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Matemática, 2020.

1. Escalonamento da tarefas. 2. Processadores de Frequência Variável.
3. Latência de Cauda.. I. PETRUCCI, VINÍCIUS TAVARES. II. Universi-
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”It’s the questions we can’t answer that teach us the most. They teach

us how to think. If you give a man an answer, all he gains is a little fact.

But give him a question and he’ll look for his own answers.”

—PATRICK ROTHFUSS (The Wise Man’s Fear)





RESUMO

O escalonamento de frequências é uma técnica essencial para maximizar a eficiência dos
recursos computacionais existentes, especialmente em sistemas com arquiteturas capazes
de executar tais tarefas em núcleos de frequência variável. Um dos fatores mais cŕıticos
capazes de afetar a experiência do usuário em serviços como busca ou redes sociais é a
latência de cauda, definida como sendo a latência no 95 ou 99-percentil. Esta latência
pode ser fortemente influenciada pela resposta mais lenta de um núcleo de baixo de-
sempenho de um sistema, com seu impacto largamente amplificado quão mais núcleos
de baixo desempenho estejam hospedados neste mesmo sistema. Do lado corporativo,
reduzir a latência de cauda para a meta desejada é tão necessário quanto a diminuição
do gasto energético, haja vista que este é diretamente proporcional aos custos finan-
ceiros para a operação do serviço e consequentemente ao lucro. Trabalhos anteriores em
escalonamento de frequências para núcleos com capacidade de variação de frequência são
de granulometria grossa, no sentido que se observa o estado de toda a aplicação para a
tomada de decisões (sem distinção entre aplicação, threads ou funções). Tais trabalhos
também muitas vezes dependem de um processo externo rodando em paralelo para coletar
o comportamento dinâmico de determinada tarefa.

Neste trabalho, propomos uma abordagem de escalonamento de frequências finamente
granulada baseada na informação acerca da intensividade de processamento de funções
no processamento de tarefas, bem como o comportamento das diferentes frequências.
Como prova de conceito, avaliamos nossa abordagem em uma aplicação de busca. Nossa
abordagem automaticamente permite o aumento da frequência de operação da thread
localizada em um determinado núcleo ao chegar em uma função definida como intensiva,
aumentando ainda mais após determinado tempo transcorrido, e a diminuição desta ao
final da execução da função. Nós implementamos e avaliamos tal metodologia em um
sistema multinúcleos real (Intel Skylake) e mostrando que o gasto energético pode ser
reduzido em até 28%, em relação ao escalonador padrão do Linux, a depender da carga
no serviço, ao mesmo tempo que atinge um tempo de resposta similar.

Palavras-chave: Escalonamento dinâmico de frequência. Processadores de Frequência
Variável. Latência de cauda.
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ABSTRACT

Dynamic frequency scaling is a technique to reduce the power consumption in computer
systems. However, this technique poses challenges when adopted in latency-critical ap-
plications. One critical factor that affects user experience is the tail latency, defined as
the application response time at the 95th or 99th percentile. Tail latency is heavily de-
termined by the slowest response from a poor-performing processor core, and its impact
is greatly amplified at scale as more slower cores are hosted in the same system. Meeting
the desired tail latency is as important as decreasing the cost of energy consumption,
since the latter are intertwined to financial costs and, subsequently, profit in data centers
running cloud workloads. Prior work on dynamic frequency scaling is application ag-
nostic and coarse-granulated in the sense that it considers the entire application process
utilization for decision making (without the distinction between individual threads or
functions).

In this work, we propose a finer-grained dynamic frequency scheduling approach that
leverages information about the computational intensity of certain functions in a latency-
critical web search application. First, our approach collects a profile from the running
application to identify hot functions for typical workloads. Next, a runtime scheme is
devised to adapt the individual core frequency whenever an allocated thread to that core
reaches the entry point of a hot function, while decreasing the frequency after the thread
reaches the exit point of the hot function. We implemented and evaluated our proposal
in a real multicore system (Intel Skylake). We observed energy consumption savings up
to 28% when compared to Linux’s Ondemand frequency-scaling governor, while attaining
acceptable levels of tail latency constraints.

Keywords: Frequency scaling. Frequency-Scaling Processors. Tail latency.
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Chapter

1
INTRODUCTION

As modern applications are moving from desktop clients to smaller mobile devices, the
processing and storage needs now rely on powerful servers in the cloud
(Barroso, Clidaras and Hölzle 2013) once locally present. Examples of such services in-
clude web search, video streaming, file sharing, and word processing applications.

In data centers, delivering a satisfactory metric of Quality of Service (QoS) is critical
for cloud-hosted services because service delays may affect user experience and impact
companies’ revenue negatively. A study revealed that a delay of 2000 milliseconds in re-
turning web search results may impact revenue in over 4% per user
(Schurman and Brutlag 2009). For large cloud companies, this turns out to be a strong
negative impact for their business. At scale, the user-perceived QoS is usually determined
by the slowest servers’ response — the tail latency, typically the bottom-1% (slowest) dis-
tribution of the service’s response time (Dean and Barroso 2013).

The implications of tail latency are that in systems where each server typically an-
swers at 10 milliseconds, but with a 99-percent latency of 1 second, every 1 in 100 requests
will be affected if the request is handled by a single server. Scaling to 100 servers, 63%
of requests may take more than 1 second to respond(Dean and Barroso 2013). While
it is possible to guarantee a high quality of service through the sole acquisition of bet-
ter hardware, this is very costly and may be economically infeasible as the applica-
tion scales. Thus, several techniques, both in hardware (e.g., out-of-order execution,
branch prediction (Yeh, Marr and Patt 1993)) and software-side (e.g., canary requests
(Dean and Barroso 2013)), have been developed and deployed in modern cloud systems.

Some modern multi-core systems are designed to explore a technique named Dynamic-
Voltage Frequency-Scaling (DVFS), in which the frequency of operation of a certain core
may increase or decrease according to the application’s demand. Roots of the original
DVFS idea can be traced as early as 1994 (Weiser et al. 1994). In that seminal work,
Weiser et al. argued that reducing only the clock speed does not reduce the amount of
Millions of Instructions per Joule (MIPJ), once the system must run for longer to perform
equally. However, at the same time, the authors conclude that by adjusting the clock
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2 INTRODUCTION

speed and voltage at a fine-grain, substantial CPU energy can be saved with a limited
impact on performance.

In practical settings, DVFS technique is implemented within the Linux’s ondemand
governor (Pallipadi and Starikovskiy 2006), which attempts to minimize energy consump-
tion by changing the CPU speed according to the actual load, which is based on CPU
utilization thresholds. Traditional DVFS techniques do not take in account the applica-
tion behavior; also, they are unaware of the tail latency constraints.

Alternative scheduling approaches have been developed in the literature exploring
techniques like statistical prediction (Kasture et al. 2015), feedback-control state ma-
chines (Petrucci et al. 2015), and reinforcement learning (Nishtala et al. 2017) for het-
erogeneous multicore systems. These works are coarse-grained in the sense that it maps
the entire workload onto the heterogeneous cores, and usually require external run-time
systems that may incur some overhead in the application itself. They are also not de-
signed for taking into account particular characteristics found in the code structure of
the application, such as entry or exit of hot functions or the actual thread state, that
could be explored in a more fine-grained frequency scaling.

