PROGRAMA GEOLOGIA DO BRASIL Levantamento da Geodiversidade

# ATLAS PLUVIONETRICO DO BRASIL

EQUAÇÕES INTENSIDADE-DURAÇÃO-FREQUÊNCIA

Município: Porto Lucena/RS

Estação Pluviográfica: Porto Lucena

Código: 02755001 (ANA)





#### MINISTÉRIO DE MINAS E ENERGIA

#### Ministro de Estado

Bento Albuquerque

#### Secretário de Geologia, Mineração e Transformação Mineral

Alexandre Vidigal de Oliveira

#### SERVIÇO GEOLÓGICO DO BRASIL - CPRM

#### **DIRETORIA EXECUTIVA**

#### **Diretor Presidente**

Esteves Pedro Colnago

#### Diretora de Hidrologia e Gestão Territorial

Alice Silva de Castilho

#### Diretor de Geologia e Recursos Minerais

Marcio José Remédio

#### Diretor de Infraestrutura Geocientífica

Paulo Afonso Romano

#### Diretor de Administração e Finanças

Cassiano de Souza Alves

#### **COORDENAÇÃO TÉCNICA**

#### Chefe do Departamento de Hidrologia

Frederico Cláudio Peixinho

#### Chefe da Divisão de Hidrologia Aplicada

Adriana Dantas Medeiros

Achiles Monteiro (In Memoriam)

#### Chefe do Departamento de Gestão Territorial

Maria Adelaide Mansini Maia

#### Chefe da Divisão de Geologia Aplicada

Diogo Rodrigues Andrade da Silva

#### Coordenação Executiva do DEHID - Projeto Atlas Pluviométrico

Eber José de Andrade Pinto

#### Coordenação dos Sistemas de Alerta Hidrológico

Artur Jose Soares Matos

#### SUPERINTENDÊNCIA REGIONAL DE PORTO ALEGRE

#### Superintendente

Lucy Takehara Chemale

#### Gerência de Hidrologia e Gestão Territorial

Franco Turco Buffon

#### Gerência de Geologia e Recursos Minerais

Carla Klein

#### Gerência de Infraestrutura Geocientífica

Raquel barros Binotto

#### Gerência de Administração e Finanças

Alexandre Trevisan Chagas

## MINISTÉRIO DE MINAS E ENERGIA SECRETARIA DE GEOLOGIA, MINERAÇÃO E TRANSFORMAÇÃO MINERAL SERVIÇO GEOLÓGICO DO BRASIL – CPRM

DIRETORIA DE HIDROLOGIA E GESTÃO TERRITORIAL

PROGRAMA GEOLOGIA DO BRASIL Levantamento da Geodiversidade

# ATLAS PLUVIOMÉTRICO DO BRASIL

EQUAÇÕES INTENSIDADE-DURAÇÃO-FREQUÊNCIA

Estação Pluviográfica: Porto Lucena

**Código:** 02755001 (ANA) **Município:** Porto Lucena/RS

#### **AUTORES**

Adriana Burin Weschenfelder Karine Pickbrenner Eber José de Andrade Pinto



Porto Alegre 2020

#### **REALIZAÇÃO**

Superintendência de Porto Alegre

#### **AUTORES**

Adriana Burin Weschenfelder Karine Pickbrenner Eber José de Andrade Pinto

#### COORDENADORES REGIONAIS DO PROJETO ATLAS PLUVIOMÉTRICO

José Alexandre Moreira Farias - REFO (In Memoriam) Karine Pickbrenner - SUREG/PA

#### **EQUIPE EXECUTORA**

Adriana Burin Weschenfelder - SUREG/PA Adriano da Silva Santos - SUREG/RE Caluan Rodrigues Capozzoli - SUREG/SP Catharina dos Prazeres Campos de Farias - SUREG/BE Jean Ricardo da Silva Nascimento - RETE Luana Késsia Lucas Alves Martins - SUREG/BH Osvalcélio Mercês Furtunato - SUREG/SA

#### SISTEMA DE INFORMAÇÕES GEOGRÁFICAS E MAPA

Ivete Souza do Nascimento - SUREG/BH

#### **APOIO TÉCNICO**

Maximiliano Paschoaloti Messa - SUREG/PA

#### PROJETO GRÁFICO/EDITORAÇÃO

#### Capa (DIEDIG)

Juliana Colussi

#### Miolo (DIEDIG)

Agmar Alves Lopes Juliana Colussi

#### Diagramação

Maiza Moreira Ribeiro Martarole - REPO Alessandra Luiza Rahel (Revisão - SUREG/PA)

#### Referências

Ana Lúcia Borges Fortes Coelho (Organização e Formatação)

#### Serviço Geológico do Brasil - CPRM

www.cprm.gov.br seus@cprm.gov.br

Dados Internacionais de Catalogação-na-Publicação (CIP)

W511

Weschenfelder, Adriana Burin

Atlas Pluviométrico do Brasil: Equações Intensidade-Duração-Frequência: Município Porto Lucena/RS / Adriana Burin Weschenfelder; Karine Pickbrenner; Eber José de Andrade Pinto. – Porto Alegre: CPRM, 2020.

1 recurso eletrônico: PDF

Programa Geologia do Brasil Levantamento da Geodiversidade ISBN 978-65-5664-040-2

1. Hidrologia. 2. Pluviometria - Brasil. 3. Equações IDF I. Pickbrenner, Karine. II. Pinto, Eber José de Andrade III. Título

CDD 551.570981

Ficha catalográfica elaborada pela bibliotecária Ana Lúcia Borges Fortes Coelho – CRB10 - 840

Direitos desta edição: Serviço Geológico do Brasil – CPRM Permitida a reprodução desta publicação desde que mencionada a fonte.

# **APRESENTAÇÃO**

projeto Atlas Pluviométrico é uma ação dentro do programa de Levantamentos da Geodiversidade que tem por objetivo reunir, consolidar e organizar as informações sobre chuvas obtidas na operação da rede hidrometeorológica nacional.

Dentre os vários objetivos do projeto Atlas Pluviométrico, destaca-se, a definição das relações intensidade-duração-frequência (IDF). Essas relações serão estabelecidas para os pontos da rede hidrometeorológica nacional que dispõe de registros contínuos de chuva, ou seja, estações equipadas com pluviógrafos ou estações automáticas.

