

Luanna Costa Dias

Análise da Tendência de Precipitação e Vazão na Bacia Hidrográfica do Rio Amazonas

DISSERTAÇÃO DE MESTRADO

Instituto de Tecnologia Programa de Pós-Graduação em Engenharia Civil

Dissertação orientada pelo Professor Doutor Lindemberg Limas Fernandes

LUANNA COSTA DIAS

ANÁLISE DA TENDÊNCIA DE PRECIPITAÇÃO E VAZÃO NA BACIA HIDROGRÁFICA DO RIO AMAZONAS

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia Civil – PPGEC, do Instituto de Tecnologia – ITEC, da Universidade Federal do Pará – UFPA, como parte dos requisitos necessários para a obtenção do título de Mestre em Engenharia Civil.

Linha de Pesquisa: Recursos Hídricos e Saneamento Ambiental.

Orientador: Prof. Dr. Lindemberg Lima Fernandes.

Dados Internacionais de Catalogação na Publicação (CIP) de acordo com ISBD Sistema de Bibliotecas da Universidade Federal do Pará Gerada automaticamente pelo módulo Ficat, mediante os dados fornecidos pelo(a) autor(a)

D541a Dias, Luanna Costa.

Ánálise da Tendência de Precipitação e Vazão na Bacia Hidrográfica do Rio Amazonas / Luanna Costa Dias. — 2022. 112 f.: il. color.

Orientador(a): Prof. Dr. Lindemberg Lima Fernandes Dissertação (Mestrado) - Universidade Federal do Pará, Instituto de Tecnologia, Programa de Pós-Graduação em Engenharia Civil, Belém, 2022.

1. tendências. 2. vazão. 3. chuva. 4. Amazônia. I. Título.

CDD 620

SERVICO PUBLICO FEDERAL UNIVERSIDADE FEDERAL DO PARA INSTITUTO DE TECNOLOGIA PROGRAMA DE POS-GRADUAÇÃO EM ENGENHARIA CIVIL

ANÁLISE DE TENDÊNCIA DA PRECIPITAÇÃO E VAZÃO NA BACIA HIDROGRÁFICA DO RIO AMAZONAS

LUANNA COSTA DIAS

DISSERTAÇÃO SUBMETIDA BANCA EXAMINADORA APROVADA PELO COLEGIADO DO PROGRAMA DE PÓS-GRADUAÇÃO EM

Coordenador do PPGEC / ITEC / UFPA

	ENGENHARIA CIVIL DO INSTITUTO DE TECNOLOGIA DA UNIVERSIDADE FEDERAL DO PARÁ, COMO REQUISITO PARA OBTENÇÃO DO GRAU DE MESTRA EM ENGENHARIA CÍVIL NA ÁREA DE RECURSOS HÍDRICOS E SANEAMENTO AMBIENTAL.
APROVADO EM: 24/02/2022.	/_
BANCA EXAMINADORA:	Dondand.
	Prof. Dr. Lindemberg Lima Fernandes Orientador (UFPA)
	bruis dustour de laima Solos
	Prof. Dr. Luís Gustavo de Lima Sales
	Membro Externo (UFCG)
	Spiriter ID Schilbara
	Prof. Dr. Junior Hiroyuki Ishihara
	Membro Externo (UFPA)
	Tremerico Carlos Lo. Ferra
	Prof. Dr. Francisco Carlos Lira Pessoa Membro Interno (UFPA)
Visto:	
	Prof. Dr. Marcelo de Souza Picanço

A minha família: Alexandre, Amanda e Ana Luísa.

AGRADECIMENTOS

A Deus pela vida, e por ter me dado forças nos momentos mais difíceis.

As minhas filhas Amanda e Ana Luísa, que são minha fortaleza e motivação.

Ao meu esposo Alexandre por todos os anos de companheirismo, e o maior incentivador e apoiador para a realização deste trabalho.

Aos meus pais, Artur e Bernadete, por todo suporte e dedicação que sempre tiveram para que eu seguisse no caminho do bem e dos estudos, minha eterna gratidão.

Aos meus irmãos Abraão e Isaac, aos meus sogros Miguel e Gabriela, aos meus cunhados Alessandra e Teófilo e aos meus sobrinhos Talles e Hanna. Que são familiares que sempre posso contar e torceram muito para a finalização deste Mestrado.

Ao Professor Lindemberg, orientador deste trabalho, que sempre me deu o suporte necessário desde a graduação. Aos professores Ishihara e Francisco por todas as contribuições e críticas necessárias.

As amigas do PPGEC-UFPA que ajudaram diretamente neste trabalho: Bruna Lira, e a Profa. Rafaela Silveira e a Débora Nicioka.

A todos os amigos e colegas da Gerência de Hidrologia da Superintendência Regional de Belém do Serviço Geológico do Brasil.

RESUMO

Estudar as tendências de precipitação e vazão é importante para compreender a variabilidade hidrológica e para determinar o que têm influenciado nos aumentos ou decaimentos das mesmas. O presente estudo analisa as tendências das séries anuais, espaço-temporais, de precipitação (totais anuais de precipitação e precipitação máxima anual) e vazão (médias, máximas e mínimas) na Bacia Hidrográfica do Rio Amazonas através de testes não paramétricos de Mann-Kendall e Sen's Slope para cinco períodos distintos (1975-2014, 1980-2014, 1985-2014, 1995-2014 e 2000-2014). Os resultados apontam que as séries de vazões médias estão aumentando na Bacia Amazônica para todos os períodos analisados. Nas sub-bacias da margem direita do rio Amazonas, Tapajós e Madeira, o período mais recente (2000-2014) registra as maiores tendências de aumento da vazão média anual a partir de 1998 e que atingem os maiores valores já observados. Nas séries de vazão máxima, a estação de Óbidos teve taxa de aumento crescente nos cinco períodos analisados para eventos extremos de cheia, que afeta diretamente a população que reside nestas áreas. Tendências de decaimento da vazão média foram encontradas em seis estações das sub-bacias do Tapajós e Madeira. Quanto a precipitação, há tendências significativas de aumento e decaimento distribuídas em várias regiões distintas da bacia. As estações com maiores tendências positivas de precipitação tiveram aumento significativo a partir de 1997 atingindo os maiores picos em 2013. A comparação da magnitude das tendências pelo teste de Sen's Slope mostra que há comportamento de aumento das taxas de vazão em toda bacia amazônica e quanto a precipitação há áreas de aumento e decaimento, ou seja, a precipitação não é a única variável que influencia nas vazões da bacia hidrográfica do Rio Amazonas.

Palavras-chave: tendências, vazão, chuva, Amazônia.

ABSTRACT

Studying rainfall and flow trends is important to understand hydrological variability and to determine what has influenced increases or decays. The present study analyzes the trends of the space-time annual series of precipitation (total annual precipitation and maximum annual precipitation) and flow (averages, maximums and minimums) in the Amazon River Basin through non-parametric Mann-Kendall and Sen's tests. Slope for five different periods (1975-2014, 1980-2014, 1985-2014, 1995-2014 and 2000-2014). The results indicate that the series of average flows are increasing in the Amazon Basin for all analyzed periods. In the sub-basins of the right bank of the Amazon River, Tapajós and Madeira, the most recent period (2000-2014) registered the greatest trends of increase in the average annual flow from 1998 (year of strong El Niño) and that reached the largest values already observed. In the maximum flow series, the Obidos station had an increasing rate of increase for the five periods analyzed for extreme flood events, which directly affect the population residing in these areas. Mean flow decay trends were found at six stations in the Tapajós and Madeira sub-basins. As for precipitation, there are significant trends of increase and decay distributed in several distinct regions of the basin. The stations with the highest positive precipitation trends had a significant increase since 1997, reaching the highest peaks in 2013. The comparison of the magnitude of the trends by the Sen's Slope test shows that there is a behavior of increasing flow rates in the entire Amazon basin and in terms of precipitation there are areas of increase and decrease, that is, precipitation is not the only variable that influences the flows of the Amazon River basin.

Keywords: trend analysis; discharge; precipitation; Amazon.

SUMÁRIO

1 II	NTRODUÇÃO	10
2	OBJETIVOS	13
2.1	Objetivo Geral	13
2.2	Objetivos Específicos	13
3	REVISÃO BIBLIOGRÁFICA	14
3.1	Sistemas e Fenômenos atmosféricos atuantes na Amazônia	14
	3.1.1 Zona de Convergência Intertropical (ZCIT)	
	3.1.2 Zona de Convergência do Atlântico Sul (ZCAS)	
	3.1.3 Linhas de instabilidade (LI)	
	3.1.4 Alta da Bolívia (AB)	
	3.1.5 Fenômeno El Niño Oscilação Sul (ENOS)	17
3.2	Precipitação e Vazão na Região Amazônica	18
3.3	Bacias Hidrográficas, Classificação Hidrográfica Brasileira e a Re	de
Hid	rometeorológica Nacional	19
	3.3.1 Classificação Hidrográfica adotada pelo DNAEE	20
	3.3.2 Classificação por Regiões Hidrográficas do CNRH	21
	3.3.3 A Rede Hidrometeorológica Nacional (RHN)	24
3.4	Análise e Consistência de dados hidrológicos	25
	3.4.1 Dados Fluviométricos	26
	3.4.2 Dados Pluviométricos	28
3.5	Análise de tendência aplicada ao monitoramento hidrológico	29
4	ÁREA DE ESTUDO	32
5	METODOLOGIA	35
5.1	Levantamento dos dados	36
5.2	Consistência e Preenchimento das falhas pluviométricas	40
5.3	Análise de Tendência: Mann-Kendall e Sen's Slope	41
6	RESULTADOS E DISCUSSÃO	43
6.1	Análise das séries de vazão pelo teste de Mann-Kendall	45

	6.1.1 Séries de Vazões médias anuais	45
	6.1.2 Séries de Vazões Máximas e Mínimas Anuais	55
6.2	Análise das séries de precipitação pelo teste de Mann-Kendall	60
6.3	Magnitude das tendências de precipitação e vazão: Teste de Sen's	
Slope)	65
7	CONCLUSÃO	70
REFE	RÊNCIAS	72
APÊN	IDICE	81

1 INTRODUÇÃO

Os estudos de tendências das componentes vazão e precipitação tem aumentado para identificar uma possível mudança climática (MOLNÁR; RAMÍREZ, 2000), como encontrado por Zhao et al. (2014), utilizando o teste de Mann Kendall na Bacia Yellow (China) para identificar impactos no clima. Calcular as tendências de precipitação e vazão contribui para a compreensão da variabilidade climática global e é essencial para o desenvolvimento de modelos hidrológicos e gestão de recursos hídricos (MACÊDO, 2013).

É importante ressaltar que a vazão não é um componente climático, mas é um componente que influencia indiretamente nas características climatológicas (LIMBERGER; SILVA, 2012). A vazão é o parâmetro que mensura a disponibilidade de água de uma bacia hidrográfica desde a nascente até o exutório.

As transformações climáticas e mudanças no uso e ocupação do solo tendem a afetar a demanda de água do planeta e o padrão dos parâmetros hidrológicos (GOMES JÚNIOR; ELY, 2021; SANTOS et al., 2020). Isto reflete em alterações no ciclo hidrológico e na dinâmica socioambiental. As comunidades ribeirinhas na Amazônia sentem essas mudanças na disponibilidade hídrica da região, com a intensificação das cheias e dos períodos de estiagem. Diversos modelos matemáticos e estatísticos permitem o entendimento de tendências climáticas globais a partir de dados hidrológicos e meteorológicos.

Na Amazônia não foram observadas tendências sistemáticas em longo prazo às condições mais secas ou chuvosas. Sendo mais importantes as variações interanuais e interdecadais associadas à variabilidade natural do clima, na escala temporal de variabilidade de fenômenos interdecadais dos oceanos Pacífico e Atlântico tropical. E não foram observadas tendências importantes das vazões dos rios da Amazônia (MARENGO, 2008).

Do, Westra e Leonard (2017) aplicaram a análise de tendência através do teste de Mann Kendall com significância de 90% em 9.213 estações fluviométricas ao redor do mundo e identificaram tendência crescente em algumas partes da América do Sul. Neste estudo, curiosamente, nem a presença de barragens e mudanças na cobertura florestal tiveram grandes efeitos nos resultados da tendência, mas o tamanho da bacia influenciou, já que as bacias com tendência crescente tendiam a

ser menores. O trabalho de Limberger e Silva (2012), identificou que na Amazônia para bacias menores há média e forte correlação entre chuva e vazão. George (2007) na bacia do Winnipeg (Canada) constatou o aumento da vazão na década de 1960 a 1970 que coincidiu com as precipitações acima da média.

Já o estudo de Higashino e Stefan (2019) no Rio Banjo (Japão) identificou que a descarga não é afetada apenas pelas mudanças climáticas, mas pelas mudanças de uso e ocupação do solo, que identificou tendência de aumento na vazão e baixa correlação com a precipitação.

Novotny e Stefan (2007) utilizaram vazões médias e a Q₇₋₁₀ no verão e inverno nos Estados Unidos com estações de 100, 70 e 50 anos de dados e também a precipitação, identificaram que há tendências mais fortes a partir de 1990, relacionado com o aquecimento da temperatura da superfície terrestre no final do século XIX até os anos 2000. O aumento de temperatura deixa o Ciclo Hidrológico mais ativo e aumenta a capacidade de retenção de água em toda a atmosfera, o estudo identificou aumento da precipitação e dos picos de inundação nos EUA.

Projeções e cenários para a ocorrência de precipitação e vazão são importantes, pois alterações de vazão podem mudar a frequência de enchentes e inundações, trazer danos ao ecossistema, afetar a oferta de alimentos e geração de energia elétrica.

Para Limberger (2016) e Marengo (2008) as vazões da Amazônia possuem altas correlações com as anomalias de TSM (Temperatura da Superfície do Mar), o que sugere associação com o ENOS (El Niño Oscilação Sul). Projeções de Marengo (2008) indicam que para a América latina o aumento da temperatura e a diminuição de água no solo devem transformar parte da Amazônia em savanas. No Sul da Espanha, a aplicação do teste de tendência de Mann-Kendall verificou redução de 60% do fluxo, um cenário de déficit (YESTE *et al.*, 2018). Marengo (1995) indica que modelos globais preveem uma diminuição de 15 a 30% das chuvas devido ao desmatamento.

Os estudos supracitados aplicaram testes de tendência não paramétricos e mostram a importância de utilizar a variável vazão, já que muitos trabalhos focam apenas na precipitação. A análise de tendência é base para identificação de alterações no ciclo hidrológico e também para aplicação de modelos globais para

previsão dos extremos. Identificar estas mudanças e prevê-las é essencial para a gestão de recursos hídricos e para aqueles que dependem da água.

Por isso, este trabalho é realizado em toda a Bacia Hidrográfica do Rio Amazonas, que possui um dos maiores reservatórios de água doce do planeta. Este estudo utiliza estações de precipitação e vazão, com pelo menos 15 anos de dados disponíveis, para a análise de tendência através do teste de Mann-Kendall e Sen's Slope. Este é um importante trabalho para a compreensão da variabilidade hidrológica e de disponibilidade hídrica na Amazônia.

2 OBJETIVOS

2.1 Objetivo Geral

Analisar a tendência das séries temporais de precipitação e vazão na Bacia Hidrográfica do Rio Amazonas através de testes não paramétricos.

2.2 Objetivos Específicos

- Analisar a consistências dos dados pluviométricos e o preenchimento de falhas;
- Analisar as tendências das séries anuais de vazão e precipitação na Bacia Amazônica;
- Avaliar a variabilidade espaço-temporal do comportamento hidrológico de chuvas e vazões na bacia hidrográfica do Rio Amazonas.

3 REVISÃO BIBLIOGRÁFICA

3.1 Sistemas e Fenômenos atmosféricos atuantes na Amazônia

O clima de uma região continental, como a Amazônia, depende de fatores climáticos. Os mais importantes são: a circulação geral da atmosfera que atua sobre a região, a topografia local, a natureza da cobertura superficial e o ciclo hidrológico. A circulação geral da atmosfera é uma consequência da distribuição da energia solar e dos oceanos e controlará as características do clima regional, que terá características particulares controladas pela topografia e pela cobertura superficial. Além disso, o ciclo hidrológico deve ser considerado, pois não é apenas um produto do próprio clima, mas da paisagem biogeofísica como um todo (KOUSKY; MOLION, 1985; NOBRE *et al.*, 2009).

Durante o verão do Hemisfério Sul a convecção transporta e distribui o calor latente para a alta troposfera e distribui às zonas temperadas. A Amazônia é a principal fonte de umidade para o Brasil Central durante os meses de setembro a fevereiro, pois os fluxos de vapor d'água do Atlântico Equatorial que são associados aos ventos alísios são as principais fontes de umidade (NOBRE *et al.*, 2009).