1.1 THESIS STATEMENT AND CONTRIBUTIONS

This thesis aims to address the issue of energy efficiency and tail latency through the
following statement:

Thesis Statement: Adapting the CPU speed at function level in a cloud application
helps to deliver requests within the imposed tail latency while reducing the overall energy
consumption in comparison to frequency-scaling methods that rely only on CPU utilization
metrics.

As a corollary of the statement above, our major contributions are essentially in two
axes:

• Energy Efficiency. We propose a new frequency scaling heuristic that maximizes
the resource efficiency by decreasing the energy consumption when compared with
existing methods.

• Tail Latency. Our scheme aims to maintain the quality-of-service within the 99-
percentile according to the desired deadline.

All the developed codes are publicly available and documented at the GitHub repos-
itory 〈https://github.com/raijenki/elastic-hurryup/〉 under the Apache 2.0 license.

1.2 THESIS STRUCTURE

This chapter presented the motivation of our work and an overview of the problem ad-
dressed in this thesis.

Chapter 2 discusses the background of our work and reviews previous works in the
literature. Since there are not related works that uses code-level granularity for schedul-
ing, this thesis attains to discuss application-level works using DVFS processors. In



1.2 THESIS STRUCTURE 3

Chapter 3, we introduce our approach for improving energy efficiency with tail latency
requirements and discuss the profiling and frequency-scaling framework used by our ap-
proach and its implementation. Chapter 4 presents the results of our implementation
comparing it with the Linux’s Ondemand DVFS governor. Chapter 5 concludes the
work and discusses suggestions for future works.





Chapter

2
BACKGROUND & LITERATURE REVIEW

This chapter discusses the necessary knowledge to understand this thesis. We first start
with introductory concepts, including power governors within Linux. We discuss some
aspects of the Java Virtual Machine (JVM) and how a search application works on top
of the JVM. This chapter also gives a brief overview of related works.

2.1 BASIC CONCEPTS

The Dynamic-Voltage Frequency-Scaling (DVFS) technique allows the variation of fre-
quency within a processor. This can lead to almost a cubic drop in power consumption,
and this occurs because dynamic power (Pdyn) is related to a voltage (V) and frequency
(f) according to the equation Pdyn ∝ V 2f (Guliani and Swift 2019). There are two widely
used implementations of DVFS: the first, known as “Global Frequency and Voltage Scal-
ing”, scales the voltage and frequency for all the cores within the system simultaneously,
and requires only a single voltage controller. The second is known as “Individual Fre-
quency and Voltage Scaling”, which allows the per-core changes in frequency and volt-
age while also increasing hardware complexity by having a per-core voltage regulator
(Guliani and Swift 2019).

The Advanced Configuration and Power Interface (ACPI) specification divides the
power management technologies into two categories: P-States and C-States. The former
category provides a way to scale the frequency and voltage at which the processor runs
in order to reduce the power consumption of the CPU. Within the Linux Kernel, the
cpufreq interface makes use of the processor-specific ACPI drivers for P-States and fre-
quency management. It includes four different in-kernel governors that allow automatic
management of those P-States by the Operational System (OS). Table 2.1 illustrates
them.

The highest or lowest available frequencies in Table 2.1 are always within a user-
specified range. The userspace governor exports the available frequency information for a
user-level interface to permit user-space control. The ondemand governor
(Pallipadi and Starikovskiy 2006) measures the per-core CPU usage every sample time

5



6 BACKGROUND & LITERATURE REVIEW

Name What it does
Powersave Runs the core at the lowest available frequency.
Performance Runs the core at the highest available frequency.

Ondemand
Runs the core at a frequency accordingly to
CPU usage.

Userspace
Runs the core at the frequency specified
by the user.

Table 2.1 In-kernel Linux Governors for the ACPI Driver

and if it’s above a certain up threshold, it automatically elevates the frequency to the
maximum available. If it’s below a certain down threshold since the last check, the
frequency scales down by 20%.

There are also C-State mechanisms for power management in the CPU to reduce or
turn off some selected functions. Processors can support different numbers of C-states
in which various parts of the CPU are temporarily disabled in order to reduce energy
consumption. Generally, higher C-states turn off more parts of the CPU, which can
significantly reduce the CPU power consumption. However, from the OS’s standpoint,
the processor is simply idle and can be back to a lower C-State at a very high speed.
Also, processors may have deeper C-states that are not exposed to the operating system.
Table 2.2 shows the C-states present for the Intel Xeon 6126 and its functions.

Mode Name What it does
C0 Active Mode CPU is fully online.

C1 Halt
Interrupts the principal internal CPU clocks through software;
the BUS interface unit and the interrupt controller
are online and at maximum speed. Can return to C0 instantaneously.

C1E Advanced Halt Same as C1, but also reduces CPU’s voltage.

C6 Deep Turnoff
Reduces CPU’s internal voltage to any value,
including 0 Volts. Saves core state before shutdown.

Table 2.2 List of C-States present in a processor Intel Xeon 6182.

2.1.1 Java Virtual Machine

The Java Virtual Machine (JVM) was introduced in 1994 under the motto of “Write
once, Run anywhere”. The JVM is detailed by a specification and its most known imple-
mentation is the HotSpot, done by the OpenJDK project.

In essence, the JVM is capable of either interpreting or Just-in-time compiling any
Java bytecode originated from a Java compiler. The executed code lives at a sandboxed
environment within the JVM, which means that there are security mechanisms to avoid
application (mainly java web applets) breaking from JVM-space to kernel-space.

Threads are the basis of parallel processing and allow an application to do multiple
tasks at the same time. In Linux, the JVM implements virtual threads through native
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threads, meaning that a Java thread will share the process identifier but also have its
unique thread identifier inside the JVM, and it means that a thread may also be assigned
to an individual processor core, usually through the taskset Linux tool.

Java provides the use of the Java Native Interface (JNI) framework for writing native
code (e.g. C and C++), which also enables the usage of platform-specific features, such
as POSIX’s thread affinity library or a native graphics API. The JNI code is compiled
and can not be just-in-time compiled as it happens with the common Java code. Objects
can be shared between the JNI code and the actual Java code.

The JVM allows the class code to be executed with an agent. This agent commonly
uses the Java Instrumentation API, which enables the modification of existent code, either
at startup-time, before any code is executed, or dynamically. Agents can be written using
the JVM Tools Interface (JVMTI), which “provides a JVM interface for the full breadth
of tools that need access to JVM state, including but not limited to: profiling, debugging,
monitoring, thread analysis, and coverage analysis tools”1.

2.2 SEARCH WORKLOADS

(Brin and Page 1998) and (Coulouris et al. 2012) describe how a web search service works,
in particular, Google’s search engine2. The description below is a high-level overview of
a typical search application.

