,87	95,95	101,97	96,28	96,14
Ва	IMS95A	912	2513	809	441	995	488	516	227	400	288	211
Ве	IMS95A	2,4	4,9	4,5	2	1,8	1,2	2,2	1,2	2,1	1,8	3
Cs	IMS95A	5,75	2,57	12,77	1,39	2,37	1,3	2,14	0,6	1,31	0,59	6,95
Ga	IMS95A	24,8	26,4	29,6	23,6	23,8	25,1	23,9	25,5	19,3	22,9	25,5
Hf	IMS95A	3,28	6,37	3,11	2,29	2,99	3,97	3,77	4,38	5,69	2,22	4,82
Nb	IMS95A	<0.05	6,31	2,44	1,89	2,65	<0.05	<0.05	13,71	4,59	<0.05	4,68
Rb	IMS95A	329,4	272,2	586,1	216,8	284,3	253	235,6	359,2	234,7	174,6	201,4
Sn	IMS95A	<0.3	5,3	4,7	<0.3	1,6	0,4	<0.3	2,1	<0.3	<0.3	3,1
Sr	IMS95A	182,5	379,5	220,6	269,3	224,2	188,6	147,1	51,7	92,3	128,6	179,4
Та	IMS95A	<0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05
Th	IMS95A	16,2	57,1	9,4	9,8	23,6	46,3	36,6	41	12,9	8,9	20,4
U	IMS95A	4,84	16,8	4,84	5,44	7,59	6,49	6,78	6,43	1,95	1,67	3,97
w	IMS95A	3,7	3,9	4,4	4,3	3,3	4,3	3,5	5,2	4,1	4	3,8
Y	IMS95A	21,9	34,26	37,85	10,53	9,53	17,42	17,14	40,48	4,45	4,43	17,02
Zr	IMS95A	139,1	314,6	147,8	103,6	139,6	154,8	165,5	183	251,5	92,2	311,6
Ce	IMS95R	76,2	351,3	65,1	16,6	81,3	132	91,8	152,4	33,1	22,7	109,9
Dy	IMS95R	4,37	6,39	6,35	1,44	2,05	4,31	3,29	7,96	0,7	0,69	3,21
Er	IMS95R	2,49	2,87	3,79	1,14	0,85	1,87	1,66	4,3	0,38	0,26	1,42
Eu	IMS95R	1	3,15	1,23	0,22	0,77	0,96	0,65	0,32	0,63	0,26	0,83
Gd	IMS95R	5,41	12,26	7,58	1,33	3,4	6,67	4,71	8,92	1,61	1,39	4,78
Но	IMS95R	0,79	1,06	1,21	0,28	0,32	0,85	0,65	1,47	0,08	0,11	0,6
La	IMS95R	60,2	240,9	60,3	12,5	51,8	81,1	57,9	80	25,1	15,6	75
Lu	IMS95R	0,21	0,24	0,45	0,15	0,06	0,31	<0.05	0,54	<0.05	<0.05	0,17
Nd	IMS95R	35,2	132,4	41,1	5,2	29,6	48,6	29,9	59,7	13,7	6,7	35,5
Pr	IMS95R	9,86	38,81	11,41	1,35	9,14	14,63	8,88	17,31	3,89	1,74	11,38
Sm	IMS95R	6,3	16,9	7,6	1	4,2	8	4,9	11	1,9	0,8	5,2
Tb	IMS95R	0,62	1,31	1,05	0,15	0,49	0,88	0,54	1,41	0,08	<0.05	0,58
Tm	IMS95R	0,21	0,33	0,41	0,07	0,17	0,28	0,17	0,54	<0.05	<0.05	0,12
Yb	IMS95R	1,8	2,3	3,2	1,3	0,6	1,3	1,3	3,9	0,4	0,2	1,1
Ag	ICM14B	0,09	0,05	0,05	0,03	<0.01	0,05	0,03	<0.01	<0.01	0,04	<0.01
Au	ICM14B	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
AS	ICM14B	9	2	<1	<1	<1	<1	<1	<1	<1	<1	<1
BI	ICM14B	1,27	0,48	0,38	0,51	0,33	0,24	0,15	0,16	0,13	0,14	0,25
Ca		0,03	0,04	0,03	0,1	0,04	0,02	0,04	0,03	0,02	0,04	0,03
C0 Cu		23,1	4,7	46,8	3,3	3,5	2,2	2	∠,6	2,5	1 E 7	11,6
u La		7,6	6,9	10,5	4,6	12,8	5,1	0,9	4,8	3,7	5,7 0,00	11,8
ng		0,02	0,01	0,01	0,02	0,03	<0.01	<0.01	0,04	0,02	0,02	<0.01
		10,68	4,01	1,61	1,84	1,4	1,56	1,16	1,03	1,06	0,73	0,72
NI Dh		62,1	8,2	101,1	6,3	4,5	3,7	3,6	4,1	4,2	3	15,4
FD Sh		8,1	6,3	/,1	10,8	16,1	18	10,7	2,7	8,1	9,1	5
3D So		0,95	0,13	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
3e 7=		<1	1	<1	<1	<1	<1	<1	<1	<1	<1	<1
∠n	ICIVI14B	136	48	265	37	48	28	26	47	5/	12	106

ICP95A	fusão com metaborato de litio - leitura por ICP-OES
IMS95A	fusão com metaborato de litio - leitura ICP-MS
ICM14B	digestão com água régia - leitura com ICP-OES e ICP-MS
IMS95R	fusão com metaborato de litio - aleitura por ICP-MS

Ν	Método	56	57	58	59	60	61	62	63	64	65	66
ID		AS-304	AS-305	AS-306	AS-313	AS-315	AS-315A	AS-317	EM-032	EM-034	EM-042	EM-114A
AI2O3	ICP95A	15,45	16,13	14,85	14,24	15,04	15,63	17,86	15,54	16,81	20,85	14,24
CaO	ICP95A	1,68	2,2	0,74	0,81	1,49	1,8	3,94	2,24	2,12	1,44	0,89
Cr2O3	ICP95A	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fe2O3	ICP95A	2,43	2,51	1,71	1,15	4,07	4,2	4,08	4,54	2,57	2,51	1,95
K2O	ICP95A	3,8	3,84	4,96	4,94	6	6,42	1,86	9,67	5,27	6,39	4,82
MgO	ICP95A	0,43	0,7	0,18	0,28	0,55	0,54	0,83	0,62	0,52	0,26	0,42
MnO	ICP95A	0,04	0,04	0,02	0,02	0,03	0,03	0,05	0,08	0,06	0,03	0,02
Na2O	ICP95A	3,53	4,17	3,92	3,8	3,03	3,18	5,27	3,68	6,28	7,03	3,61
P2O5	ICP95A	<0.01	0,05	0,02	<0.01	0,18	0,14	0,16	0,95	0,19	0,15	0,09
SiO2	ICP95A	67,69	69,67	74,92	70,61	71,25	68,6	65,46	64,25	64,96	62,13	74,76
TiO2	ICP95A	0,24	0,21	0,09	0,05	0,61	0,59	0,54	0,37	0,24	0,17	0,17
LOI	ICP95A	0,17	0,26	0,16	0,72	0,53	0,55	0,31	0,47	0,07	0,22	0,68
Sum	ICP95A	95,45	99,78	101,59	96,61	102,79	101,68	100,37	102,41	99,11	101,19	101,66
Ва	IMS95A	826	724	316	465	768	844	402	5241	3806	3130	<5
Be	IMS95A	1,7	3,2	3,3	2	2	0,5	2,2	0,2	9,1	6,3	2,8
Cs	IMS95A	5,21	3,63	2,1	1,51	0,69	0,65	1,25	0,09	2,11	2,01	1,01
Ga	IMS95A	19,9	19,2	25,5	21,1	26,4	25,5	24,9	1	23,3	20,7	19,3
Hf	IMS95A	3,1	3,03	2,84	1,23	12,08	12,52	9,7	0,12	5,04	4,38	3,78
Nb	IMS95A	0,78	<0.05	7,28	< 0.05	8,25	7,52	0,17	0,78	12,23	13,88	10,22
Rb	IMS95A	260,4	235,5	408,4	283	316,8	305,7	253,5	11,5	126,2	89,9	149,8
Sn	IMS95A	<0.3	<0.3	4,8	<0.3	<0.3	<0.3	<0.3	8,4	5,5	102,4	<0.3
Sr	IMS95A	179,9	167	61,1	81,7	118,1	133,9	364,5	638,1	1832,1	1486,5	<0.5
Та	IMS95A	<0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	0.09	0,82	0,59
Th	IMS95A	19	17,4	19,4	6,6	76,1	88,8	75,7	0,4	19	10,2	19,4
U	IMS95A	2,68	3,81	10,51	3,5	2,47	2,74	4,87	0,18	4,51	3,16	4,49
w	IMS95A	3,7	4	<0.1	3,6	4,1	4,6	4	<0.1	<0.1	<0.1	<0.1
Y	IMS95A	8,11	9,53	9,88	9,63	28,71	26,09	32,65	0,88	11,2	5,89	6,51
Zr	IMS95A	162,8	147,1	100,9	51	609,1	602	360,2	115,6	193,1	154,3	<0.5
Ce	IMS95R	63,4	53,3	46,8	13,1	530,3	562,6	464,5	125,2	60	34,8	81,1
Dy	IMS95R	1,47	1,68	1,72	1,14	6,73	6,53	9,16	4,03	2,6	1,15	1,51
Er	IMS95R	0,72	0,88	0,82	0,77	2,51	2,74	3,45	0,94	0,81	0,63	0,79
Eu	IMS95R	0,71	0,6	0,41	0,32	1,53	1,63	1,21	0,55	0,31	0,95	0,8
Gd	IMS95R	2,64	2,69	2,71	0,95	15,71	16,96	17,41	7,12	3,96	2,21	3,67
Но	IMS95R	0,24	0,28	0,24	0,24	1,02	1,01	1,23	0,49	0,29	0,2	0,32
La	IMS95R	46,2	39	30,3	13,2	290	322,9	247,6	78	35,5	19,6	50,7
Lu	IMS95R	<0.05	0,06	0,13	0,07	0,24	< 0.05	0,11	0,2	0,16	<0.05	0,09
Nd	IMS95R	22,4	19,3	18,5	4,9	189,2	208,9	173,9	57,3	28,2	13,4	27,7
Pr	IMS95R	6,7	5,85	5,33	1,4	60,43	66,07	51,98	14,95	7,75	4,06	8,89
Sm	IMS95R	2,9	3	2,9	0,6	24,5	27,3	24,7	10,6	5,4	2,8	4,6
Tb	IMS95R	0,29	0,21	0,28	<0.05	1,78	1,63	2	0,73	0,48	0,29	0,39
Tm	IMS95R	<0.05	< 0.05	<0.05	0,06	0,18	0,16	0,3	0,1	0,07	0,06	<0.05
Yb	IMS95R	0,6	0,5	0,9	0,7	1,8	1,7	2,5	1,2	0,7	0,6	0,4
Ag	ICM14B	0,04	0,07	<0.01	0,06	0,03	<0.01	0,05	<0.01	<0.01	<0.01	0,12
Au	ICM14B	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
As	ICM14B	<1	<1	<1	<1	<1	<1	<1	<1	<1	5	<1
Bi	ICM14B	0,51	9,79	2,58	1,43	1,1	0,59	0,4	0,12	0,19	0,11	0,1
Cd	ICM14B	0,27	0,01	<0.01	0,04	0,09	0,06	0,04	0,04	0,02	0,36	0,63
Co	ICM14B	5,7	4,7	1,9	0,9	8,4	6,2	5	1	1,3	0,8	2,4
Cu	ICM14B	18,3	4,1	4,2	3	10,6	8	5,8	11,3	11,5	3,5	21,1
Hg	ICM14B	<0.01	0,03	0,02	<0.01	0,03	<0.01	0,01	<0.01	<0.01	<0.01	0,01
Мо	ICM14B	0,65	1,2	1,2	0,9	2,31	1,94	1,06	0,46	0,26	0,2	0,23
Ni	ICM14B	8,2	7,5	4,6	3,1	7,4	6,2	5,5	<0.5	1,3	2,3	5,7
Pb	ICM14B	29	7,1	11,5	9,2	5,4	4,8	10,1	30,7	76,7	51,3	22,8
Sb	ICM14B	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Se	ICM14B	<1	<1	<1	<1	2	1	2	<1	<1	<1	<1
Zn	ICM14B	55	54	27	14	67	66	48	16	20	33	38

ICP95A	fusão com metaborato de litio - leitura por ICP-OES
IMS95A	fusão com metaborato de litio - leitura ICP-MS
ICM14B	digestão com água régia - leitura com ICP-OES e ICP-MS
IMS95R	fusão com metaborato de litio - aleitura por ICP-MS