Entretanto, em localidades nas quais existem somente pluviômetros, ou seja, não existem registros contínuos das precipitações, obtidos com pluviógrafos ou estações automáticas, as relações IDF serão estabelecidas a partir da desagregação das precipitações máximas diárias.

As relações IDF são importantíssimas na definição das intensidades de precipitação associadas a uma frequência de ocorrência, as quais serão utilizadas no dimensionamento de diversas estruturas de drenagem pluvial ou de aproveitamento dos recursos hídricos. Também podem ser utilizadas de forma inversa, ou seja, estimar a frequência de um evento de precipitação ocorrido, definindo se o evento foi raro ou ordinário.

Na definição das relações IDF foram priorizados os municípios onde serão mapeadas, pelo Serviço Geológico do Brasil - CPRM, as áreas suscetíveis a movimentos de massa e enchentes.

Este estudo apresenta a equação IDF estabelecida para o município de Porto Lucena/RS, onde foram utilizados os registros contínuos de precipitação da estação pluviográfica Porto Lucena, código 02755001 (ANA), localizada no mesmo município.

**Esteves Pedro Colnago** 

Diretor-Presidente

Alice Silva de Castilho

Diretora de Hidrologia e Gestão Territorial

# **RESUMO**

Este trabalho apresenta a equação Intensidade-Duração-Frequência (IDF) estabelecida para o município de Porto Lucena/RS. A série de dados utilizada no estudo foi elaborada a partir de registros contínuos de precipitação da estação pluviográfica Porto Lucena, código 02755001 (ANA), localizada no mesmo município. A metodologia para definição da equação utilizando séries de duração parcial está descrita em detalhes em Pinto (2013). A distribuição de frequência ajustada aos dados foi a Exponencial, com os parâmetros calculados pelo método dos momentos-L. As equações ajustadas para representar a família de curvas IDF podem ser aplicadas para durações entre 5min e 24h e são recomendadas para tempos de retorno até 75 anos. A aplicação da equação IDF elaborada para o município de Porto Lucena permite associar intensidades de precipitação, nas diferentes durações, a frequências de ocorrência, as quais serão utilizadas no dimensionamento de estruturas hidráulicas. Também pode ser utilizada de forma inversa, ou seja, estimar a frequência de um evento de precipitação ocorrido numa determinada duração, definindo se o evento foi raro ou ordinário, de acordo com a caracterização de chuva extrema local.

## **ABSTRACT**

This work presents the Intensity-Duration-Frequency (IDF) equation established to the city of Porto Lucena/RS. The data series used in the study was prepared from continuous precipitation records of the Porto Lucena rain station, code 02755001 (ANA), located in the same city. The methodology for defining the equation using partial duration series is described in detail in Pinto (2013). The frequency distribution adjusted to the data was Exponential, with the parameters calculated by the L-moment method. The equations fitted to represent the family of IDF curves can be applied for durations between 5min and 24h and are recommended for return period up to 75 years. The application of the IDF equation developed for the city of Porto Lucena allows the association of precipitation intensities, in different durations, with frequencies of occurrence, which will be used in the design of hydraulic structures. It can also be used in an inverse way, that is, to estimate the frequency of a precipitation event that occurred over a given duration, defining how unusual or ordinary the event was, according to the local extreme rain characterization.

# SUMÁRIO

| INTRODUÇAO                                                      |     |
|-----------------------------------------------------------------|-----|
| EQUAÇÃO                                                         | .7  |
| EXEMPLO DE APLICAÇÃO1                                           | 10  |
| REFERÊNCIAS1                                                    | 10  |
| ANEXO I                                                         |     |
| ANEXO II                                                        | 13  |
|                                                                 |     |
|                                                                 |     |
| LISTA DE FIGURAS                                                |     |
| Figura 01 - Localização do Município e da Estação Pluviográfica | . 7 |
| Figura 02 - Curvas intensidade-duração-frequência               | . 8 |
|                                                                 |     |
| LISTA DE TABELAS                                                |     |
| Tabela 01 - Intensidade da chuva em mm/h                        | 9   |
| Tahela 02 - Altura da chuya em mm                               | a   |

## **INTRODUÇÃO**

A equação definida pode ser utilizada no município de Porto Lucena/RS.

O município de Porto Lucena está localizado a 440 km de Porto Alegre, capital do estado e faz fronteira com os municípios de Porto Xavier, São Paulo das Missões, Campina das Missões, Candido Godoi, Santo Cristo, Porto Vera Cruz e com San Javier, na Argentina (separado pelo Rio Uruguai). O município possui uma área aproximada de 251 km² (Instituto Brasileiro de Geografia e Estatística - IBGE, 2019) e localiza-se a uma altitude de 131 metros em sua sede. A população de Porto Lucena, segundo IBGE (2010), é de 5.413 habitantes.

A estação Porto Lucena código 02755001 (ANA) está localizada na Latitude 27°51'16"S e Longitude 55°01'25"O, na sub-bacia 74, dos rios Uruguai, Várzea, Turvo e outros. A estação pluviográfica localiza-se no município de Porto Lucena. Foram utilizados 17 anos, distribuídos em intervalos entre 1998 a 2019. Os dados para definição da equação IDF foram obtidos a partir dos registros contínuos de precipitação, sendo a estação operada pelo Serviço Geológico do Brasil - CPRM, sob responsabilidade da Agência Nacional de Águas - ANA.

A Figura 01 apresenta a localização do município e da estação pluviográfica.

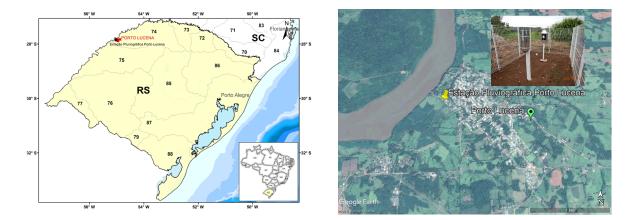



Figura 01 - Localização do Município e da Estação Pluviográfica (Fonte: Google Earth, 2020)

## **EQUAÇÃO**

A metodologia para definição da equação está descrita em detalhes em Pinto (2013). Na definição da equação Intensidade-Duração-Frequência da estação Porto Lucena, código 02755001 (ANA), foram utilizadas séries de duração parcial e os dados utilizados constam do Anexo I. A distribuição de frequência ajustada aos dados foi a Exponencial, com os parâmetros calculados pelo método dos momentos-L. O Anexo II apresenta as relações entre as alturas de diferentes durações calculadas com os resultados das análises de frequência.