A search engine is composed of three major independent applications: crawling, in-
dexing, and querying/scoring. Crawling is related to the fetching of the contents present
in a website. This is done by several automated crawlers which recursively scans a web-
page and extracts all links from it. The pages are compressed and sent to a repository.
Every web page has an associate ID number called docID, which is assigned whenever a
new URL is parsed out of a web page.

Later on, the crawled pages are parsed and each document is converted into a set of
word occurrences called hits; these are composed by the word, position in the document,
font size, and capitalization.

The indexer distributes those hits into a set of ”barrels”, creating a partially sorted
forward index. The indexer also parses out all the links in every webpage and stores
the information about them in an anchor file, which is read by a Uniform Resource
Locator (URL) resolver and converted into docIDs. The URL resolver puts the anchor
text into the forward index, associated with the docID that the anchor points to, while
generating a database of links, which are pairs of the docIDs - used by the ranking
phase. The sorter takes the barrels, which are sorted by docID, and resorts them by
wordID to generate the inverted index, also producing a list of wordIDs and offsets into
the inverted index. An application named DumpLexicon takes this list along with the
lexicon produced by the indexer and generates a new lexicon to be used by the searcher.
The searcher uses the built lexicon together with the inverted index and the ranking
application to answer queries.

Web search is a latency-sensitive application. For complex keywords and/or a large

1JVMTI Documentation: https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html
2Google Search Engine: https://www.google.com
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number of users, the query evaluation procedure might take longer time, affecting user
experience. The first Google version, as described by Brin and Page (1998) took between
1 and 10 seconds to answer any query. This is quite different for today’s standard, as we
expect a complex answer in hundreds of milliseconds for better user experience.

2.2.1 Lucene and Elasticsearch

Before introducing Elasticsearch, we first need to understand the engine used called
Lucene. In a nutshell, Lucene is a java library that does the indexing and querying
functions. It’s fully open-source, cross-platform, and maintained by the Apache Software
Foundation.

In Lucene, a document is the unit of searching and indexing. A document is also
comprised of fields, which are key-value pairs, similar to most NoSQL databases. A
Lucene index is comprised of multiple documents - hence, the indexing process described
in the previous section means that a document will be inserted into this Lucene Index.

Search is the retrieval of a sorted list of documents from an index - the ones that
are most relevant to the query. This sorting task is known as scoring or ranking, and
Lucene uses a combination of a boolean model with the Vector Space Model (VSM) of
Information Retrieval. As described by Lucene’s own documentation3, ”the idea behind
the VSM is the more times a query term appears in a document relative to the number
of times the term appears in all the documents in the collection, the more relevant that
document is to the query. It uses the Boolean model to first narrow down the documents
that need to be scored based on the use of boolean logic in the Query specification.
Lucene also adds some capabilities and refinements onto this model to support boolean
and fuzzy searching, but it essentially remains a VSM based system at the heart”.

Elasticsearch is a Java-written opensource websearch application built atop of Lucene,
being mainly responsible for serving the search results through its API while also allowing
Lucene to scale among clusters. This means that Elasticsearch acts as a front-end appli-
cation, responsible for cluster management, thread-poll, queues. and monitoring APIs.
Some clients are built to use Elasticsearch, being Elastica and elasticsearch-php the most
prominent of all.

Elasticsearch encapsulates and breaks all the Lucene Indexes into Shards. For data
redundancy (e.g. prevent fail-overs) and optimizing search times, there are also replica
shards which are an exact copy of any shard. Multiple shards are contained into an
Elasticsearch node, and usually, a replica shard will not be into the same node as the
original.

As a distributed application, a node can easily be associated to a unique machine.
Multiple nodes or machines comprise an Elastichsearch cluster, which is the biggest unit in
the application. This cluster handles all the non-Lucene tasks, such as query distribution
among shards, creation, and replication of shards and maintenance.

Whenever a query reaches an Elasticsearch cluster, it is promptly distributed among
search threads. Those are exclusively for searching documents within shards and there’s
at least one thread per shard. Each shard will make use of the benefits of parallel

3Lucene Documentation: 〈https://lucene.apache.org/core/3 5 0/scoring.html〉
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processing and act independently, and each will have its own return time. As per the tail
latency problem, the overall service time is defined by the shard that took the most time
to return.

Each search thread scores its own results and returns to the node, that returns to the
cluster - which sorts all the obtained results and returns to the user. For optimal results,
it’s possible to add to the scoring factors like geolocation and synonyms.

2.3 RELATED WORK

Several approaches to this problem were already developed in the literature, exploring
different concepts and techniques. Pegasus (Lo et al. 2014), Heracles (Lo et al. 2015),
Rubik(Kasture et al. 2015), Hipster(Nishtala et al. 2017), Slow2Fast(Haque et al. 2017),
and Parties (Chen, Christina and Mart́ınez 2019) are the ones most closely related to our
proposal - as they are all specific for DVFS systems - and will be discussed here. Table
2.3 shows an overview of all the works described below.

Name AMP or DVFS Technique
Processor-specific

Technology?
Year

Pegasus DVFS
Statistical
Analysis

Yes (RAPL) 2014

Heracles DVFS
CPU Monitoring /
Statistical Analysis

Yes (RAPL) 2015

Rubik DVFS
Statistical
Prediction

No 2015

Hipster Both
Reinforcement

Learning
No 2017

Slow2Fast Both Statistical Analysis No 2017

Parties Both
CPU Monitoring /
Statistical Analysis

No 2019

Table 2.3 A list of previous related works and their major features.

2.3.1 Pegasus, Heracles & Rubik

All three papers in this subsection are regarded for trying to adjust the frequency of DVFS
processors according to the usage in order to optimize energy efficiency. The Pegasus
paper introduces an energy efficiency policy named ”iso-latency”, which monitors task
latency point-to-point and modifies the energy configurations of all servers to make them
reach all deadlines as fastest as possible. For such task, a feature present in Intel-only
processors - Running Average Power Limit (RAPL) - was utilized, and it allows the user
to set up an energy limit where the CPU never should exceed.

Pegasus (acronym for Power and Energy Gains Automatically Saved from Underuti-
lized Systems) is an effective implementation of the iso-latency policy, being feedback-
based and being able to adjust RAPL configurations. In essence, when the data reveals
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that there’s a lot of space for latency, Pegasus decreases the allowed energetic level; on
the opposite, when latency is near to service level metric, Pegasus increases the allowed
energetic level.

Heracles is more sophisticated than Pegasus. While it also implements the iso-
latency policy, it provides a controller that manages both the network, the CPU power
utilization, and the cores/memory performance counters. As it uses online monitoring
and also offline profiling information, it is capable of identifying when shared resources
become saturated and are likely to cause service time violations; hence, the controller
is able to configure the appropriate isolation mechanism to proactively avoid that from
happening

Rubik is another DVFS approach, but without utilizing that processor-specific fea-
ture (RAPL). The kernel of the idea is a statistical model that utilizes a dynamically
collected service time distribution in order to handle the uncertainty from the compu-
tational needs of individual requests. It allows the distribution predicting which is the
lowest frequency that will not violate the imposed deadline. Each time a new task arrives,
a new prediction is made and frequency is changed. Since there’s an usual correlation
between frequency and energy consumption/service time, results can be good.