A precipitação é umas das principais variáveis para a análise do clima devido a sua variabilidade na escala temporal e espacial. Souza *et al.* (2016) enfatizam que a maioria dos estudos sobre o clima prioriza a análise do regime chuvoso e concluíram que os principais sistemas meteorológicos que modulam a distribuição pluviométrica são a Zona de Convergência Intertropical (ZCIT), a Zona de Convergência do Atlântico Sul (ZCAS) e as Linhas de Instabilidade (LI). Além destes sistemas, os estudos de Fisch, Marengo e Nobre (1998) e Marengo (2008) destacam também a brisa fluvial, circulação geral da alta troposfera, o fenômeno El Niño Oscilação Sul (ENOS) e também a configuração do Dipolo do Atlântico.

Molion (1987) destaca os três mecanismos que provocam chuva na Amazônia: convecção diurna resultante do aquecimento da superfície e condições de larga-escala favoráveis, segundo Fisch, Marengo e Nobre (1998) a intensidade está relacionada aos sistemas de Alta da Bolívia e Cavado do Nordeste; as linhas de instabilidade e os aglomerados convectivos de meso e larga escala, associados com

a penetração de sistemas frontais na região Sul e Sudeste do Brasil e interagindo com a Amazônica.

3.1.1 Zona de Convergência Intertropical (ZCIT)

Pode ser definida como uma banda de nuvens que circunda a faixa equatorial do globo terrestre, formada pela confluência dos ventos alísios de nordeste (Hemisfério Norte) com os ventos alísios de sudeste (Hemisfério Sul) localizadas no ramo ascendente da célula de Hadley. O choque entre eles faz com que o ar quente e ar úmido ascendam e provoque a formação de nuvens com maior convecção, nebulosidade e intensidade pluviométrica (LIRA, 2019; FERREIRA; MELLO, 2005).

A ZCIT é mais significativa sobre os oceanos, e por isso a TSM (Temperatura da Superfície do Mar) é um dos fatores determinantes para a sua posição e intensidade (FERREIRA; MELLO, 2005). A ZCIT possui uma oscilação norte-sul o que influi diretamente no regime de chuvas, sobretudo na Amazônia.

Lira (2019) destaca que quando a ZCIT se desloca para o Hemisfério Norte são períodos menos chuvosos e quando migra para o Hemisfério Sul são períodos mais chuvosos na região Amazônica. A Figura 01 ilustra um evento da ZCIT influenciando nas regiões Norte e Nordeste do Brasil durante o mês de março, período marcado por altos índices pluviométricos nestas regiões.



Figura 1 – Configuração Espacial de nuvens associado a um episódio de ZCIT. Data: 30/03/2007 às 01:30 UTC (CPTEC/INPE)

Fonte: Ferreira, 2008.

3.1.2 Zona de Convergência do Atlântico Sul (ZCAS)

A formação da ZCAS é caracterizada por uma banda persistente de nebulosidade e precipitação orientada no sentido noroeste-sudeste desde o Sul/Sudeste da região Amazônica até o Sudoeste do oceano Atlântico Sul. Associada a grande liberação de calor latente e a um escoamento convergente de umidade na baixa troposfera com bastante atividade convectiva. Influencia a precipitação do Sul da Amazônia, é responsável por sequencias de dias chuvosos (chuva diária maior que 20 mm) com duração de 4 a 15 dias que causam eventos extremos, com consequências como inundações e deslizamentos de terra. (SILVA *et al.*, 2019; VIEIRA *et al.*, 2014; RODRIGUES, 2012).

Na Região Norte, durante o verão, a ZCAS é bastante ativa e intensa (influenciada pela baixa do Chaco), sua configuração é associada a uma máxima nebulosidade sobre a Amazônia Central e o Altiplano da Bolívia e pelas frentes frias vindas do Sul com elevada atividade convectiva. A ZCAS acarreta chuvas fortes sobre o Sul e Oeste da Amazônia e fluxo intenso de umidade que flui da Amazônia para latitudes maiores da América do Sul canalizado pelo Andes (RODRIGUES, 2012).

3.1.3 Linhas de instabilidade (LI)

São descritas como linhas de conglomerados de nuvens cumulonimbus organizadas em formato linear, que se forma ao longo da borda de uma ampla área de movimentos descendentes ao longo da costa atlântica da Amazônia, prolongandose para o interior do continente e estabelecendo uma importante função na distribuição de precipitação. As LIs são uma linha de tempestade em atividade contínua ou com intervalos, incluindo as áreas próximas de precipitação (OLIVEIRA et al., 2016; COHEN et al., 1989).

As LIs que ocorrem na Amazônia são responsáveis pela formação de chuvas próximo à costa litorânea no Pará e Amapá e na Amazônia Central, durante a estação seca (FISCH *et al.*, 1998). Cohen *et al.* (1989) mostrou que as LIs são um dos sistemas atmosféricos atuantes na área leste do Pará e que contribuem com 45% da chuva que cai durante o período chuvoso e são facilmente observadas por imagens de satélites.

3.1.4 Alta da Bolívia (AB)

É um anticiclone que ocorre na alta troposfera, no verão, sobre a América do Sul, que possui altos níveis (200hPa) e situa-se sobre a região do altiplano boliviano. (GUSMÃO, 1996; FISCH *et al.*, 1998).

No inverno, ocorre a desintensificação da AB e seu completo desaparecimento. A localização geográfica da AB possui variação intra-sazonal e inter-anual devido à convecção na Amazônia. Durante os anos menos chuvosos os centros da AB eram menos intensos. Quando há ocorrência de El-Niño a AB localizase à oeste de sua posição climatológica (FISCH *et al.*, 1998).

A variabilidade sazonal da AB, tanto em intensidade e posição está associada à precipitação. Quando a AB enfraquece se move para o norte, as regiões sul e leste da Amazônia experimentam a estação seca (MOLION, 1987).

3.1.5 Fenômeno El Niño Oscilação Sul (ENOS)

O ENOS é um fenômeno atmosférico-oceânico que ocorre no oceano Pacífico Equatorial (e na atmosfera adjacente), refere-se às fases em que o oceano Pacífico Equatorial está mais quente (El Niño) ou mais frio (La Niña) do que a média normal histórica, e tem consequências no tempo e no clima de todo o planeta. É caracterizado pelo Índice Oceânico Niño (ION) definida pela média móvel trimestral da anomalia de TSM e também pelo Índice de Oscilação Sul (IOS) que representa a diferença na pressão média do ar ao nível do mar, medida no Taiti e Darwin (Austrália), que indica o status de acoplamento entre o oceano Pacífico e a Atmosfera (CPTEC, 2021).

O fenômeno ENOS exerce forte influência na variabilidade climática em diferentes regiões do Brasil, e os impactos na precipitação são mais relevantes. Segundo Sousa *et al.* (2016), na bacia Amazônica durante a ocorrência de um El Niño moderado, a precipitação tende a ser menor que a normal climatológica, enquanto que durante um La Niña moderado a precipitação tende a ser maior que a normal.

O trabalho de Dias et al. (2020) comprova que o ENOS influí diretamente na ocorrência de eventos extremos na cidade de Belém-PA com tendências significativas entre a precipitação e o ION. De acordo com Fisch et al. (1998) o evento ENOS de

1982-1983 foi um dos mais intensos e na Amazônia e provocou um período extremamente seco (janeiro/fevereiro) durante a estação chuvosa, caracterizado por possuir o menor índice pluviométrico nos últimos 50 anos. Já a seca de 2005 na Bacia do Solimões está vinculado a ocorrência do ENOS fase positiva e do dipolo do Atlântico positivo, o que afeta diretamente o comportamento pluviométrico na região que foi drasticamente reduzido, como descreve Serrão *et al.* (2015).

3.2 Precipitação e Vazão na Região Amazônica

As séries temporais de precipitação e vazão são componentes do ciclo hidrológico e importantes para o balanço hídrico de uma região. A metodologia de coletar, medir e analisar essas duas séries estão consolidadas em todo o mundo. O monitoramento dessas variáveis dispõe de uma rede de dados convencionais extensa em várias regiões e há também a estimativa desses dados por satélites. Variáveis do ciclo hidrológico como evaporação, infiltração, interceptação e evapotranspiração são importantes, mas possuem séries reduzidas de dados, principalmente na região Amazônica que conta com poucas estações climáticas, o que dificulta o cálculo do balanço hídrico da região.

Crowley et al. (2008) através do estudo de satélite TRMM (Tropical Rainfall Measuring Mission) e GRACE (Gravity Recovery and Climate) detectou que o balanço de massa anual e intra-anual na Bacia Amazônica envolve principalmente o armazenamento de água e a precipitação, enquanto que a contribuição líquida do escoamento e da evaporação é relativamente menor.

Importante ressaltar que a Região Amazônica é afetada por episódios de cheia e seca em decorrência dos sistemas atmosféricos e fenômenos climáticos como o ENOS, que causam extremos de precipitação e mudanças no escoamento dos rios.

Em pequenas bacias hidrográficas a resposta hidrológica das variáveis vazão e precipitação é instantânea, em que a precipitação influi diretamente no hidrograma da bacia, mas isso nem sempre ocorre, pois a variação de vazão pode estar relacionada a outros fatores. Para bacias maiores pode ocorrer um período de defasagem desses eventos como mostrou Hachem (2016) na Região Hidrográfica da Calha Norte no Estado do Pará. Coutinho *et al.* (2018) identificou que o período de

chuvas da margem esquerda está defasado em dois meses do período chuvoso da margem direita, também identificado no estudo de Souza et al. (2016).

O normal é que a variação da vazão seja resultado da variabilidade da precipitação e da evaporação. Ao longo de um grande intervalo de tempo, o escoamento do rio é o excesso de precipitação sob evaporação de uma bacia hidrográfica (MARENGO, 1995).

3.3 Bacias Hidrográficas, Classificação Hidrográfica Brasileira e a Rede Hidrometeorológica Nacional

A definição de Tucci (2013) é que Bacia Hidrográfica é uma área definida topograficamente de captação natural da água da precipitação que faz convergir os escoamentos para uma única saída: o exutório. Composta de um conjunto de superfícies vertentes e de uma rede de drenagem formada por cursos d'água. Considerando como perdas intermediárias os volumes evaporados, transpirados e infiltrados.

O limite superior de uma bacia hidrográfica é o divisor de águas (divisor topográfico) e divisor freático (subterrâneo). O comportamento hidrológico da bacia hidrográfica é função de suas características morfológicas, ou seja, área, forma, topografia, geologia, solo e cobertura vegetal (LIMA, 1996).

O rio principal de uma bacia é a maior linha de fluxo da nascente ao exutório, os drenos secundários que conduzem a água para o rio principal são os afluentes, e os rios que contribuem para os afluentes são os subafluentes do rio principal. Essa interação é chamada de rede de drenagem que distribuí água por toda a bacia (BERNARDI *et al.*, 2012).

A questão da escala da bacia hidrográfica depende do estudo a ser realizado. Pode ser delimitada a totalidade da bacia do Rio Amazonas, desde suas cabeceiras na Cordilheira dos Andes até seu exutório no Oceano Atlântico, ou podem ser delimitadas sub-bacias maiores ou menores, dependendo da necessidade do estudo (PORTO; PORTO, 2008). Em síntese, o tamanho ideal da bacia é a que incorpora todas as demandas de interesse, pode ser importante estudar uma bacia urbana de 1 km² ou a bacia do Rio Amazonas.

A bacia hidrográfica embora seja um sistema natural cujo elemento referencial é a água, não é um único sistema ambiental, mas leva em conta outros componentes do meio ambiente (relevo, solos, flora, fauna) e também componentes sociais quando se considera as atividades econômicas e políticas-administrativas (ROSS; PRETTE, 1998).

Com isso, a Bacia Hidrográfica é a área física para a gestão dos recursos hídricos e um dos fundamentos da Política Nacional de Recursos Hídricos é que: "a bacia hidrográfica é a unidade territorial para implementação da Política Nacional de Recursos Hídricos e atuação do Sistema Nacional de Gerenciamento de Recursos hídricos" (BRASIL, 1997, p. 1). Os planos de Recursos Hídricos devem ser elaborados por bacia hidrográfica o que torna imprescindível a definição de um sistema único de classificação e codificação das bacias hidrográficas brasileiras.

3.3.1 Classificação Hidrográfica adotada pelo DNAEE

Na década de 1970, através do Decreto nº 77.410 de 1976 e conforme orientações por Portaria do Ministério de Minas e Energia, para codificação das estações fluviométricas foi considerada a então divisão hidrográfica estabelecida pelo antigo Departamento Nacional de Águas e Energia Elétrica (DNAEE), que dividia o país em 9 bacias hidrográficas e cada uma delas subdivididas em dez sub-bacias (BRASIL, 1976).

Sendo: Bacia 1 do Rio Amazonas, Bacia 2 do Rio Tocantins, Bacia 3 do Atlântico – Trecho Norte/Nordeste, Bacia 4 do Rio São Francisco, Bacia 5 do Atlântico Trecho Leste, Bacia 6 Rio Paraná, Bacia 7 Rio Uruguai, Bacia 8 do Atlântico Trecho Sudeste e por extensão atribui-se a denominação de Bacia 9 à área de drenagem de qualquer bacia hidrográfica da América do Sul que não tenha interferência da rede potamográfica (descrição dos rios) brasileira. Com base nessa divisão o código de identificação da estação fluviométrica compõe-se de 8 dígitos, sendo que o primeiro dígito se refere a bacia e o segundo dígito a sub-bacia (ANA, 2009). A Figura 02 (a) apresenta a divisão por bacias hidrográficas no território brasileiro e a Figura 02 (b) mostra as dez sub-bacias que integram a bacia hidrográfica do Rio Amazonas, que é a área de estudo deste trabalho.

75°0'0"W 70°0'0"W 65°0'0"W 60°0'0"W 55°0'0"W 50°0'0"W 45°0'0"W 40°0'0"W 35°0'0"W (a) (b) .0.0.0 S..0.0..S 10,0,0,1 S..0.0.S 10.0.01 20,0,0,2 25"0"5 65°0'0"W 60°0'0"W 50°0'0"W 2.130 Sub-bacias Hidrográficas do Rio Amazonas - DNAEE 10 Amazonas, entre a nascente e o rio Javari 75°0'0"W 70°0'0"W 65°0'0"W 60°0'0"W 55°0'0"W 11 Amazonas, entre os rios Javari e Auati-Paraná Bacias Hidrográficas - DNAEE 12 Amazonas, entre Auati-Paraná e o lago Coari RIO AMAZONAS 13 Amazonas, entre o lago Coari e o rio Purus ATLÂNTICO, TRECHO LESTE 14 Negro ATLÂNTICO, TRECHO NORTE/NORDESTE ATLÂNTICO, TRECHO SUDESTE 15 Madeira 16 Amazonas, entre os rios Madeira e Trombetas RIO PARANÁ RIO SÃO FRANCISCO 17 Tapajós RIO TOCANTINS 18 Xingu e Paru RIO URUGUAI 19 Amazonas, entre o rio Xingu e a foz

Figura 02 – Divisão Hidrográfica Nacional do DNAEE: (a) Bacias Hidrográficas e (b) Sub-bacias Hidrográficas do Rio Amazonas.

Datum: SAD, 69 (Base de dados da Agência Nacional de Águas)

Fonte: Autor, 2022.

3.3.2 Classificação por Regiões Hidrográficas do CNRH

A questão do uso múltiplo da água e a importância do planejamento por bacias hidrográfica implicaram em atualizações nas resoluções brasileiras. A resolução n° 32 de 2003 do Conselho Nacional de Recursos Hídricos (CNRH) institui a Divisão Hidrográfica Nacional, e define em seu parágrafo único o conceito de Regiões Hidrográficas como "o espaço territorial brasileiro compreendido por uma bacia, grupo de bacias ou sub-bacias hidrográficas contíguas com características naturais, sociais e econômicas homogêneas ou similares, com vistas a orientar o planejamento e gerenciamento dos recursos hídricos" (CNRH, 2003, p. 1).

A definição de regiões hidrográficas orienta o planejamento e é mais abrangente que a divisão por bacia hidrográfica do DNAEE. O CNRH, com a instituição da Divisão Hidrográfica Nacional através de regiões hidrográficas, tem a finalidade de orientar, fundamentar e implementar o Plano Nacional de Recursos Hídricos (PNRH) que é objetivo da Política Nacional de Recursos Hídricos (CNRH,

2003). Sendo assim, o Quadro 01 apresenta as doze regiões hidrográficas brasileiras de acordo com a resolução n° 32 de 2003 do CNRH.