A Figura 02 apresenta as curvas ajustadas.

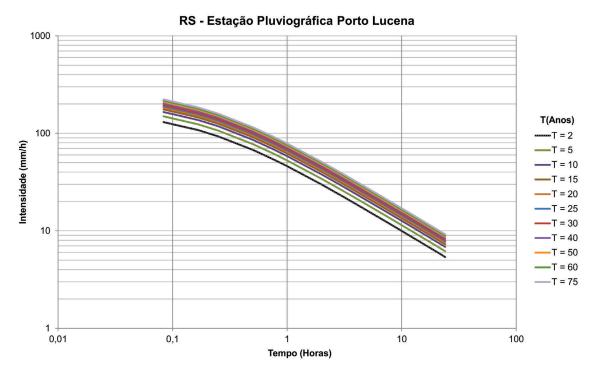



Figura 02 - Curvas intensidade-duração-frequência

As equações adotadas para representar a família de curvas da Figura 02 são do tipo:

$$i = \frac{aT^b}{(t+c)^d} \tag{01}$$

#### Onde:

*i* é a intensidade da chuva (mm/h)

Té o tempo de retorno (anos)

t é a duração da precipitação (minutos)

a, b, c, d são parâmetros da equação

No caso de Porto Lucena, para durações de 5 minutos a 24 horas, os parâmetros da equação são seguintes:

 $5min \le t \le 24h$ 

a = 872,0; b = 0,1478; c = 11,6 e d = 0,7127

$$i = \frac{872,0 \, T^{0,1478}}{(t+11,6)^{0,7127}} \tag{02}$$

As equações acima são válidas para tempos de retorno até 75 anos.

A Tabela 01 apresenta as intensidades, em mm/h, calculadas para várias durações e diferentes tempos de retorno. Enquanto que na Tabela 02 constam as respectivas alturas de chuva, em mm, para as mesmas durações e os mesmos tempos de retorno.

Tabela 01 - Intensidade da chuva em mm/h

| DURAÇÃO    |       |       |       | TE    | MPO DE | RETORNO | D, T (ANO | S)    |       |       |       |
|------------|-------|-------|-------|-------|--------|---------|-----------|-------|-------|-------|-------|
| DA CHÚVA   | 2     | 5     | 10    | 15    | 20     | 25      | 30        | 40    | 50    | 60    | 75    |
| 5 Minutos  | 130,4 | 149,4 | 165,5 | 175,7 | 183,3  | 189,5   | 194,7     | 203,1 | 209,9 | 215,7 | 222,9 |
| 10 Minutos | 108,1 | 123,8 | 137,2 | 145,6 | 152,0  | 157,1   | 161,4     | 168,4 | 174,0 | 178,8 | 184,8 |
| 15 Minutos | 93,2  | 106,7 | 118,3 | 125,6 | 131,0  | 135,4   | 139,1     | 145,1 | 150,0 | 154,1 | 159,3 |
| 20 Minutos | 82,4  | 94,4  | 104,6 | 111,0 | 115,9  | 119,8   | 123,0     | 128,4 | 132,7 | 136,3 | 140,9 |
| 30 Minutos | 67,8  | 77,6  | 86,0  | 91,3  | 95,3   | 98,4    | 101,1     | 105,5 | 109,1 | 112,0 | 115,8 |
| 45 Minutos | 54,4  | 62,3  | 69,0  | 73,3  | 76,5   | 79,0    | 81,2      | 84,7  | 87,6  | 90,0  | 93,0  |
| 1 HORA     | 46,0  | 52,7  | 58,4  | 62,0  | 64,7   | 66,9    | 68,7      | 71,7  | 74,1  | 76,1  | 78,6  |
| 2 HORAS    | 29,8  | 34,2  | 37,8  | 40,2  | 41,9   | 43,3    | 44,5      | 46,4  | 48,0  | 49,3  | 51,0  |
| 3 HORAS    | 22,8  | 26,1  | 29,0  | 30,7  | 32,1   | 33,1    | 34,1      | 35,5  | 36,7  | 37,7  | 39,0  |
| 4 HORAS    | 18,8  | 21,5  | 23,8  | 25,3  | 26,4   | 27,3    | 28,0      | 29,3  | 30,2  | 31,1  | 32,1  |
| 5 HORAS    | 16,1  | 18,5  | 20,5  | 21,7  | 22,7   | 23,4    | 24,1      | 25,1  | 26,0  | 26,7  | 27,6  |
| 6 HORAS    | 14,2  | 16,3  | 18,1  | 19,2  | 20,0   | 20,7    | 21,2      | 22,2  | 22,9  | 23,5  | 24,3  |
| 7 HORAS    | 12,8  | 14,6  | 16,2  | 17,2  | 18,0   | 18,6    | 19,1      | 19,9  | 20,6  | 21,1  | 21,9  |
| 8 HORAS    | 11,7  | 13,4  | 14,8  | 15,7  | 16,4   | 16,9    | 17,4      | 18,2  | 18,8  | 19,3  | 19,9  |
| 12 HORAS   | 8,8   | 10,1  | 11,1  | 11,8  | 12,3   | 12,8    | 13,1      | 13,7  | 14,1  | 14,5  | 15,0  |
| 14 HORAS   | 7,9   | 9,0   | 10,0  | 10,6  | 11,1   | 11,4    | 11,8      | 12,3  | 12,7  | 13,0  | 13,5  |
| 20 HORAS   | 6,1   | 7,0   | 7,8   | 8,3   | 8,6    | 8,9     | 9,1       | 9,5   | 9,9   | 10,1  | 10,5  |
| 24 HORAS   | 5,4   | 6,2   | 6,8   | 7,3   | 7,6    | 7,8     | 8,0       | 8,4   | 8,7   | 8,9   | 9,2   |