Ν	Método	67	68	69	70	71	72	73	74	75	76	77
ID		EM-161A	EM-161C	EM-161D	EM-173D	EM-174A	EM-176A	EM-177B	EM-235A	EM-257A	EM-258A	EM-258C
AI2O3	ICP95A	4,49	4,61	8,43	15,16	16,55	16,8	16,16	2,75	13,94	13,97	14,63
CaO	ICP95A	4,23	1,74	5,45	7,8	1,62	0,93	1,11	0,04	1,17	1,17	1,46
Cr2O3	ICP95A	0,15	0,15	0,42	<0.01	<0.01	<0.01	<0.01	0,01	<0.01	<0.01	<0.01
Fe2O3	ICP95A	11,78	13,45	14,71	21,51	3,13	2,44	1,63	2,88	2,14	1,92	2,39
K2O	ICP95A	<0.01	<0.01	<0.01	1,04	4,96	6,7	5,44	0,13	4,01	4,85	4,54
MgO	ICP95A	>30	>30	>30	6,92	1,18	0,2	0,35	0,03	0,29	0,27	0,42
MnO	ICP95A	0,06	0,04	0,09	0,19	0,04	0,01	0,02	0,05	0,06	0,04	0,04
Na2O	ICP95A	0,08	<0.01	<0.01	2,88	4,21	4,43	4,41	0,04	4,36	3,9	4,21
P2O5	ICP95A	0,17	0,06	<0.01	0,14	0,15	0,04	0,08	0,32	0,02	<0.01	0,06
SiO2	ICP95A	43,96	42,95	34,9	41,71	65,76	68,68	70,87	>90	73,55	74,57	73,72
TiO2	ICP95A	0,32	0,31	0,24	1,33	0,27	0,05	0,12	0,05	0,15	0,12	0,21
LOI	ICP95A	5,23	5,91	7,97	2,38	0,53	0,18	0,36	0,75	0,14	0,08	0,4
Sum	ICP95A	N.A.	N.A.	N.A.	101,06	98,41	100,48	100,55	101,21	99,83	100,88	102,07
Ba	INCOFA	15	7	0	101	E1 4	100	201	0004	200	450	400
Ба	INS95A	15	0.6	9	121	214	190	291	2834	329	456	486
Бе	INS95A	0,7	0,6	0,3	1 05	1,0	3	2,0	<0.1	2	1,2	0,5
Cs Ca	INS95A	<0.05	0,05	0,23	1,20	0,00	4,32	3,90	<0.05	2,99	6,18	3,93
Ga	INS95A	1 26	1,1	0,0	23,5	19,0	19,1	17,5	3,7	20	16,2	20,4
HI	INS95A	1,30	0,93	0,55	2,87	3,57	0,78	2,7	1,58	3,15	2,75	5,02
	INS95A	32,10	0,14	2,30	4,53	5,29	3,74	3,0	<0.05	3,50	<0.05	34,85
RD Sm	INS95A	0,2	<0.2	1,4	30,4	90,5	102	144,1	4,6	169	167	178,7
511	INS95A	<0.3	<0.3	<0.5	207.0	<0.3	<0.3	<0.5	<0.3	<0.5	0,5	4,2
31	INS95A	9,1	/ -0.05	21,0	07	200,7	0.00	0.29	151,9	130,5	145,6	203,2
Th	INS95A	1,02	<0.05	0,59	2.9	0,54	1.90	0,30	<0.05	<0.05	<0.05	<0.05
	IMS95A	0.54	1,9	0,9	0.60	0.55	2.02	4,5	0,9	10,7	9,2	10,2
w	IMS95A	2.6	0,34 ∠0.1	7 1	13	0,55	12	2.6	1.8	2.1	2,3	17
v	IMS95A	2,0	8 70	6.87	26.43	7 18	4,2 6,51	2,0	1,0	2,1	2,2	1,7
- 7r	IMS95A	32.5	34.1	5.8	20,40 81 Q	105.5	17 7	81 5	72.5	124.6	5,45 144 6	156.9
		02,0	01,1	0,0	01,0	100,0	,	01,0	12,0	124,0	144,0	100,0
Ce	IMS95R	19,7	25,8	2,2	18,5	109,9	5,1	49	73,7	61,8	51,8	81,8
Dy	IMS95R	2,43	2,01	1,13	5,23	1,63	0,85	1,31	3,87	2,46	1,58	1,8
Er	IMS95R	1,24	0,89	0,82	2,89	0,68	0,59	0,57	1,91	1,36	1,02	1,03
Eu	IMS95R	0,54	0,6	0,25	1,15	1,41	0,5	0,92	1,3	0,51	0,54	0,68
Gd	IMS95R	3,91	3,12	0,98	4,62	4,72	1,24	2,13	5,76	4,15	2,53	3,38
Но	IMS95R	0,5	0,36	0,3	1,13	0,3	0,19	0,25	0,62	0,43	0,28	0,3
La	IMS95R	18	24,9	1	8,4	65	4,3	29,9	44,8	50,1	37	65,7
Lu	IMS95R	< 0.05	<0.05	<0.05	0,22	<0.05	0,05	0,05	<0.05	<0.05	< 0.05	<0.05
Nd	IMS95R	17,9	21,9	1,5	13,5	39,3	4,3	17,3	27,7	22,7	17,5	30,8
Pr	IMS95R	4,89	5,24	0,44	3	12,2	1,03	5,55	7,52	6,69	5,59	9,36
Sm	IMS95R	3,8	3,7	0,7	3,9	5,8	1,1	2,4	5,2	3,7	2,4	4
Tb	IMS95R	0,53	0,4	0,18	0,84	0,49	0,14	0,3	0,55	0,37	0,22	0,32
Tm	IMS95R	0,1	0,08	0,1	0,28	0,08	0,06	0,08	0,15	0,06	0,09	0,06
Yb	IMS95R	1	0,8	0,7	3	0,5	0,8	0,7	1,6	1	0,8	0,8
		0.04	0.00	0.05	0.00	0.40	0.00	0.05				
Ag	ICM14B	0,21	0,06	0,35	0,08	0,16	0,23	0,05	0,08	0,01	0,03	0,04
Au		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
AS Di		2	2	2	< 1	0.1	<1 0.12	<1	<1	<1	<1	<1
C4	ICM14B	1,9	2,09	0,50	0,00	0,1	0,13	0,34	0,07	0,19	0,14	0,11
Cu	ICM14B	0,29	0,21 22.1	2,40 55 2	21.1	0,23	0,00	0,24	0,03	0,00	0,04	0,03
Cu	ICM14B	30.2	23, 1 27 5	20.∕	78.7	0,∠ 0,1	218.5	۱ 4 7	∠,3 8	4, I 11 Q	2,3 7	5,4 5,2
На	ICM14B	<0.01	~0.01	23, 4 0.01	~0.01	0.01	0.01	-, <i>r</i>	0.01	~0.01	/ ~0.01	0.03
Mo	ICM14B	1.08	0.25	0.10	0/2	0,01	0.24	0.01	0.67	0.01	0.01	0,03
Ni	ICM14B	336.8	435 1	1075 1	38.7	0,∠ 11.5	22	23	64	5.8	4.2	5.1
Ph	ICM14B	9	10.5	70.8	32.8	21.7	34.3	11 2	74	15.2	-,∠ 12.3	16.1
Sh	ICM14B	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Se	ICM14B	<1	<1	<1	<1	<1	<1	<1	<0.00	<0.00	<0.00	<0.00
Zn	ICM14B	13	13	35	85	48	65	17	6	34	28	31

ICP95A	fusão com metaborato de litio - leitura por ICP-OES
IMS95A	fusão com metaborato de litio - leitura ICP-MS
ICM14B	digestão com água régia - leitura com ICP-OES e ICP-MS
IMS95R	fusão com metaborato de litio - aleitura por ICP-MS