Quadro 01 – Regiões Hidrográficas de acordo com o CNRH		
Região Hidrográfica Amazônica	É constituída pela bacia hidrográfica do rio Amazonas situada no território nacional e, também, pelas bacias hidrográficas existentes na Ilha do Marajó, além das bacias hidrográficas dos rios situados no Estado do Amapá que deságuam no Atlântico Norte.	
Região Hidrográfica do Tocantins/Araguaia	É constituída pela bacia hidrográfica do rio Tocantins até a sua foz no Oceano Atlântico.	
Região Hidrográfica Atlântico Nordeste Ocidental	É constituída pelas bacias hidrográficas dos rios que deságuam no Atlântico – trecho Nordeste, estando limitada a oeste pela Região Hidrográfica Tocantins/Araguaia, exclusive, e a leste pela região hidrográfica do Parnaíba.	
Região Hidrográfica do Parnaíba	É constituída pela bacia hidrográfica do rio Parnaíba.	
Região Hidrográfica Atlântico Nordeste Oriental	É constituída pelas bacias hidrográficas dos rios que deságuam no Atlântico – Trecho Nordeste, estando limitada a oeste pela região hidrográfica do Parnaíba e ao sul pela região hidrográfica do São Francisco.	
Região Hidrográfica do São Francisco	É constituída pela bacia hidrográfica do rio São Francisco	
Região Hidrográfica Atlântico Leste	É constituída pelas bacias hidrográficas de rios que deságuam no Atlântico - trecho Leste, estando limitada ao norte e a oeste pela região hidrográfica do São Francisco e ao sul pelas bacias hidrográficas dos rios Jequitinhonha, Mucuri e São Mateus, inclusive.	
Região Hidrográfica Atlântico Sudeste	É constituída pelas bacias hidrográficas de rios que deságuam no Atlântico - trecho Sudeste, estando limitada ao norte pela bacia hidrográfica do rio Doce, inclusive, a oeste pelas regiões hidrográficas do São Francisco e do Paraná e ao sul pela bacia hidrográfica do rio Ribeira, inclusive.	
Região Hidrográfica do Paraná	É constituída pela bacia hidrográfica do rio Paraná situada no território nacional.	
Região Hidrográfica do Uruguai	É constituída pela bacia hidrográfica do rio Uruguai situada no território nacional, estando limitada ao norte pela região hidrográfica do Paraná, a oeste pela Argentina e ao sul pelo Uruguai.	
Região Hidrográfica do Atlântico Sul	É constituída pelas bacias hidrográficas dos rios que deságuam no Atlântico - trecho Sul, estando limitada ao norte pelas bacias hidrográficas dos rios Ipiranguinha, Iririaia-Mirim, Candapuí, Serra Negra, Tabagaça e Cachoeria, inclusive, a oeste pelas regiões hidrográficas do Paraná e do Uruguai e ao sul pelo Uruguai.	
Região Hidrográfica do Paraguai	É constituída pela bacia hidrográfica do rio Paraguai situada no território nacional.	

do Paraguai Fonte: Adaptado do CNRH, 2003.

A Divisão Hidrográfica Nacional estabelecida pelo CNRH em 2003 é a de Nível 1, sendo dividida em 12 Regiões Hidrográficas ou Macrorregiões Hidrográficas. A ANA em parceria com o Instituto Brasileiro de Geografia e Estatística (IBGE) implementou o detalhamento em mais dois níveis hierárquicos, formando as Mesorregiões hidrográficas (Nível 2) e as Microrregiões hidrográficas (Nível 3), tendo sido produzida a partir da Base Hidrográfica Ottocodificada em escala 1:250.000 (ANA, 2021; IBGE, 2021). A Figura 03 apresenta divisão por Regiões Hidrográficas de Nível 1 para todo o território brasileiro, e Níveis 2 e 3 apenas para a Região Hidrográfica Amazônica. A Região Hidrográfica amazônica possui 11 mesorregiões hidrográficas e 67 microrregiões hidrográficas.

A Base Hidrográfica Ottocodificada é um método de subdivisão e codificação de bacias hidrográficas. É um método natural e hierárquico, baseado na topografia da área drenada e na topologia da rede de drenagem (GALVÃO; MENESES, 2005). A metodologia foi proposta em 1989, e é a codificação oficial das bacias hidrográficas brasileiras através da Resolução n°30/2002 do CNRH (CNRH, 2002).

A ottocodificação baseia-se na identificação do rio principal, codificam-se as bacias afluentes por área de contribuição. Em seguida, são separadas as quatro bacias maiores do rio principal, as bacias restantes recebem o nome de interbacias, atribuídos de justante para montante. Esse processo de subdivisão pode ser realizado quantas vezes forem necessárias e em vários níveis, desde que haja detalhamento cartográfico (SANTANA *et al.*, 2020). O IBGE disponibiliza o detalhamento da Base Hidrográfica Ottocodificada até o nível 7.

50°0'0"W 40°0'0°W (a) (b) .0.0.0 .0.0.0 S.0.0.9 70°0'0"W 60°0'0"W 40°0'0"W 50°0'0"W 70°0'0"W 60°0'0"W 50°0'0"W (a) Regiões Hidrográficas Brasileira (b) Mesorregiões Amazônica (c) AMAZ ÔNICA Foz do Amazonas ATLÂNTICO LESTE Japurá ATLÂNTICO NORDESTE OCIDENTAL Javari/Juruá 0.0.0 ATLÂNTICO NORDESTE ORIENTAL Madeira ATLÂNTICO SUDESTE Negro 5"0"0"8 ATLÂNTICO SUL Oiapoque/Araguari PARAGUAI Paru/Jari PARANÁ Purus 10"0"0" PARNAÍBA Tapajós SÃO FRANCISCO Trombetas/Uatumã TOCANTINS-ARAGUAIA Xingu URUGUAI (c) Microrregiões Amazônica 70°0'0"W 60°0'0"W

Figura 03 – Regiões Hidrográficas do CNRH: (a) Nível 1 – Regiões Hidrográficas Brasileiras, (b) Nível 2 – Mesorregiões Amazônicas e (c) Nível 3 - Microrregiões Amazônicas

Datum: Sirgas 2000 (Base de Dados do IBGE)

Fonte: Autor, 2022.

3.3.3 A Rede Hidrometorológica Nacional (RHN)

Conhecer o comportamento dos rios e da chuva é o básico para o gerenciamento dos recursos hídricos. Para efetivar este conhecimento é necessário que exista uma rede de monitoramento, com longo tempo de operação e ininterrupta. A série de dados tem maior importância quanto maior a sua extensão temporal (ANA/CPRM, 2017).

Há muitas estações individualizadas no Brasil com mais de 100 anos de dados, como é o caso da estação pluviométrica de Morro Velho em Minas Gerais, com registros desde 1855 e da estação de Manaus no rio Negro, com registros de cota desde 1902. Mas o início de uma rede de operação só se deu em 1920 através da Comissão de Estudos de Forças Hidráulicas, com estações voltadas para o estudo de aproveitamentos hidrelétricos (ANA, 2009) e a incorporação do monitoramento como serviço público federal e de entidades ligadas ao setor elétrico.

O surgimento da rede de monitoramento no Brasil foi para fins de estudos de aproveitamento hidrelétrico, previsto no Código das Águas de 1934 (BRASIL, 1934). Não havia a consciência de gestão múltipla das águas. Muitas estações foram extintas ao longo do tempo após atingir o objetivo de implantação de uma Usina Hidrelétrica, como previa o Código das Águas de 1934.

Ao longo dos anos e com mudanças na legislação brasileira, a rede começou a visar o abastecimento público, controle de inundações, irrigação e diversos usos múltiplos da água. A ANA (Agência Nacional de Águas), criada em 2000, é responsável por coordenar as atividades da RHN, manter e disponibilizar o cadastro atualizado das estações hidrometeorológicas do país (ANA, 2009).

O conceito atual da RHN é o conjunto de estações hidrometeorológicas instaladas no território nacional, mantidas e operadas por entidades públicas e privadas, cujo dados gerados são disponibilizados gratuitamente ao público por meio do Sistema Nacional de Informações sobre Recursos Hídricos (SNIRH) (ANA/CPRM, 2017).

O Brasil dispõe aproximadamente de 11.000 estações administradas por órgãos públicos e particulares. Dentre as quais 4.641 representam a RHN de responsabilidade da ANA, com 1.874 estações que monitoram os rios e 2.767 que monitoram as chuvas sendo que 70% dessas estações são operadas pelo Serviço Geológico do Brasil (CPRM) (ANA/CPRM, 2017).

3.4 Análise e Consistência de dados hidrológicos

O dado hidrológico é fruto de observações realizadas no campo. As estações são classificadas pelo tipo de informação observada, sendo do tipo fluviométricas, pluviométricas, evaporimétricas, sedimentométricas, meteorológicas e telemétricas. Como essas grandezas dependem de leitura manual ou instrumentos automáticos há imperfeições nas medidas, que recebe o nome de erro de observação. Esses erros classificam-se de acordo com a teoria dos erros de Gauss em: erros grosseiros, erros sistemáticos e erros acidentais (SANTOS *et al.*, 2001). Uma síntese dos principais erros que ocorrem nas estações pluviométricas e fluviométricas são descritas no Quadro 02.

Quadro 02 – Erros de observação em Pluviometria e Fluviometria

Tipo de Erros	Pluviometria	Fluviometria
	derramamento de água na coleta	erros de metro inteiro
	atrapalho na contagem das provetas cheias	erros na contagem dos dentes (centímetros)
	torneira vazando	erro do decímetro
	falta de coleta em feriados e finais de semana	leitura em horários diferentes
Erros Grosseiros	bóia do pluviógrafo presa	atrapalho com lance de régua negativo
	correções por conta do observador	invenção do registro
	leitura em horários diferentes	entupimento de condutos do linígrafo
	transbordamento do pluviômetro	imprecisão do mecanismo do relógio
	invenção de um registro	bóia furada
	retirada da água por estranhos	Vandalismo
	falta de regulagem do relógio do pluviografo	mudança do zero da régua
	proveta trocada	mudança de local ou de margem
Erros Sistemáticos	exposição inadequada	influência de pontes ou outras obras no nível d'água
Sistematicos	mudança nas condições de exposição	laços na curva-chave, influência de remanso
	desnivelamento da superfície de exposição	alterações do leito (erosão, assoreamento, dragagem, etc)
	evaporação da água no pluviômetro	ondas e oscilações de nível
Erros acidentais	influência do vento na quantidade de chuva	variações inferiores à graduação da régua
(fortuitos)	variações aleatórias do relógio	escorregamento do cabo de aço
(10110100)		variações de nível mais rápidas que a inércia do linígrafo

Fonte: Adaptado de Santos et al., 2001.

O tratamento de dados ou análise de consistência deve ser efetuado para um conjunto de estações situadas na mesma bacia hidrográfica ou sub-bacia, no caso das fluviométricas ou em área climaticamente homogênea para as pluviométricas (ANA, 2015).

3.4.1 Dados Fluviométricos

Os dados fluviométricos são obtidos diretamente através dos dados de cotas ou nível em centímetros, que são réguas linimétricas, linígrafos ou radares instalados na margem dos rios para a obtenção da variação do nível da água ao longo do tempo.

Para estudos hidrológicos a variável que interessa é a vazão, obtida através de uma seção de medição a montante ou jusante da medição de nível em que são utilizados molinetes ou equipamentos acústicos, que através da medição de características hidráulicas calculam a vazão em m³/s.

Medir vazão diariamente é oneroso e difícil, por isso, os dados de vazão disponibilizados são obtidos indiretamente através da curva-chave (ou curva de descarga), que é uma relação "cota x vazão" unívoca e estável de uma expressão do tipo potência (TUCCI, 2013). Uma série de vazões medidas é relacionada com a cota da respectiva medição, através de análise de dispersão e otimização matemática é obtida uma equação em que os dados diários de cota são inseridos e assim tem-se a vazão.

Os processos hidrológicos que determinam a vazão são estocásticos no tempo e no espaço, com isso a vazão está associada a um determinado risco de falha (DIAS *et al.*, 2019). Nem sempre será possível obter uma curva-chave devido a efeitos de influência de maré ou remanso hidráulico, sendo assim nem toda estação fluviométrica terá dados de vazão.

A primeira etapa para identificação de erros é conferir as informações hidrológicas da estação, conhecer o controle hidráulico, os principais eventos relatados e partir para a análise da curva-chave. No caso, validar a curva-chave, pois erros na curva-chave comprometem toda a série histórica. Após isso, plotar os hidrogramas em um único gráfico da série a ser analisada e das estações de apoio. Se houver alguma discrepância do dado, deve ser analisada a leitura da cota daquele dia para verificar possíveis erros (DNAEE, 1983).

Após a consistência, é realizado o preenchimento de falhas dos dados na escala diária com base na transferência de vazões entre estações próximas. De acordo com ANA (2015) a transferência de vazões é feita considerando o tempo estimado de propagação no trecho.

Apesar da grande incidência de erros nas observações, deve-se ter em mente que a estimativa de uma vazão diária a partir de outras estações é incerta. Por isso, adota-se como regra geral só alterar os registros onde o erro é indiscutível, se há dúvidas deve prevalecer o valor observado (SANTOS *et al.*, 2001).

3.4.2 Dados Pluviométricos

A precipitação é um fenômeno natural aleatório, não tendo uma distribuição homogênea no espaço-tempo (MELLO *et al.*, 2017). A detecção de erros de observações em pluviometria é mais difícil do que na série de vazões por conta aleatoriedade da precipitação.

Primeiro passo é a investigação de erros grosseiros através da análise dos boletins para verificar anotação em dias inexistentes (como por exemplo, 31 de abril), leitura diária elevada após dias de feriado ou fim de semana, erros de decimais, repetição de números iguais diferentes de zero ou iguais a múltiplo de proveta (SANTOS et al., 2001). Para estas correções é essencial analisar com base nas estações de apoio e que sejam homogêneas. Na determinação de regiões homogêneas de pluviosidade há técnicas como análise de agrupamento (cluster) e análise hierárquica, ou utilizar registros do pluviógrafo ou da PCD (Plataforma de Coleta de Dados) para confirmar o dado suspeito do pluviômetro.

Para a descoberta de erros sistemáticos, provocados por mudança de local ou de exposição do cercado, utiliza-se a curva duplo acumulativa (ou dupla massa). Proposta pela United States Geological Survey (USGS) em 1966, que é o mais aplicado no Brasil e indicado para séries mensais e anuais (TUCCI, 2013).

O objetivo de uma estação, de acordo com Tucci (2013), é obter uma série ininterrupta de precipitação ao longo dos anos, mas pode ocorrer a existência de falhas e períodos sem informações, a seguir são listados os principais métodos para preenchimento de falhas de precipitação segundo diretrizes da ANA (2012):

- a) Método da ponderação regional: é um método simplificado para preencher séries mensais ou anuais, visando à homogeneização do período de informações e à análise estatística. Para um grupo de estações, devem ser selecionados pelo menos três que possuem, no mínimo, dez anos de dados, devem estar na mesma região homogênea e dentro de um raio de influência que é definido pela Organização Mundial de Meteorologia (OMM) (ANA, 2012);
- b) Método da regressão linear: Consiste em utilizar regressões lineares simples ou múltiplas. Na regressão linear múltipla as informações pluviométricas da

estação com falhas são correlacionadas com as correspondentes observações de várias estações vizinhas (TUCCI, 2013).

- c) Método do vetor regional: Pode realizar a análise de consistência e preenchimento de falhas em dados mensais e anuais. O vetor regional é definido como "uma série cronológica, sintética, de índices pluviométricos anuais (ou mensais), oriundos da extração por um método de máxima verossimilhança da informação contida nos dados de um conjunto de estações agrupadas regionalmente". (ANA, 2012).
- d) Método da ponderação regional com regressão linear: É uma combinação dos métodos ponderação regional e regressão linear, que estabelece regressões lineares entre as estações com dados a serem preenchidos. De cada regressão linear efetuada obtém-se o coeficiente de correlação e estabelecem-se fatores de peso para cada estação (OLIVEIRA *et al.*, 2010).

3.5 Análise de tendência aplicada ao monitoramento hidrológico

A identificação de alterações nas séries históricas é de grande importância. Back (2001) define tendência em série temporal como uma mudança sistemática e contínua em qualquer parâmetro de uma dada amostra, excluindo-se mudanças periódicas ou quase periódicas. A tendência climática é uma mudança caracterizada por um suave acréscimo ou decréscimo nos valores médios no período de registro.

Os testes estatísticos servem para confirmar hipóteses, segundo Lira (2019) normalmente são definidas a hipótese nula (H₀) e a hipótese alternativa (H_a), e a rejeição ou não da hipótese formulada dependerá do tipo de teste e o nível de significância adotado. Dias *et* al. (2020) aborda que os testes paramétricos assumem que a distribuição seja conhecida, e que somente os valores de certos parâmetros (média, desvio padrão, variância, etc.) sejam desconhecidos, que é um pressuposto de distribuição normal. Se os dados não satisfazem as suposições feitas pelas técnicas tradicionais, testes não paramétricos de inferência estatística devem ser usados, pois fazem poucas suposições sobre as distribuições originais (não requerem o pressuposto da distribuição).