Tabela 02 - Altura da chuva em mm

| DURAÇÃO DA |       |       |       | TE    | MPO DE | RETORNO | ), T (ANO | S)    |       |       |       |
|------------|-------|-------|-------|-------|--------|---------|-----------|-------|-------|-------|-------|
| CHŮVA      | 2     | 5     | 10    | 15    | 20     | 25      | 30        | 40    | 50    | 60    | 75    |
| 5 Minutos  | 10,9  | 12,4  | 13,8  | 14,6  | 15,3   | 15,8    | 16,2      | 16,9  | 17,5  | 18,0  | 18,6  |
| 10 Minutos | 18,0  | 20,6  | 22,9  | 24,3  | 25,3   | 26,2    | 26,9      | 28,1  | 29,0  | 29,8  | 30,8  |
| 15 Minutos | 23,3  | 26,7  | 29,6  | 31,4  | 32,8   | 33,9    | 34,8      | 36,3  | 37,5  | 38,5  | 39,8  |
| 20 Minutos | 27,5  | 31,5  | 34,9  | 37,0  | 38,6   | 39,9    | 41,0      | 42,8  | 44,2  | 45,4  | 47,0  |
| 30 Minutos | 33,9  | 38,8  | 43,0  | 45,6  | 47,6   | 49,2    | 50,6      | 52,8  | 54,5  | 56,0  | 57,9  |
| 45 Minutos | 40,8  | 46,7  | 51,8  | 55,0  | 57,4   | 59,3    | 60,9      | 63,6  | 65,7  | 67,5  | 69,7  |
| 1 HORA     | 46,0  | 52,7  | 58,4  | 62,0  | 64,7   | 66,9    | 68,7      | 71,7  | 74,1  | 76,1  | 78,6  |
| 2 HORAS    | 59,7  | 68,3  | 75,7  | 80,3  | 83,8   | 86,6    | 89,0      | 92,9  | 96,0  | 98,6  | 101,9 |
| 3 HORAS    | 68,5  | 78,4  | 86,9  | 92,2  | 96,2   | 99,4    | 102,2     | 106,6 | 110,2 | 113,2 | 117,0 |
| 4 HORAS    | 75,2  | 86,1  | 95,4  | 101,3 | 105,7  | 109,2   | 112,2     | 117,1 | 121,0 | 124,3 | 128,4 |
| 5 HORAS    | 80,7  | 92,4  | 102,4 | 108,7 | 113,4  | 117,2   | 120,4     | 125,6 | 129,8 | 133,4 | 137,9 |
| 6 HORAS    | 85,4  | 97,8  | 108,3 | 115,0 | 120,0  | 124,0   | 127,4     | 133,0 | 137,4 | 141,2 | 145,9 |
| 7 HORAS    | 89,6  | 102,5 | 113,6 | 120,6 | 125,9  | 130,1   | 133,6     | 139,4 | 144,1 | 148,0 | 153,0 |
| 8 HORAS    | 93,3  | 106,8 | 118,3 | 125,6 | 131,1  | 135,5   | 139,2     | 145,2 | 150,1 | 154,2 | 159,4 |
| 12 HORAS   | 105,4 | 120,7 | 133,7 | 142,0 | 148,1  | 153,1   | 157,3     | 164,1 | 169,6 | 174,2 | 180,1 |
| 14 HORAS   | 110,3 | 126,3 | 140,0 | 148,6 | 155,1  | 160,3   | 164,7     | 171,8 | 177,6 | 182,4 | 188,5 |
| 20 HORAS   | 122,6 | 140,4 | 155,5 | 165,1 | 172,3  | 178,1   | 183,0     | 190,9 | 197,3 | 202,7 | 209,5 |
| 24 HORAS   | 129,4 | 148,1 | 164,1 | 174,2 | 181,8  | 187,9   | 193,0     | 201,4 | 208,2 | 213,8 | 221,0 |

## **EXEMPLO DE APLICAÇÃO**

Em Porto Lucena foi registrada uma Chuva de 99 mm com duração de 3 horas. Qual é o tempo de retorno dessa precipitação?

Resp: Inicialmente, para se calcular o tempo de retorno será necessária a inversão da equação 01. Dessa forma temos:

$$T = \left[\frac{i(t+c)^d}{a}\right]^{1/b} \tag{03}$$

A intensidade da chuva registrada é a altura da chuva dividida pela duração, ou seja, 99 mm dividido por 3 h é igual a 33 mm/h. Substituindo os valores na equação 03 temos:

$$T = \left[\frac{33(180 + 11.6)^{0.7127}}{872.0}\right]^{1/0.1478} = 24.3 \ anos$$

O tempo de retorno de 24,3 anos corresponde a uma probabilidade de 4,1% que esta intensidade de chuva seja igualada ou superada em um ano qualquer, ou

$$P(i \ge 33 \ mm/h) = \frac{1}{T} 100 = \frac{1}{24,3} 100 = 4,1\%$$

#### **REFERÊNCIAS**

GOOGLE EARTH. **Imagem de localização da Estação pluviográfica Porto Lucena.** Disponível em: http://www.google.com/earth. Brasil: Google, [2020]. Acesso em: 03 set. 2020.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA - IBGE. **Estatística por cidade e estado**: Porto Lucena. Brasília: IBGE, 2010. Disponível em: https://cidades.ibge.gov.br/brasil/rs/porto-lucena/panorama. Acesso em: 03 set. 2020.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA - IBGE. **Estatística por cidade e estado**: Porto Lucena. Brasília: IBGE, 2019. Disponível em: https://cidades.ibge.gov.br/brasil/rs/porto-lucena/panorama. Acesso em: 03 set. 2020.

PINTO, Eber José de Andrade. **Metodologia para definição das equações Intensidade-Duração-Frequência do Projeto Atlas Pluviométrico**. Belo Horizonte: CPRM, 2013.