D EM-289A EM-289A EM-280A EM-2	Ν	Método	78	79	80	81	82	83	84	85	86	87	88
Al203 ICPBSA 13,41 3,89 13,27 15,34 13,26 14,37 13,45 13,16 11,16 13,17 14,49 CC203 ICPBSA -0.01 0.28 0.05 -0.01 0.05 0.06 0.09 0.03 0.05 -0.01 R203 ICPBSA 3.87 0.31 0.73 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.43 1.43 1.47 1.42 1.47 1.42 1.43 1.43 1.47 1.42 1.42 1.42 1.42 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.44 1.43 1.44 1.43 1.43 1.43 1.43 1.44 1.45 1.43 1.44 1.45 1.43 1.44 1.45 1.43 1.44 1.45 1.45 1.43 1.44 1.45 1.45 1.45 1.45 1.45 1.45 1.45 </th <th>ID</th> <th></th> <th>EM-259A</th> <th>EM-259B</th> <th>EM-259C</th> <th>EM-260A</th> <th>EM-261A</th> <th>EM-262A</th> <th>EM-263A</th> <th>EM-263B</th> <th>EM-265A</th> <th>EM-265B</th> <th>EM-266A</th>	ID		EM-259A	EM-259B	EM-259C	EM-260A	EM-261A	EM-262A	EM-263A	EM-263B	EM-265A	EM-265B	EM-266A
Ca0 ICPBA 0.77 15.23 0.81 2.23 1.25 10.06 9.64 10.77 4.4 8.67 0.086 Fa203 ICPBA 1.3 8.74 10.24 0.24 0.021 0.026 0.031 0.257 1.261 K200 ICPBA 0.33 0.21 1.73 0.84 0.61 1.241 1.745 0.84 0.02 0.33 0.31 0.31 M00 ICPBA 0.03 0.25 0.21 0.05 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.23 0.33 N000 ICPBA 0.75 0.23 0.06 0.23 0.23 0.26 0.22 0.21 0.22 1.75 1.94 0.95 75 1.94 0.95 75 1.94 0.95 75 1.94 0.95 75 1.94 0.95 1.97 1.14 1.44 1.41 1.41 1.44 1.41 1.44<	AI2O3	ICP95A	13,41	3,89	13,27	15,34	13,68	14,37	13,45	13,18	14,16	13,17	14,09
Cr203 ICPBA -0.01 0.28 0.05 -0.01 0.05 0.06 0.09 0.08 0.05 0.01 K2O ICPBA 1.3 87.4 1.3.4 2.22 2.22 1.27 1.26 1.3.3 1.2.73 1.26 M00 CPBA 0.03 0.25 0.21 0.42 0.73 7.36 0.31 7.35 0.81 1.0.2 0.13 7.35 0.84 0.02 0.04 0.02 0.03 0.01 0.06 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.05 <t< th=""><th>CaO</th><th>ICP95A</th><th>0,77</th><th>15,23</th><th>9,81</th><th>2,3</th><th>1,25</th><th>10,08</th><th>9,8</th><th>10,7</th><th>8,4</th><th>8,67</th><th>0,86</th></t<>	CaO	ICP95A	0,77	15,23	9,81	2,3	1,25	10,08	9,8	10,7	8,4	8,67	0,86
Fe203 [CP85A] 1.3 8.74 13.44 2.24 2.22 12.62 11.97 12.05 13.03 12.73 1.26 MgO [CP85A] 0.04 15.9 0.31 0.51 1.78 4.12 0.44 0.64 0.61 1.84 1.87 MgO [CP85A] 0.33 0.25 0.21 0.06 0.05 0.2 0.2 0.21 0.21 0.26 0.39 1.4 5.80 0.39 1.4 5.80 0.39 1.4 5.80 0.39 1.4 5.80 0.39 0.41 0.22 1.57 1.44 0.06 Dical CP95A 0.16 1.09 1.01 0.46 0.18 0.65 0.78 1.25 1.74 1.81 0.02 Dical CP95A 0.5 0.31 0.31 0.33 0.93 0.31 0.02 0.23 1.06 0.33 1.05 1.06 0.33 0.03 1.02 0.03 1.06 0	Cr2O3	ICP95A	<0.01	0,28	0,05	<0.01	<0.01	0,05	0,06	0,09	0,03	0,05	<0.01
K2O ICPB5A 3.87 0.31 0.51 1.78 4.12 0.45 0.67 0.64 0.61 1.84 1.67 MnO ICPB5A 0.03 0.25 0.21 0.06 0.05 0.2 0.21 0.21 0.20 0.21 0.20 0.21 0.20 0.21 0.20 0.21 0.20 0.21 0.21 0.26 0.21 0.21 0.20 0.25 0.21 0.26 0.20 0.25 0.20 0.25 0.20 0.26 0.20 0.57 1.04 0.05 0.20 0.25 0.20 0.26 0.20 0.51 1.37 7.588 7.588 7.5788 7.588 7.568 7.51 1.64 0.65 0.78 0.22 1.57 1.64 0.65 0.78 0.26 9.989 9.988 100.44 0.65 0.57 0.65 0.57 0.67 0.65 0.51 1.64 2.21 1.64 2.46 0.55 0.57 0.55 1.57	Fe2O3	ICP95A	1,3	8,74	13,44	2,94	2,22	12,62	11,97	12,05	13,03	12,73	1,26
MgO ICP86A 0.04 18.9 6.99 0.72 0.31 7.25 8.8 10.2 0.23 7.26 0.21 0.21 0.20 0.02 Na2O ICP86A 4.83 0.72 0.21 0.25 0.21 0.22 0.24 0.21 0.21 0.20 0.05 0.02 N2OC ICP86A 7.391 53.91 49.04 70.2 72.33 50.08 0.034 51.47 1.64 0.06 SUM ICP86A 0.16 1.08 0.45 0.18 0.05 0.78 1.25 1.74 1.61 0.04 Ba MSS6A 1.6 79 47 366 645 35 68 1034 114 248 438 Be MSS6A 1.6 79 47 366 645 35 68 1034 114 1.4 1.63 Be MSS6A 3.4 0.11 0.38 6.45 355 680	K2O	ICP95A	3,87	0,31	0,51	1,78	4,12	0,45	0,57	0,64	0,61	1,84	1,67
MnO ICPB6A 0.03 0.25 0.21 0.06 0.05 0.2 0.21 0.24 0.20 0.24 0.20 0.24 0.20 0.26 0.20 0.26 0.20 0.26 0.20 0.26 0.20 0.26 0.20 0.53 0.53 0.53 0.46 0.63 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.28 0.17 1.04 0.06 0.06 0.07 0.28 0.98 99.89 99.89 99.89 100.44 Sum ICP95A 0.66 0.76 0.66 0.76 1.45 1.47 1.64 0.64 0.66 0.76 1.45 1.47 1.64 0.64 0.65 0.65 0.67 0.4 -0.1 1 -0.1 1.4 0.11 0.77 1.1 0.86 0.65 0.61 1.14 0.11 1.07 0.11 0.36 0.33 0.	MgO	ICP95A	0,04	18,9	6,99	0,72	0,31	7,35	8,8	10,2	6,3	7,85	0,3
Na2O ICP95A 4.83 0.79 1.46 5.45 4.26 2.64 2.17 1.94 3.09 1.4 5.50 SIO2 ICP95A 73.91 63.91 40.04 70.2 72.33 60.08 60.34 61.74 50.75 1.14 0.06 LOI ICP95A 0.16 1.09 1.01 0.45 0.18 0.65 0.78 1.22 1.74 1.61 0.02 LOI ICP95A 0.16 1.09 4.71 366 645 35 68 1034 114 248 438 Be IMS95A 0.5 0.9 -0.1 2.7 0.4 -0.1 1 -0.7 1.1 0.8 Cs IMS95A 0.5 0.9 -0.1 2.7 0.4 -0.1 1 -0.1 0.7 1.1 0.8 MS95A 1.90 0.47 1.3 0.50 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05	MnO	ICP95A	0,03	0,25	0,21	0,06	0,05	0,2	0,2	0,21	0,2	0,19	0,02
P2O5 ICP85A	Na2O	ICP95A	4,83	0,79	1,46	5,45	4,26	2,64	2,17	1,94	3,09	1,4	5,92
SIO2 ICP85A 73.91 53.91 49.04 70.2 72.33 50.08 50.34 51.47 51.89 75.88 LOI ICP85A 0.16 1.09 1.01 0.45 0.18 0.69 0.82 1.57 1.04 0.06 LOI ICP85A 9.3.2 103.64 96.2 98.6 99.53 99.09 10.2.6 99.88 99.89 99.89 99.89 99.89 99.89 99.89 99.89 99.89 99.89 99.89 100.44 1 0.71 1.1 0.8 100.44 1.1 0.75 1.1 0.8 100.44 1.14 0.8 1.14 0.8 1.14 0.8 1.14 1.83 1.83 1.83 1.83 1.84 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.41 1.36 4.36 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4	P2O5	ICP95A	<0.01	<0.01	0,08	0,03	0,01	0,06	0,06	0,04	0,2	0,05	<0.01
TICZ ICP85A 0.05 0.23 1.06 0.33 0.19 0.87 0.87 0.22 1.57 1.04 0.06 Sum ICP85A 98.32 10.01 0.45 0.18 0.66 0.78 1.25 1.74 1.61 0.04 Ba IMS95A 16 79 47 366 645 35 68 10.24 11.4 248 438 Be IMS95A 1.6 79 47 366 645 35 68 0.34 11.4 248 438 Ga IMS95A 1.7 7.4 1.84 2.1 18.3 18.3 15.4 1.06 1.77 1.04 0.05	SiO2	ICP95A	73,91	53,91	49,04	70,2	72,33	50,08	50,34	51,47	50,67	51,39	75,88
LOB ICPSA 9.16 1.01 0.45 0.18 0.08 0.78 1.25 1.74 1.61 0.42 Ba IMS95A 16 79 47 366 645 35 99.9 102.6 99.88 99.88 100.44 Ba IMS95A 16 79 47 366 645 35 68 1034 114 248 438 Be IMS95A 10.7 7.4 18.4 21 18.3 18 18.3 18 12.4 20.2 15.7 16.5 HM MS95A 0.0 4.05	TiO2	ICP95A	0,05	0,23	1,06	0,33	0,19	0,99	0,87	0,82	1,57	1,04	0,06
Sum ICP95A 98,52 99,62 98,62 99,53 99,99 102,6 99,98 99,98 100,44 Ba IMS95A 16 79 47 386 645 35 68 103,44 114 248 438 Be IMS95A 16 79 47 386 645 35 68 103,44 114 248 438 Ga IMS95A 17.7 7.4 18.4 21 18.3 18 15.4 10.7 1.1 0.05 <th>LOI</th> <th>ICP95A</th> <th>0,16</th> <th>1,09</th> <th>1,01</th> <th>0,45</th> <th>0,18</th> <th>0,65</th> <th>0,78</th> <th>1,25</th> <th>1,74</th> <th>1,61</th> <th>0,42</th>	LOI	ICP95A	0,16	1,09	1,01	0,45	0,18	0,65	0,78	1,25	1,74	1,61	0,42
Ba IMS95A 16 79 47 366 645 35 68 1034 114 248 438 Be IMS95A 0.5 0.9 -0.1 2.7 0.4 <0.1	Sum	ICP95A	98,32	103,64	96,92	99,62	98,6	99,53	99,09	102,6	99,98	99,98	100,44
Ba INSSPA 16 79 47 380 645 35 65 1034 114 246 438 Ba INSSPA 0.5 0.9 4.01 0.33 0.11 1 0.06 0.24 0.38 0.31 1.07 0.36 Ga IMSSPA 0.7 7.4 18.4 1.83 18 18.3 15.4 20.0 0.05 <0.05	Ba	INCOFA	40	70	47	200	0.45	05	<u></u>	400.4		0.40	400
Be INUSSA 0.3 0.9 c.1 0.7 1.1 0.0 1.1 0.0 0.7 1.1 0.0 0.36 Ga IMSSA 2.4 0.31 0.05 0.24 0.38 0.7 1.1 0.03 Ga IMSSA 1.97 7.4 18.4 21 18.3 18 18.3 1.54 20.2 15.7 16.5 MBSSA 10.0 0.05 -0	Ба	INS95A	16	79	47	300	645	35	68	1034	114	248	438
Cs INGSSA 1.9.7 7.4 11.8 0.33 6.35 5.13 0.06 0.24 0.36 0.33 1.07 1.65 Hf IMSSSA 2.01 0.47 2.09 2.69 3.83 1.83 1.81 1.27 3.48 1.46 1.36 MISSSA 2.0 -0.05	Бе	INS95A	0,5	0,9	<0.1	2,7	0,4	<0.1	1	<0.1	0,7	1,1	0,8
Ga INUSSIA 19,7 1,4 10,4 21 10,3 10 10,3 13,4 20,2 15,7 16,3 Hf INSSEA 2,01 0,47 2,09 2,83 18,8 1,8 1,27 3,48 1,46 1,36 Nb IMSSEA 10,6 4,7 13 10,55 165 9,7 17,3 17,4 13,6 43,6 26,1 Sn IMSSEA -0.3 -0.5 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 <t< th=""><th>CS Co</th><th>INS95A</th><th>3,49</th><th>0,11</th><th>0,39</th><th>0,35</th><th>3,13</th><th>0,06</th><th>18.2</th><th>0,36</th><th>0,31</th><th>1,07</th><th>0,36</th></t<>	CS Co	INS95A	3,49	0,11	0,39	0,35	3,13	0,06	18.2	0,36	0,31	1,07	0,36
n IMS350A 2,01 0.47 2,09 2,09 2,03 1,03 1,03 1,07 1,04 1,06 4,05 Nb IMS95A 150,6 4,7 13 106,5 165 9,7 17,3 17,4 13,6 43,6 26,0 Sn IMS95A 2,23 21 1154 264 174,4 135,3 12,4 171,3 105,5 103,7 Ta IMS95A 2,05 <0,05	Ga	INS95A	19,7	7,4	10,4	21	10,3	10	10,3	10,4	20,2	15,7	10,5
ND IM355A 0.0.2 c0.05 c		INS95A	2,01	0,47	2,09	2,69	3,03	1,03	1,0	1,27	3,40	1,40	1,30
ND IMS95A 4.0.3 4.0.5 4.0.5 4.0.5 4.0.5 4.0.5 4.0.5 4.0.5 4.0.5 4.0.5 4.0.7 1.1	Rb	IMS95A	150.6	< 0.05	<0.05	<0.05 105 5	<0.05 165	<0.05	17.2	<0.05 17.4	<0.00 12 G	<0.05	<0.05
Sr IMSS5A 2.3. 2.1. 115.4 26.4 26.3 27.7 39 2.1 3.2 3.2 1.3 1.4 3.2 1.1 3.3 1.4 3.3 1.9 1.6 2.8 2.4 0.5 2.7 2.6 3 2.6 3.6 <t< th=""><th>Sn</th><th>IMS95A</th><th><0.3</th><th>4,7</th><th>13</th><th>-0.3</th><th>-0.3</th><th>9,7</th><th>-0.3</th><th><0.3</th><th>-0.3</th><th>43,0</th><th>20,1</th></t<>	Sn	IMS95A	<0.3	4,7	13	-0.3	-0.3	9,7	-0.3	<0.3	-0.3	43,0	20,1
Dr Industry Dr Dr <thdr< th=""> <thdr< th=""> Dr <th< th=""><th>Sr</th><th>IMS95A</th><th><0.3 22.3</th><th>21</th><th>115 /</th><th><0.5 264</th><th><0.5 174.6</th><th>174.4</th><th><0.5 135.3</th><th>124.4</th><th>171.3</th><th>105.6</th><th>130.7</th></th<></thdr<></thdr<>	Sr	IMS95A	<0.3 22.3	21	115 /	<0.5 264	<0.5 174.6	174.4	<0.5 135.3	124.4	171.3	105.6	130.7
In INSSPA C0.00 C	Ta	IMS95A	~0.05	<0.05	~0.05	~0.05	~0.05	<0.05	-0.05	~0.05	~0.05	-0.05	~0.05
Image Image <thimage< th=""> <thi< th=""><th>Th</th><th>IMS95A</th><th>10.5</th><th>2.8</th><th>3.9</th><th>5.4</th><th>11.5</th><th>37</th><th><0.05 Q</th><th>27</th><th>3.0</th><th>2 1</th><th>3.2</th></thi<></thimage<>	Th	IMS95A	10.5	2.8	3.9	5.4	11.5	37	<0.05 Q	27	3.0	2 1	3.2
W INSSA 0.05 0.06 0.05 0.06 0.03 0.06 0.05 0.06 0.05 0.01 0.06 0.03 0.06 0.05 0.05 0.01 0.05 0.05 0.05 0.05 0.05 0.05 0	U U	IMS95A	5 57	0.59	0.93	1.68	4.2	0.84	1 07	0.75	1 15	0.7	1
Y IMS95A 9,91 10,65 22 10,85 10,83 19,45 21,56 16,36 36,04 19,2 8,68 Zr IMS95A 49,7 17,9 84,2 103,5 177,4 83,2 89,7 58,4 154,7 79,8 50,5 Ce IMS95R 1,97 1,84 4 2,02 2,13 4,05 4,35 3,42 6,64 3,63 1,52 Er IMS95R 1,97 1,84 4 2,02 2,13 4,05 4,35 3,42 6,64 3,63 1,52 Eu IMS95R 0,14 0,4 1,07 0,7 0,61 1,1 0,97 0,73 1,82 0,85 0,58 Gd IMS95R 0,32 0,32 0,39 0,37 0,38 0,39 3,3 6,63 1,46 0,72 0,3 Lu IMS95R 13,1 17,6 16,1 28,5 13,7 15,9 12,2 <th< th=""><th>Ŵ</th><th>IMS95A</th><th>31</th><th>2.3</th><th>1.9</th><th>1.6</th><th>2.8</th><th>24</th><th>0.5</th><th>27</th><th>2.6</th><th>3</th><th>26</th></th<>	Ŵ	IMS95A	31	2.3	1.9	1.6	2.8	24	0.5	27	2.6	3	26
Žr IMS95A 49,7 17,9 84,2 10,5 177,4 83,2 89,7 56,4 154,7 78,8 50,5 Ce IMS95R 1,97 1,84 4 2,02 2,13 4,05 4,35 3,42 6,64 3,63 1,52 Er IMS95R 1,32 1,14 2,50 0,89 1,06 2,24 2,57 2,06 4,28 1,96 0,82 Eu IMS95R 0,14 0,4 1,07 0,7 0,61 1,1 0,97 0,73 1,82 0,85 0,85 Gd IMS95R 2,51 1,91 4,37 2,62 2,61 3,69 3,9 3,3 6,93 3,61 2,08 Lu IMS95R 0,32 0,32 0,37 0,82 0,91 1,84 2,76 1,7,8 24,2 1,8 24,5 Lu IMS95R 2,50 0,32 0,32 0,32 0,31 1,8 2,4 1,4	Y	IMS95A	9.91	10.65	22	10.85	10.83	19 45	21.56	16.36	36.04	19.2	8.68
Ce IMS95R 14.6 16.9 21.3 46.8 75 22.2 24.9 21.4 38.7 18 36.1 Dy IMS95R 1.97 1.84 4 2.02 2.13 4.05 4.35 3.42 6.64 3.83 1.52 Er IMS95R 1.32 1.14 2.5 0.89 1.06 2.34 2.57 2.06 4.28 1.96 0.82 Eu IMS95R 0.14 0.4 1.07 0.77 0.61 1.1 0.97 0.73 1.82 0.82 0.68 Gd IMS95R 0.32 0.97 0.38 0.39 0.77 0.81 0.63 1.46 0.72 0.3 Lu IMS95R 0.32 0.97 0.38 0.39 0.77 0.81 0.63 1.46 0.05 c.0.05 MI IMS95R 0.32 0.32 17.9 23.5 13.7 15.9 12.2 24.6 11.6 14.9	Zr	IMS95A	49.7	17.9	84.2	103.5	177.4	83.2	89.7	58.4	154.7	79.8	50.5
Ce IMS95R 14,6 16,9 21,3 46,8 75 22,2 24,9 21,4 38,7 18 36,1 Dy IMS95R 1,97 1,84 4 2,02 2,13 4,05 4,35 3,42 6,64 3,63 1,52 Eu IMS95R 0,14 0,4 1,07 0,7 0,61 1,1 0,97 0,73 1,82 0,85 0,85 Gd IMS95R 2,51 1,91 4,37 2,62 2,61 3,69 3,9 3,3 6,93 3,61 2,085 0,32 La IMS95R 0,32 0,32 0,97 0,38 0,39 0,77 0,81 0,63 1,46 0,72 0,33 Lu IMS95R 0,32 0,32 0,17 <0,05 0,14 0,08 <0,41 <0,05 <0,41 <0,05 <0,05 0,41 <0,05 <0,05 <0,44			- ,	,-	- ,	,-	,	,	,	,	- /	- , -	,-
Dy IMS95R 1,97 1,84 4 2,02 2,13 4,05 4,35 3,42 6,64 3,63 1,52 Er IMS95R 1,32 1,14 2,5 0,89 1,06 2,34 2,57 2,06 4,28 1,96 0,82 Gd IMS95R 2,51 1,91 4,37 2,62 2,61 3,69 3,9 3,3 6,93 3,61 2,085 Gd IMS95R 0,32 0,32 0,97 0,38 0,39 3,7 0,81 0,63 1,46 0,72 0,3 La IMS95R 0,05 <0,05	Ce	IMS95R	14,6	16,9	21,3	46,8	75	22,2	24,9	21,4	38,7	18	36,1
Er INS95R 1.32 1.14 2.5 0.89 1.06 2.34 2.57 2.06 4.28 1.96 0.82 Eu IMS95R 0.14 0.4 1.07 0.7 0.61 1.1 0.97 0.73 1.82 0.85 0.58 Gd IMS95R 0.32 0.32 0.32 0.32 0.32 0.32 0.33 0.99 0.77 0.81 0.63 1.46 0.72 0.33 La IMS95R 0.32 0.32 0.97 0.38 0.39 0.77 0.81 0.63 1.46 0.72 0.33 Lu IMS95R 1.31 17.6 16.1 28.5 13.7 15.9 12.2 24.6 11.6 14.9 Pr IMS95R 1.93 2.31 2.88 4.82 6.61 3.12 3.96 2.95 5.59 2.56 4.42 Sm IMS95R 0.2 0.19 0.6 0.28 0.28 0	Dy	IMS95R	1,97	1,84	4	2,02	2,13	4,05	4,35	3,42	6,64	3,63	1,52
Eu IMS95R 0,14 0,4 1,07 0,7 0,61 1,1 0,97 0,73 1,82 0,85 0,58 Gd IMS95R 2,51 1,91 4,37 2,62 2,61 3,69 3,3 6,93 3,61 2,08 Ho IMS95R 0,32 0,32 0,97 0,38 0,39 0,77 0,81 0,63 1,46 0,72 0,3 La IMS95R 13,1 17,6 16,1 28,5 41,9 18,4 27,6 17,8 24,2 13,8 24,5 Lu IMS95R 8,6 8,7 12,3 17,9 23,5 13,7 15,9 12,2 24,6 11,6 14,9 Sm IMS95R 1,93 2,31 2,88 4,82 6,61 3,12 3,66 2,95 5,59 2,56 4,42 Sm IMS95R 0,2 0,19 0,6 0,28 0,28 0,57 0,55 0,36 0,94	Er	IMS95R	1,32	1,14	2,5	0,89	1,06	2,34	2,57	2,06	4,28	1,96	0,82
Gd IMS95R 2,51 1,91 4,37 2,62 2,61 3,69 3,9 3,3 6,93 3,61 2,08 Ho IMS95R 0,32 0,32 0,97 0,38 0,39 0,77 0,81 0,63 1,46 0,72 0,31 La IMS95R 3,32 0,05 0,17 20.55 41,9 18,4 27,6 17,8 24,2 13,8 24,5 Lu IMS95R 8,6 8,7 12,3 17,9 23,5 13,7 15,9 12,2 24,6 11,6 14,9 Pr IMS95R 1,93 2,31 2,88 4,82 6,61 3,12 3,96 2,95 5,59 2,56 4,42 Sm IMS95R 0,2 0,19 0,6 0,28 0,28 0,57 0,55 0,36 0,94 0,49 0,16 Tm IMS95R 0,20 0,06 0,3 0,08 0,09 0,05 0,05 0	Eu	IMS95R	0,14	0,4	1,07	0,7	0,61	1,1	0,97	0,73	1,82	0,85	0,58
Ho IMS95R 0,32 0,32 0,97 0,38 0,39 0,77 0,81 0,63 1,46 0,72 0,3 La IMS95R 13,1 17,6 16,1 28,5 41,9 18,4 27,6 17,8 24,2 13,8 24,5 Lu IMS95R <0.05	Gd	IMS95R	2,51	1,91	4,37	2,62	2,61	3,69	3,9	3,3	6,93	3,61	2,08
La IMS95R 13,1 17,6 16,1 28,5 41,9 18,4 27,6 17,8 24,2 13,8 24,5 Lu IMS95R <0.05 <0.05 0,17 <0.05 <0.05 0,14 0,08 <0.05 0,41 <0.05 <0.05 <0.05 Nd IMS95R 8,6 8,7 12,3 17,9 23,5 13,7 15,9 12,2 24,6 11,6 14,9 Pr IMS95R 1,93 2,31 2,88 4,82 6,61 3,12 3,96 2,95 5,59 2,56 4,42 Sm IMS95R 0,2 0,19 0,6 0,28 0,57 0,55 0,36 0,94 0,49 0,16 Tm IMS95R <0.05 0,06 0,3 0,08 0,11 2,1 1,8 4 1,9 1 Mg ICM14B <0,04 <0,06 0,08 0,09 0,05 0,05 0,04 0,03 <t< th=""><th>Но</th><th>IMS95R</th><th>0,32</th><th>0,32</th><th>0,97</th><th>0,38</th><th>0,39</th><th>0,77</th><th>0,81</th><th>0,63</th><th>1,46</th><th>0,72</th><th>0,3</th></t<>	Но	IMS95R	0,32	0,32	0,97	0,38	0,39	0,77	0,81	0,63	1,46	0,72	0,3
Lu IMS95R <0.05	La	IMS95R	13,1	17,6	16,1	28,5	41,9	18,4	27,6	17,8	24,2	13,8	24,5
Nd IMS95R 8,6 8,7 12,3 17,9 23,5 13,7 15,9 12,2 24,6 11,6 14,9 Pr IMS95R 1,93 2,31 2,88 4,82 6,61 3,12 3,96 2,95 5,59 2,56 4,42 Sm IMS95R 0.2 0,19 0,6 0,28 0,28 0,57 0,55 0,36 0,94 0,49 0,16 Tm IMS95R <0.2	Lu	IMS95R	<0.05	<0.05	0,17	<0.05	<0.05	0,14	0,08	<0.05	0,41	<0.05	<0.05
Pr IMS95R 1,93 2,31 2,88 4,82 6,61 3,12 3,96 2,95 5,59 2,56 4,42 Sm IMS95R 2 1,2 3,2 2,8 3,5 3,1 2,7 2,6 5,6 2,4 2,4 Tb IMS95R 0,2 0,19 0,6 0,28 0,28 0,57 0,55 0,36 0,94 0,49 0,16 Tm IMS95R <0.05	Nd	IMS95R	8,6	8,7	12,3	17,9	23,5	13,7	15,9	12,2	24,6	11,6	14,9
Sm IMS95R 2 1,2 3,2 2,8 3,5 3,1 2,7 2,6 5,6 2,4 2,4 Tb IMS95R 0,2 0,19 0,6 0,28 0,28 0,57 0,55 0,36 0,94 0,49 0,16 Tm IMS95R <0.05	Pr	IMS95R	1,93	2,31	2,88	4,82	6,61	3,12	3,96	2,95	5,59	2,56	4,42
Tb IMS95R 0,2 0,19 0,6 0,28 0,28 0,57 0,55 0,36 0,94 0,49 0,16 Tm IMS95R <0.05	Sm	IMS95R	2	1,2	3,2	2,8	3,5	3,1	2,7	2,6	5,6	2,4	2,4
Tm IMS95R <0.05	Tb	IMS95R	0,2	0,19	0,6	0,28	0,28	0,57	0,55	0,36	0,94	0,49	0,16
Yb IMS95R 0,8 0,9 2,4 0,8 1,1 2,1 2,1 1,8 4 1,9 1 Ag ICM14B 0,04 0,06 0,08 0,09 0,05 0,05 0,05 0,04 0,03 0,11 Au ICM14B <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.01 <0.05 0.03 0.02 <0.05 <0.03 <0.02 <0.05 <0.03 0.02 <0.01	Tm	IMS95R	<0.05	0,06	0,3	0,08	0,11	0,26	0,26	0,18	0,59	0,19	0,06
Ag ICM14B 0.04 0.06 0.08 0.09 0.05 0.05 0.05 0.04 0.03 0.11 Au ICM14B <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.05 0.03 0.02 <0.05 0.03 0.02 <0.01 <0.01 <0.01 <0.05 0.03 0.02 <0.00 ICM14B 0.5 1.1	Yb	IMS95R	0,8	0,9	2,4	0,8	1,1	2,1	2,1	1,8	4	1,9	1
Ag ICM14B 0.04 0.06 0.08 0.08 0.09 0.05 0.05 0.05 0.04 0.03 0.11 Au ICM14B <0.1	۸		0.04	0.00	0.00	0.00	0.00	0.05	0.05	0.05	0.04	0.00	0.44
Au ICM14D CO.1 O.05 O.03 O.02 O.03 O.02 O.001 O.05 O.07 O.04 O.05 O.03 O.02 O.01 CO.1 CO.1 O.01 O.01 O.01 O.01 O.01 O.01 O.01 O.01 O.01 <tho.01< th=""> O.01 O.01</tho.01<>	Ay	ICM14B	0,04	0,06	0,08	0,00	0,09	0,05	0,05	0,05	0,04 -0.1	0,03	0,11
AS IOM14D C1 C1 <th< th=""><th>Au Δe</th><th>ICM14B</th><th><0.1</th><th><0.1</th><th><0.1</th><th><0.1</th><th><0.1</th><th><0.1</th><th><0.1</th><th><0.1</th><th><0.1</th><th><0.1</th><th><0.1</th></th<>	Au Δe	ICM14B	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Cd ICM14D 0,01 2,49 1,01 0,03 0,03 0,41 0,39 0,33 0,44 Cd ICM14B 0,02 0,05 0,05 0,03 <0.01	Ri Ri		0.11	9.67	2.40	1.67	1 1 1	0.69	0.55	0.41	0.20	0.25	0.4
Co ICM14D 0.02 0.03 0.03 0.03 0.03 0.04 0.04 0.05 0.05 0.02 Co ICM14B 0.5 11.2 17 7.8 3.2 12.5 10.4 13.5 25.5 13.9 1.6 Cu ICM14B 3.6 6.2 21.1 16.2 10.7 48 17.9 79.4 76.5 56.4 14.4 Hg ICM14B 0.02 0.06 0.04 0.02 <0.01	Cd	ICM14B	0,11	0,07	2,49	1,07	-0.01	0,00	0,55	0,41	0,55	0,55	0,4
Cu ICM14B 3,6 6,2 21,1 16,2 10,7 48 17,9 79,4 76,5 56,4 14,4 Hg ICM14B 0,02 0,06 0,04 0,02 <0.01 <0.01 <0.01 0,002 <0.01 <0.01 <0.01 0,002 <0.01 <0.01 <0.01 0,002 <0.01 <0.01 <0.01 0,002 <0.01 <0.01 <0.01 0,002 <0.01 <0.01 <0.01 0,002 <0.01 <0.01 <0.01 <0.02 <0.01 <0.01 <0.01 0,002 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.	Co	ICM14B	0,02	11 2	17	7.9	3.0	12.5	10.4	125	25.5	120	1.6
Hg ICM14B 0,02 0,06 0,04 0,02 <0.01	Cu	ICM14B	3.6	62	21.1	16.2	0,∠ 10 7	12,0 48	17 0	70 /	23,5 76 5	56.4	14 4
Mo ICM14B 0,02 0,03 0,03 0,03 0,03 0,02 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 <th< th=""><th>На</th><th>ICM14B</th><th>0.02</th><th>0.06</th><th>0.04</th><th>0.02</th><th><0.01</th><th><0.01</th><th><0.01</th><th><0.01</th><th>0.02</th><th><0.01</th><th><0.01</th></th<>	На	ICM14B	0.02	0.06	0.04	0.02	<0.01	<0.01	<0.01	<0.01	0.02	<0.01	<0.01
Ni ICM14B 4,3 82,7 37,3 8,3 7,1 26,4 26,3 52,3 62,6 40,6 4,7 Pb ICM14B 8,2 3,8 4,6 9,5 14,7 2,1 1,7 2,5 5 1,8 9,4 Sb ICM14B <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	Mo	ICM14B	0.22	0,00	0.35	0,02	0.01	0.01	0.01	0.01	0,02	0.06	0.22
Pb ICM14B 8,2 3,8 4,6 9,5 14,7 2,1 1,7 2,5 5 1,8 9,4 Sb ICM14B <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 </th <th>Ni</th> <th>ICM14B</th> <th>43</th> <th>82 7</th> <th>37 3</th> <th>83</th> <th>7 1</th> <th>26.4</th> <th>26.3</th> <th>52.3</th> <th>62.6</th> <th>40.6</th> <th>0,22 4 7</th>	Ni	ICM14B	43	82 7	37 3	83	7 1	26.4	26.3	52.3	62.6	40.6	0,22 4 7
Sb ICM14B <0.05	Pb	ICM14B	82	3.8	4.6	9.5	14 7	20,4	17	25	5	18	9.4
Se ICM14B <1	Sb	ICM14B	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Zn ICM14B 15 11 31 52 37 18 17 18 50 27 7	Se	ICM14B	<1	<1	1	<1	<1	<1	<1	<1	<1	<1	<1
	Zn	ICM14B	15	11	31	52	37	18	17	18	50	27	7