Para avaliar as séries hidrológicas e climáticas, os testes não paramétricos são os mais utilizados, pois não requer a distribuição normal dos dados. O teste de

tendência de Mann-Kendall (MANN, 1945; KENDALL 1975) é um dos testes não-paramétricos mais utilizados em todo o mundo para detectar tendências significativas em séries temporais (SANTOS *et al.*, 2020; DIAS *et al.*, 2020; SANTOS *et al.*, 2016; MORAIS *et al.*, 2014). O teste é recomendado pela Organização Mundial de Meteorologia (OMM) para a avaliação de tendência em dados ambientais, considera a hipótese de estabilidade de uma série temporal, que a sucessão de valores ocorra de forma independente e a distribuição da probabilidade deve permanecer sempre a mesma (DIAS *et al.*, 2020)

O teste de Mann-Kendall é análogo à análise de regressão e é mais indicado para verificar se os valores da série temporal tendem a aumentar ou diminuir com o tempo. Comparado a outros testes, apresenta maior robustez quanto aos desvios de normalidade e não estacionariedade dos dados, justificando o amplo uso em estudos de tendência. É o mais apropriado para analisar mudanças significativas em séries climatológicas e permite a detecção e localização aproximada do ponto inicial de uma tendência (CERA; FERRAZ, 2015; SANTOS, 2016).

Há outros testes não paramétricos encontrados na literatura e utilizados em diversos trabalhos na Hidrologia, alguns deles são:

- Teste de Homogeneidade de Pettitt de 1979, que utiliza uma versão do teste de Mann-Whitney, onde se verifica se duas amostras são da mesma população, estatística capaz de localizar o ponto de mudança brusca nas médias da série histórica (SANTOS, 2016);
- Curvatura de Sen Sen's slope de 1968, para calcular a magnitude das tendências, computam-se todas as curvaturas de todos os pares de valores.
 Um método insensível a outliers e dados ausentes, provendo uma medida mais real das tendências em séries temporais (ALCÂNTARA *et al.*, 2019).
- Coeficiente de Spearman é a estatística mais antiga baseada em postos, estima a correlação de duas variáveis que não possuem distribuição conjunta normal e bivariada, equivale ao coeficiente de correlação de Pearson adaptado a dados transformados em postos (DIAS et al., 2020);
- Teste Run (1966) é usado para avaliar se uma série é aleatória. Consiste em realizar a contagem do número de oscilações dos valores acima e abaixo da mediana, numa série de dados naturalmente ordenada. Deve-se testar se as

oscilações estão dentro de uma faixa de distribuição considerada normal (BACK, 2001).

4 ÁREA DE ESTUDO

A Bacia do Rio Amazonas, mais importante dos rios do planeta, cobre aproximadamente 6,3 milhões de km² (aproximadamente 5% das terras emergidas) e descarrega no Atlântico um volume de água que representa 17% da descarga total de água doce do mundo e abrange a maior parte da floresta amazônica. Cerca de metade da floresta tropical remanescente do mundo encontra-se na Bacia Amazônica (HEERSPINK *et al.*, 2020).

Se estende por 7 países: Brasil (63%), o Peru (16%), a Bolívia (12%), a Colômbia (5,6%), o Equador (2,3%), a Venezuela (0,8%) e a Guiana (0,3%) e abrange uma população total de 54 milhões de pessoas. No Brasil, aproximadamente 2/3 da Bacia do Rio Amazonas incluí os estados do Acre, Amazonas, Rondônia e Roraima e parte dos estados do Amapá, Mato Grosso e Pará (MOLINIER, *et al.*, 1995; TREJO, *et al.*, 2021).

O Rio Amazonas recebe diversos nomes na nascente andina como *Hornillos, Monigote* e *Apurimac*, passando a ser chamado de *Ene-Tambo, Ucayali* e entra no Brasil como Solimões até a confluência com o Rio Negro, onde é chamado de Amazonas até o exutório no Atlântico. A geologia por onde passa é formada por rochas metamórficas e vulcânicas da Cadeia Andina, rochas sedimentares paleomesozoicas, embasamento cristalino e coberturas sedimentares cenozoicas. Durante o seu escoamento, promove a deposição de areais, siltes e argilas em planícies de inundação e preenchendo meandros. (MOTA, 2021).

A convecção tropical é a principal característica do clima da Bacia Amazônica, é regulada pelas características atmosféricas em grande escala, inclusive pela circulação de Hadley, a ZCIT, circulação de Walker, oscilação intrassazonal de 40 a 60 dias, ondas atmosféricas, e também por processos meteorológicos como a penetração de frentes frias extratropicais (NOBRE *et al.*, 2009).

Na distribuição espacial da precipitação climatológica anual (média 1982/2012) sobre a América do Sul, no estudo de Souza *et al.* (2016), destaca-se a Amazônia Oriental como a região que apresenta a maior área espacial e maior intensidade (4 a 10 mm/dia) do volume pluviométrico sobre o continente. Com sazonalidade atingindo os máximos (9 mm/dia) em fevereiro e março e os mínimos (entre 2,6mm e 2,2 mm/dia) em julho e agosto.

Lira (2019) com uma série de 30 anos (média 1986/2015) calculou uma precipitação média anual de 2.070mm, correspondente a 5,67 mm/dia utilizando 268 estações convencionais na Amazônia Legal. O trabalho de Ishihara *et al.* (2014) no período de 1978-2007 encontrou precipitação média de 2.112 mm/ano, sendo o maior índice na região noroeste do Amazonas ("cabeça do cachorro") com precipitação média de 3.731 mm/ano. Fisch (1998) cita uma precipitação média de 2300 mm/ano e Molinier *et al.* (1995) cita 2.460 mm/ano.

O Amazonas apresenta grande regularidade no regime hidrológico anual, quando as sub-bacias estão na estiagem são compensadas pelas sub-bacias na época de cheia. Sendo assim, o regime hidrológico varia pouco a cada ano. Quanto à sazonalidade essa normalidade muda, pois a estação chuvosa (novembro a abril) possui 70% da precipitação total anual e a menos chuvosa (maio a outubro) somente 30% (COUTINHO *et al.*, 2018).

Quanto à hidrografia, a bacia amazônica, está dividida em três grandes unidades morfoestruturais: os escudos (44% da superfície total), a cordilheira dos Andes (11%) e a planície amazônica (45%) em que os principais rios formadores do Amazonas apresentam características hidrográficas ligadas a estas três unidades. Os dois rios de origem andina são o Solimões e o Madeira. Na região de Manaus, a convergência das contribuições dos rios Solimões, Negro e Madeira conduzem a um importante aumento das superfícies drenadas e das vazões. Esta concentração de descarga tem um declive hidráulico fraco, que gera perturbações no escoamento destes rios e reflete na não-univocidade das curvas-chave (MOLINIER *et al.*, 1995).

No período de 1973-1990, de acordo com Moliniear *et al.* (1995), a vazão média anual na foz do Amazonas foi de 209.000 m³/s, e no ponto de maior contribuição, que é a estação de Óbidos, a descarga chega a 168.700 m³/s com uma área de drenagem de 4.680.000 km², sendo um dos maiores pontos de medição de descarga líquida do mundo. As principais sub-bacias da bacia amazônica na porção brasileira são as do Rio Negro, Solimões, Purus, Madeira, Tapajós e Xingu.

A Figura 04 apresenta a área de estudo, que corresponde aos limites da Bacia Hidrográfica do Rio Amazonas, divisão instituída pelo DNAEE e que corresponde apenas a porção brasileira da bacia. O mapa da Figura 04 também mostra as estações em operação da RHN da rede fluviométrica e pluviométrica da ANA, dentro dos limites

da área da Amazônia Legal. As estações extintas e de outras entidades não estão representadas na Figura 04, mas seus dados estão disponíveis no SNIRH (Sistema Nacional de Informações de Recursos Hídricos).

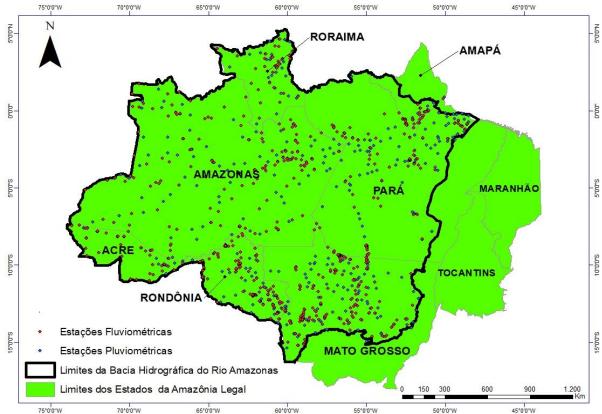


Figura 04 – Estações da RHN nos limites da Bacia Hidrográfica do Rio Amazonas

Datum: Sirgas 2000, Base de dados da ANA.

Fonte: Autor, 2022.

5 METODOLOGIA

A área de estudo corresponde à Bacia Hidrográfica do Rio Amazonas (Figuras 2b e 04) na porção brasileira, pois a base de dados da ANA/SNIRH considera esta divisão na nomenclatura dos códigos das estações e das sub-bacias.

É utilizado os dados de vazão e precipitação disponíveis no Hidroweb <https://snirh.gov.br/hidroweb/> da ANA, através da consulta de todas as estações disponíveis e que tenham um período mínimo de 15 anos até o ano de 2014, que é o ano limite em que a série fluviométrica está consistida e sem falhas.

A OMM em seu Guia de Práticas Hidrológicas, OMM (1994), recomenda que para cálculos dos padrões e normais climatológicos é necessário o período mínimo de 30 anos de observações sequenciais. Entretanto, diversos trabalhos que analisam tendências utilizaram períodos de até 10 anos de dados (LIMA JÚNIOR; ZANELLA, 2017; NOVOTNY; STEFAN, 2007; CROWLEY *et* al., 2008; MARENGO; TOMASELLA, 1998; MOURA, 2015).

Além disso, quando o período é maior ou igual a 10 anos a variável S do teste de Mann-Kendall pode ser comparada como uma distribuição normal (SALVIANO *et al.*, 2016).

As etapas metodológicas para atingir os objetivos são descritas na Figura 05 e cada etapa é detalhada nos tópicos seguintes.

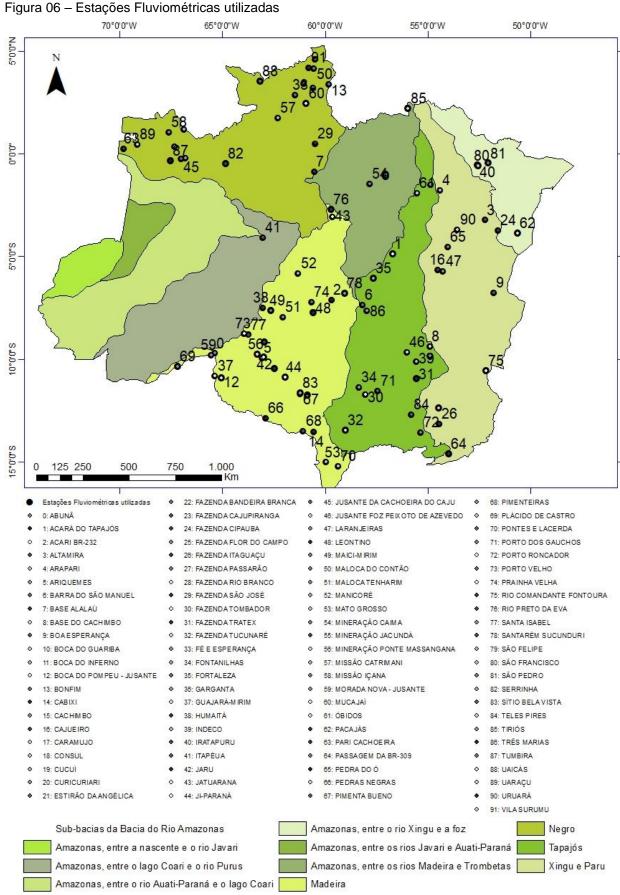
ANÁLISE E TENDÊNCIA DA PRECIPITAÇÃO E VAZÃO NA BACIA HIDROGRÁFICA DO RIO AMAZONAS Consulta a todas estações e seleção das que possuem período mínimo de 15 anos, e com Banco de dados 1. Levantamento dos poucas falhas nas séries de precipitação e do Hidroweb dados sem falhas nas séries de vazão; 2. Análise de Consistência: Método da Dupla Massa Consistência e Uso do software Preenchimento das livre HidroPlu Preenchimento de falhas: Método da Falhas de dados Regressão Linear Múltipla pluviométricos Variáveis de Vazão: Vazão Média, máxima e 3. Cálculo e Análise Uso do software mínima anuais das tendências pelo livre "R" Teste de Mann-Variáveis de Precipitação: totais anuais na Kendall e Sen's Slope precipitação e máxima mensal anual. Testes aplicados para os períodos de 40 Uso dos 4. Avaliação da anos, 35 anos, 30 anos, 20 anos e 15 anos softwares variabilidade espaçoaté 2014; Arcmap 10.8 e temporal Mapas com distribuição espacial das Microsoft Excel tendências do Teste de Mann-Kendall; Gráfico da curva de duração decadal e das séries normalizadas com tendência; Interpolação das magnitudes de Sen's Slope.

Figura 05 - Fluxo das etapas metodológicas.

5.1 Levantamento dos dados

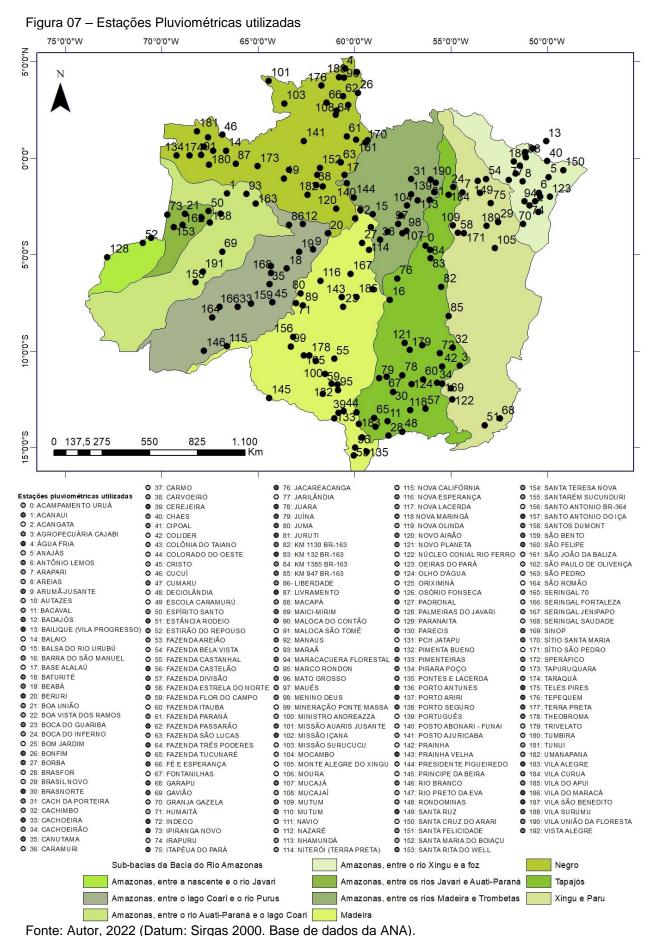
A bacia hidrográfica do Rio Amazonas possui aproximadamente 3,8 milhões de Km² de acordo com os dados disponíveis no SNIRH, mas muitos postos estão desativados, ou não possuem medição de vazão e têm muitas falhas na série histórica. Ao visualizar o inventário das estações que integram a Bacia Hidrográfica do Rio Amazonas, há 1912 estações pluviométricas e 1456 estações fluviométricas, que incluem as estações extintas e de outras entidades.

A OMM (1994) recomenda um limite de densidade adequada para as categorias "planas/interiores" ou "íngremes/onduladas" a densidade de 575 Km² por estação pluviométrica, a densidade das estações pluviométricas é de apenas 1.999 Km², muito superior ao recomendado pela OMM. Ao analisar as estações ativas que integram a RHN de responsabilidade da ANA há um total de 1473 estações, sendo


687 fluviométricas e 786 pluviométricas (distribuição mostrada na Figura 05), com densidade de 4.863 Km² para estações pluviométricas, fora do padrão recomendado.

Deve-se levar em conta a dificuldade da operação dessas estações na Bacia Amazônica, principalmente em relação ao acesso (que muitas vezes só é possível por via aérea) e de comunidades residentes nas áreas mais isoladas para realizar a observação e zeladoria das estações, o que justifica a densidade ser muito superior ao recomendado.

Para as estações pluviométricas as falhas foram preenchidas através do método da regressão linear múltipla, mais robusto que o método da ponderação regional, e consistidas pelo método da dupla massa pelo programa HidroPlu, até o ano de 2014 (para ter o mesmo período que a série fluviométrica) e com período mínimo de 15 anos.


Na escolha das estações fluviométricas foi considerada as estações que possuíssem dados de vazão (aquelas com medição de descarga líquida e curvachave) e período sem falhas, em função das poucas metodologias consolidadas na literatura sobre o preenchimento de dados de vazão, com período mínimo de 15 anos e ano limite de 2014. O ano limite de 2014 foi escolhido pois só tem dados consistidos de vazão até 2014 no banco de dados da ANA, como não será realizado o preenchimento, anos posteriores apresentaram falhas e por isso não foi considerado.

Após a análise dos dados, as estações utilizadas que atendem os critérios estabelecidos são 193 pluviométricas e 92 fluviométricas que estão especializadas na Figura 06 (Fluviométrica) e Figura 07 (Pluviométricas).