# **ANEXO I**

Série de Dados Utilizados — Altura de Chuva (mm)

| DATA       | 5<br>MIN. | DATA       | 10<br>MIN. | DATA       | 15<br>MIN. | DATA       | 30<br>MIN. | DATA       | 45<br>MIN. | DATA       | 1<br>HORA |
|------------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----------|
| 24/03/1998 | 9,5       | 24/03/1998 | 13,4       | 13/01/1999 | 19,1       | 13/01/1999 | 26,4       | 16/02/1999 | 31,1       | 16/02/1999 | 37,6      |
| 13/01/1999 | 10,0      | 13/01/1999 | 13,9       | 26/10/1999 | 17,5       | 02/05/2000 | 26,9       | 02/05/2000 | 36,2       | 02/05/2000 | 40,4      |
| 28/03/1999 | 10,6      | 23/01/2001 | 13,8       | 23/01/2001 | 17,5       | 31/01/2001 | 33,0       | 31/01/2001 | 38,9       | 31/01/2001 | 43,3      |
| 26/10/1999 | 10,3      | 31/01/2001 | 16,9       | 31/01/2001 | 21,4       | 13/11/2001 | 29,6       | 23/04/2001 | 32,1       | 25/02/2001 | 33,3      |
| 11/01/2000 | 10,5      | 13/11/2001 | 14,0       | 13/11/2001 | 21,0       | 26/11/2001 | 35,9       | 13/11/2001 | 31,6       | 23/04/2001 | 37,7      |
| 06/01/2001 | 8,8       | 26/11/2001 | 20,0       | 26/11/2001 | 26,0       | 27/01/2002 | 26,6       | 26/11/2001 | 42,6       | 26/11/2001 | 48,6      |
| 31/01/2001 | 9,7       | 27/01/2002 | 13,0       | 27/01/2002 | 18,1       | 22/01/2003 | 51,2       | 27/01/2002 | 31,0       | 22/01/2003 | 59,2      |
| 13/11/2001 | 8,7       | 22/01/2003 | 26,7       | 22/01/2003 | 32,2       | 20/03/2003 | 27,6       | 22/01/2003 | 57,1       | 24/11/2003 | 38,3      |
| 26/11/2001 | 13,8      | 20/03/2003 | 14,5       | 20/03/2003 | 19,9       | 15/12/2003 | 29,1       | 24/11/2003 | 30,7       | 15/12/2003 | 35,1      |
| 22/01/2003 | 16,1      | 28/04/2003 | 16,0       | 28/04/2003 | 18,0       | 04/02/2004 | 31,2       | 15/12/2003 | 30,8       | 04/02/2004 | 35,3      |
| 28/04/2003 | 10,0      | 15/12/2003 | 14,8       | 15/12/2003 | 19,7       | 24/04/2007 | 26,0       | 04/02/2004 | 34,0       | 18/01/2007 | 33,3      |
| 07/09/2003 | 8,6       | 04/02/2004 | 14,0       | 04/02/2004 | 20,8       | 30/01/2008 | 25,2       | 09/11/2004 | 30,9       | 24/04/2007 | 33,4      |
| 15/12/2003 | 9,4       | 24/04/2007 | 15,8       | 24/04/2007 | 17,6       | 10/03/2008 | 26,2       | 24/04/2007 | 30,6       | 25/10/2008 | 39,8      |
| 20/12/2003 | 8,9       | 30/01/2008 | 16,7       | 30/01/2008 | 23,5       | 11/04/2008 | 25,7       | 25/10/2008 | 33,0       | 05/11/2009 | 33,1      |
| 04/02/2004 | 9,6       | 11/04/2008 | 14,2       | 11/04/2008 | 18,7       | 25/10/2008 | 25,6       | 21/02/2009 | 31,0       | 09/12/2009 | 35,0      |
| 24/04/2007 | 10,4      | 22/11/2009 | 13,0       | 09/12/2009 | 18,2       | 24/10/2009 | 24,9       | 05/11/2009 | 32,0       | 23/04/2011 | 53,7      |
| 07/11/2009 | 9,1       | 23/04/2011 | 22,5       | 23/04/2011 | 29,0       | 09/12/2009 | 26,4       | 09/12/2009 | 33,2       | 02/01/2014 | 42,0      |
| 22/11/2009 | 11,3      | 02/01/2014 | 15,7       | 02/01/2014 | 20,9       | 23/04/2011 | 39,7       | 23/04/2011 | 46,7       | 20/02/2014 | 42,8      |
| 27/01/2011 | 9,6       | 10/11/2015 | 15,0       | 23/05/2015 | 17,9       | 02/01/2014 | 31,3       | 02/01/2014 | 37,4       | 23/05/2015 | 37,5      |
| 23/04/2011 | 13,7      | 21/12/2015 | 15,7       | 10/11/2015 | 20,5       | 23/05/2015 | 28,6       | 20/02/2014 | 32,9       | 04/12/2015 | 41,2      |
| 02/01/2014 | 9,6       | 24/12/2015 | 13,5       | 21/12/2015 | 21,6       | 10/11/2015 | 29,3       | 23/05/2015 | 35,7       | 14/12/2015 | 34,8      |
| 02/12/2015 | 9,8       | 19/02/2016 | 15,6       | 24/12/2015 | 17,3       | 21/12/2015 | 32,6       | 10/11/2015 | 31,7       | 21/12/2015 | 38,8      |
| 24/12/2015 | 8,9       | 24/04/2016 | 17,3       | 19/02/2016 | 19,8       | 24/12/2015 | 25,9       | 04/12/2015 | 33,8       | 26/01/2016 | 39,7      |
| 14/02/2016 | 8,7       | 08/04/2017 | 13,3       | 24/04/2016 | 25,9       | 09/01/2016 | 27,0       | 21/12/2015 | 35,6       | 24/04/2016 | 61,6      |
| 19/02/2016 | 11,3      | 23/05/2017 | 14,0       | 08/04/2017 | 19,3       | 19/02/2016 | 26,2       | 24/04/2016 | 55,7       | 29/12/2016 | 33,8      |
| 25/04/2016 | 9,8       | 07/06/2017 | 23,2       | 23/05/2017 | 18,6       | 24/04/2016 | 44,4       | 29/12/2016 | 31,8       | 10/03/2017 | 35,1      |
| 29/12/2016 | 9,8       | 08/10/2017 | 18,8       | 07/06/2017 | 26,6       | 29/12/2016 | 25,2       | 10/03/2017 | 30,9       | 08/04/2017 | 57,0      |
| 31/12/2016 | 8,7       | 11/10/2017 | 13,6       | 08/10/2017 | 23,3       | 08/04/2017 | 32,7       | 08/04/2017 | 44,2       | 25/04/2017 | 38,6      |
| 07/06/2017 | 13,8      | 27/01/2018 | 23,8       | 20/01/2018 | 19,3       | 23/05/2017 | 36,3       | 25/04/2017 | 32,9       | 23/05/2017 | 49,3      |
| 08/10/2017 | 10,4      | 18/05/2018 | 13,7       | 27/01/2018 | 29,5       | 07/06/2017 | 36,6       | 23/05/2017 | 46,5       | 07/06/2017 | 41,2      |
| 01/01/2018 | 10,4      | 30/09/2018 | 14,7       | 18/05/2018 | 16,5       | 08/10/2017 | 29,6       | 07/06/2017 | 40,3       | 20/01/2018 | 43,1      |
| 27/01/2018 | 14,0      | 31/10/2018 | 14,4       | 30/09/2018 | 22,0       | 20/01/2018 | 32,8       | 08/10/2017 | 30,6       | 27/01/2018 | 42,3      |
| 12/06/2018 | 8,7       | 17/11/2018 | 17,6       | 31/10/2018 | 21,6       | 27/01/2018 | 39,5       | 20/01/2018 | 39,0       | 18/05/2018 | 38,4      |
| 17/11/2018 | 12,9      | 26/11/2018 | 15,5       | 17/11/2018 | 23,7       | 30/09/2018 | 29,0       | 27/01/2018 | 41,1       | 30/09/2018 | 36,4      |
| 26/11/2018 | 10,1      | 19/12/2018 | 14,6       | 26/11/2018 | 19,1       | 31/10/2018 | 27,4       | 30/09/2018 | 35,0       | 31/10/2018 | 35,2      |
| 19/12/2018 | 10,6      | 03/01/2019 | 13,1       | 24/02/2019 | 16,8       | 17/11/2018 | 35,1       | 31/10/2018 | 33,0       | 17/11/2018 | 49,1      |
| 01/02/2019 | 8,8       | 24/02/2019 | 13,8       | 08/03/2019 | 17,8       | 26/11/2018 | 24,9       | 17/11/2018 | 40,2       | 03/01/2019 | 33,2      |