2.3.2 Hipster

Hipster utilizes a hybrid approach of Reinforcement Learning (RL), which consists of
a feedback-based controller that allocates tasks dynamically into heterogeneous cores
while selecting optimized DVFS parameters. The RL problem is formulated by a Markov
Decision Process, in which the algorithm is rewarded by a point if it’s correct and pun-
ished if wrong. Regarding the implementation, Hipster has two variants: HipsterIn, for
optimized energy efficiency of latency-critical only tasks, and HipsterCo, which allows
running latency-critical along with other jobs for better server resource management.

Hipster uses a Quality of Service (QoS) monitor that collects data regarding all exe-
cuted task set. This data allows the mapping decision of the thread to the processing core.
In order to operate Hipster, there are two phases: the learning phase and the exploita-
tion phase. In the learning phase, there’s a state machine with a feedback-control loop
and the actual state identifies the core configuration: the DVFS configurations and the
number/types of cores to be used. There’s a predefined order based on energy efficiency.

In its exploitation phase, Hipster maps the tasks to the core based on the reward
mechanism (HipsterIn or HipsterCo) and updates the lookup table. If the QoS guarantee
falls below the target deadline, Hipster goes automatically back to the learning phase.

2.3.3 Adaptative Slow2Fast

The Adaptative Slow to Fast (AS2F) algorithm aims to explore the heterogeneity
on a finer-grained manner in both DVFS and heterogeneous systems. Differently of
Rubik and Pegasus, AS2F uses task progress instead of prediction alongside competition
management in order to prioritize longer tasks. There are two components: offline and
online. The first component has a feedback-based control that computes the threshold
migration time based on the measured tail latency, the target migration time and the
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system load, while the online phase consists on thread mapping based on thresholds and
task progress.

2.3.4 Parties

Parties can be easily compared to Heracles. In a similar fashion, the scheduler consists
of a controller that monitors per-application tail latency, memory capacity and network
bandwidth usage, and uses that information to determine appropriate resource alloca-
tions, and enforcing them using isolation mechanisms for Core, Memory or Disk.

The controller samples every 500 ms and based on the results, those resources are
adjusted depending on each application Tail Latency slack. If one or more running
applications has its QoS about to be violated, Parties will assign more resources. However,
in the opposite case - if all applications are satisfying their target QoS - Parties will reduce
the available resource.





Chapter

3
FREQUENCY SCALING SOLUTION

This chapter introduces the main elements of our solution. To motivate our design,
we will first discuss in Section 3.1 the empirical observations found in our work. Our
frequency scaling policy is described in Section 3.2.

3.1 EMPIRICAL OBSERVATIONS

Our approach works by observing that individual requests can demand distinct CPU
processing time. Thus, the optimal frequency for improved energy usage can be ad-
justed to match the request demands, as we show in the following empirical observations.
The specific software and server configurations used in our experiments are described in
Section 4.1.

To understand the impact of the keyword size on the response time, we group queries
with 4 keywords or less as “light queries” (or low constraint environment) and the ones
ranging from 12 to 18 onward as “heavy queries” (or high constraint environment).

Observation 1. Given multiple search requests of different key lengths, running the
requests on a single CPU with the highest operating frequency will finish not later than
a request that ran with a lower CPU frequency.

This observation shows that the overall service time is influenced by the operating fre-
quencies. We can demonstrate this by running multiple requests at different frequencies.
In our case, we performed 3 runs of 5000 requests for each available frequency - there
was no distinction between keyword length. The results are shown in Figure 3.1. We
can see that the service time of the requests running at 2.6 GHz (the maximum available
frequency of the CPU) is the fastest. In particular, the difference in service time between
the frequencies of 1.0 GHz and 2.6 GHz is nearly three-fold.

Observation 2. Given two different types of requests considered “light” (4 keywords)
and “heavy” (12-19 keywords), the “heavy” requests will take longer to finish.

13
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Figure 3.1 Comparison between different frequencies for mixed queries.

This experiment shows that requests with more keywords require more processing
capacity than requests with fewer keywords. To show this, we fixed the keyword length
considering two different frequencies: 1.0 GHz and 2.6 GHz, the minimum and maximum
available in the processor. Figure 3.2 shows the results in which 2.6 GHz is always faster
than 1.0 GHz for both cases, but “heavy” requests are significantly slower than the “light”
ones.

Figure 3.2 Comparison between different frequencies for different keyword length.

In Elasticsearch, each request is scored to bring the most relevant search results.
Scoring is the most compute-intensive phase that involves more processing operations for
requests with more keywords as the number of results to score is usually higher.

Observation 3. Heavy requests tend to consume more energy than light requests when
running at the same frequency.
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While it is a common sense that higher frequencies consume more energy, we need to
check if there’s any meaningful difference in energy consumption between the light and
heavy requests. The results can be seen in Figure 3.3.

Figure 3.3 Energy consumption given processor frequency and query size.

We observe that heavy requests consume more energy than their light counterpart at
the same frequency. Heavy requests makes the energy consumption over fourfold higher
at the 2.6 GHz frequency. It is interesting to notice that energy consumption at 1.0
GHz is higher than 2.6 GHz. Reducing only the clock speed does not reduce the energy
consumption, once doing the same work the system must run longer (Weiser et al. 1994).

Observation 4. The best energy efficiency for light requests is not necessarily the lowest
frequency.

We show this by running only light requests while varying the available frequencies.
Figure 3.4 shows that the energy consumption starts following a downward trend and
later an upward one. The inflection point - at 2.0 GHz - is the most relevant here, as it
has the lowest energy consumption for this case while also providing similar service time
results when compared to its neighbors (1.7 and 2.3 GHz) - hence, it’s 2.0 that has the
best Millions of Instructions per Joule (MIPJ) here.

3.2 THE THREE STATES POLICY

From our empirical observations, we noticed that running most queries at 2.0 GHz is the
most efficient way. During a query search, some queries may need to be accelerated and
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Figure 3.4 Energy consumption per processor for light requests.

others don’t - because the ones that need to be accelerated would miss the deadline if at
the 2.0 GHz frequency, while the latter ones wouldn’t.

Hence, the basis of this algorithm involves tracking threads to check their status
and take action based on this returned state. The status we are checking will answer
the following: ”is it executing the hot function?” and ”for how long has it been at hot
function?”. As it will be shown below, the name ”three states policy” is because the
search function - which is largely responsible for the service time - also dominates the
CPU usage when Elasticsearch is running, and we’ll divide the application states into
”idle”, ”low/mid intensity” and ”heavy intensity”.

3.2.1 Profiling Elasticsearch

To build our scheduling policy, we first need to discover the application hot function.
This is done through the usage of a profiler during the application execution.

This work used two profilers: the YourKit Java Profile1 and Linux’s default tool, perf.
After Wikipedia dataset was already indexed by Elasticsearch, we started running only
search queries. Both profilers showed that the function:

org.elasticsearch.search.query.QueryPhase.execute dominated about 70% of
the software execution, while having a reasonable number of calls in comparison to its
later branches - which were mainly derived from the Apache Lucene engine. A call graph
generated with the java-callgraph tool from YourKit is shown in Figure 3.5.