Datum: Sirgas 2000. Base de dados da ANA

Fonte: Autor, 2022

onto: / tator, 2022 (Datami ongao 2000) Base de dados da / il v

5.2 Consistência e Preenchimento das falhas pluviométricas

O método para a análise de consistência dos dados e homogeneidade é o de Dupla Massa desenvolvido pela USGS, segundo a ANA (2012) a metodologia consiste em selecionar as estações de uma região, acumular para cada um deles os valores mensais, plotar num gráfico os valores acumulados correspondentes a estação a validar (nas ordenadas) e de uma ou várias estações adotada como base de comparação (nas abscissas). A partir da curva de Dupla Massa é possível detectar erros sistemáticos e de transcrição.

A aplicação do método da dupla massa foi realizada com o uso do software HidroPlu, que é livre e desenvolvido pela Agência Nacional de Energia Elétrica (ANEEL) em parceria com a ANA e UFV (Universidade Federal de Viçosa), o programa é recomendado pela ANA, utilizado pelo Serviço Geológico do Brasil (CPRM) e em diversos trabalhos (SALGUEIRO, 2005; SALGUEIRO *et al.*, 2014; AMADOR; SILVA, 2020).

O preenchimento das estações pluviométricas é com base nas estações de apoio que sejam da mesma sub-bacia e com características climatológicas semelhantes. O programa Hidro-Plu visa a análise e consistência dos totais pluviométricos mensais ou anuais e baseia-se na formulação matemática desenvolvida por Holanda e Oliveira (1979). Além disso, facilita a escolha das estações de apoio, o preenchimento de falhas pelo HidroPlu é realizado pelo método da regressão linear múltipla, que de acordo com Tucci (2013) é um método mais aprimorado em comparação ao da ponderação regional.

Segundo Tucci (2013) na regressão múltipla as informações pluviométricas do posto Y (que será preenchido) é correlacionada com as correspondentes observações de vários postos vizinhos através da Equação 01.

$$Y = x1i + a1 x2i + \dots + a_{n-1}xn1 + an$$
 (1)

Onde n= número de estações consideradas, a0, a1, ..., na = os coeficientes a serem estimados e x1i, x2i, ... xni = as observações correspondentes registradas nas estações vizinhas.

5.3 Análise de Tendência: Mann-Kendall e Sen's Slope

O teste de Mann-Kendall e de Sen's Slope foi aplicado nas séries anuais pluviométricas e fluviométricas, com o uso do software livre "R". Nas vazões, foi aplicado nas séries anuais de vazão média, máxima e mínima. Nas precipitações para os totais anuais e precipitação máxima anual. A utilização de testes não paramétricos em séries médias é bastante explorado na literatura, mas em Recursos Hídricos os extremos máximos e mínimos são de grande importância, por isso é realizado o cálculo de tendência nestes extremos, que já foi aplicado por Moura (2015) e Guzha et al. (2013).

Além da aplicação nos extremos, os testes foram aplicados em cinco períodos distintos, para melhor compreender a variabilidade temporal. Sendo assim, os dados das séries históricas foram divididos e o teste aplicado para cada período, ressaltando que nem todas as estações se enquadram em todos os períodos, algumas possuem apenas 15 anos, outras apenas 30 anos. Os períodos de aplicação dos testes foram: 1975 a 2014 (40 anos), 1980 a 2014 (35 anos), 1985 a 2014 (30 anos), 1995 a 2014 (20 anos) e 2000 a 2014 (15 anos), como indicado por Novotny e Stefan (2007).

De acordo com Mann (1945) e Kendall (1975) a estatística do teste é definida pela Equação 02:

$$S = \sum_{i=2}^{n} \sum_{j=1}^{i-1} sign(x_i - x_j)$$
 (2)

Em que x_i : dados estimados da sequência de valores, n: é o comprimento da série temporal e o sinal $(x_i - x_j)$ é igual a -1 para $(x_i - x_j)$ <0, 0 para $(x_i - x_j)$ =0 e 1 para $(x_i - x_j)$ >0.

O valor de S é normalmente distribuído com média E(S) e variância Var(S), para uma situação na qual pode haver valores iguais de x, que são calculados pelas Equações 03 e 04:

$$E(S) = 0 (3)$$

$$Var(S) = \frac{n(n-1)(2n+5) - \sum_{p=1}^{q} t_p (t_p - 1)(2t_p + 5)}{18}$$
 (4)

Em que: tp é o número de dados com valores iguais num certo grupo e q é o número de grupos contendo valores iguais na série de dados num certo grupo p. O teste estatístico parametrizado de Mann-Kendall (Z_{MK}) é dado pela equação 05:

$$Z_{MK} = \begin{cases} \frac{S-1}{\sqrt{Var(S)}} & se \ S > 0\\ 0 & se \ S = 0\\ \frac{S+1}{\sqrt{Var(S)}} & se \ S < 0 \end{cases}$$
 (5)

A presença de uma tendência estatisticamente significativa é avaliada usando o valor de Z_{MK} . Após o teste de hipótese, um valor positivo ou negativo de Z_{MK} pode indicar um aumento ou diminuição na tendência, dentro de um nível de confiança de 95% do valor de Z_{MK} entre -1,96 a +1,96 (LOPES e SILVA, 2013).

O teste Sen's Slope é utilizado para calcular a magnitude da tendência e dá uma dimensão numérica do quanto realmente aquela série aumentou ou diminuiu a cada ano, e mensura o resultado do teste de Mann-Kendall.

Segundo Alcântara *et al.* (2019) o método é insensível a outliers e dados ausentes e mais rigoroso que a curvatura da regressão linear provendo medidas mais reais. É obtido através do cálculo dos pares de valores da série conforme a Equação 06:

$$\beta = Mediana \frac{(x_i - x_j)}{(j - i)} \tag{6}$$

Onde X= precipitação ou vazão correspondente ao ano j e i, sendo j sempre menor que i.

6 RESULTADOS E DISCUSSÃO

A Figura 08 apresenta a curva de dupla massa de quatro estações que foram utilizadas neste trabalho, a consistência foi realizada para todas as 193 estações pluviométricas. Cada estação foi processada e analisada de forma única através do software Hidroplu, e a crítica é realizada destacando-se os dados duvidosos e o programa fornece os respectivos valores a serem substituídos e a decisão final é da análise baseada na curva de dupla massa e homogeneidade dos dados.

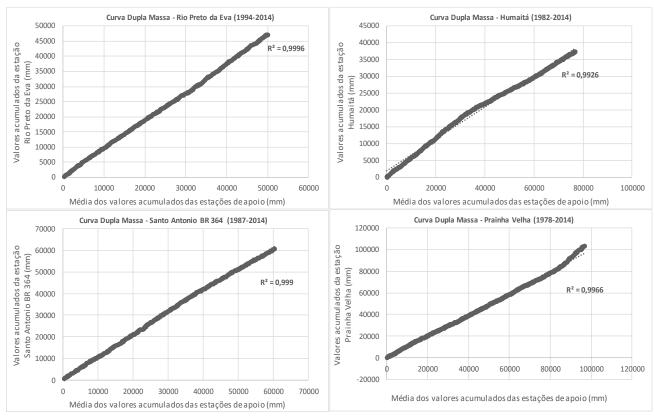


Figura 08 – Curvas de dupla massa de algumas estações utilizadas

Fonte: Autor, 2022.

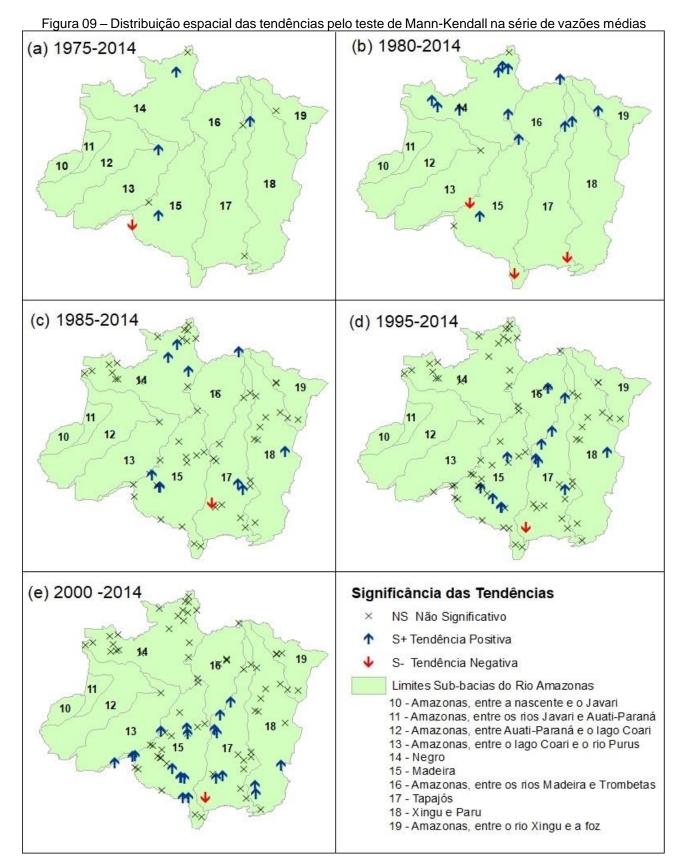
Os critérios para a escolha das estações de apoio para a análise de consistência são: a proximidade das estações em análise (raio de 100 a 300km), semelhança de altitudes, período coincidente de dados observados, estação com maiores coeficientes de correção e ausência de acidentes geomorfológicos (ANA/ANEEL, 2010). O número de estações de apoio variou entre um a nove para cada uma das 193 analisadas. De todas estas estações, 185 tiveram pelo menos uma falha mensal para ser preenchida através do método da regressão linear múltipla.

Ao aplicar o teste de Mann-Kendall e Sen's Slope para todas as estações e nos últimos 40, 35, 30, 20 e 15 anos até o ano de 2014, tem-se uma variação no número de estações para cada período e variável. As estações que apresentaram 40 anos de dados entram no cálculo para 35, 30, 20 e 15 anos, porém tem estações que possuem apenas 15 anos. Sendo assim, períodos maiores possuem menos estações e os últimos 15 anos é o período que contempla todas as 193 estações pluviométricas e as 92 fluviométricas. Quando a aplicação dos testes é para os extremos máximos e mínimos o número de estações reduz ainda mais, principalmente a precipitação máxima, pois estes valores são baseados em dados diários que não são preenchidos como nas vazões médias e total anual de precipitação, que levam em conta os dados mensais e anuais.

Ao todo foram realizados 1.056 testes de Mann-Kendall e Sen's Slopes sendo: 272 testes para vazão média, 141 testes para vazões máximas, 141 testes para vazões mínimas, 468 testes para os dados de precipitação total anual e 34 testes para a precipitação máxima anual. A Tabela 01 apresenta a porcentagem de estações com tendência positiva ou negativa significativa com ρ value =0,05, ou seja, com 95% de chances dessa tendência ser verdadeira.

O período que apresentou maiores resultados significativos foi o de 35 anos (1980-2014) em comparação com os demais. Ao diminuir o período de aplicação dos testes a porcentagem das tendências significativas diminui nas variáveis vazão máxima, vazão mínima, total anual de precipitação e precipitação máxima anual. Apenas a vazão média diminuiu as tendências para o período de 30 anos e 20 anos, e há um pequeno aumento para os últimos 15 anos como mostra a Tabela 01. A faixa de 40 e 35 anos tem maior porcentagem das estações com tendência, resultado também encontrado por Novotny e Stefan (2007) na bacia de Minnesota (EUA) em que as estações com mais de 30 anos tiveram as maiores porcentagens de tendência significativa.

A tendência de aumento tem as maiores porcentagens entre os diferentes períodos e variáveis. A tendência de diminuição mostrou maior porcentagem para as vazões mínimas (períodos de 1975-2014, 1985-2014 e 1995-2014) e para o total anual de precipitação no período de 1975-2014. Os resultados dos testes para cada estação, período e variável estão inseridos no Apêndice nas Tabelas 02, 03, 04, 05 e 06.


Tabela 01 – Porcentagem das estações fluviométricas e pluviométricas da Bacia Hidrográfica do Rio Amazonas com tendência **positiva** (S+) ou negativa (S-) significativas e tendência não significativa (NS)

Variável	Período	1975-2014	1980-2014	1985-2014	1995-2014	2000-2014
		(40 anos)	(35 anos)	(30 anos)	(20 anos)	(15 anos)
vazão média	n° de estações	10	19	66	85	92
	% S+	40%(+)	68,4%(+)	15,2%(+)	16,5%(+)	22,8%(+)
	% S-	10%(-)	21,1%(-)	1,5%(-)	1,2%(-)	1,1%(-)
	% NS	50(%)	10,5(%)	83,3(%)	82,3(%)	76,1(%)
Vazão máxima	n° de estações	5	9	23	50	54
	% S+	20%(+)	55,6%(+)	8,7%(+)	12%(+)	7,4%(+)
	% S-				2%(-)	
	% NS	80(%)	44,4(%)	91,3(%)	86(%)	92,6(%)
vazão mínima	n° de estações	5	9	23	50	54
	% S+		44%(+)	21,7%(+)	4%(+)	5,6%(+)
	% S-	40%(-)	33%(-)	26,1%(-)	12%(-)	5,6%(-)
	% NS	60(%)	23(%)	52,2(%)	84(%)	88,8(%)
Total anual de precipitação	n° de estações	11	20	85	159	193
	% S+	18,2%(+)	45%(+)	17,6%(+)	18,9%(+)	13%(+)
	% S-	27,3%(-)	20%(-)	9,4%(-)	8,2%(-)	7,3%(-)
	% NS	54,5(%)	35(%)	73(%)	72,9(%)	79,7(%)
Precipitação máxima anual	n° de estações	0	L/// 0	3	11	20
	% S+				18,2%(+)	10%(+)
	% NS			100(%)	81,8(%)	90(%)
			•	•	•	

6.1 Análise das séries de vazão pelo teste de Mann-Kendall

6.1.1 Séries de Vazões médias anuais

Os resultados mostram que as séries de vazão média tiveram maiores resultados significativos para tendência de aumento em toda a bacia hidrográfica do Rio Amazonas. A Figura 09, apresenta a distribuição espacial das tendências pelo teste de Mann-Kendall das séries de vazão média para cada período analisado.

Ao analisar a Figura 09 (b), no período de 1980-2014, as tendências positivas estão bem distribuídas nas estações localizadas na margem esquerda do Rio Amazonas (porção norte), e apenas três estações da margem direita (porção sul) possuem tendência negativa. No entanto, deve-se levar em conta que há poucas estações estudadas nos afluentes da margem direita para o período de 1980-2014.

No entanto, o estudo de Heerspink *et al.* (2020) com a utilização de mais estações para o período de 1980-2014 na área da bacia amazônica e do Tocantins, mostrou descargas crescentes na porção norte e oeste e descarga decrescente na porção sul e leste da bacia amazônica.

Das 66 estações estudadas no período de 1985-2014, Figura 09 (c), apenas 9 estações tiveram tendência positiva e uma tendência negativa. Quando se diminui o período, para os últimos 20 anos (1995-2014) e 15 anos (2000-2014), há um aumento no número de estações com tendência positiva, e é nítido na Figura 09 que esse aumento ocorre nas estações localizadas a margem direita do Rio Amazonas, sendo bastante evidente no período de 2000-2014. Nestes dois períodos há apenas uma estação (Fazenda Tucunaré) com tendência negativa, as demais são positivas.

Em síntese para os períodos de 1975-2014 e 1980-2014 as tendências positivas estão nas estações dos afluentes da margem esquerda, no entanto, não há estações analisadas na margem direita por falta de dados. Os demais períodos, a partir de 1985, apresentam estações distribuídas em toda a área da bacia (com exceção das sub-bacias 10 – Amazonas, entre a nascente e o Javari; 11 – Amazonas, entre os rios Javari e Auati-Paraná e 12- Amazonas entre Auati -Paraná e o lago Coari) e a distribuição das tendências positivas significativas se concentram na margem direita do Amazonas, principalmente nos últimos 15 anos.

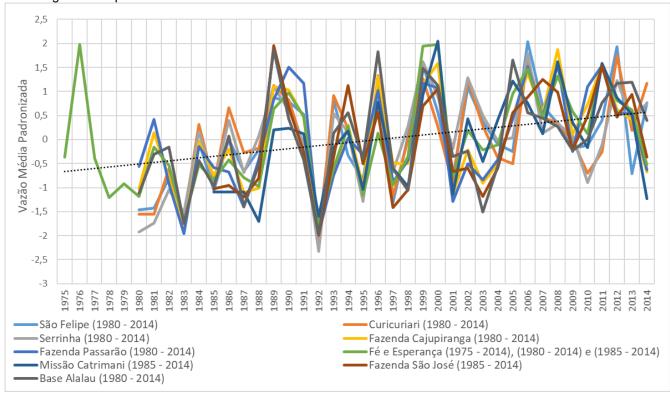
Ao analisar os resultados das vazões médias por sub-bacia, a sub-bacia 13 – Entre o lago Coari e o rio Purus, só teve uma estação com tendência positiva significativa que é Itapéua, no período de 1975-2014, com Z_{MK}=2,02. Na sub-bacia 19 – Amazonas entre o Rio Xingu e a foz, das 4 estações analisadas, apenas a estação de São Francisco apresentou tendência significativa de aumento para o período de 1980-2014.