# **ANEXO I**

## Série de Dados Utilizados — Altura de Chuva (mm)

| DATA       | 2H   | DATA       | 3H   | DATA       | 4H    | DATA       | 8H    | DATA       | 14H   | DATA       | 24H   |
|------------|------|------------|------|------------|-------|------------|-------|------------|-------|------------|-------|
| 16/02/1999 | 44,0 | 02/05/2000 | 50,6 | 02/05/2000 | 56,5  | 12/12/1999 | 73,6  | 12/12/1999 | 99,3  | 22/04/1998 | 94,4  |
| 02/05/2000 | 46,5 | 10/01/2001 | 53,3 | 10/01/2001 | 59,6  | 02/05/2000 | 70,5  | 24/02/2001 | 92,0  | 11/12/1999 | 99,6  |
| 31/01/2001 | 46,7 | 31/01/2001 | 50,4 | 25/02/2001 | 91,4  | 24/02/2001 | 91,6  | 27/01/2002 | 94,7  | 06/06/2000 | 102,1 |
| 25/02/2001 | 56,0 | 25/02/2001 | 84,1 | 23/04/2001 | 57,8  | 27/01/2002 | 74,2  | 20/08/2002 | 96,2  | 24/02/2001 | 99,9  |
| 23/04/2001 | 54,4 | 23/04/2001 | 57,6 | 27/01/2002 | 55,3  | 20/08/2002 | 73,6  | 20/12/2002 | 104,2 | 26/01/2002 | 107,9 |
| 26/11/2001 | 50,8 | 26/11/2001 | 51,4 | 20/12/2002 | 55,8  | 20/12/2002 | 69,9  | 22/01/2003 | 84,7  | 20/08/2002 | 145,7 |
| 22/01/2003 | 66,9 | 22/01/2003 | 72,1 | 22/01/2003 | 78,4  | 22/01/2003 | 84,7  | 24/11/2003 | 86,2  | 19/12/2002 | 123,5 |
| 24/11/2003 | 61,3 | 29/04/2003 | 51,8 | 24/11/2003 | 77,3  | 24/11/2003 | 86,2  | 11/12/2003 | 112,8 | 24/11/2003 | 86,2  |
| 11/12/2003 | 49,9 | 24/11/2003 | 71,2 | 11/12/2003 | 63,2  | 11/12/2003 | 105,6 | 16/05/2007 | 77,8  | 11/12/2003 | 113,2 |
| 22/12/2003 | 41,5 | 11/12/2003 | 60,8 | 22/12/2003 | 60,9  | 11/04/2008 | 86,1  | 11/04/2008 | 93,2  | 15/12/2003 | 93,7  |
| 18/01/2007 | 43,4 | 22/12/2003 | 52,8 | 18/01/2007 | 52,6  | 25/10/2008 | 77,5  | 24/10/2008 | 81,1  | 11/10/2007 | 86,1  |
| 16/05/2007 | 43,2 | 18/01/2007 | 49,8 | 16/05/2007 | 53,4  | 23/04/2011 | 74,7  | 20/07/2011 | 84,9  | 11/04/2008 | 93,2  |
| 28/02/2008 | 40,8 | 16/05/2007 | 50,1 | 11/04/2008 | 72,5  | 02/01/2014 | 107,0 | 02/01/2014 | 124,3 | 24/10/2008 | 87,9  |
| 11/04/2008 | 50,9 | 11/04/2008 | 63,6 | 25/10/2008 | 63,2  | 19/03/2014 | 67,2  | 11/04/2014 | 98,0  | 20/07/2011 | 96,1  |
| 25/10/2008 | 48,6 | 25/10/2008 | 57,1 | 23/04/2011 | 72,1  | 11/04/2014 | 70,3  | 21/05/2014 | 100,4 | 02/01/2014 | 154,0 |
| 24/11/2009 | 44,3 | 23/04/2011 | 67,6 | 02/01/2014 | 82,1  | 21/05/2014 | 69,8  | 29/06/2015 | 127,2 | 11/04/2014 | 101,9 |
| 23/04/2011 | 64,9 | 02/01/2014 | 70,7 | 20/02/2014 | 56,2  | 29/06/2015 | 99,0  | 14/12/2015 | 125,6 | 21/05/2014 | 112,7 |
| 02/01/2014 | 63,1 | 20/02/2014 | 56,1 | 19/03/2014 | 58,9  | 04/12/2015 | 66,8  | 21/12/2015 | 101,6 | 29/06/2015 | 131,7 |
| 20/02/2014 | 55,8 | 19/03/2014 | 51,1 | 29/06/2015 | 65,4  | 14/12/2015 | 100,8 | 26/01/2016 | 81,8  | 13/12/2015 | 145,1 |
| 19/03/2014 | 42,4 | 29/06/2015 | 51,2 | 04/12/2015 | 66,7  | 21/12/2015 | 68,7  | 02/03/2016 | 82,0  | 21/12/2015 | 103,4 |
| 19/09/2015 | 44,0 | 19/09/2015 | 49,3 | 14/12/2015 | 84,9  | 26/01/2016 | 81,7  | 24/04/2016 | 163,9 | 02/03/2016 | 90,2  |
| 04/12/2015 | 55,7 | 04/12/2015 | 66,4 | 21/12/2015 | 57,9  | 24/04/2016 | 139,2 | 08/04/2017 | 156,4 | 24/04/2016 | 164,3 |
| 14/12/2015 | 61,2 | 14/12/2015 | 81,8 | 26/01/2016 | 68,6  | 10/01/2017 | 72,0  | 24/04/2017 | 133,2 | 28/08/2016 | 92,9  |
| 21/12/2015 | 54,1 | 21/12/2015 | 55,8 | 02/03/2016 | 55,4  | 10/03/2017 | 70,4  | 13/05/2017 | 80,6  | 08/04/2017 | 173,6 |