Although the hot function was chosen with some degree of subjectivity, since no

1YourKit Java Profiler: https://www.yourkit.com
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quantitative metric for hot functions could be established, later results have shown that
using this function as the choice for Three States Policy has compatible results with the
baselines established in Chapter 4.

3.2.2 Frequency Scaling Algorithm

This section is an overview of how our frequency scaling works at a high-level. Imple-
mentation details can be seen at the next section below.

Our frequency scaling governor is mostly reactive to function call events. Every entry
or exit to/from the hot function generates an event that is pushed into the main queue.
The frequency governor sleeps for a certain time (empirical tests have shown that 50
milliseconds is a reasonable time) and, after awaking, it consumes all the events at the
queue and checks it own structure for possible changes.

Each event has its own information: the thread id, core id, the clock time, and if it’s
entering or leaving the hot function. When consuming each event, the frequency governor
modifies its own auxiliary structure in order to keep track of the thread status. This
auxiliary structure exists because it’s necessary to keep track of the difference between
the entry time and the elapsed time - if it’s bigger than a certain threshold, the thread is
promoted to an increased frequency; if it’s not, it’s probably a small request that would
reach the deadline nonetheless, and we keep it at the optimal MIPJ frequency that is set
at the entry event. The checking of difference for elapsed time is done only after all the
new events are consumed. If it’s necessary to change frequency, either to the minimum
or to maximum, the position of the core at another auxiliary ordered array is altered -
either to 0, 1, or 2 - and a frequency change function is called.

This frequency change function simply checks if this array is 0, 1, or 2. 0 means that
it is not on the hot function, thus decreasing the frequency. 1 means that the frequency
should be increased to 2.0 GHz. 2 means that the frequency should be increased again,
this time to 2.6 GHz. After any change in frequency, the function itself keeps an auxiliary
structure to ensure that it doesn’t change again until the frequency governor asks for it.
Table 3.1 shows the composition of each structure while Algorithms 3.1 and 3.2 show
the pseudo-language for execution. Uppercase denotes the full structure, while lowercase
letters denote the elements of this structure. For readability purposes, we used the terms
INTENSITY LOW, INTENSITY MID and INTENSITY HIGH instead of 0, 1 and 2.

3.2.3 Implementation Details

Our implementation was done in a JVMTI agent in two parts. First, we implemented an
event generator for capturing function entry and exit. Second, we designed and imple-
mented the frequency governor that consumes those events. Figures 3.6 and 3.7 provides,
accordingly, an overview of each part.

Whenever a request arrives at Elasticsearch, the request is split among the shards (in
our case, five shards). Elasticsearch uses five threads to process that particular request
across the shards. At a certain point, each thread will enter the hot function, where a
signal will be sent to the JVMTI Agent (or Event Generator) whenever it reaches either
the entry or exit point. After all the shards’ results are scored and ranked jointly, the
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Algorithm 1: Frequency Governor Algorithm

Input: EventQueue (EQ) consisting of entry/exit events; Period (p) which the
scheduler sleeps after its execution and threshold for frequency change.

Data: FuncState describes the status of the hot function per core; CoreChanges
is a 2-D matrix to keep track of changes made to core allocations

1 foreach event q in EQ do
2 if q event is already recorded in FuncState then

/* Register the entry and the timestamp */

3 if q is function ENTRY event then
4 Set FuncState[q.coreId].status as IN HOT FUNCTION;
5 Set FuncState[q.coreId].timestamp as q.timestamp;

6 end
7 if q is function LEAVE event then
8 Set FuncState[q.coreId].status = NOT IN HOT FUNCTION;
9 end

10 end
11 else

/* q is not registered in FuncState. Record it for the first

time. First event of a thread is always an entry at hot

function. */

12 Set FuncState[q.coreId].timestamp as q.timestamp;
13 Set FuncState[q.coreId].status as IN HOT FUNCTION;

14 end

15 end
16 Set t as current system timestamp;

/* No event in Queue anymore. Iterate over FuncState. */

17 foreach element s in FuncState array do
/* s is at hot function */

18 if s.status == IN HOT FUNCTION then
19 set CoreChanges[s.coreId][0] as INTENSITY MID;
20 if t - s.timestamp >= threshold then
21 set s.status as OVER THRESHOLD;
22 set CoreChanges[s.coreId][0] as INTENSITY HIGH;

23 end

24 end
/* Not in hot function */

25 if s.status == NOT IN HOT FUNCTION then
26 set CoreChanges[s.coreId][0] as INTENSITY LOW;
27 end

28 end
29 Call frequency change module;
30 Sleep for p interval;
31 Repeat the algorithm from the beginning;
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Algorithm 2: Algorithm for Frequency Change

Input: Bi-dimensional Matrix (CoreChanges) where the first position’s index is
the core number and the the second position indicates whether or not
the change was persisted. The matrix’s content records the frequency
level the core is running at.

1 for every element e of CoreChanges do
/* If the first and second elements are equal, you don’t need to

change frequencies */

2 if CoreChanges[e][0] != from CoreChanges[e][1] then
3 if CoreChanges[e][0] == INTENSITY LOW then
4 change frequency to 1.0GHz;
5 end
6 if CoreChanges[e][0] == INTENSITY MID then
7 change frequency to 2.0GHz;
8 end
9 if CoreChanges[e][0] == INTENSITY HIGH then

10 change frequency to 2.6GHz;
11 end

/* Persist frequency change */

12 Set CoreChanges[e][1] as CoreChanges[e][0];

13 end

14 end

Structure Elements Description

EventQueue
core id

The physical core identifier in which the element is
assigned, ranging from 0 to 23.

timestamp Timestamp of the entry or leave event.
is hotpath Can assume two values. 1 if entry event and 0 if leave event.

FuncState
core id

The physical core identifier in which the element
is assigned, ranging from 0 to 23.

timestamp Timestamp of the entry or leave event.

status

Enum. NOT IN HOT FUNCTION if not in hot function,
IN HOT FUNCTION if in hot function, and
OVER THRESHOLD if it’s at hot function and above the threshold.
Values outside this range are for avoiding reprocessing.

CoreChanges Matrix

Matrix ranging from 0 to 23 on the first position’s index.
On the second position, there are two elements per index for
comparison in order to avoid rewriting frequencies into files.
E.g.: If the corechanges[0][0] is equal to INTENSITY MID and
corechanges[0][1] is INTENSITY LOW, there’ll be a frequency
change as they are different - else, do nothing.

Table 3.1 Description of the structures used in our implementation
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Figure 3.6 Overview of the Proposed Governor. Entry and exit moments are intercepted at
execution time by the JVMTI agent.

request returns to the user.