Na sub-bacia 16 – Amazonas, entre os rios Madeira e Trombetas, foi realizado a aplicação do teste em apenas 5 estações. Destas, houve tendência positiva

significativa em 3 estações: Caramujo (1995-2014), Estirão da Angélica (1995-2014) e Tiriós (1980-2014 e 1985-2014). O trabalho de Hachem (2016) analisou sete estações, nesta mesma região da sub-bacia 16 mas levando em conta a divisão do Estado do Pará em mesorregiões, e aplicou o teste de Mann Kendall para o período de 1995-2013, neste estudo as estações de Caramujo e Tiriós não apresentaram tendência positiva e as demais valores positivos de ZMK só que menor que 1,96.

Apesar de não haver significância, os resultados das cinco estações deste trabalho e das sete estações do estudo de Hachem (2016) apresentaram valores de Z_{MK} positivos. O estudo de variabilidade hidrológica realizado por Coutinho *et al.* (2019) também identificou tendência de crescimento da vazão na sub-bacia do Rio Trombetas.

Na sub-bacia 18 – Rio Xingu e Paru, o teste de Mann-Kendall foi aplicado em 12 estações fluviométricas. Mas apenas as estações Fazenda Itaguaçu (2000-2014), Consul (2000-2014), Rio Comandante Fontoura (2000-2014) e Boa Esperança (1985-2014 e 1995-2014) tiveram tendência positiva. O estudo de Moura (2015), na sub-bacia do Xingu, mostrou tendência significativa positiva de aumento na estação de Boa Esperança. Coutinho *et al.* (2019) identificou através de análise dos hidrogramas que a estação de Arapari teve tendência positiva e a de Altamira teve tendência negativa para o período de 1982-2012, no entanto, ao aplicar o teste de Mann Kendall nestas estações neste estudo não houve tendência.


A sub-bacia 14 – Rio Negro, para as vazões médias, apresentou apenas tendência positiva nos períodos de 1975-2014, 1980-2014 e 1985-2014, como encontrado por Coutinho *et al.* (2019). Marengo e Tomasella (1998) aplicou o teste de Mann Kendall para a descarga média durante os três meses de cheia em estações localizadas na sub-bacia do Rio Negro no período e 1903-1992, os resultados do ZMK foram positivos, mas não significativos.

O comportamento da sub-bacia 14 é semelhante ao encontrado por Marengo e Tomasella (1998) e a tendência positiva torna-se significativa. No entanto, para os períodos mais recentes estas estações não tiveram tendência significativa, ou seja, nos últimos 20 e 15 anos o aumento não foi significativo quando comparado aos períodos com mais de 30 anos.

A Figura 10, apresenta a distribuição da vazão média padronizada das estações que tiveram tendência positiva na sub-bacia 14 do Rio Negro. Para melhor

visualizar os dados, foi calculada a vazão padronizada (valor adimensional) que é a diferença entre a vazão média anual e a vazão média da série histórica, dividido pelo desvio padrão da série histórica realizado para cada estação com tendência significativa positiva da sub-bacia-14 Rio Negro. Desta forma os valores ficam na mesma escala, já que cada estação possui uma magnitude diferente de vazão.

Figura 10 – Vazão média padronizada das estações do Rio Negro (sub-bacia 14) com tendência significativa positiva

Fonte: Autor, 2022.

No Rio Negro, o gráfico da Figura 10 demonstra uma tendência de aumento gradativa, ou seja, não há uma mudança abrupta na série em algum período específico, por isso que os períodos menores (de 20 e 15 anos) não apresentam tendência significativa, pois não há grande variação. Este resultado é melhor observado na Figura 11, que é o gráfico da Curva de Duração Decadal da vazão pela sua frequência de excedência (%) de seis estações do Rio Negro, esta curva também foi aplicada no estudo de Guzha *et al.* (2013). Neste gráfico é possível observar um sutil "salto" da vazão média a partir de 1990, e após este período as curvas de 1990-1999 e 2000-2009 são bem próxima, que justifica ainda mais a não ocorrência de tendência significativa analisando apenas este período.

10500 15500 Curicuriari São Felipe Vazão média (m³/s) 14500 Vazão média (m³/s) 9500 13500 8500 12500 11500 1980-1989 7500 1980-1989 1990-1999 1990-1999 10500 2000-2009 2000-2009 9500 6500 2010 5010 6010 1010 8010 40% 20% 60% 10% Frequencia de excedência Frequencia de excedência 24500 1900 Serrinha Fazenda Cajupiranga Vazão média (m³/s) Vazão média (m³/s) 19500 1400 900 14500 1980-1989 1980-1989 1990-1999 1990-1999 2000-2009 2000-2009 400 9500 60% 90% 30% V0/0 50% 60% 50% 10% V0/0 10% Frequencia de excedência Frequencia de excedência 2400 450 Fazenda Passarão Base Alalau Vazão média (m³/s) Vazão média (m³/s) 350 1900 250 1400 1980-1989 1980-1989 150 900 1990-1999 1990-1999 2000-2009 2000-2009 50 400 20% 20% 20% 10% 20% 50% 60% 10% Frequencia de excedência Frequencia de excedência

Figura 11 – Curva de Duração Decadal de 6 estações com tendência positiva da Sub-bacia 14 - Rio Negro

Na sub-bacia 15 – Rio Madeira, que contribuí com o Amazonas na margem direita, as tendências positivas ocorrem na maioria das estações nos últimos 20 e 15 anos. A Figura 12 apresenta, a vazão média padronizada das estações com tendência positiva.

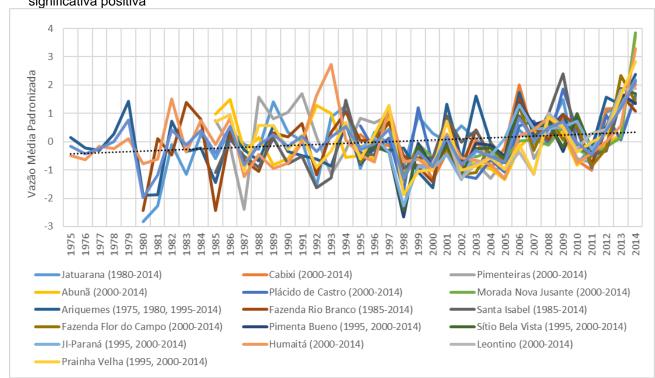
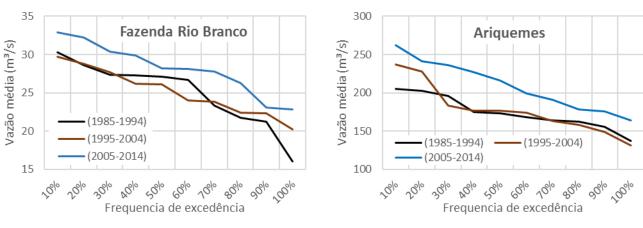


Figura 12 – Vazão média padronizada das estações do Rio Madeira (sub-bacia 15) com tendência significativa positiva

Fonte: Autor, 2022.


Na sub-bacia 15 do Rio Madeira, em 1998 há um pico de diminuição significativa da vazão em todas as estações da Figura 12, neste período (1997-1998) teve a ocorrência do fenômeno ENOS fase positiva forte de acordo com os dados do CPTEC (2021), a seca de 2005 da Amazônia não se reflete tanto nesta sub-bacia como o evento ENOS de 1998. A partir de 1999 há aumento significativo dos picos de cheia no hidrograma em comparação ao período de 1975-1998, em que os dados eram mais uniformes.

Deve-se ressaltar que em 2010 também houve seca na Amazônia, que de acordo com o INPE (2011) foi a maior seca já registrada em mais de 100 anos de monitoramento na estação de Manaus, superando a seca de 2005. A seca de 2010, segundo o INPE, teve início durante o verão com a ocorrência de El Niño moderado mas que foi intensificado pelo aquecimento das águas tropicais do Atlântico Norte.

A partir de 2010, a maioria das estações com tendência significativa positiva aumentam a vazão média anual, atingindo os maiores valores observados desde 1975 no ano de 2014. A evolução de aumento da vazão após 2010 é muito mais intensa na sub-bacia 15 do Rio Madeira do que na sub-bacia 14 do Rio Negro. A Figura 13

apresenta as curvas de duração decadal da vazão média de 2 estações na sub-bacia 15 do Rio Madeira, em que o período de 2005-2014 mostra o aumento da vazão, com comportamento diferente do observado na sub-bacia 14 do Rio Negro em que as estações aumentam a vazão sutilmente a partir de 1990 e se mantém.

Figura 13 – Curva de Duração Decadal de 2 estações com tendência positiva da Sub-bacia do Rio Madeira

Fonte: Autor, 2022.

Comportamento semelhante ao da sub-bacia 15 – Rio Madeira é encontrado na sub-bacia 17 - Rio Tapajós, em que a partir de 1999 as estações localizadas a margem direita do Amazonas apresentam aumento na vazão média, mostrado no hidrograma da Figura 14. O ano de 1998 é o que apresenta a menor média anual de vazão de todas as estações com tendência significativa positiva, também influenciado pelo El Niño forte de 1998, como na sub-bacia do Madeira. Tanto a sub-bacia do Madeira como do Tapajós tem maior área delimitada a margem direita do Rio Amazonas.

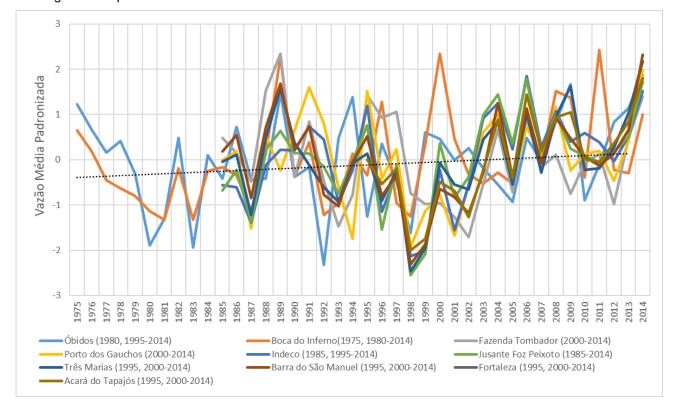
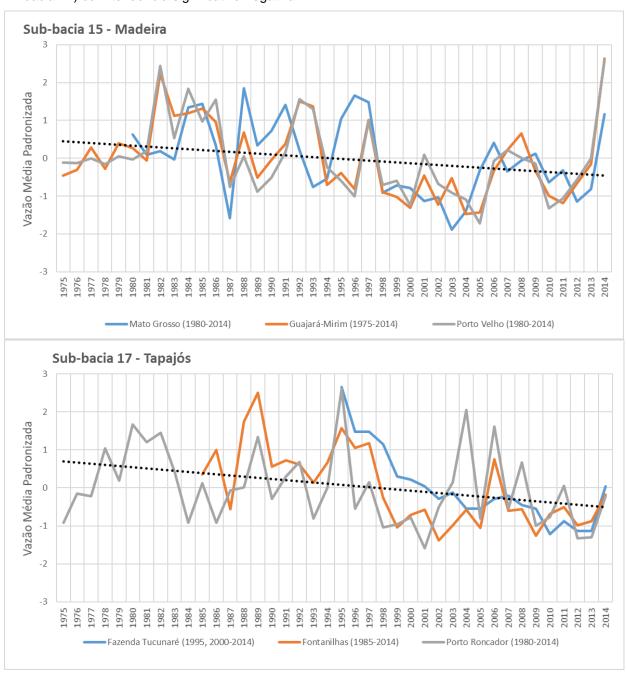


Figura 14 – Vazão média padronizada das estações do Rio Tapajós (sub-bacia 17) com tendência significativa positiva


Os resultados obtidos por Nóbrega *et al.* (2018) mostraram um aumento de 2% na vazão do Rio Tapajós na micro-bacia do Jamanxin com uso de dados físicos do HYBAM (Serviço de Observação da Bacia Amazônica) de 1996-2015 e do modelo hidrológico SWAT (Soil and Water Assessment Tool), sendo que na área de pastagem o coeficiente de escoamento foi maior. Nas demais áreas da bacia não foi encontrada tendência significativa nos últimos 20 anos na vazão.

O estudo de Moura (2015) mostrou que na bacia do Tapajós, utilizando estações com diferentes períodos com mais de 30 anos até 2013, a parte sudeste da bacia tem tendências crescentes e na parte sudoeste diminui as tendências. Isto coincide com a distribuição espacial das estações, que na parte sudoeste da subbacia 17 encontra-se duas estações com tendência significativa negativa.

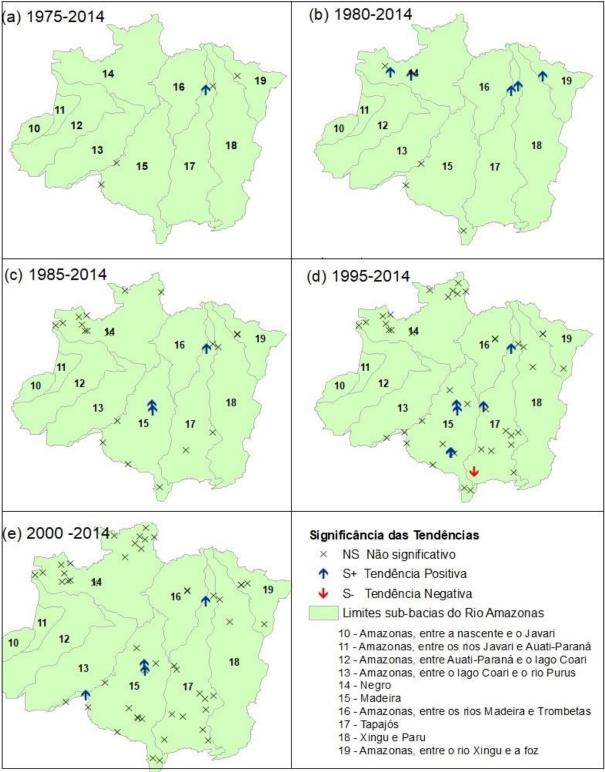
Apenas três estações da sub-bacia 15 – Rio Madeira que são Mato Grosso (1980-2014), Guajará-Mirim (1975-2014) e Porto Velho (1980-2014) e três estações da sub-bacia 17 – Rio Tapajós que são Fazenda Tucunaré (1995-2014 e 2000-2014), Fontanilhas (1985-2014) e Porto Roncador (1980-2014) tiveram tendência negativa

significativa das 92 estudadas para os diversos períodos e em toda bacia hidrográfica do Rio Amazonas. A Figura 15 apresenta as vazões médias padronizadas para as estações citadas.

Figura 15 - Vazão média padronizada das estações do Rio Madeira (sub-bacia 15) e Tapajós (sub-bacia 17) com tendência significativa negativa

Fonte: Autor, 2022.

Todas as seis estações com tendência negativa significativa estão localizadas a margem direita do Amazonas. A estação Fazenda Tucunaré da sub-bacia 17 foi a única com tendência significativa negativa para o período mais recente de 2000-2014, e a que apresentou menores picos de cheia após 1995 em comparação as outras estações da Figura 15 para a sub-bacia 17.


Moura (2015) aplicou o teste de Mann Kendall para diversas estações da subbacia do Rio Tapajós, a tendência da estação de Fontanilhas foi negativa significativa para o período de 1978-2013, como também encontrado neste trabalho.

6.1.2 Séries de Vazões Máximas e Mínimas Anuais

As séries de vazão máxima e mínima são baseados em dados diários. Por exemplo, a vazão máxima do mês de janeiro é a maior vazão que ocorreu naquele mês, e a vazão máxima anual é a maior vazão encontrada em um único dia, e isso vale para a série de vazão mínima. Como é um dado diário, se houver falha não há resultado para aquele ano ou mês de uma série.

A Figura 16 apresenta os resultados dos testes de Mann- Kendall para as vazões máximas anuais. Para a série de vazão máxima, as estações tiveram tendência positiva, com exceção da estação Fazenda Tucunaré da sub-bacia 17 – Rio Tapajós que foi a única em que a vazão máxima diminui de acordo com o teste de Mann-Kendall (tendência negativa). Isto mostra que nas estações com tendência positiva, as vazões máximas estão aumentando a cada ano, ou seja, há mudança no comportamento dos dados extremos.

Figura 16 – Distribuição espacial das tendências pelo teste de Mann-Kendall na série de vazões máximas

Estação que merece destaque nesta análise é a de Óbidos, que é uma estação estudada a nível mundial em diversos trabalhos (AGUIAR et al., 2019;

GUIMARÃES *et al.*, 1997; RONCHAIL *et al.*, 2005; VILLAR *et al.*, 2009; CALLEDE *et al.*, 2002; CALLEDE *et al.*, 2011) pois mede o maior volume de água do Rio Amazonas, com contribuição das sub-bacias 10 a 17 na seção de medição.