| 26/01/2016 | 43,5 | 26/01/2016 | 60,5 | 24/04/2016 | 91,1  | 08/04/2017 | 128,6 | 18/05/2017 | 85,5  | 24/04/2017 | 192,6 |
| 24/04/2016 | 85,9 | 24/04/2016 | 86,4 | 10/03/2017 | 59,9  | 24/04/2017 | 85,7  | 23/05/2017 | 117,4 | 18/05/2017 | 85,8  |
| 10/03/2017 | 50,7 | 10/03/2017 | 58,5 | 08/04/2017 | 111,8 | 18/05/2017 | 78,7  | 30/05/2017 | 85,5  | 23/05/2017 | 130,5 |
| 08/04/2017 | 87,6 | 08/04/2017 | 99,1 | 24/04/2017 | 62,0  | 23/05/2017 | 103,0 | 07/06/2017 | 102,5 | 30/05/2017 | 100,1 |
| 25/04/2017 | 43,6 | 25/04/2017 | 49,3 | 23/05/2017 | 91,5  | 07/06/2017 | 72,4  | 27/01/2018 | 124,6 | 07/06/2017 | 122,6 |
| 23/05/2017 | 71,8 | 23/05/2017 | 83,0 | 27/01/2018 | 84,0  | 27/01/2018 | 124,6 | 18/05/2018 | 114,6 | 27/01/2018 | 136,9 |
| 07/06/2017 | 45,8 | 20/01/2018 | 48,9 | 15/03/2018 | 56,4  | 18/05/2018 | 80,0  | 31/10/2018 | 85,6  | 18/05/2018 | 115,2 |
| 20/01/2018 | 48,8 | 27/01/2018 | 63,1 | 18/05/2018 | 62,6  | 31/10/2018 | 77,0  | 17/11/2018 | 105,1 | 31/10/2018 | 95,0  |
| 27/01/2018 | 50,5 | 15/03/2018 | 53,1 | 17/11/2018 | 91,1  | 17/11/2018 | 100,8 | 23/11/2018 | 81,6  | 17/11/2018 | 105,1 |
| 18/05/2018 | 47,6 | 18/05/2018 | 56,0 | 21/12/2018 | 53,2  | 23/11/2018 | 73,4  | 20/12/2018 | 90,6  | 20/12/2018 | 102,4 |
| 17/11/2018 | 77,8 | 17/11/2018 | 83,9 | 25/02/2019 | 59,2  | 25/02/2019 | 73,8  | 25/02/2019 | 79,2  | 24/02/2019 | 118,6 |
| 08/03/2019 | 41,2 | 25/02/2019 | 50,4 | 08/03/2019 | 66,6  | 08/03/2019 | 84,8  | 08/03/2019 | 85,4  | 07/03/2019 | 96,8  |
| 10/05/2019 | 44,6 | 10/05/2019 | 54,2 | 10/05/2019 | 59,6  | 10/05/2019 | 78,6  | 10/05/2019 | 91,8  | 10/05/2019 | 101,0 |

# **ANEXO II**

Relações entre as alturas de precipitações de diferentes durações (Pd1/Pd2) Tempos de Retorno de 2 a 75 anos

|         | RELAÇÃO<br>5 MIN/10 MIN | RELAÇÃO<br>10MIN/15 MIN | RELAÇÃO<br>15MIN/30 MIN | RELAÇÃO<br>30MIN/45 MIN | RELAÇÃO<br>45MIN/1H |
|---------|-------------------------|-------------------------|-------------------------|-------------------------|---------------------|
| Máxima  | 0,65                    | 0,78                    | 0,68                    | 0,87                    | 0,89                |
| Mínima  | 0,61                    | 0,76                    | 0,67                    | 0,84                    | 0,88                |
| Média   | 0,62                    | 0,78                    | 0,68                    | 0,87                    | 0,88                |
| Mediana | 0,62                    | 0,78                    | 0,68                    | 0,87                    | 0,88                |

|         | RELAÇÃO<br>1H/2H | RELAÇÃO<br>2H/3H | RELAÇÃO<br>3H/4H | RELAÇÃO<br>4H/8H | RELAÇÃO<br>8H/14H | RELAÇÃO<br>14H/20H |
|---------|------------------|------------------|------------------|------------------|-------------------|--------------------|
| Máxima  | 0,76             | 0,89             | 0,91             | 0,81             | 0,84              | 0,94               |
| Mínima  | 0,70             | 0,87             | 0,90             | 0,80             | 0,83              | 0,89               |
| Média   | 0,71             | 0,89             | 0,91             | 0,81             | 0,84              | 0,90               |
| Mediana | 0,70             | 0,89             | 0,91             | 0,81             | 0,84              | 0,89               |