ICP95A	fusão com metaborato de litio - leitura por ICP-OES
IMS95A	fusão com metaborato de litio - leitura ICP-MS
ICM14B	digestão com água régia - leitura com ICP-OES e ICP-MS
IMS95R	fusão com metaborato de litio - aleitura por ICP-MS

Ν	Método	89	90	91	92	93	94	95	96	97	98	99
ID		EM-267A	EM-267B	EM-292A	EM-295A	EM-295B	EM-295C	EM-295D	EM-295E	EM-297A	FR-007	FR-025
AI2O3	ICP95A	14,75	15,13	11,54	15,22	15,57	15,97	15,57	15,83	15,78	13,82	8,08
CaO	ICP95A	8,6	7,63	9,35	2,29	1,79	1,23	1,58	1,96	10,22	1	7,1
Cr2O3	ICP95A	<0.01	<0.01	0,01	<0.01	<0.01	<0.01	<0.01	<0.01	0,04	<0.01	0,52
Fe2O3	ICP95A	4,37	3,85	23,34	3,82	3,88	4,03	4,02	3,95	13,33	2,76	11,65
K2O	ICP95A	0,73	0,64	0,33	2,77	4,07	4,01	3,77	2,75	0,7	5,25	0,04
MgO	ICP95A	7,15	5,89	6,01	1,37	1,42	1,41	1,54	2,02	7,4	0,29	22,25
MnO	ICP95A	0,13	0,12	0,3	0,05	0,05	0,05	0,06	0,07	0,22	0,03	0,24
Na2O	ICP95A	3,1	3,63	1,43	4,69	4,18	4,56	4,66	4,51	1,95	3,88	0,06
P2O5	ICP95A	0,11	0,06	0,27	0,16	0,18	0,16	0,15	0,16	0,11	0,04	<0.01
SiO2	ICP95A	59,1	57,91	44,26	70,11	68,09	68,77	68,7	65,84	49,55	73,21	47,21
TiO2	ICP95A	0,46	0,41	3,54	0,44	0,46	0,44	0,44	0,43	1,26	0,13	0,32
LOI	ICP95A	1,29	1,33	1,35	0,76	0,85	0,66	0,9	0,91	1,21	0,29	5,62
Sum	ICP95A	99,8	96,61	101,73	101,68	100,53	101,28	101,39	98,44	101,77	100,7	103,09
_												
Ва	IMS95A	285	273	197	603	656	672	663	545	60	1067	14
Be	IMS95A	2,8	1,3	0,7	0,5	1,6	2,1	1	2,5	<0.1	2,8	1,4
Cs	IMS95A	0,43	0,35	1,68	4,84	3,57	24,54	3,82	14,03	0,19	2,2	< 0.05
Ga	IMS95A	15,6	14,7	20,7	19,9	20,2	21	21,2	21,4	18,6	22,4	12
Hf	IMS95A	3,87	3,5	3,5	4,69	5,8	4,94	4,39	4,69	2,28	2,54	0,54
Nb	IMS95A	<0.05	<0.05	3,99	6,09	3,18	4	2,98	1,84	<0.05	6,08	3,56
Rb	IMS95A	19,7	15,6	5,4	61,7	103,5	86,1	82,2	96,5	14,3	198,4	3,8
Sn	IMS95A	<0.3	<0.3	3,6	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	4	5,6
Sr	IMS95A	192,1	190,9	168,4	414,7	271	227,3	232,3	314,6	165,6	198,5	10,6
	IMS95A	<0.05	<0.05	<0.05	<0.05	11,22	<0.05	<0.05	<0.05	<0.05	0,56	0,46
In	IMS95A	2,4	1,6	2,8	5,7	7,9	7,4	7	8,5	6,5	18,7	3,5
0	IMS95A	0,87	0,76	0,87	1,43	2,19	1,47	1,24	1,47	0,43	6,4	0,29
w	IMS95A	2,6	2,8	2,2	2,3	<0.1	2	2	2,5	2,9	<0.1	<0.1
Y Z-	IMS95A	13,04	12,65	34,1	16,39	17,02	13,11	13,12	22,35	24,44	6,14	8,72
Zr	INIS95A	221,2	184,8	192,2	191	229,9	204,9	187,3	214,9	72,9	01,0	13
Ce	IMS95R	33.7	28.8	<i>1</i> Q 1	105 3	121.6	105.8	102.7	113.0	15 1	75.4	87
Dv	IMS95R	2.87	3.05	6.85	3 53	3.8	3.07	2 54	4 44	4 42	1 42	13
Fr	IMS95R	1 32	1 42	3,81	1 7	2 14	1 41	1 35	2 41	3 13	0.41	0.63
Eu	IMS95R	1,02	1.32	1 84	1.87	2,14	1 72	1,84	1.99	0.94	0.19	0.11
Gd	IMS95R	3.93	4 81	7 61	5.36	7.2	5.33	5 21	6 74	4 03	2 54	1.53
Ho	IMS95R	0.47	0.49	1.35	0.6	1.01	0.46	0.44	0.78	0.92	0.13	0.25
La	IMS95R	33.6	41.4	29.7	62.7	90.1	66	62.8	69.2	13.6	53	7.7
Lu	IMS95R	< 0.05	< 0.05	0.31	<0.05	0.13	< 0.05	< 0.05	0.06	0.15	0.11	0.15
Nd	IMS95R	24.2	27.8	29.2	46.1	51.3	49.7	46.8	50.9	10.5	27.7	4.4
Pr	IMS95R	6.45	7.68	6.7	12.73	14.37	13.4	12.36	14.12	2.06	8.1	1.25
Sm	IMS95R	4,4	5,3	6,2	6,7	8,2	6,9	6,6	8,3	2,6	4,3	1
Tb	IMS95R	0,39	0,47	1	0,66	0,76	0,52	0,46	0,78	0,56	0,19	0,17
Tm	IMS95R	0,1	0,08	0,51	0,15	0,25	0,1	0,09	0,27	0,32	< 0.05	0,06
Yb	IMS95R	1,1	1,1	3,5	1,6	1,6	1	1,2	2,1	2,9	0,3	0,7
Ag	ICM14B	0,05	0,06	0,22	0,11	0,06	0,1	0,07	0,04	0,09	<0.01	<0.01
Au	ICM14B	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
As	ICM14B	<1	<1	<1	<1	<1	<1	<1	<1	<1	1	<1
Bi	ICM14B	0,33	0,34	0,27	0,2	0,21	0,3	0,1	0,17	0,06	0,9	0,41
Cd	ICM14B	0,03	0,04	0,17	0,02	0,03	0,02	0,07	0,05	0,04	0,01	0,02
Co	ICM14B	2,2	4,6	65,3	9,3	10,3	9,7	9,6	9	24,3	1,7	45,1
Cu	ICM14B	3,1	4	357,9	23,2	8,8	70,5	17,9	9	105,3	4,2	3,7
Hg	ICM14B	0,01	0,02	<0.01	0,02	<0.01	0,01	<0.01	0,02	<0.01	<0.01	<0.01
Мо	ICM14B	<0.05	<0.05	0,81	0,35	0,21	0,2	0,13	0,29	0,24	0,9	0,32
Ni	ICM14B	5,7	9,4	81	12,4	13,6	11,8	12,8	12,1	59,9	4,8	578,1
Pb	ICM14B	5,9	8,9	9,5	7,3	8,1	4,4	8,7	4,8	2,1	13,4	2,6
Sb	ICM14B	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Se	ICM14B	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Zn	ICM14B	7	7	104	54	48	53	53	66	29	27	53