Na série de vazões médias, Óbidos apresentou tendência significativa de aumento nos períodos de 1980-2014 e 1995-2014. Já nos resultados das vazões máximas (Figura 16) Óbidos tem tendência significativa positiva em todos os períodos, como encontrado por Ronchail *et al.* (2005) e Heerspink *et al.* (2020) para o período de 1980-2014. Neste caso, as vazões máximas –extremas- da maior seção de medição da Amazônia aumentou em todos os períodos estudados. Isto mostra a importância da aplicação do teste nos dados disponíveis das séries máxima e mínima, e não apenas na média.

Callède *et al.* (2011) estudou 97 anos (1903-1999) do escoamento em Óbidos e mostrou aumento de 9% nas vazões médias anuais e de 10% para cheias, demonstrou aumento da vazão em relação a precipitação e infere que o aumento da vazão é consequência do desmatamento.

A Figura 17 apresenta o hidrograma de vazões máximas para a estação de Óbidos. Observa-se que no período de 1970-1992 há três eventos de anomalia de vazão máxima nos anos de 1980, 1983 e 1985. Nesses anos houve ocorrência de El Niño moderado (1979-1980) e forte (1982-1983) de acordo com o CPTEC (2021), sendo o de 1982-1983 um dos mais intensos na Amazônia segundo Fisch, Marengo e Nobre (1998). Neste período é possível notar no hidrograma um pequeno decaimento na linha de tendência para os anos 1970-1992.

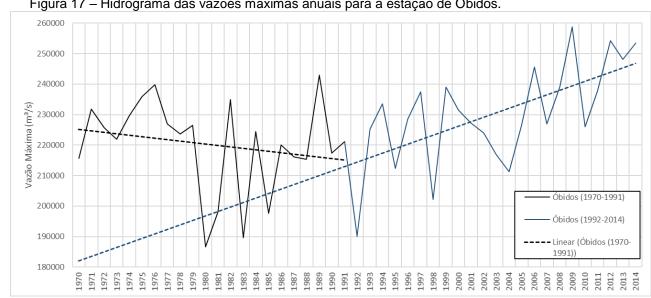
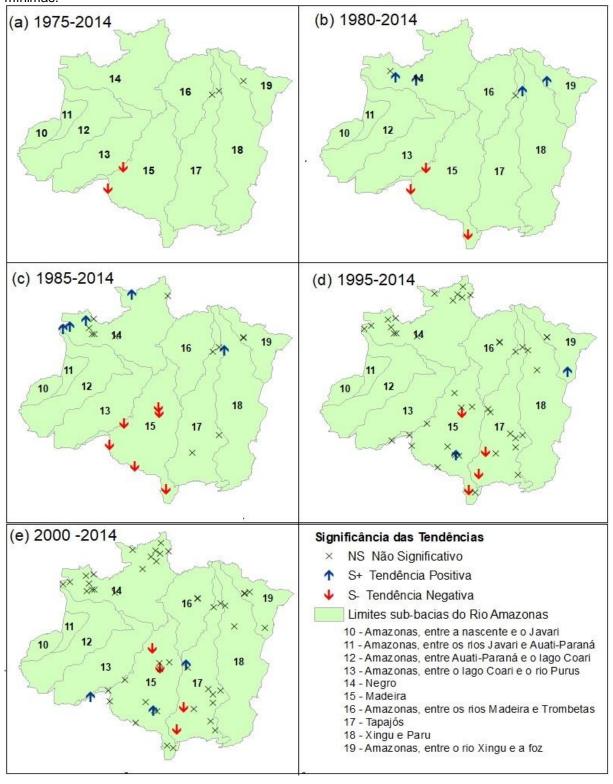


Figura 17 – Hidrograma das vazões máximas anuais para a estação de Óbidos.


Fonte: Autor, 2022.

Em 1992 há ocorrência de El Niño forte, e queda no hidrograma de vazão máxima (Figura 17). Após este evento, o período de 1992-2014 tem aumento dos picos de cheia em que a vazão chega ao máximo de 258.726 m³/s no ano de 2009, que é ocorrência de cheia atípica. A vazão máxima segue aumentando como é visualizado no hidrograma e nos resultados das tendências, acarretando eventos de cheia e inundações mais intensificados.

O trabalho de Silva (2020) observou tendência de cheia para estação de Óbidos com aplicação do teste de Mann-Kendall no período de 1990-2017. Em junho de 2021 ocorreu evento atípico na região. De acordo com os dados disponíveis no hidroweb pela ANA, a vazão medida foi de 270.292,8 m³/s no dia 01 de junho de 2021, que supera a vazão máxima de 2009 e é a maior vazão já registrada medida in loco de acordo com o banco de dados da ANA.

Quanto a análise de tendência das vazões mínimas (Figura 18), houve estações em que a tendência das vazões mínimas aumentou significativamente em seis estações da sub-bacia 14 – Negro para os períodos de 1980- 2014 e 1985-2014. Aumentou em três estações da sub-bacia 15 – Madeira para os períodos de 1995-2014 e 2000-2014, duas estações da sub-bacia 17 – Tapajós para os anos de 1980-2014 e 2000-2014, uma estação da sub-bacia 18- Xingu e Paru para o período de 1985-2014 e duas estações na sub-bacia 19 – Amazonas entre o Xingu e a Foz. Este aumento na tendência das vazões mínimas não se concentrou em determinada área da bacia mas ocorreu de forma uniforme no tempo e espaço.

Figura 18 – Distribuição espacial das tendências pelo teste de Mann-Kendall na série de vazões mínimas.

Fonte: Autor, 2022.

Enquanto nas tendências de diminuição para as vazões mínimas, apenas oito estações da sub-bacia 15 – Madeira e duas estações da sub-bacia 17- Tapajós tiveram resultados significativos. Estas estações estão localizadas na margem direita do Amazonas, nas vazões médias as poucas estações com decaimento significativo também foram na margem direita.

Apesar da maioria das estações para as variáveis vazão média e máxima terem tendência de aumento como já discutido, é importante ressaltar que há também intensificação dos extremos de seca na margem direita do Amazonas. O trabalho de Lima e Dias (2015) através do estudo da avaliação decenal da vazão na Amazônia para o período 1970-2010 identificou que os afluentes da margem direita possui tendência de queda, assim como o trabalho de Heerspink *et al.* (2020) para períodos de seca.

6.2 Análise das séries de precipitação pelo teste de Mann-Kendall

A aplicação do teste de Mann-Kendall nas séries de totais de precipitação anual apontou porcentagens maiores de tendência significativa positiva para os cinco períodos estudados (Tabela 01). A distribuição das tendências para cada período é apresentada na Figura 19. A estação de Acanaui foi a única que teve tendência positiva para os cinco períodos estudados.

A distribuição das tendências positivas e negativas estão mais concentradas na região central da Bacia Amazônica, que é onde está localizado o Rio Amazonas. E a partir de 1980 há várias estações ao Norte da bacia com tendência, porém nos últimos 15 anos (2000-2014) há concentração de tendências positivas significativas ao sul da bacia.

É possível observar que onde há concentração de estações estudadas há estações com tendência. Infelizmente, algumas áreas da sub-bacia 10, 11, 12, 13, 16, 18 e 19 não tiveram estações com séries disponíveis para serem analisadas.

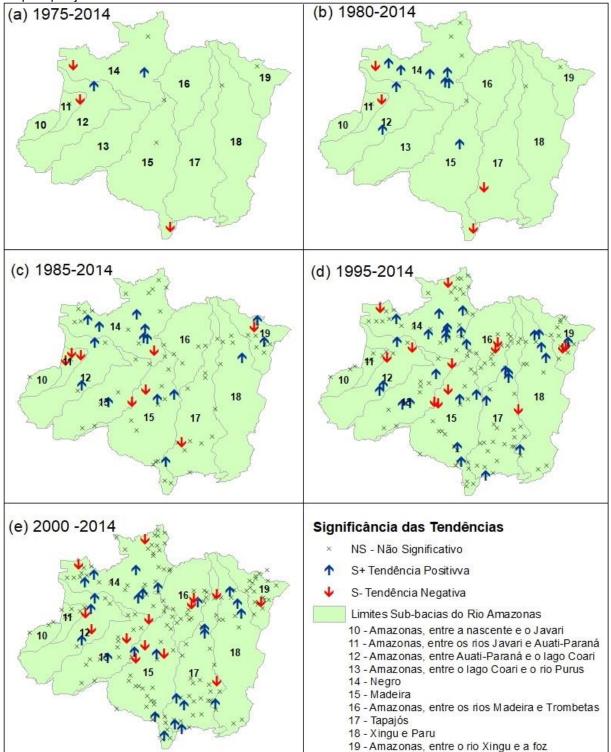


Figura 19 – Distribuição espacial das tendências pelo teste de Mann-Kendall na série de totais anuais de precipitação.

Os resultados encontrados na distribuição das tendências para o período de 1985-2014, foi similar ao obtido no estudo de Lira (2018) que aplicou o teste de Mann-Kendall na Amazônia Legal no período de 1986-2015. Com tendências positivas mais ao Norte (sub-bacia 14 – Rio Negro) e tendências negativas próximas ao Rio Amazonas (parte central da bacia). As tendências negativas na parte central da bacia também foram identificadas no trabalho de Ferreira Filho (2020) que utilizou dados de precipitação do satélite GPCC (Global Precipitation Climatology Centre) no período de 1986-2018.

Ao analisar as estações que tiveram maiores valores de Z_{MK} para os totais anuais de precipitação com tendência positiva, através do gráfico da Figura 20 com os totais anuais de precipitação normalizado, nota-se aumento da precipitação a partir de 1997 para as seis estações com tendência positiva mais fortes.

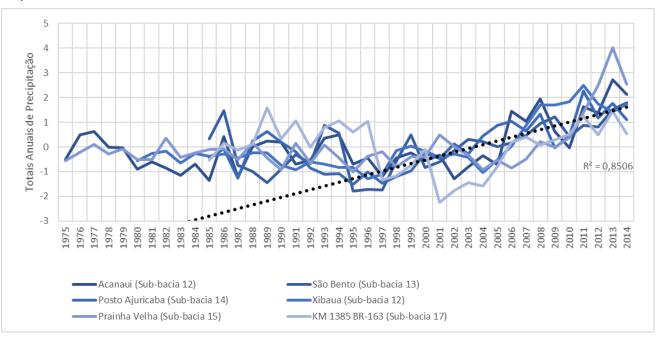


Figura 20 – Totais anuais de precipitação padronizada para seis estações com tendência significativa positiva na Bacia do Rio Amazonas.

Fonte: Autor, 2022.

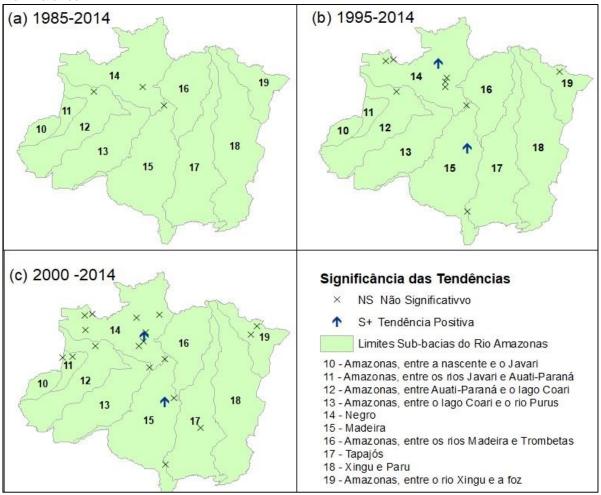
Os maiores picos destas estações são no ano de 2013, que de acordo com o INMET (2013) o primeiro trimestre de 2013 sofreu forte influência da ZCIT, um dos principais sistemas modeladores do clima amazônico. O trabalho de SANTOS *et al.*

(2012) analisou que o aumento da precipitação em Manaus (1971-2017) foi de mais de 50mm e a anomalia de TSM desloca a ZCIT mais ao Sul do Equador.

Quanto a intensidade das tendências negativas significativas, para os períodos que tiveram resultados com valores negativos mais distantes de Z_{MK}=-1,96 para o nível de confiança de 95%, as estações com 20 anos de dados tiveram os maiores valores de Z_{MK} para tendência negativa. Os totais anuais de precipitação normalizada de seis destas estações é mostrado na Figura 21.

Fotais Anuais de Precipitação 0,6387 -3 2013 .995 966 2002 2005 2006 2007 2012 2014 997 2011 ACANGATA (Sub-bacia 19) PORTO SEGURO (Sub-bacia 12) TUNUI (Sub-bacia 14) PORTUGUES (Sub-bacia 16) TEPEQUEM (Sub-bacia 14) MOCAMBO (Sub-bacia 16)

Figura 21 – Totais anuais de precipitação padronizada para seis estações com tendência significativa negativa na Bacia do Rio Amazonas.


Fonte: Autor, 2022.

Os resultados encontrados para as tendências significativas positivas e negativas foram similares ao estudado por Coutinho *et al.* (2018) no período de 1982-2012, onde as estações da parte sudoeste (sub-bacia 12) e central (sub-bacia 15) tiveram tendência negativa e a parte leste (sub-bacia 17 e 18) tiveram tendências positivas. O trabalho de Silva Júnior *et al.* (2020) para o período de 1998-2014 com dados de TRMM (Tropical Rainfall Measuring Mission) encontrou áreas com tendência de redução na precipitação na floresta intacta, que é a parte central da bacia. A redução na precipitação nessas áreas pode produzir impactos nos sistemas hidrológicos.

O teste de Mann-Kendall também foi aplicado nas séries de precipitação máxima anual. Como há muitas falhas nos dados diários para esta variável, o número

de estações pluviométricas reduziu para vinte estações e somente nos períodos de 1985-2014, 1995-2014 e 2000-2014. A distribuição das tendências é mostrada na Figura 22. Apenas três estações tiveram tendência positiva significativa para o aumento dos valores de precipitação máxima anual da série histórica.

Figura 22 – Distribuição espacial das tendências pelo teste de Mann-Kendall na série de precipitação máxima anual.

Fonte: Autor, 2022.

As estações são: Posto Ajuricaba (1995-2014) e Terra preta (2000-2014) da sub-bacia 14 Rio Negro e a estação Vila do Apuí (1995-2014 e 2000-2014) da sub-bacia 15 Rio Madeira, que tiveram tendência positiva nas séries de precipitação máxima, que indica que nestas estações os valores das precipitações mais elevadas estão aumentando a cada ano, que intensifica o período chuvoso. Resultado similar foi encontrado por Silva (2010) que na Amazônia Oriental a análise da tendência elevou os anos extremos de precipitação.

6.3 Magnitude das tendências de precipitação e vazão: Teste de Sen's Slope

O teste de Sen's Slope determina a taxa de aumento ou decaimento de uma variável, neste estudo é uma taxa anual. Dessa forma é possível identificar o comportamento das tendências de cada estação e espacializa-las para verificar a distribuição. Com o uso do método de interpolação IDW (Ponderação do Inverso da Distância) com uso do software Arcgis 10.8. No estudo de Magalhães *et al.* (2013), o método IDW foi o método mais eficiente para espacialização da precipitação.

Através do método foi possível interpolar os resultados do teste de Sen's Slope para as variáveis vazão média e os totais anuais de precipitação para o período de 2000-2014. Ressaltando que os resultados do teste de Sen's Slope são na unidade de mm/ano para precipitação e m3/s/ano para vazão, e incluí todos os resultados independentemente de serem significativos ou não significativos pelo teste de Mann-Kendall.

A interpolação foi realizada apenas neste período (2000-2014) pois é o que apresenta o maior número de estações. Na Figura 23 é apresentada a magnitude interpolada dos testes de Sen's Slope para os dados de vazão média de todas as 92 estações para o período de 2000-2014 e a Figura 24 para os dados de precipitação total anual das 193 estações.

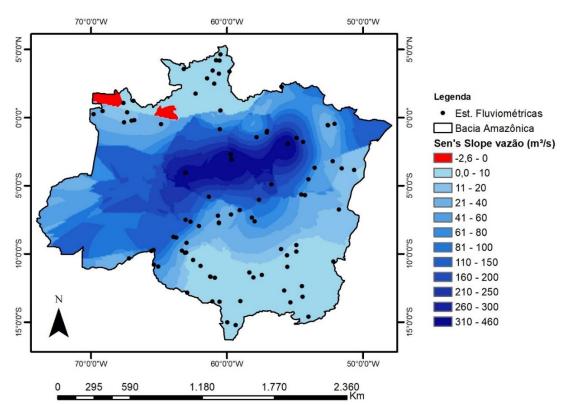


Figura 23 - Magnitude anual da Vazão Média pelo teste de Sen's Slope (2000-2014).

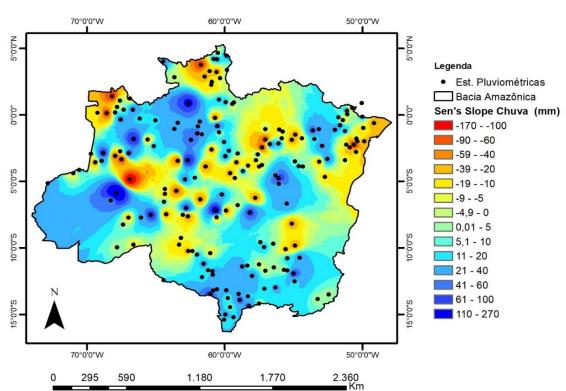


Figura 24 – Magnitude anual do Total Anual de Precipitação pelo teste de Sen's Slope (2000-2014).