The JVMTI Agent runs a separate process from Elasticsearch in the Java Virtual
Machine. The event generator is responsible for receiving the entry or exit events signals
and pushes them into a global queue. The scheduler, which is responsible for increasing
or decreasing the speed of the functions, is the only point-of-contact with the cpufreq
interface on Linux. Each time it is triggered, it executes the Algorithms 1 and 2 (Section
3.2.2), consuming the events located in the queue.

3.2.4 Design Options

There were two designs attempts for the event generator: a sampler and an event-based
one. The idea of the former was essentially sampling all the search threads at every defined
time-space and checking if they were at the designated hot function or not. If the thread
was at a hot function, our heuristic would be executed to increase the running core to
the maximum available frequency. For this, the JVM provides an internal function called
AsyncGetCallTrace which allows the asynchronous collection of stack points from Java
and works within a signal handler. However, our experiments showed that although the
service time overhead was minimal, the AsyncGetCallTrace calls impacted the system’s
energy consumption, so we discarded this approach.

A similar situation was reported by the Java Native Interface Framework (JNIF)
(Mastrangelo and Hauswirth 2014) tool for sampling. While the service time overhead
was also minimal, the energy consumption was impacted as much as AsyncGetCallTrace.
In the end, we opted for a mix of using JNIF and the common Java Native Interface
code for the event generator. In this model, JNIF is responsible for building an entire
stack of thread information. While initializing the agent, we use the SIGBLOCK function
for threads that are not considered in “search pool”. Thus, we only collect information
from the threads that aren’t blocked to receive signals.

The search threads, which are the responsible for running the compute-intensive hot
function, have their affinities set for a single core. We mapped 12 search threads to the 12
available cores; that is, 1 search thread per core. The JNIF tool allowed us to instrument
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Figure 3.7 Overview of the JVMTI Agent. The Event Generator sends all the Entry/Exit
Events to the Queue, which are stored there until consumed by the Scheduler - which is also
responsible for the processor frequency change.

the identified hot function so as to execute our frequency scaling algorithm whenever
there’s a hot function enter or leave event. At each event, a line is added at a general
queue with information regarding thread id, core id, and if the thread entered or left the
hot function. At each designated time, the frequency governor reads this queue and takes
action based on this, as seen in the previous section.

For readability purposes, our frequency governor uses a vector of structs for storing and
processing the events. It uses a monotonic clock for time comparison between the arrival
time and elapsed time. Frequency increases or decreases are performed through changes
at the CPUFreq files, which are open when the agent initiates and are closed when the
agent shutdowns. This was done to avoid the IO overhead of frequently opening/closing
files.
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4
EVALUATION

This section shows and discusses the experiments that were carried out using the im-
plementation described in Section 3.2.3. We call our implementation “Hurry-Up”. We
experiment with Hurry-up using the Three States Policy running on the server system.
We also present sensitivity analysis in a more high-stress environment.

To establish baselines as a comparison point, we show how the Ondemand governor
performs against the Powersave and the Performance governors. All response time results
in this chapter refer to the 99-percentile of response time - which is essentially the tail
latency of the service time. For comparison purposes, we’ll establish this 99-percentile
deadline as one second, and use the Ondemand in-kernel governor as the baseline. In the
following figures, the imposed deadline is always shown as a black dotted line, and the
discussed service time is always within the 99-percentile.

Next, we describe the hardware and software stack used in our experiments.

4.1 EXPERIMENTAL SETUP

We conducted our experiments on a “baremetal” server instance, provided by the Chameleon
Cloud initiative 1 service, with the following specification:

CPU Intel Xeon Gold 6126
RAM 196 GB
SSD 220 GB

Table 4.1 Server configuration used in our experiments.

We explore a CPU that is DVFS-capable, allowing the operating frequency to be
changed on a per-core basis. The operating frequency and voltage can range between 1.0

1Chamelon Cloud: https://www.chameleoncloud.org, a service provided by the National Science
Foundation (USA) which allows the creation of baremetal instances, and specifications like processor
and network can be choosen.

23
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and 2.6 GHz for each individual core. Moreover, the CPU has 24 physical cores equally
divided between two sockets. Intel’s Hyperthreading was turned off, so we only consider
the physical core count. We used socket 0 for the server-side applications and socket
1 for the load generator. The energy measurement was done through Intel’s Running
Average Power Limit (RAPL) interface2. We measure the energy consumption counter
at the beginning of the experiment and again at the end; the difference between those
two values is considered the energy consumed for that particular experiment.

The software stack is listed below.

Ubuntu 19.10
Linux Kernel 5.3.0-51
dElasticsearch 6.5.4

Table 4.2 The software stack used.

Instead of using Intel’s PState driver, we used the Advanced Configuration and Power
Interface (ACPI) driver since it allowed a more effective control of frequencies through its
userspace governor. All the frequencies changes were done via the CPUFreq driver. To
change the core frequency, we simply change the frequency values at the corresponding
files the driver provided. The CPUFreq-info tool estimates that the maximum transition
latency between frequencies is 10 microseconds.

Java 11 was the choice because it was the minimum recommended by Gradle3 to
compile Elasticsearch. In addition, although the most recent version of Elasticsearch is
7.3, the choice for the version 6.5.4 was because the latter one supports a plugin used for
indexing the Wikipedia dump; once there are APIs changes between each major version,
the plugin wouldn’t work with the newest Elasticsearch version. By indexing Wikipedia,
Elasticsearch has 5 shards of 8 gigabytes each.

There is a myriad of ways to configure Elasticsearch. There are several Wikipedia
dumps to choose from. Figure 4.1 shows that the configuration of 5 shards of 8 GB each
is better than 1 shard with 40 GB or 5 shards of 15 GB each. This is due because, at
each request, Elasticsearch spans 1 thread per virtual shard. The 5x8GB gets the benefit
of parallel processing over the 1x40GB, while the 5x15GB configuration is simply too big.
Figure 4.1 shows a benchmark comparison.

After its initialization, Elasticsearch spans over 70 java threads. While there’s a fixed
formula for the number of search threads, we configured that in such a way that it creates
12 threads, one thread per core. This is because we wanted to simplify our design and
to avoid possible core-sharing interference between search threads, which happens to be
the most CPU-intensive when executing at the production-level.

In order to properly measure energy, the entire Elasticsearch application was initial-
ized with the numactl4, which made all threads with affinity to the socket 0 (even cores).
After running the first query, the jstack dump reveals which threads are the search threads
- and we set their affinity to an even core each.

2RAPL Power Meter: https://01.org/rapl-power-meter
3Gradle Build Tool: 〈https://gradle.org〉
4Documentation available: https://linux.die.net/man/8/numactl
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Figure 4.1 Comparison between different Elasticsearch shards configurations.

In order to mitigate network transmission issues in our experiments, we preferred
hosting both server and client locally. In order to draw a boundary line between the server
and the client in the same machine, the client had its entire thread affinities set to socket
1 (odd cores). The client is responsible to generate search requests with randomized
keywords, which ranges between 1 to 18 keywords. The client is also responsible to
measure the response time.