ICP95A	fusão com metaborato de litio - leitura por ICP-OES
IMS95A	fusão com metaborato de litio - leitura ICP-MS
ICM14B	digestão com água régia - leitura com ICP-OES e ICP-MS
IMS95R	fusão com metaborato de litio - aleitura por ICP-MS

Ν	Método	100	101	102	103	104	105	106	107	108	109	110
ID		FR-025	FR-028	FR-029	FR-037	HL-001	HL-004	HL-005	HL-009	HL-011	HL-016	HL-021
AI2O3	ICP95A	7,86	6,96	15,5	14,6	0,8	0,18	16	16,02	15,42	18,18	15,46
CaO	ICP95A	6,22	5,81	12,3	0,91	11,67	0,54	2,19	1,76	0,59	2,22	0,81
Cr2O3	ICP95A	0,62	0,45	0,04	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fe2O3	ICP95A	12,67	12,29	12,53	1,5	17,63	5,47	1,99	2,3	1,31	1,96	1,52
K20	ICP95A	<0.01	0,05	0,45	5,76	0,04	<0.01	3,95	2,79	4,3	2,65	5,06
MgO	ICP95A	24,91	22,78	5,62	0,41	14,65	0,07	0,42	0,6	0,14	0,95	0,24
MnO	ICP95A	0,21	0,21	0,27	0,02	0,45	0,05	0,02	0,02	0,04	0,03	0,05
Na2O	ICP95A	<0.01	0,12	2,61	3,74	0,03	<0.01	4,68	5,22	6,4	5,99	6,02
P205	ICP95A	<0.01	0,02	0,05	0,05	0,01	0,03	0,05	0,41	0,04	0,07	0,06
5102	ICP95A	45,48	48,81	50,71	73,35	56,47	>90	66,66	68,54	66,78	67,93	71,51
1102	ICP95A	0,32	0,26	0,98	0,12	0,02	<0.01	0,15	0,27	0,08	0,26	0,1
	ICP95A	5,77	4,93	1,56	0,43	1,18	0,6	0,09	0,97	0,11	0,89	0,08
Sum	ICP95A	103,47	102,69	102,61	100,89	102,95	98,6	96,21	98,91	95,22	101,12	100,93
Ba	IMSQ5A	6	20	28	556	85	32	561	520	1203	306	1033
Ba	IMS95A	-0.1	17	17	3.0	0.6	-0.1	33	15	1203	200	1955
De Ce	IMS95A	<0.1	0.1	0.22	1/18	0,0	<0.1	2.58	2 30	3 26	2,0	2 93
Ga	IMS95A	Q 1	9.6	23.4	24.1	5.5	17	2,30	2,03	26.7	2,25	2,35
Ua Hf	IMS95A	5 73	0.30	1 01	2 5 7	0.35	0.09	2 5 3	3.86	5.05	2 88	21, 4 4.44
Nb	IMS95A	0.23	2 72	4 68	6.78	6 25	1.86	2,33 5,13	7.68	14.2	6 44	19.51
Rh	IMS95A	<0.2	43	4,00	216	4 4	1,00	140.6	140	158.8	105.2	129.6
Sn	IMS95A	<0.2	9	1.3	46	2	3.6	44	8	2.3	17	97
Sr	IMS95A	8	128	132.3	175.4	11 1	20.8	184	244.2	1059.2	292.1	1253.9
Та	IMS95A	<0.05	<0.05	0.39	0.37	0.6	<0.05	0.35	0.78	0.58	0.28	0.47
Th	IMS95A	14.1	1.2	0.9	16.4	3.3	0.3	5	10.1	8	7.9	6.3
U	IMS95A	0,49	0,24	0,3	8,94	2,41	1,76	2,27	2,53	4,93	1,39	3,1
w	IMS95A	<0.1	<0.1	<0.1	0.3	<0.1	<0.1	<0.1	5,6	<0.1	<0.1	<0.1
Y	IMS95A	8,56	6,35	29,7	7,91	11,07	1,86	4,7	4,25	6,19	6,41	5,94
Zr	IMS95A	24,2	8	51,9	76,1	<0.5	<0.5	89	138,3	125,6	106,1	131,4
Ce	IMS95R	22,8	6,1	11,8	62,2	33,2	9,1	36,3	57,1	21,9	46,1	24,5
Dy	IMS95R	1,55	0,96	5,47	1,56	1,58	0,32	0,74	0,76	1,16	1,47	0,98
Er	IMS95R	1,09	0,74	3,03	0,62	0,87	0,06	0,37	0,31	0,56	0,35	0,62
Eu	IMS95R	0,18	0,18	0,71	0,37	0,08	0,06	0,44	0,29	0,09	0,32	<0.05
Gd	IMS95R	1,3	0,69	4,38	3,41	1,52	0,45	1,25	1,53	1,39	1,47	1,15
Но	IMS95R	0,29	0,18	0,96	0,25	0,23	<0.05	<0.05	0,1	0,09	0,11	0,11
La	IMS95R	25,9	4,1	11,6	38,8	10,7	8,3	28,4	38,1	12,5	30,7	15,7
Lu	IMS95R	<0.05	<0.05	0,54	0,33	0,08	< 0.05	<0.05	< 0.05	<0.05	0,09	<0.05
Nd	IMS95R	8,9	2,4	12,2	24,5	7,5	4,3	14	19,2	9,1	17	10,7
Pr	IMS95R	2,66	0,59	2,92	7,19	2,26	1,17	4,34	5,78	2,59	5,14	2,73
Sm	IMS95R	1,2	0,5	3,1	4,5	1,3	0,7	1,8	2,7	1,6	2,8	1,9
	IMS95R	0,11	0,1	0,52	0,27	0,15	<0.05	<0.05	0,06	0,13	0,13	0,15
Im	IMS95R	0,05	<0.05	0,28	<0.05	0,08	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
YD	IMS95R	1	0,5	3,3	0,3	0,8	<0.1	0,2	<0.1	0,3	0,4	0,3
Aα	ICM14B	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	0.05	<0.01	0.01	<0.01	<0.01
Au	ICM14B	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1
As	ICM14B	<1	<1	1	<1	<1	1	<1	<1	2	<1	2
Bi	ICM14B	0.31	0.33	0.27	0.28	0.24	0.24	0.12	< 0.02	0.11	<0.02	< 0.02
Cd	ICM14B	0.05	0.03	0.02	0.03	0.03	0.04	< 0.01	< 0.01	0.03	0.03	0.03
Co	ICM14B	45,8	31,5	13,4	1,7	3,9	1,2	2	2,8	0,4	2,4	0,5
Cu	ICM14B	176,9	16.2	1,7	0,5	21,6	488,8	0,7	5	<0.5	1	<0.5
Hg	ICM14B	0,06	0,01	<0.01	0,01	0,01	<0.01	0,03	0,02	< 0.01	<0.01	0,01
Mo	ICM14B	0,23	0,46	0,36	0,54	1,09	0,99	0,31	0.22	0,32	<0.05	0,2
Ni	ICM14B	498,2	255,8	27,7	6,3	4,8	5,7	0,8	1	1,4	1	1,2
Pb	ICM14B	4,3	0,3	2	20,4	2,6	3,9	3	7,8	37,2	7,1	11,9
Sb	ICM14B	53,19	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Se	ICM14B	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Zn	ICM14B	37	44	25	18	7	1	37	41	28	41	21

ICP95A	fusão com metaborato de litio - leitura por ICP-OES
IMS95A	fusão com metaborato de litio - leitura ICP-MS
ICM14B	digestão com água régia - leitura com ICP-OES e ICP-MS
IMS95R	fusão com metaborato de litio - aleitura por ICP-MS

Ν	Método	111	112	113	114	115	116	117	118	119	120	121
ID		HL-027	HL-027A	HL-027B	HL-027C	HL-027D	HL-027E	HL-027F	HL-027G	HL-027H	HL0-27I	HL-036A
AI2O3	ICP95A	12,14	13,61	12,69	11,64	11,12	11,48	11,93	13,32	14	13,79	12,61
CaO	ICP95A	0,61	0,52	1,3	1,19	0,54	0,59	0,79	4,14	0,45	0,72	0,24
Cr2O3	ICP95A	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fe2O3	ICP95A	2,8	3,42	4,42	5,8	2,54	2,64	2,76	5,79	6	18,43	3,54
K2O	ICP95A	5,74	7,29	5,3	5,31	5,21	5,45	5,53	3,84	6,65	8,09	7,71
MgO	ICP95A	0,07	0,47	0,13	0,18	0,03	0,02	0,06	2,44	2,8	3,39	1,13
MnO	ICP95A	0,04	0,05	0,06	0,08	0,03	0,03	0,04	0,09	0,08	0,22	0,03
Na2O	ICP95A	3,21	3,02	3,68	3,04	2,98	3,14	3,28	3,22	3,69	2,15	0,5
P2O5	ICP95A	<0.01	<0.01	0,06	0,05	<0.01	<0.01	<0.01	0,02	0,01	<0.01	0,03
SiO2	ICP95A	74,42	69,3	73,3	74,41	79,67	76,47	78	70,45	67,59	55,67	70,8
TiO2	ICP95A	0,19	0,21	0,38	0,48	0,19	0,2	0,24	0,46	0,26	1,23	0,34
LOI	ICP95A	<0.01	0,08	<0.01	<0.01	<0.01	<0.01	<0.01	0,07	0,33	0,46	0,86
Sum	ICP95A	99,15	97,94	101,17	102	102,28	99,9	102,53	103,86	101,86	104,13	97,78
Ва	IMS95A	137	163	585	646	137	149	169	216	131	206	551
Be	IMS95A	3	0,8	4	3,7	1,3	3,4	4	1,6	2,7	1,9	4,5
Cs	IMS95A	0,2	0,52	0,11	0,15	<0.05	0,17	< 0.05	< 0.05	6,07	11,34	2,61
Ga	IMS95A	35,6	29,8	29,8	30,7	27,1	29,9	24	20,3	41,8	55,3	34,9
Hf	IMS95A	10,7	12,7	14,32	17,21	11,73	11,27	13,86	4,74	12,94	13,27	13,59
Nb	IMS95A	22,77	6,48	44,98	46,16	14,72	24,18	17,09	11,86	51,78	155,39	19,47
Rb	IMS95A	194,8	252	153,7	152,1	155,5	169,4	157	111,2	409,6	745,7	291,4
Sn	IMS95A	6,6	<0.3	1,7	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	1,7	6,4
Sr	IMS95A	18,6	21,3	57,8	52,1	12,3	12,8	31,6	84,9	13,7	17,3	55,6
Та	IMS95A	0,71	< 0.05	2,05	< 0.05	<0.05	<0.05	<0.05	< 0.05	1,4	< 0.05	2,55
Th	IMS95A	12,4	29,8	23,8	71,2	20,3	21,5	18,2	7,8	29,1	14	14,8
U	IMS95A	1,57	2,49	6,2	101,9	1,85	1,96	1,48	0,93	14,66	3,49	4,64
w	IMS95A	<0.1	<0.1	<0.1	<0.1	0,7	0,4	0,6	0,7	1,3	<0.1	0,5
Y	IMS95A	33,01	18,29	125,45	112,53	46,78	68,21	40,22	18,13	54,37	30,72	30,14
Zr	IMS95A	366,3	493,4	643,3	708,9	465,4	425,1	605,4	177,1	460,9	448	528,6
Ce	IMS95R	187,9	232,3	162,6	241,6	185,1	231,3	236	41,8	155,8	48,4	187,5
Dy	IMS95R	7,77	4,27	23,55	22,37	10,49	16,91	9,03	3,72	10,99	6,97	6,47
Er	IMS95R	3,57	2,01	15,92	13,66	4,85	8,49	5	2,1	6,82	4,1	2,76
Eu	IMS95R	0,57	0,87	2,14	2,24	0,63	0,76	0,79	0,94	0,59	0,41	1,57
Gd	IMS95R	10,34	8,71	20,17	23,23	14,2	19,39	11,65	4	12,09	7,62	10,92
Но	IMS95R	1,41	0,8	5,34	4,7	2,14	3,11	1,74	0,72	2,13	1,35	1,14
La	IMS95R	102,1	139,6	101,8	135,7	106,1	132,5	139,6	33,7	89,6	28,7	104,6
Lu	IMS95R	0,41	< 0.05	1,79	1,22	0,26	0,63	0,37	0,17	0,57	0,41	0,51
Nd	IMS95R	88,1	94,9	82,9	118,3	80,8	104,1	91,5	17,3	69,3	28,9	82,4
Pr	IMS95R	22,81	27,89	20,83	30,48	22,08	28,44	26,34	4,93	18,4	6,91	24,03
Sm	IMS95R	16,4	13,3	18	22,3	14,4	20,7	14,3	3,2	13	6,1	14,2
Tb	IMS95R	1,14	0,93	3,7	3,9	1,85	2,96	1,56	0,49	1,7	1,04	1,17
Tm	IMS95R	0,31	0,2	2,2	1,77	0,63	1,09	0,62	0,26	0,83	0,55	0,4
Yb	IMS95R	2,4	2	14,8	11,1	4,1	6,8	4,3	2,3	6,1	4,1	3
Ag	ICM14B	<0.01	0,03	<0.01	0,01	0,13	<0.01	<0.01	0,04	<0.01	<0.01	<0.01
Au	ICM14B	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
As	ICM14B	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1
Bi	ICM14B	<0.02	0,06	7,7	2,9	1,65	0,98	0,65	0,57	0,52	0,35	<0.02
Cd	ICM14B	0,03	0,1	0,2	0,16	0,14	0,15	0,17	0,08	0,01	0,11	0,02
Co	ICM14B	0,3	1,4	1,6	2,4	0,7	0,6	0,9	5,6	0,8	2,4	1,7
Cu	ICM14B	<0.5	6,7	9,9	8,9	8,2	5,3	6,1	18,3	5,2	10,1	<0.5
Hg	ICM14B	0,01	<0.01	0,03	0,02	<0.01	<0.01	<0.01	<0.01	0,03	<0.01	0,01
Мо	ICM14B	3,4	0,6	3,5	10,97	3,63	11,03	2,46	1,09	21,18	24,76	0,65
Ni	ICM14B	<0.5	6,1	4,8	5,5	3,3	3,2	5,1	12,5	3,7	3,2	12,9
Pb	ICM14B	15,2	25,6	32,3	48,5	27	20,8	22,9	15,4	20	19,3	1,7
Sb	ICM14B	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Se	ICM14B	<1	<1	2	3	2	2	<1	<1	3	1	<1
Zn	ICM14B	89	102	100	148	100	82	42	19	512	1161	91