Relações entre as alturas de precipitações de diferentes durações (Pd/Pd1hora) Tempos de Retorno de 2 a 75 anos

|         | RELAÇÃO<br>5 MIN/1H | RELAÇÃO<br>10MIN/1H | RELAÇÃO<br>15MIN/1H | RELAÇÃO<br>30MIN/1H | RELAÇÃO<br>45MIN/1H |
|---------|---------------------|---------------------|---------------------|---------------------|---------------------|
| Máxima  | 0,25                | 0,40                | 0,51                | 0,76                | 0,89                |
| Mínima  | 0,25                | 0,39                | 0,51                | 0,75                | 0,88                |
| Média   | 0,25                | 0,40                | 0,51                | 0,76                | 0,88                |
| Mediana | 0,25                | 0,40                | 0,51                | 0,76                | 0,88                |

Relações entre as alturas de precipitações de diferentes durações (Pd/Pd24horas) Tempos de Retorno de 2 a 75 anos

|         | RELAÇÃO<br>1H/24H | RELAÇÃO<br>2H/24H | RELAÇÃO<br>3H/24H | RELAÇÃO<br>4H/24H | RELAÇÃO<br>8H/24H | RELAÇÃO<br>14H/24H | RELAÇÃO<br>20H/24H |
|---------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------|--------------------|
| Máxima  | 0,36              | 0,47              | 0,54              | 0,60              | 0,75              | 0,89               | 0,96               |
| Mínima  | 0,32              | 0,46              | 0,52              | 0,57              | 0,71              | 0,85               | 0,95               |
| Média   | 0,33              | 0,46              | 0,52              | 0,58              | 0,72              | 0,86               | 0,96               |
| Mediana | 0,33              | 0,46              | 0,52              | 0,58              | 0,71              | 0,85               | 0,96               |

# O SERVIÇO GEOLÓGICO DO BRASIL - CPRM E OS OBJETIVOS PARA O DESENVOLVIMENTO SUSTENTÁVEL - ODS

Em setembro de 2015 líderes mundiais reuniram-se na sede da ONU, em Nova York, e formularam um conjunto de objetivos e metas universais com intuito de garantir o desenvolvimento sustentável nas dimensões econômica, social e ambiental. Esta ação resultou na *Agenda 2030*, a qual contém um conjunto de *17 Objetivos de Desenvolvimento Sustentável - ODS*.

A Agenda 2030 é um plano de ação para as pessoas, para o planeta e para a prosperidade. Busca fortalecer a paz universal, e considera que a erradicação da pobreza em todas as suas formas e dimensões é o maior desafio global, e um requisito indispensável para o desenvolvimento sustentável.

Os 17 ODS incluem uma ambiciosa lista 169 metas para todos os países e todas as partes interessadas, atuando em parceria colaborativa, a serem cumpridas até 2030.



O **Serviço Geológico do Brasil – CPRM** atua em diversas áreas intrínsecas às Geociências, que podem ser agrupadas em quatro grandes linhas de atuação:

- Geologia
- · Recursos Minerais;
- · Hidrologia; e
- Gestão Territorial.

Todas as áreas de atuação do SGB-CPRM, sejam nas áreas das Geociências ou nos serviços compartilhados, ou ainda em seus programas internos, devem ter conexão com os ODS, evidenciando o comprometimento de nossa instituição com a sustentabilidade, com a humanidade e com o futuro do planeta.

A tabela a seguir relaciona as áreas de atuação do SGB-CPRM com os ODS.

# Áreas de atuação do Serviço Geológico do Brasil - CPRM e os Objetivos de Desenvolvimento Sustentável - ODS

#### ÁREA DE ATUAÇÃO GEOCIÊNCIAS

#### LEVANTAMENTOS GEOLÓGICOS



















AVALIAÇÃO DOS RECURSOS MINERAIS DO BRASIL













LEVANTAMENTOS GEOQUÍMICOS













LEVANTAMENTOS BÁSICOS DE RECURSOS HÍDRICOS SUPERFICIAIS













#### SISTEMAS DE ALERTA HIDROLÓGICO





**AGROGEOLOGIA** 













RISCO GEOLÓGICO





















#### PATRIMÔNIO GEOLÓGICO **E GEOPAROUES**



































#### ÁREA DE ATUAÇÃO

#### **SERVIÇOS COMPARTILHADOS**

#### **GEOPROCESSAMENTO** E SENSORIAMENTO REMOTO











#### TECNOLOGIA DA INFORMAÇÃO









#### LABORATÓRIO DE ANÁLISE MINERAIS













#### MUSEU DE CIÊNCIAS DA TERRA





















#### GOVERNANÇA







SUSTENTABILIDADE

PRÓ-EQUIDADE

COMITÊ DE ÉTICA

O projeto Atlas Pluviométrico é uma ação dentro do programa de Levantamentos da Geodiversidade que tem por objetivo reunir, consolidar e organizar as informações sobre chuvas obtidas na operação da rede hidrometeorológica nacional. Dentre os vários objetivos do projeto Atlas Pluviométrico, destaca-se a definição das relações intensidade-duração-frequência (IDF). As relações IDF são importantíssimas na definição das intensidades de precipitação associadas a uma frequência de ocorrência, as quais serão utilizadas no dimensionamento de diversas estruturas de drenagem pluvial ou de aproveitamento dos recursos hídricos. Também podem ser utilizadas de forma inversa, ou seja, estimar a frequência de um evento de precipitação ocorrido, definindo se o evento foi raro ou ordinário.





SECRETARIA DE GEOLOGIA, MINERAÇÃO E TRANSFORMAÇÃO MINERAL

MINISTÉRIO DE MINAS E ENERGIA