For the client application, we used a modified version of FABAN workload genera-
tor from Cloudsuite(Ferdman et al. 2012). The Web search benchmark from Cloudsuite
was originally built for Apache SOLR, another Lucene-based search platform. So, we
modified FABAN (the load generator) to issue search requests in the format specified
by Elasticsearch. We use the same algorithm from Cloudsuite to generate the length of
keywords, a Ziphian distribution. In practice, this means that there will be more requests
of small sizes than larger sizes.

4.2 BASELINE

As explained in Chapter 2.1, the performance governor runs at the highest frequency, the
powersave governor uses the lowest available frequency, and the Ondemand monitors the
CPU usage in order to choose its operational frequency. A basic question here is: how
do they perform against a search workload? Figure 4.2 answers this.

In a nutshell, the powersave governor doesn’t meet the deadlines for the high keyword
input and even at the low keyword input it is pretty much at the point of the deadline
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with its own standard deviation. Moreover, powersave consumes more energy than the
performance governor itself at the low keyword input - the dichotomy that if you run
much slower, you may end up running for more time and this might use more energy,
as already pointed out by (Weiser et al. 1994). In the high keyword environment, the
tradeoff between service time and energy consumption is more effective for the powersave,
hence why it does not consume more energy than performance.

The performance governor performs relatively well but falls behind Ondemand on
energy consumption. Since both governors are able to reach the imposed deadline, the
Ondemand was chosen as the baseline for rest of this chapter because of its energy
efficiency benefits.

Figure 4.2 Comparison between Linux kernel governors running the search workload

4.3 BASIC EXPERIMENT

The basic experiment is a direct implementation of the algorithm described in Chapter
3. There are two parameters for our frequency governor, known as ”threshold” - when
the core frequency needs to move from 2.0 GHz (mid level) to 2.6 GHz (highest level) -
and the sampling time. For initial experimental purposes, we set those parameters to 350
ms and 10 ms respectively. These values came from a previous iterations of Hurry-up we
did in another environment.

The load environment consisted of 20 minutes runs with low, mixed, and high keyword
inputs. The FABAN workload generator was used to create 4 clients with each client
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issuing, on average, one request per second. The idea is to analyze the service time
behavior of each governor policy considering a single request at a time. For measuring the
standard deviation, we performed three runs for each keyword length and governor policy
(each run consists of 20 minutes of continuous load generation). Note that the ”low” key
length is fixed at 4 in order to generate minimum stress at the system, while the ”mix”
key length goes between 1 to 16 (following default Faban’s Ziphian distribution). The
result is shown in Figure 4.3.

Figure 4.3 Initial implementation of Hurry-up vs the Ondemand in-kernel governor.

While both of them are able to reach the imposed deadline, Hurry-up has energy-
saving that amounts up to 6% in comparison to the Ondemand governor - mainly on
high-load keywords. In order to analyze why this effect happens, checking image 4.4 is
necessary. First, both Ondemand and Hurry-up concentrate most of their idle time at
1.0 GHz in order to minimize energy consumption when inoperative - this happens for
all keywords and has its effect accentuated at the low and mixed keywords section.

When the CPU load is too high, either given a request with a large keyword length or
with a higher CPU need, the Ondemand governor starts concentrating its core frequencies
at 2.6 GHz, which is not optimal in most of the cases as not all requests would require
this speed. The longer it runs or the higher the load, the difference between Hurry-up
and Ondemand becomes more prominent, as it will be seen later in this chapter.
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4.4 TWO STATES VS THREE STATES POLICY

A first comparison point with the proposed “Three States Policy” would be compar-
ing against a “Two States” one, where the frequency simply goes up (to highest level)
whenever the thread access the hot function, and there’s not a threshold.

We evaluated the Two States policy using 2.0 GHz and 2.6 GHz as maximum available
frequency. We ran each policy for 10 minutes against low and high key length inputs.
The results can be seen in Figure 4.5. It is worth noticing that the standard deviation,
although pretty small, is present in the image.

Although the Two States Policy with 2.0 GHz shows the greater decrease in energy
consumption, its service time violates the imposed deadline of 1 second in about 10% of
the service time, rendering this particular policy not useful for practical settings. The
2.6 GHz meets the deadline in all cases but has its energy consumption 7% higher than
the Three States policy.

Since the energy consumption of the Three States policy is the best among the policies
that don’t violate the deadline, it is the most suitable choice for this problem.

Figure 4.5 Comparison of Two-States vs Three-States Policy.

Although we did not empirically test this fact, we believe that, with a large spectrum
of available frequencies and with more request classes, a granularity with 4-states or
beyond may produce better results.
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4.5 OVERHEAD ANALYSIS

Another type of analysis is the actual overhead given by the governor code embedded
into the Elasticsearch code. For measuring this, we used the same Hurry-up code without
any frequency change (which means that the scheduler will run at a fixed frequency) and
compared against a fixed frequency run without the scheduler. Figure 4.6 illustrates the
overhead level.

Figure 4.6 Overhead Analysis of the Hurry-up Scheduler

The idea behind running only low queries consisted of reducing eventual stress that
might be caused by high-load queries, thus amplifying the signal-to-noise ratio. In sum,
there’s a moderate to severe overhead with the agent introduction. For service time, the
overhead averages to about 0.1 seconds in absolute term, but amounts to about 10% at
1.0 GHz and 40% at 2.6 GHz. This is less problematic on the energy consumption side,
where the energetic overhead from the scheduler is 5% for 1.0 GHz and 11% for the other
case.

Our hypothesis for such overhead is because the agent interrupts the search thread
for a brief moment in order to collect data regarding the entry or exit events from the hot
function, and also the fact that the agent itself generates one more thread that performs
operations every certain time. The latter effects can be easily seen at Section 4.7, where
simply increasing the awakeness parameter means a lower energetic consumption.
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4.6 C-STATES ANALYSIS

Analyzing the processor’s C-States is necessary to understand the behavior of both Onde-
mand governor and the Hurry-up scheduler. Refer to Table 2.2 for an explanation about
the four available C-States at the Intel Xeon Gold 6182 processors.

The C-States can be controlled through the /sys/fs interface and it has a per-core per-
state granularity. First, we compare how Hurry-up and the Ondemand governor performs
in service time and energetic consumption when only the C0 state is available and when
all states are available. For this particular experiment, each run lasted 10 minutes in the
same environment as the previous ones. Figure 4.7 illustrates the results for this.

Figure 4.7 C-States Analysis of the Service Time and Energetic Consumption

While we can’t make a definitive correlation between the C-states and the service
time, it is easily seen that the energetic consumption for Only-C0 is higher than when
executing in ’All States’ mode. This is because the consumption when the processor is at
sleep state is lower than running at the lowest available frequency of 1.0 GHz. Figure 4.8
shows the time spent (in clock-tick units) per state when running with all states enabled.

For low keywords, it is clear that both Hurry-up and Ondemand governors spend a lot
of time at the C6 state, meaning that they’re most of the idle time at the lowest energetic
level. The difference in consumption is theorized by the fact that Hurry-up executes low
queries at the optimal level of 2.0 GHz, while Ondemand uses 2.6 GHz. On a very long
run, a higher difference in consumption may be seen.