ICP95A	fusão com metaborato de litio - leitura por ICP-OES
IMS95A	fusão com metaborato de litio - leitura ICP-MS
ICM14B	digestão com água régia - leitura com ICP-OES e ICP-MS
IMS95R	fusão com metaborato de litio - aleitura por ICP-MS

Ν	Método	122	123	124	125	126	127	128	129	130	131	132
ID		HL-043	HL-044	HL-045	HL-048A	HL-066	HL-067	HL-068	HL-070	HL-072	HL-072A	VS-006
AI2O3	ICP95A	15,39	7,09	6,63	18,97	14,63	14,67	17,88	7,27	13,44	15,16	18,25
CaO	ICP95A	10,25	7,65	6,92	0,13	1,21	1,34	1,66	5,71	0,35	1,11	4,03
Cr2O3	ICP95A	0,02	0,54	0,49	<0.01	<0.01	<0.01	<0.01	0,21	<0.01	<0.01	<0.01
Fe2O3	ICP95A	13,54	11,7	11,85	3,05	1,51	1,67	3,09	15,57	1,54	2,92	4,42
K2O	ICP95A	0,8	0,02	<0.01	10,33	4,33	4,08	13,78	0,1	4,23	5,13	1,82
MgO	ICP95A	6,94	24,24	24,73	1,32	0,2	0,22	0,79	23,14	0,24	0,77	0,87
MnO	ICP95A	0,21	0,27	0,2	0,05	0,02	0,03	0,06	0,24	0,03	0,04	0,06
Na2O	ICP95A	2,84	0,13	0,14	3,69	4,33	4,54	2,13	0,43	4,56	4,13	5,38
P2O5	ICP95A	0,05	<0.01	<0.01	0,02	<0.01	<0.01	0,05	0,12	0,02	0,14	0,16
SiO2	ICP95A	50,64	46,43	46,52	64,25	72,97	73,17	64,72	43,1	74,42	68,94	67,22
TiO2	ICP95A	0,93	0,3	0,29	0,28	0,09	0,12	0,08	1,68	0,03	0,35	0,56
LOI	ICP95A	0,58	4,91	4,81	0,39	0,21	0,18	0,06	4,51	0,19	0,59	0,44
Sum	ICP95A	102,18	103,25	102,55	102,48	99,5	100,01	104,3	102,08	99,06	99,3	103,22
Ra	IMS95A	45	83	7	545	619	638	7516	99	32	595	417
Be	IMS954	-0 1	0.2	~0.1	07	34	2	4 1	1	22	2.5	47
Cs	IMS954	<0.05	0.12	<0.05	0,7	3 37	4 32	0.84	<0.05	1 37	2,3	3 12
Ga	IMS95A	17.7	7.8	67	21.9	18.9	20.3	17.4	21.7	20.1	25.9	30.5
Hf	IMS95A	2 16	0.68	0.65	11.3	2 33	2 67	1 38	4 44	0.75	5 48	7 51
Nb	IMS95A	3.97	<0.05	<0.05	5 99	<0.05	<0.05	<0.05	12 16	3 31	4 2	1.3
Rb	IMS95A	22.5	12	<0.2	288	127 1	140.8	295.1	12	305	333.1	92.2
Sn	IMS95A	< 0.3	<0.3	< 0.3	< 0.3	<0.3	< 0.3	< 0.3	< 0.3	< 0.3	2	< 0.3
Sr	IMS95A	165.6	8.4	9.9	46.4	177	198.9	456.9	54.3	9.9	110.5	370.6
Та	IMS95A	< 0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05	1.68	<0.05	< 0.05	< 0.05
Th	IMS95A	3,9	2,6	2,1	15,7	8,9	10,2	2,6	5,6	7,7	31,5	17
U	IMS95A	0,56	0,47	0,32	5,97	2,84	3,13	0,62	1,24	4,68	5,33	2,37
w	IMS95A	1,2	0,8	0,7	1,7	2,7	2,1	1	<0.1	1,4	0,6	4,1
Y	IMS95A	18,39	9,54	8,56	31,97	7,81	8,09	20,31	26,2	27,87	13,08	8,86
Zr	IMS95A	76,5	20,3	21,7	608,4	74,6	95,9	83	120,7	15,1	242,6	379,4
Ce	IMS95R	17,2	16,9	10,2	188,4	27,7	31,8	142,9	56	13,6	125,3	64,6
Dy E	IMS95R	3,4	1,76	1,/1	7,33	1,34	1,15	5,85	6,14	5,66	2,47	1,76
Er	IMS95R	2,66	1,02	0,97	3,95	0,89	0,7	1,72	3,03	3,07	1,4	0,85
Eu	IN S95R	0,85	0,27	0,3	1,24	0,37	0,53	3,67	2,3	<0.05	1,08	1,32
Ga	IN S95R	3,16	1,66	1,56	10,99	1,78	1,87	12,51	8,01	3,07	4	3,63
	INS95R	0,73	0,31	0,32	1,34	0,28	0,18	0,84	1,04	1,08	0,43	0,28
	INSOFR	15,6	11,5	20,7	0.21	20,9	24,9	12,4	30,1	7,4	10,1	43,3
Lu	INS95R	10.7	<0.05	<0.05	0,21	<0.05	<0.05	<0.05	25.2	0,20	<0.05	<0.05
Dr.	IMS95R	2.26	5,5	9,2	01,5	9,0	2.02	19.2	0.24	0,2 1.17	47,3	20,4
Sm	IMS95R	2,30	1,45	2,00	22,0	2,00	3,23	13.0	6.0	1,17	7 1	7,00
Th	IMS95R	0.42	0,5	0,0	14,5	0.12	0.12	1 32	1 13	0.71	0.39	4,5
Tm	IMS95R	0,42	0,10	<0.05	0.4	<0.05	<0.05	0.18	0.37	0,71	0,00	<0.05
Yh	IMS95R	21	0,1	0.05	33	0.05	<0.05 0.6	1.2	2.6	3.5	1.2	0.05
	mooort	2,1	0,0	0,0	0,0	0,1	0,0	1,2	2,0	0,0	1,2	0,1
Ag	ICM14B	0,03	0,04	0,04	0,04	0,04	0,02	0,04	0,12	0,01	0,03	0,03
Au	ICM14B	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
As	ICM14B	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bi	ICM14B	0,47	0,37	0,24	0,44	0,41	0,36	0,18	2,07	0,45	0,29	0,3
Cd	ICM14B	0,08	0,06	0,03	0,04	0,02	0,04	0,01	0,03	0,02	0,05	0,04
Co	ICM14B	14,6	43,1	34,1	2,6	1,7	1,9	0,9	38	0,6	6,5	10
Cu	ICM14B	42	3,5	4,2	4,4	6,1	5,7	7,2	143,6	5,2	10,2	6,6
Hg	ICM14B	<0.01	0,02	<0.01	<0.01	<0.01	0,02	0,01	0,01	<0.01	<0.01	<0.01
Мо	ICM14B	2,57	1,17	0,53	0,55	0,49	0,56	0,25	0,15	0,39	0,45	0,58
Ni	ICM14B	25,2	429,1	280,8	4,1	4,5	3,6	2,5	261,3	3,2	11,2	7,2
Pb	ICM14B	3,9	1,9	0,8	18,7	13,5	13,3	8	0,9	14,9	8,8	1,8
Sb	ICM14B	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Se	ICM14B	<1	<1	<1	<1	<1	<1	1	<1	<1	<1	<1
Zn	ICM14B	26	32	23	90	21	28	4	29	18	81	87

ICP95A	fusão com metaborato de litio - leitura por ICP-OES
IMS95A	fusão com metaborato de litio - leitura ICP-MS
ICM14B	digestão com água régia - leitura com ICP-OES e ICP-MS
IMS95R	fusão com metaborato de litio - aleitura por ICP-MS

<u>N</u>	Método	133	134	135	136	137	138	139	140
ID	100054	VS-008	VS-045A	<u>vs-080</u>	VS-101	VS-103	VS-105A	VS-106	VS-107
AI2O3	ICP95A	0,11	20,47	15,9	18,11	7,41	14,78	13,15	13,68
CaO	ICP95A	0,21	0,12	0,63	0,05	0,09	0,32	0,17	5,25
Cr2O3	ICP95A	< 0.01	<0.01	< 0.01	0,02	<0.01	0,01	0,01	0,01
Fe2O3	ICP95A	56,68	15,11	2,92	6,61	2,12	16,48	4,34	16,68
K20	ICP95A	0,02	5,71	6,79	4,28	1,32	4,5	2,43	1,13
MgO	ICP95A	0,21	0,34	0,47	1,12	0,03	0,75	0,67	5,82
MnO	ICP95A	0,06	<0.01	0,04	0,01	<0.01	<0.01	0,08	0,21
Na2O	ICP95A	<0.01	0,28	3,15	0,35	<0.01	0,19	0,83	2,01
P205	ICP95A	0,1	0,2	0,09	0,06	0,1	0,16	0,08	0,28
SIO2	ICP95A	45	54,45	/1,14	64,19	>90	62,65	73,43	49,52
1102	ICP95A	<0.01	1,28	0,25	0,78	0,15	1,2	0,58	2,33
LOI	ICP95A	0,6	2,32	0,85	3,38	0,68	2,1	2,3	3,74
Sum	ICP95A	102,89	100,28	102,23	98,96	102,9	103,16	98,07	100,67
Ва	IMS95A	9	480	301	584	93	402	514	204
Ве	IMS95A	1,5	3,3	6,3	4,3	<0.1	2,8	2,3	0,8
Cs	IMS95A	< 0.05	3,69	3,87	5,27	<0.05	6,96	3,63	1,75
Ga	IMS95A	1,2	33,3	33,3	30,4	0,6	25,9	20	18,7
Hf	IMS95A	0,8	4,48	6,27	4,83	0,18	4,43	4,55	4,47
Nb	IMS95A	2,07	7,61	37,91	10,24	0,69	6,88	6,67	6,35
Rb	IMS95A	6	115,1	462,1	209,1	1,7	170,3	126,9	56,4
Sn	IMS95A	2,9	3,7	12,5	3,5	9,7	3,1	1,1	<0.3
Sr	IMS95A	2	223,9	53,9	108,8	313,3	41,5	110,9	281,4
Та	IMS95A	1,21	1,11	3,88	1,46	<0.05	0,49	0,62	<0.05
Th	IMS95A	2,5	4,7	38,8	10,7	0,2	6,9	5,3	9,5
U	IMS95A	0,21	2,62	13,97	2,59	0,06	3,65	1,95	2,05
w	IMS95A	1,4	1,7	3,8	3,1	<0.1	2,3	0,5	3,6
Y	IMS95A	5,39	38,93	73,69	26,56	0,8	19,45	19,81	37,79
Zr	IMS95A	7,9	176,9	178,4	132,6	127,3	141	164,9	186,6
Ce	IMS95R	8,3	66,9	168,1	55	53,7	55,5	56	57,3
Dy	IMS95R	0,46	6,55	12,44	3,64	2,8	3,29	3,07	7,43
Er	IMS95R	0,19	4,05	6,13	1,94	1,31	1,77	1,69	4,75
Eu	IMS95R	<0.05	2,28	0,41	0,92	0,68	0,76	0,97	2,07
Gd	IMS95R	0,13	9,27	12,55	4,91	3,02	2,95	3,67	7,79
Но	IMS95R	<0.05	1,28	2,24	0,79	0,52	0,59	0,62	1,54
La	IMS95R	6,4	31,6	85,8	31,5	28,5	29,8	30,7	35,2
Lu	IMS95R	0,06	0,55	0,63	0,42	0,28	0,29	0,26	0,34
Nd	IMS95R	3,5	42,3	70,5	30,2	22,1	25,8	24,6	33,5
Pr	IMS95R	0,8	9,89	20,82	7,36	5,94	7,3	6,46	7,66
Sm	IMS95R	0,5	9,6	16,3	5,3	4,1	4,4	4,1	6,3
Tb	IMS95R	<0.05	1,04	1,92	0,59	0,42	0,4	0,54	1,14
Tm	IMS95R	<0.05	0,51	0,82	0,36	0,12	0,23	0,19	0,49
Yb	IMS95R	0,3	3,5	5,1	2,1	1,1	1,8	1,7	3,9
Ag	ICM14B	0,03	0,17	<0.01	<0.01	<0.01	0,03	0,11	0,14
Au	ICM14B	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
As	ICM14B	1	<1	<1	<1	2	3	<1	<1
Bi	ICM14B	0,02	<0.02	0,07	<0.02	<0.02	0,18	<0.02	1,19
Cd	ICM14B	0,09	0,16	<0.01	<0.01	<0.01	<0.01	0,04	0,14
Co	ICM14B	0,4	0,9	1,4	9,6	0,4	5,2	13,7	49,1
Cu	ICM14B	2,5	10,4	3	2,8	<0.5	2,6	11,8	423
Hg	ICM14B	<0.01	<0.01	<0.01	<0.01	<0.01	0,01	0,02	0,05
Мо	ICM14B	0,37	38,25	2,84	1,97	0,83	0,54	0,41	0,96
Ni	ICM14B	4,3	4,5	3,5	39,7	3,4	21	38,9	57,8
Чb	ICM14B	0,7	6,4	4	1,6	<0.2	3,6	1,7	7,2
Sb	ICM14B	<0.05	<0.05	<0.05	0,08	<0.05	0,38	0,07	<0.05
Se	ICM14B	<1	<1	<1	<1	<1	<1	<1	<1
∠n	ICM14B	23	<1	28	47	1	16	46	100

ICP95A	fusão com metaborato de litio - leitura por ICP-OES
IMS95A	fusão com metaborato de litio - leitura ICP-MS
ICM14B	digestão com água régia - leitura com ICP-OES e ICP-MS
IMS95R	fusão com metaborato de litio - aleitura por ICP-MS

Outras análises

Ν	Método	1	2	3	4	5	6	7	8	9	10
ID		FR-025	HL-027A	HL-027B	HL-027C	HL-027D	HL-027E	HL-027F	HL-027G	HL-027H	HL0-27I
Al%	ICM14B	2,51	0,83	0,51	0,74	0,44	0,32	0,31	0,52	1,91	3,99
в	ICM14B	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Ва	ICM14B	<5	27	68	138	31	22	21	12	62	144
Be	ICM14B	<0.1	0,3	0,2	0,3	0,1	0,2	0,2	<0.1	0,3	0,5
Ca%	ICM14B	0,12	0,2	0,43	0,39	0,18	0,15	0,21	0,65	0,2	0,46
Ce	ICM14B	4,58	282,86	158,55	264,43	239,45	249,76	273,42	40,11	202,59	38,98
Cr	ICM14B	2320	15	9	11	13	14	14	16	8	3
Cs	ICM14B	<0.05	0,71	0,31	0,35	0,21	0,18	0,21	0,08	8,79	16,34
Fe%	ICM14B	3,84	2,39	1,98	2,97	1,68	1,49	1,21	1,42	4,04	12,23
Ga	ICM14B	7,4	11,2	7	10,8	8,3	6,8	5,6	2,7	27,4	63,1
Ge	ICM14B	<0.1	0,3	1,8	1,2	0,7	0,6	0,9	0,3	2,5	3,2
Hf	ICM14B	<0.05	0,9	1,05	2,47	0,41	0,43	0,59	0,16	4,85	2,88
In	ICM14B	0,03	0,03	0,11	0,1	0,05	0,06	0,06	0,02	0,08	0,34
K%	ICM14B	<0.01	0,76	0,34	0,58	0,34	0,24	0,21	0,09	2,12	4,9
La	ICM14B	6,4	115,1	86,2	109,8	128	102,7	106,6	24,6	107,9	19,2
Li	ICM14B	<1	33	8	21	14	6	4	2	312	482
Mg%	ICM14B	4,73	0,28	0,05	0,07	<0.01	<0.01	0,02	0,34	1,59	1,96
Mn	ICM14B	268	341	284	352	192	155	148	228	600	1551
Na%	ICM14B	<0.01	0,06	0,09	0,07	0,06	0,05	0,07	0,07	0,19	0,06
Nb	ICM14B	<0.05	2,36	7,52	5,86	3,65	4,58	3,77	1,47	32,75	45,27
Р	ICM14B	101	<50	214	312	<50	<50	<50	125	<50	<50
Rb	ICM14B	3,3	359,2	181,9	266,5	179,7	117,2	96,1	36,1	1228,5	2843,1
Re	ICM14B	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
S%	ICM14B	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Sc	ICM14B	7,3	1,6	2,3	2	0,6	0,5	1	4	1	3,2
Sn	ICM14B	<0.3	<0.3	1,5	1,3	1,8	0,6	2	<0.3	1,7	4,6
Sr	ICM14B	1,4	4,4	5,7	7,9	4,1	4	5	3,7	5	5,6
Та	ICM14B	<0.05	<0.05	0,08	<0.05	<0.05	<0.05	<0.05	<0.05	0,06	<0.05
Те	ICM14B	<0.05	<0.05	2,24	1,73	1,17	0,66	0,34	0,42	0,54	0,23
Th	ICM14B	0,4	32,4	21	100,6	23,5	23,9	21,7	4,9	42,4	5,7
Ті	ICM14B	0,02	0,08	0,08	0,12	0,05	0,05	0,05	0,09	0,14	0,65
U	ICM14B	0,06	1,38	6,09	137,52	0,84	0,88	0,5	0,22	19,25	3,1
v	ICM14B	93	<1	1	2	<1	<1	<1	19	1	<1
w	ICM14B	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Y	ICM14B	1,83	10,37	80,78	76,99	28,23	31,04	20,9	7,23	50,63	34,08
Zr	ICM14B	<0.5	19,8	25,5	63,3	6	7,2	8,9	1	89,8	48

ICM14B

Ν	Método	11	12	13	14	15	16	17	18	19	20
ID		HL-043	HL-044	HL-045	HL-048A	HL-066	HL-067	HL-068	HL-070	HL-072	HL-072A
AI%	ICM14B	1,19	2,19	2,15	0,96	0,41	0,43	0,24	1,83	0,31	0,86
В	ICM14B	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Ва	ICM14B	9	79	6	27	40	46	313	102	6	42
Be	ICM14B	<0.1	<0.1	<0.1	0,1	<0.1	<0.1	0,1	<0.1	<0.1	<0.1
Ca%	ICM14B	1,53	0,11	0,1	0,06	0,08	0,09	0,1	0,24	0,08	0,43
Ce	ICM14B	8,55	16,64	5,89	234,76	21,38	23,56	213,27	25,16	13,09	144,56
Cr	ICM14B	24	1839	1811	20	9	8	7	891	8	15
Cs	ICM14B	0,07	0,29	<0.05	0,83	3,11	3,98	0,11	<0.05	0,73	3,34
Fe%	ICM14B	2,32	2,62	2,82	1,78	0,9	1,01	0,54	6,36	0,9	1,83
Ga	ICM14B	4,2	6,1	5,2	9,9	3	3,4	2,9	8,8	3,5	7,9
Ge	ICM14B	0,1	0,2	<0.1	1,3	0,2	0,3	0,7	<0.1	0,8	0,4
Hf	ICM14B	0,11	<0.05	<0.05	1,18	0,3	0,33	0,21	0,13	0,21	0,6
In	ICM14B	<0.02	<0.02	<0.02	0,02	<0.02	<0.02	<0.02	<0.02	0,02	<0.02
K%	ICM14B	0,08	0,01	<0.01	0,96	0,23	0,26	0,29	<0.01	0,17	0,69
La	ICM14B	5,4	6,4	14,8	101,7	12,7	14,9	95,2	14,5	6,1	80,6
Li	ICM14B	4	4	5	12	13	16	<1	21	3	11
Mg%	ICM14B	0,91	3,74	3,56	0,73	0,09	0,11	0,02	3,1	0,1	0,38
Mn	ICM14B	372	519	272	372	132	171	91	368	174	299
Na%	ICM14B	0,15	<0.01	<0.01	0,04	0,07	0,06	0,03	<0.01	0,06	0,06
Nb	ICM14B	1,86	0,9	0,48	1,66	1,44	1,6	0,33	0,14	2,5	1,62
Р	ICM14B	336	123	62	175	95	133	419	738	86	768
Rb	ICM14B	41,1	12,6	3,8	338,8	91,8	112,3	59,3	2,9	80	453
Re	ICM14B	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
S%	ICM14B	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Sc	ICM14B	10,5	3	5,4	1,1	0,5	0,6	7,2	1,7	1,3	1,2
Sn	ICM14B	<0.3	<0.3	<0.3	0,5	1,1	<0.3	<0.3	<0.3	1,2	0,5
Sr	ICM14B	6,6	4,3	1,2	6,4	7,9	8,7	58,4	7,3	1,4	8,5
Та	ICM14B	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Те	ICM14B	0,24	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Th	ICM14B	1,1	0,4	0,3	19,6	8,5	8,7	2,7	2,4	14,6	53,5
Ti	ICM14B	0,19	0,02	0,02	0,13	0,03	0,04	<0.01	<0.01	<0.01	0,11
U	ICM14B	0,12	0,08	<0.05	3,72	1,59	1,54	0,15	0,23	6,25	5,94
V	ICM14B	51	64	60	13	2	2	5	135	<1	13
W	ICM14B	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Y	ICM14B	7,04	3,72	2,75	11,34	3,41	3,94	29,45	3,45	29,39	10,56
Zr	ICM14B	<0.5	<0.5	<0.5	36,4	4,6	5,2	3,7	1,6	1,7	15,5

ICM14B

Ν	Método	21	22	23	24	25	26	27	28	29	30
ID		EM-235A	EM-257A	EM-258A	EM-258C	EM-259A	EM-259B	EM-259C	EM-260A	EM-261A	EM-262A
Al%	ICM14B	0,32	0,56	0,45	0,61	0,24	0,16	1,52	1,15	0,61	0,94
В	ICM14B	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Ва	ICM14B	1060	47	38	33	5	70	13	83	45	13
Be	ICM14B	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ca%	ICM14B	0,02	0,1	0,12	0,23	0,04	0,62	1,39	0,27	0,14	1,22
Ce	ICM14B	30,41	56,67	41,94	78,83	10,6	14,51	22,07	59,28	79,67	21,58
Cr	ICM14B	61	8	14	12	10	135	75	16	12	57
Cs	ICM14B	0,08	3,58	5,69	3,71	1,27	0,31	0,22	9,11	3,77	0,11
Fe%	ICM14B	2,05	1,3	1,12	1,22	0,79	0,64	2,62	2	1,58	1,9
Ga	ICM14B	1,5	4,6	3,4	4,4	2	1,1	4,6	7	4,5	3,8
Ge	ICM14B	0,4	0,5	0,2	0,4	0,2	0,4	0,3	0,3	<0.1	<0.1
Hf	ICM14B	0,24	0,5	0,34	0,38	0,28	<0.05	0,07	0,18	0,56	0,15
In	ICM14B	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0,03	<0.02	<0.02	<0.02
K%	ICM14B	0,02	0,36	0,33	0,37	0,15	0,03	0,08	0,75	0,42	0,07
La	ICM14B	14,8	36,9	21	53,6	5,4	9,3	12	31,5	30,1	13,2
Li	ICM14B	3	9	22	12	10	4	6	58	20	2
Mg%	ICM14B	0,01	0,16	0,13	0,2	0,01	0,66	1,17	0,45	0,18	0,85
Mn	ICM14B	380	408	212	241	141	504	372	405	345	304
Na%	ICM14B	<0.01	0,07	0,05	0,06	0,07	0,03	0,13	0,09	0,08	0,12
Nb	ICM14B	0,53	2,73	1,65	1,94	1,67	<0.05	0,07	0,63	1,62	0,13
Р	ICM14B	598	167	159	235	<50	99	412	444	224	371
Rb	ICM14B	16,7	206,8	152,1	175,7	63,7	29,9	40,1	353,1	227,3	27,1
Re	ICM14B	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
S%	ICM14B	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Sc	ICM14B	1,3	1,4	0,8	1	1	5	7,8	2,8	2,4	7,6
Sn	ICM14B	<0.3	0,4	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Sr	ICM14B	54,5	10,7	10,9	19,4	2	5,2	18,2	21,5	14,2	10,6
Та	ICM14B	<0.05	<0.05	<0.05	<0.05	<0.05	0,06	<0.05	<0.05	<0.05	<0.05
Те	ICM14B	<0.05	<0.05	<0.05	<0.05	<0.05	2,47	1,94	1,38	0,95	0,55
Th	ICM14B	4,7	18,8	9,4	14,9	8,2	0,8	2,8	6,8	10,7	3,2
Ti	ICM14B	0,02	0,06	0,04	0,08	<0.01	0,02	0,12	0,14	0,07	0,17
U	ICM14B	2,49	2,06	1	1,97	4,3	0,11	0,43	1,13	1,64	0,32
V	ICM14B	20	8	5	5	<1	10	63	27	11	49
W	ICM14B	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Y	ICM14B	8,97	11,17	5,04	5,91	4,21	6,79	7,44	11,21	7,09	9,09
Zr	ICM14B	4,7	7,3	5,2	5,8	3,9	<0.5	<0.5	0,9	10,5	<0.5

ICM14B

Ν	Método	31	32	33	34	35	36	37	38	39	40
ID		EM-263A	EM-263B	EM-265A	EM-265B	EM-266A	EM-267A	EM-267B	EM-292A	EM-295A	EM-295B
AI%	ICM14B	0,85	1,4	2	1,17	0,3	0,57	0,51	3,09	1,12	1,11
В	ICM14B	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Ва	ICM14B	14	1006	30	38	36	250	251	79	50	57
Be	ICM14B	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0,1	<0.1	<0.1
Ca%	ICM14B	0,89	1,2	1,34	1	0,08	0,57	0,44	1,48	0,52	0,52
Ce	ICM14B	16,97	14,41	23,52	13,21	36,79	34,15	32,28	38,52	112,12	99,85
Cr	ICM14B	74	136	86	85	8	8	5	67	12	17
Cs	ICM14B	0,11	0,2	0,23	0,17	0,16	0,08	0,07	2,69	5,11	3,4
Fe%	ICM14B	1,52	1,77	4,05	2,27	0,74	0,51	0,64	11,69	2,61	2,39
Ga	ICM14B	3	4	8,3	3,9	1,8	1,9	2,4	19	9,9	9,6
Ge	ICM14B	0,2	<0.1	0,2	0,1	0,1	0,3	0,4	0,3	0,2	0,4
Hf	ICM14B	0,12	0,07	0,16	0,1	0,14	0,05	<0.05	0,6	0,18	0,15
In	ICM14B	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0,03	<0.02	<0.02
K%	ICM14B	0,07	0,08	0,09	0,19	0,09	0,07	0,05	0,21	0,62	0,71
La	ICM14B	10,4	9,4	13	7,8	22	30,3	45,8	18,1	59,4	55,6
Li	ICM14B	3	8	19	8	<1	1	2	19	31	32
Mg%	ICM14B	0,82	1,1	1,65	1,01	0,11	0,32	0,32	1,82	0,87	0,88
Mn	ICM14B	242	269	499	285	127	156	256	772	428	393
Na%	ICM14B	0,1	0,16	0,1	0,07	0,08	0,08	0,06	0,16	0,08	0,06
Nb	ICM14B	<0.05	0,1	0,09	<0.05	0,19	0,07	0,12	0,5	0,77	1
Р	ICM14B	334	297	953	409	<50	509	393	1277	798	834
Rb	ICM14B	24,7	24,7	21,4	33,4	18,6	13,7	10,4	34,8	127,8	145,4
Re	ICM14B	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
S%	ICM14B	<0.01	0,03	<0.01	<0.01	<0.01	<0.01	<0.01	0,03	<0.01	<0.01
Sc	ICM14B	5,7	6,1	8,9	6,5	0,4	0,7	0,8	5,8	3,5	3
Sn	ICM14B	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Sr	ICM14B	10,7	27,6	24,7	13,2	8,4	19,4	16,6	34,1	31,9	20,5
Та	ICM14B	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Те	ICM14B	0,43	0,42	0,29	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Th	ICM14B	2,7	2,2	3,8	2,6	3,8	3,7	2,6	2,3	8,5	10,4
Ti	ICM14B	0,09	0,16	0,24	0,15	<0.01	0,03	0,03	0,59	0,15	0,16
U	ICM14B	0,22	0,22	0,4	0,26	0,4	0,26	0,18	0,23	1,2	1,74
V	ICM14B	36	43	81	51	4	4	5	640	31	29
W	ICM14B	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Y	ICM14B	4,79	7,76	15,08	7,04	4,62	6,55	10,18	23,46	15,64	14,35
Zr	ICM14B	1,3	<0.5	<0.5	<0.5	1,7	<0.5	<0.5	8,7	<0.5	<0.5