For higher keywords, it is seen that Hurry-up spends more time on activity (C0
State), but at a lower frequency. This lower frequency is optimal, as seen in Chapter 3,
and guarantees a lower energy consumption even at the cost of delayed service time.



32 EVALUATION

Figure 4.8 Calls for each C-State per Keyword length
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4.7 SENSITIVITY ANALYSIS

The Hurry-up Scheduler allows us to choose two parameters: the awakeness - which is
responsible for the sampling time of the scheduler - and the threshold - the time when
we consider the request as a heavy request and we need to change frequencies.

For testing the threshold, we fixed the awakeness time at 10 ms and varied the thresh-
old for the values of 150 ms, 300 ms, 450 ms, and 600 ms. Figure 4.9 shows the results
for this experiment. In a nutshell, energy consumption tends to decrease as the threshold
increases - and the service time goes on the opposite way. While we don’t care about the
threshold for low queries - since most of the queries won’t even need going to the highest
frequency -, the same doesn’t apply to higher ones.

Figure 4.9 Sensitivity Analysis of the Threshold at Hurry-up

Higher queries mean that the threshold will be an important parameter on how much
time they will run at either 2.0 or 2.6 GHz. As the threshold goes up, the higher the
time at 2.0 - thus a decrease in energy consumption as it’s already expected. The chosen
parameter in this case was 450 ms. Although the 600 ms threshold might appear to
be the best, we believe that it can be an issue when the load consists of only very-high
queries - thus, the service time would be a lot more affected.

For the awakeness parameter, we fixed the threshold at 300 milliseconds and tried
values of 5, 10, 20, 50, and 100 ms. Results can be seen in Figure 4.10. Overall, there’s
a small service time overhead when using very small or very large values. In the end, we
chose 50 ms for the optimal awakeness parameter.
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Figure 4.10 Sensitivity Analysis of the Threshold at Hurry-up

4.8 FINAL RESULTS

With the sensitivity analysis done, we re-calibrated the Hurry-up Scheduler with the 450
ms for threshold and 50 ms for sleep time. We gave 20-minutes runs for each experiment,
with the same characteristics as described in Chapter 4.3. Results can be seen in Figure
4.11. While both heuristics meet the deadline, Hurry-up has the power consumption
about 17% less than the one by Ondemand at the high key length. The Zipfian distri-
bution, used by FABAN and CloudSuite, favors a low key length, between 1 to 6, hence
why the ”Mix” has a lower service time than the ”Low” (which is fixed at 4).

While small, the difference between Ondemand and Hurry-up in energy consumption
favors Hurry-up in about 2%. To check if this rate will maintain, we increased the request-
per-second rate in three-fold for both schedulers. Note that, at the high key length, both
schedulers lose their deadlines, hence why they’re not shown here. Figure 4.12 illustrates
the obtained results.

Both key lengths, while meeting their deadlines, had its difference in energy consump-
tion amplified. In particular, the ”Mix” version had its difference increased to 22% while
the ”Low” key length, 28%! This happens because, due to the CPU stress, Ondemand
stays most of the time at the highest available frequency - 2.6 GHz - and while it’s the
best for service time, it’s not the optimal for energy consumption. Since Hurry-up is
able to answer all requests within the deadline at the optimal configuration, it saves a lot
more energy.

As a note, for the ”Mix” key lengths, Hurry-up is still capable to answer within the
deadline with a four-fold base load, although most of the answers will fall just within
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Figure 4.11 Comparison of Hurry-up and Ondemand schedulers at Base Load
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Figure 4.12 Comparison of Hurry-up and Ondemand schedulers at 3x Base Load
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the imposed deadline. Above that load, modifications on the parameters described by
Chapter 4.7 will be necessary since there will be the need to improve service time as well.
Some suggestions to improve the scheduler can be seen at Chapter 5.





Chapter

5
CONCLUSIONS

The present work has shown that it is possible to optimize the energy consumption using
DVFS while maintaining a similar level of Quality of Service (QoS) compared to existing
techniques. We analyzed how search requests behave and which frequency is optimal for
each request class. We developed an approach based on the assumption that each request
class deserved its own optimal frequency and implemented it for Elasticsearch/Lucene.
This scheduler was compared against the Ondemand governor, which is default on Linux,
and obtained energy-savings up to 30%.

A summary of our findings:

• In search workloads, we observe varying service times and, thus, an energy usage
difference between light and heavy requests.

• The optimal frequency for running lighter and mid requests was found to be a
mid point (2.0 GHz in an Intel processor), as it can provide the best Millions of
Instructions per Joule (MIPJ).

• As for heavy requests, since they’re prominent to lose their deadline, it’s necessary
to run them at the highest available frequency - 2.6 GHz.

• If the processor is not able to return to the C6 state for idling, the lowest energy
consumption will be at 1.0 GHz.

• Implementing the Three States Policy, based on the empirical observations from
above, for search workloads, our approach can save up to 30% on energy consump-
tion against the Ondemand governor on Linux.

5.1 SUGGESTIONS FOR FUTURE WORKS

There are three suggestions - all of them are independent from each other - to improve
this work.

39
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1. Advanced Profiling: There is a need to establish a more methodical way - either
through metrics or an algorithm - to define the hot function. This work used only
one very-well defined hot function because the main purpose of Elasticsearch is to
search - hence it’s obvious why the hot-function would be search-related. Some
applications may behave differently or have different purposes and have two or
more non-correlated hot functions, and finding them automatically will make the
instrumentation process easier.

2. Multi-hot functions: While we used only the Search hot function for Elastic-
search in this work, there might be others - such as a hot function for Indexing
or even managing multiple shards across a distributed system. For an application
to perform even better, those non-main hot functions might have to be taken in
account as well.

3. Multi-states: The present work uses only two types of loads: low/mid and high.
In some cases, there may be a necessity to define more types of loads, such as ultra-
low or even ultra-high - for this, more states can be useful to optimize the best
MIPJ metric for each situation.

4. Adaptive Threshold and Sampling Period: The patterns of keyword length
alongside the rate of queries per second that arrives at the cluster may not always be
constant. In this case, both the threshold and sampling parameters may be useful
for controlling how the scheduler reacts. A good example is that for very high loads
and a very high rate of queries per second, it may be in scheduler’s interest to
minimize the threshold value while using higher values of sampling period as there
will be the need to run constantly at higher frequencies to lower the total queue
time.
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Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines.
Second. [S.l.]: Morgan & Claypool Publishers, 2013. (Synthesis Lectures on Computer
Architecture).

Brin and Page 1998 BRIN, S.; PAGE, L. The anatomy of a large-scale hypertextual web
search engine. Comput. Netw. ISDN Syst., Elsevier Science Publishers B. V., Amsterdam,
The Netherlands, The Netherlands, v. 30, n. 1-7, p. 107–117, abr. 1998. ISSN 0169-7552.
Available from Internet: 〈http://dx.doi.org/10.1016/S0169-7552(98)00110-X〉.

Chen, Christina and Mart́ınez 2019 CHEN, S.; CHRISTINA, D.; MARTÍNEZ, J. Par-
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