ICM14B

Ν	Método	41	42	43	44	45	46	47	48	49	50
ID		EM-295C	EM-295D	EM-295E	EM-297A	AS-011	AS-013	AS-014	AS-017	AS-252	AS-253
AI%	ICM14B	1,16	1,11	1,51	1,85	0,78	0,71	0,63	0,88	0,53	0,7
В	ICM14B	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Ва	ICM14B	63	65	120	16	273	39	78	112	558	59
Be	ICM14B	<0.1	<0.1	<0.1	<0.1	0,4	<0.1	<0.1	0,2	<0.1	0,2
Ca%	ICM14B	0,33	0,45	0,45	1,57	0,29	0,19	0,13	0,05	0,02	0,05
Ce	ICM14B	78,33	77,12	91,72	8,22	254,85	57,51	43,24	281,39	134,66	180,02
Cr	ICM14B	11	13	12	63	17	8	12	8	9	13
Cs	ICM14B	23,37	3,59	14,92	0,13	2,92	3,27	3,52	1,38	0,29	4,17
Fe%	ICM14B	2,51	2,4	2,4	2,85	2,04	1,57	1,4	2,15	1,38	1,51
Ga	ICM14B	8,7	9,1	9,6	4,9	12,5	7,6	5,1	14,1	6,8	9,1
Ge	ICM14B	0,4	0,2	0,5	<0.1	0,4	0,3	<0.1	1,8	0,7	0,4
Hf	ICM14B	0,09	0,1	0,11	0,08	0,66	0,33	0,13	0,51	0,29	0,78
In	ICM14B	<0.02	<0.02	<0.02	<0.02	0,04	0,02	<0.02	0,04	<0.02	0,03
K%	ICM14B	0,78	0,72	1,1	0,11	0,51	0,46	0,41	0,7	0,42	0,48
La	ICM14B	45,3	41,7	50,4	3,9	128,9	34	32,8	135,1	68,9	80,9
Li	ICM14B	34	35	43	12	23	28	25	13	8	47
Mg%	ICM14B	0,86	0,88	1,12	1,31	0,16	0,29	0,25	0,43	0,28	0,16
Mn	ICM14B	372	379	529	441	249	231	199	223	266	216
Na%	ICM14B	0,07	0,06	0,08	0,17	0,06	0,07	0,07	0,05	0,05	0,06
Nb	ICM14B	0,72	0,86	0,89	<0.05	2,38	1,92	0,58	3,54	2,55	5,49
Р	ICM14B	779	760	788	514	417	71	195	239	96	138
Rb	ICM14B	149	143,8	223,2	20,7	389	234,4	183	504,8	205,7	409,2
Re	ICM14B	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
S%	ICM14B	<0.01	<0.01	<0.01	0,09	<0.01	<0.01	<0.01	<0.01	0,01	<0.01
Sc	ICM14B	1,9	2,7	2,9	9	3,8	2,5	1,2	2	1,7	3
Sn	ICM14B	<0.3	<0.3	<0.3	<0.3	2,6	1,4	<0.3	3,3	0,3	6,4
Sr	ICM14B	14	17	33,2	25	5,6	8,4	7,5	7,9	6,1	5,7
Та	ICM14B	<0.05	<0.05	<0.05	<0.05	0,06	<0.05	<0.05	<0.05	<0.05	<0.05
Те	ICM14B	<0.05	<0.05	<0.05	<0.05	2,76	1,74	1,6	0,69	0,87	0,56
Th	ICM14B	8,1	8,8	10,3	1,3	70,1	19,3	12,2	77,3	36,7	68,4
Ti	ICM14B	0,15	0,16	0,19	0,15	0,11	0,1	0,09	0,12	0,05	0,08
U	ICM14B	0,89	0,83	1,07	0,09	5,63	1,47	1,31	2,5	2,7	5,48
V	ICM14B	24	28	27	65	14	9	11	14	6	6
W	ICM14B	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Y	ICM14B	11,38	11,32	17,23	6,78	28,94	5,2	2,08	15,2	9,96	11,81
Zr	ICM14B	<0.5	<0.5	<0.5	<0.5	13,9	6,1	1,9	9,8	7	18,4

ICM14B

N	Método	51	52	53	54	55	56	57	58	59	60
ID		AS-255	AS-258	AS-261	AS-278	AS-279	AS-283	AS-285A	AS-285B	AS-286	AS-287A
AI%	ICM14B	0,9	0,88	0,6	1,03	0,88	2,07	0,95	4,15	0,64	0,84
В	ICM14B	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Ва	ICM14B	25	328	244	50	62	234	158	462	32	313
Be	ICM14B	<0.1	<0.1	0,2	0,5	<0.1	<0.1	0,2	0,2	<0.1	<0.1
Ca%	ICM14B	0,79	0,08	0,06	0,23	0,14	0,45	0,19	0,71	0,08	0,1
Ce	ICM14B	55,74	84,03	183,4	495,9	83,6	90,1	353,46	65,72	16,31	79,39
Cr	ICM14B	12	12	9	9	13	26	16	51	13	7
Cs	ICM14B	1,12	1,57	1,09	1,53	1,81	7,85	2,8	16,49	1,73	2,51
Fe%	ICM14B	1,95	2,86	1,4	2,29	2,04	3,2	1,61	5,71	1,38	1,64
Ga	ICM14B	5,8	8,3	7,2	14,6	9,6	13,2	11	24	6	9,3
Ge	ICM14B	0,3	0,6	0,8	0,3	0,1	0,6	0,3	1,3	0,2	0,2
Hf	ICM14B	0,51	0,42	0,27	0,62	0,52	0,58	1,03	0,49	0,46	0,47
In	ICM14B	<0.02	0,03	<0.02	0,02	0,03	0,04	0,03	0,06	<0.02	0,03
K%	ICM14B	0,55	0,73	0,36	0,73	0,59	1,72	0,7	3,69	0,44	0,63
La	ICM14B	36	51,7	111,6	266,7	52,7	65,3	185,3	64	7,2	48,2
Li	ICM14B	16	12	6	27	26	66	24	136	21	31
Mg%	ICM14B	0,63	0,43	0,21	0,33	0,27	1,62	0,58	3,36	0,2	0,37
Mn	ICM14B	380	381	1153	286	306	708	265	1321	217	271
Na%	ICM14B	0,11	0,04	0,06	0,06	0,08	0,08	0,08	0,13	0,09	0,07
Nb	ICM14B	1,28	1,24	0,53	1,31	2,48	0,67	0,25	0,74	3,25	3,6
Р	ICM14B	530	194	86	512	301	387	830	699	104	242
Rb	ICM14B	236,8	233	145,6	305,2	340,9	936,2	378,2	2052,9	285,4	378,4
Re	ICM14B	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
S%	ICM14B	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Sc	ICM14B	1,8	1,5	1,4	3,1	3,4	5,2	2,8	11	2	3,2
Sn	ICM14B	0,7	0,9	<0.3	1,3	1	3,2	3,5	8,7	3,3	6,4
Sr	ICM14B	18,6	5,8	9,6	13,6	7,3	18,6	15,7	37,5	10,8	13,5
Та	ICM14B	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Те	ICM14B	0,11	0,18	<0.05	0,13	0,09	<0.05	<0.05	<0.05	0,34	0,1
Th	ICM14B	33,4	8	16,8	106,5	27,4	23,5	80,3	14,3	16	32,4
Ti	ICM14B	0,15	0,15	0,04	0,16	0,13	0,3	0,12	0,61	0,07	0,1
U	ICM14B	2,6	0,78	3,3	3,85	3,27	5,07	19,92	5,23	4,73	4,17
V	ICM14B	18	7	21	13	10	63	16	136	7	9
w	ICM14B	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Y	ICM14B	4,17	17,52	32,82	20,55	8,05	13,91	23,44	26,38	3,05	5,59
Zr	ICM14B	10,5	10,2	<0.5	15,6	11,3	9,2	29,4	<0.5	8,4	8,4

ICM14B

Ν	Método	61	62	63	64	65	66	67	68	69	70
ID		AS-287B	AS-288	AS-291	AS-300A	AS-301	AS-302	AS-304	AS-305	AS-306	AS-313
Al%	ICM14B	0,44	0,47	0,69	0,79	0,36	2,02	0,95	0,96	0,43	0,42
В	ICM14B	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Ва	ICM14B	24	30	24	25	14	200	70	52	28	28
Be	ICM14B	<0.1	<0.1	<0.1	<0.1	<0.1	0,1	<0.1	<0.1	<0.1	<0.1
Ca%	ICM14B	0,29	0,06	0,03	0,05	0,04	0,26	0,15	0,29	0,03	0,32
Ce	ICM14B	127,9	101,43	149,45	36,44	26,24	137,04	77,27	65,57	46,69	14,36
Cr	ICM14B	8	7	9	9	7	18	11	12	8	8
Cs	ICM14B	0,78	1,43	0,44	1,41	0,38	8,53	6,28	4,33	1,61	0,72
Fe%	ICM14B	1,18	1,25	1,58	1,8	1,15	3,5	1,89	1,73	1,09	0,79
Ga	ICM14B	6,3	6	7,4	8,1	3,7	13,9	8	8	4,8	3,6
Ge	ICM14B	0,5	0,4	0,1	0,2	<0.1	0,3	0,1	0,3	0,3	0,2
Hf	ICM14B	0,69	0,65	0,62	0,47	0,29	0,27	0,23	0,49	0,34	0,23
In	ICM14B	<0.02	<0.02	<0.02	0,03	<0.02	0,07	0,03	0,06	0,02	<0.02
K%	ICM14B	0,23	0,28	0,49	0,54	0,2	1,35	0,67	0,66	0,29	0,2
La	ICM14B	74,5	52	70,8	24,4	12	76,6	49,6	41,4	27,3	10,4
Li	ICM14B	22	18	9	15	4	64	56	43	18	11
Mg%	ICM14B	0,15	0,12	0,27	0,26	0,08	0,74	0,33	0,42	0,09	0,17
Mn	ICM14B	200	172	326	241	134	616	333	323	180	213
Na%	ICM14B	0,06	0,07	0,06	0,06	0,07	0,15	0,07	0,09	0,05	0,05
Nb	ICM14B	1,27	1,76	3,12	3,39	0,55	1,62	1,87	1,71	2,99	0,67
Р	ICM14B	197	136	239	91	52	656	296	278	104	104
Rb	ICM14B	123	143,3	294,9	265,3	85,7	635,9	398,3	452,3	228,9	116,7
Re	ICM14B	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
S%	ICM14B	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Sc	ICM14B	1,7	1,5	1,3	3	0,5	10,8	3,2	2,5	1,4	0,4
Sn	ICM14B	1,3	2,5	2,2	0,7	0,9	6,5	3,4	2	5,1	<0.3
Sr	ICM14B	8,3	6,2	4,1	4	3,9	12,4	8,2	11,2	2,7	5,2
Та	ICM14B	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0,12	0,08	0,06
Те	ICM14B	0,12	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	5,29	3,91	2,79
Th	ICM14B	55	50,9	55,5	13,5	10,4	39,2	34,1	26,3	25,8	9,8
Ti	ICM14B	0,03	0,05	0,07	0,08	0,02	0,24	0,14	0,11	0,03	<0.01
U	ICM14B	4,08	6,95	5,8	1,44	1,17	4,07	2,85	4,2	9,17	3,49
V	ICM14B	4	4	4	4	2	35	13	12	5	<1
W	ICM14B	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0,4	<0.1	<0.1
Y	ICM14B	6,49	7,69	9,72	2,76	1,84	15,8	8,2	9,16	5,27	2,82
Zr	ICM14B	13,1	13	12,2	11	5,1	3,5	5,1	13,5	6,8	4,1

ICM14B

Ν	Método	71	72	73	74	75
ID		AS-315	AS-315A	AS-317	VS-006	VS-107
AI%	ICM14B	1,11	1,1	0,92	1,56	3,89
В	ICM14B	<10	<10	<10	<10	<10
Ва	ICM14B	78	82	56	85	184
Be	ICM14B	1	0,7	0,7	<0.1	0,2
Ca%	ICM14B	0,48	0,5	0,31	0,45	1,72
Ce	ICM14B	851,83	697,18	563,46	49,07	25,1
Cr	ICM14B	10	9	8	14	57
Cs	ICM14B	1,02	0,81	1,67	3,48	2,27
Fe%	ICM14B	2,63	2,55	2,33	2,74	10,27
Ga	ICM14B	20	15,7	14,8	9,2	12,7
Ge	ICM14B	0,4	0,2	0,1	0,3	1,5
Hf	ICM14B	0,54	0,49	0,85	0,17	0,09
In	ICM14B	0,05	0,03	0,04	<0.02	0,03
K%	ICM14B	0,86	0,84	0,73	1,07	1,29
La	ICM14B	313,9	330	288,1	34	13,9
Li	ICM14B	16	15	21	159	45
Mg%	ICM14B	0,33	0,31	0,25	0,56	3,65
Mn	ICM14B	236	225	297	359	1232
Na%	ICM14B	0,06	0,07	0,05	0,12	0,03
Nb	ICM14B	3,4	2,83	1,91	0,64	0,45
Р	ICM14B	708	594	414	718	1353
Rb	ICM14B	566,3	424	382	270,9	213,5
Re	ICM14B	<0.1	<0.1	<0.1	<0.1	<0.1
S%	ICM14B	<0.01	<0.01	<0.01	<0.01	<0.01
Sc	ICM14B	3,9	3,1	4,1	1,2	11,1
Sn	ICM14B	1,3	1,1	1,9	1,1	<0.3
Sr	ICM14B	18,6	18,6	13,6	18,4	41,5
Та	ICM14B	0,06	0,08	<0.05	<0.05	<0.05
Те	ICM14B	2,57	1,94	1,39	0,69	0,79
Th	ICM14B	171,4	136,5	100,9	12,5	5,1
Ti	ICM14B	0,2	0,19	0,16	0,21	0,26
U	ICM14B	2,12	1,76	4,43	1,08	1,47
v	ICM14B	23	22	15	27	275
w	ICM14B	<0.1	<0.1	<0.1	<0.1	<0.1
Y	ICM14B	30,86	23,82	34,62	4,02	9,34
Zr	ICM14B	12,8	11,7	20,6	0,8	<0.5

ICM14B