Fonte: Autor, 2022.

Na Figura 23 é mostrado que as vazões aumentam em toda a área de estudo para o período de 2000-2014 e com áreas de decaimento apenas no extremo Noroeste da bacia. Deve-se ressaltar que a interpolação leva em conta apenas a magnitude do teste de Sen's Slope e não a significância dos valores pelo teste de Mann-Kendall.

A região central da bacia é a que possui maiores taxas de aumento na vazão, justificado pelos altos valores de vazão, pois recebe contribuição de diversos afluentes. Nos extremos norte e sul da bacia as taxas de aumento ficam na faixa de 0 a 20 m³/s por ano. Já no extremo oeste não há estações, o que compromete a qualidade da análise da interpolação nesta área.

Importante ressaltar que nos últimos 15 anos as vazões estão aumentando, que reflete no elevado número de estações com tendências significativas positivas e corrobora com a análise das vazões máximas da estação de Óbidos que aumenta a cada período analisado.

Os aumentos de eventos de cheias interferem diretamente nas comunidades locais e em diversos munícipios às margens do rio Amazonas. Coutinho *et al.* (2019) afirma que o risco socioeconômico ambiental é mais perigoso durante eventos de cheia, principalmente nos Estados com menor escala espacial como Rondônia e Roraima, e as cheias acarretam maior vulnerabilidade em estados com maior escala espacial como o Pará e Amazonas.

Quanto a distribuição da precipitação, Figura 24, há tendências de diminuição na região central da bacia, nas cabeceiras dos extremos norte e noroeste e na foz da bacia (extremo leste). Os trabalhos de Ferreira Filho (2020) e Lira (2018) também detectaram diminuição da precipitação na foz da bacia mas para uma análise de 30 anos. A diminuição na parte central também é identificado no estudo de Marengo *et al.* (2000).

As tendências de aumento ocorrem nos extremos Sul, na região oeste, na direção noroeste (abaixo da região de cabeceira que tem decaimento) e na direção nordeste acima da região da foz. No extremos Sul, em comparação com o estudo de Ferreira Filho (2020), há diferença nos resultados, pois os dados apresentam tendência de decaimento. Vale ressaltar, que os anos estudados são diferentes mas nas demais áreas a distribuição das tendências é semelhante.

A aplicação dos testes de Sen's Slope e também os resultados do teste de Mann-Kendall, mostram que mesmo em estações fluviométricas e pluviométricas com coordenadas geográficas próximas o comportamento das variáveis vazão e precipitação são diferentes. Enquanto que a vazão tem tendência crescente em toda a bacia, a chuva tem áreas de aumento e decaimento. Ou seja, diversos outros fatores além da precipitação podem interferir na tendência da vazão.

Para Marengo e Tomasella (1998) definir que a vazão é resultado apenas da precipitação e evaporação é complexo quando se interpreta as tendências de vazão como indicativo de mudanças climáticas, por que fatores como mudanças no uso da terra, erosão, represas e aumento do escoamento após o desmatamento inferem na série hidrológica.

Como afirma Marengo e Tomasella (1998), há aumento do escoamento após o desmatamento. Salati *et al.* (2006) descreve que o desmatamento aumenta, numa primeira fase, a vazão dos rios pelo inclemento do escoamento superficial e diminuição da infiltração nas áreas compactados pela ausência de vegetação. Essa diminuição impacta no sistema solo-planta da região Amazônica, diminui a evapotranspiração e interfere nos componentes do balanço hídrico.

Concomitantemente, para o período de 2000-2014 as séries de vazão média mostraram tendência significativa de aumento nas estações dos afluentes da margem direita do Rio Amazonas (região sul da bacia Amazônica) que é uma área próxima ao chamado "arco do desmatamento" que segundo Cohen *et* al. (2007) há as maiores taxas de desmatamento na Região Amazônica devido ao processo acelerado de uso e ocupação do solo.

Modelos numéricos acoplado a circulação geral atmosférica e a modelo de superfície terrestre, ilustram influência do desmatamento na evapotranspiração e descarga no Rio Amazonas e dados reais mostram que nos rios Tocantins e Araguaia há aumento de 25% da vazão com pouca mudança na precipitação (Coe *et al.*, 2009).

Simulações de Guimberteau *et al.* (2013) indicam que as sub-bacias da região sul da Amazônia terão alto coeficiente de escoamento para meados do século XXI, cuja hidrologia é fortemente afetada por eventos extremos nos últimos 20 anos.

Guzha et al. (2013) usou dados de vazão e precipitação a fim de investigar a variabilidade temporal da vazão e sua relação com a variabilidade da precipitação no

Sul da Amazônia (margem direita) que indicou tendência crescente na vazão, mas não houve na precipitação. Rodrigues *et al.* (2020) identificou que as variáveis vazão e cota têm fraca correlação com a precipitação na bacia hidrográfica do igarapé do Prata no Pará, e que a variável vazão possui tendência positiva relacionada à dinâmica de uso e cobertura do solo.

Aplicar os testes de Mann-Kendall e Sen's Slope para períodos distintos é importante para compreender que a cada período as tendências tem comportamento diferente. Como a variável vazão média, que mostrou diferença no comportamento quando se utiliza série com mais de 30 anos e para o período de 15 anos. No entanto, a limitação de estações com séries longas e numa região extensa como a bacia amazônica compromete a análise pontual da tendência em regiões com escassez de dados. Mesmo com essa limitação, os resultados apontaram que há postos em que as variações de aumento ou decaimento da vazão e precipitação são expressivos.

7 CONCLUSÃO

A aplicação dos testes de Mann-Kendall e Sen's Slope detectou que as vazões médias anuais e os totais anuais de precipitação estão aumentando na Bacia Amazônica nos períodos analisados. Eventos de cheia estão intensificados como mostra as tendências significativas de vazão máxima na Estação de Óbidos.

No período de 15 anos (2000-2014) as vazões médias apresentaram tendência positiva significativa de aumento nas estações localizadas a margem direita do Rio Amazonas (região Sul da Amazônia), área em que as mudanças de uso e ocupação do solo é mais acentuado do que nas estações dos afluentes da margem esquerda.

Na sub-bacia do Rio Negro as tendências positivas de vazão média ocorrem nos períodos com mais de 30 anos, e os períodos mais recentes não apresentaram tendência e não há aumento brusco da vazão nos últimos 15 anos. Já nas sub-bacias do Tapajós e Madeira, a vazão tem comportamento semelhante ao da sub-bacia do Rio Negro até o ano de 1998 quando houve evento de El Niño classificado como forte. Após este evento a vazão média aumentou e os picos de cheia também. Após 2010, as vazões atingiram os maiores valores observados desde a década de 1970.

As sub-bacias do Tapajós e Madeira são as únicas que apresentaram estações com tendência de decaimento da vazão e que são localizadas na margem direita do Rio Amazonas, como as estações de Porto Velho e Mato Grosso. O estudo mostra que apesar das vazões médias e máximas terem aumentado, as séries de vazões mínimas apresentam estações em que os eventos de seca estão mais intensos.

Em relação a precipitação, as tendências significativas positivas e negativas estão concentradas no entorno do Rio Amazonas que é o centro da bacia hidrográfica. A distribuição das tendências de precipitação foi semelhante ao estudado por outros trabalhos. Nota-se que onde as tendências de aumento foram mais fortes (maiores valores de Z_{MK}) a precipitação aumentou a partir de 1997 e com maiores picos em 2013. As áreas de aumento da precipitação são no extremo sul, região oeste, noroeste e nordeste acima da foz da bacia amazônica. A precipitação tem tendência de diminuição na região central, na foz da bacia e nas cabeceiras dos extremos norte e noroeste da bacia amazônica.

Ao analisar a distribuição e interpolação dos testes de Sen's slope para a vazão média e a precipitação, observa-se que a vazão tem taxas de aumento em toda a bacia, enquanto que na série de precipitação há áreas de decaimento. Isto indica que outros fatores além da precipitação modulam a tendência de vazão.

A limitação do presente estudo se deu pela baixa disponibilidade de dados de séries mais antigas. Como não foram preenchida as séries de vazões, é interessante em trabalhos futuros preencher os dados após 2014 para entender o comportamento dos anos mais recentes. Também é importante a aplicação dos testes não paramétricos para as séries sazonais.

Os resultados inferem que há mudança de tendência nas variáveis analisadas e metodologias mais robustas devem ser empregadas para avaliar se as mudanças climáticas e a intensificação das mudanças de uso e ocupação têm influenciado no ciclo hidrológico e nas tendências encontradas neste estudo.

REFERÊNCIAS

Agência Nacional de Águas (ANA). **Inventário das estações fluviométricas**. 2 ed. Brasília, 2009.

Agência Nacional de Águas (ANA). **Orientações para consistência de dados pluviométricos**. Brasília: ANA/SGH, 2012.

Agência Nacional de Águas (ANA). **Relatório de Consistência de dados fluviométricos da RH Amazônica**. Relatório Técnico. Contrato nº 010/ANA/2015, Brasília, 2015.

Agência Nacional de Águas (ANA). **Divisão Hidrográfica Nacional**. Disponível em: https://metadados.snirh.gov.br/geonetwork/srv/api/records/fb87343a-cc52-4a36-b6c5-1fe05f4fe98c. Acesso em: 12/12/2021.

Agência Nacional de Águas (ANA)/ Agência Nacional de Energia Elétrica (ANEEL). HIDRO-PLU Programa de Homogeneização de Dados Pluviométricos, 2010.

Agência Nacional de Águas (ANA)/ Serviço Geológico do Brasil (CPRM). Rede Hidrometeorológica Nacional de Referência, Brasília, 2017.

AGUIAR, R. S.; ROCHA, E. J. P.; SOUZA JÚNIOR, J. A. S.; SANTOS, J. T. S.; SANTOS, J. S. **Análise de Componente do Regime Hidrológico da Bacia do Rio Amazonas em Anos de Eventos Climáticos**. Revista Brasileira de Geografia Física, v. 12, n. 03, p. 988-1002, 2019.

ALCÂNTARA, L. R. P.; COSTA, I. R. A.; BARROS, V. H. O.; SANTOS NETO, S. M.; COUTINHO, A. P. ANTONINO, A. C. D. **Análise de tendência para dados pluviométricos no município de Toritama-PE**. Journal of Environmental Analysis and Progress, v. 4, n. 2, p. 130-139, 2019.

AMADOR, M. C.; SILVA, C. A. O preenchimento de falhas de séries históricas de precipitação: o método da ponderação regional associado ao Hidro-Plu e o Hidroweb. Revisa Eletrônica da Associação dos Geográfos Brasileiros Seção Três Lagoas, v. 1, n. 31, p. 179-207, 2020.

BACK, A. J. **Application of statistical analysis for identification of climatic tendency**. Climatologia Pesquisa Agropecuária Brasileira, v. 36 (5), 2001.

BERNARDI, E. C. S.; PANZIERA, A. G.; BURIOL, G. A., SWAROWSKY, **A. Bacia hidrográfica como unidade de gestão ambiental**. Revista Eletrônica Disciplinarium Scientia, v.13, n.2, 2012.

BRASIL. Decreto nº 24.643 – **Decreta o Código de Águas**. Rio de Janeiro – RJ, 1934.

BRASIL. Decreto nº 77.410 – Codifica as estações hidrológicas do País e dá outras providências. Ministério de Minas e Energia. Brasília-DF, 1976.

BRASIL. Lei nº 9.433 – Institui a Política Nacional de Recursos Hídricos. Brasília – DF, 1997.

CALLEDE, J.; GUYOT, J. L.; RONCHAIL, J.; MOLINIER, M.; OLIVEIRA, E. **The River Amazon at Óbidos (Brazil): Statistical studies of the discharges and water balance**. Hydrological, Sciences Journal, v. 47, n. 2, p. 321-333, 2002.

CALLEDE, J. GUYOT, J. L.; RONCHAIL, J.; L'HÔTE, Y.; NIEL, H. OLIVEIRA, E. **Evolution of the river amazon's discharge at Óbidos from 1903 to 1999**. Hydrological Science Journal, v. 49, n.1, 2011.

Centro de Previsão de Tempo e Estudos Climáticos. (CPTEC). **Condições atuais do ENOS**. Disponível em: http://enos.cptec.inpe.br/>. Acesso em setembro de 2021.

CERA, J. C.; FERRAZ, S. E. T. Variações climáticas na precipitação no Sul do Brasil no clima presente e futuro. Revista Brasileira de Meteorologia, v. 30, n.1, p. 81-88, 2015.

COE, M. T.; COSTA, M. H.; SOARES-FILHO, B, S. The influence of historical and potencial future deforestation on the stream flow of the Amazon River – Land surface processes and atmosfpheric feedbacks, v. 369, n. 1-2, p. 165-174, 2009.

COHEN. J.C.P.; SILVA DIAS, M.A.F.; NOBRE, C.A. **Aspectos climatológicos das linhas de instabilidade na Amazônia**. Climanalise, v.4, n.11, p.34-40,1989.

COHEN, J. C. P.; BELTRÃO, J. C.; GANDU, A. W.; SILVA, R. R. Influência do desmatamento sobre o ciclo hidrológico na Amazônia. Ciência e Cultura, v. 59, n. 3, 2007.

Conselho Nacional de Recursos Hídricos (CNRH). **Resolução nº 30 – Institui a codificação das bacias hidrográficas no âmbito Nacional**. Ministério de Meio Ambiente, Brasília-DF, 2002.

Conselho Nacional de Recursos Hídricos (CNRH). Resolução nº 32 – **Institui a Divisão Hidrográfica Nacional**. Ministério do Meio Ambiente, Brasília-DF, 2003.

COUTINHO, E. C.; ROCHA, E. J. P.; LIMA, A. M. M.; RIBEIRO, H. M. C.; GUTIERREZ, L. A. C. L.; BARBOSA, A. J. S.; PAES, G. K. A. A.; BISPO, C. J. C.; TAVARES, P. A. Variabilidade climática da precipitação na Bacia Amazônica brasileira entre 1982 e 2012. Revista Brasileira de Climatologia, v. 22, p. 475-500, 2018.

COUTINHO, E. C.; ROCHA, E. J. P.; LIMA, A. M. M.; RIBEIRO, H. M. C. **Variabilidade do Regime Hidrológico da Bacia Amazônica**. Boletim de Geografia, v. 37, n. 2, p. 129-147, 2019.

- CROWLEY, J. W.; MITROVICA, J. X.; BAILEY, R.C.; TAMISIEA, M.E.; DAVIS, L. J. **Annual variations in water storage and precipitation in the Amazon Basin**. J Geod., v. 82, p. 9-13, 2008.
- Departamento Nacional de Águas e Energia Elétrica (DNAEE). **Sistemática para análise e consistência de dados fluviométricos**. Brasília: DNAEE DCRH, 1983.
- DIAS, L. C.; FERNANDES, L. L.; LOPES, D. F. Elaboração e Extrapolação de Curvas-chave na Região Amazônica. Revista Brasileira de Geografia Física, v. 12, n. 6, 2019.
- DIAS, L.C.; VALENTE, A. M. C.; FERNANDES, L. L. Análise e correlação de variáveis climatológicas com os fenômenos climáticos e a urbanização na Cidade de Belém, no Estado do Pará, região norte do Brasil. Research, Society and Development, v. 9, n.8, e972986790, 2020.
- DO, H. X.; WESTRA, S.; LEONARD, M. A global-scale of trends in anual maximum streamflow. Journal of Hydrology, v. 552, 2017.
- FERREIRA D. B. da S. Eventos extremos da Zona de Convergência Intertropical sobre o Atlântico durante o período chuvoso da Amazônia Oriental. Dissertação (Mestrado em Ciências Ambientais). Universidade Federal do Pará, 2008.
- FERREIRA, A. G.; MELLO, N. G. DA S. Principais Sistemas Atmosféricos atuantes sobre a região nordeste do Brasil e a influência dos oceanos Pacífico e Atlântico no clima da região. Revista Brasileira de Climatologia, v. 1, n.1, p. 15-28, 2005.
- FERREIRA FILHO, D. F. Identificação de Regiões Homogêneas com base na precipitação e na análise de tendências na Bacia Hidrográfica do Rio Amazonas. Dissertação (Mestrado). Universidade Federal do Pará, 2020.
- FISCH, G.; MARENGO, J. A.; NOBRE. C. A. **Uma revisão geral sobre o clima da Amazônia**. Acta Amazônica, v. 22, n. 2, p. 101-126, 1998.
- GALVÃO, W. S.; MENESES, P. R. Avaliação dos sistemas de classificação e codificação das bacias hidrográficas brasileiras para fins de planejamento de redes hidrométricas. Anais XII Simpósio Brasileiro de Sensoriamento Remoto, Goiânia, p. 2511-2518, 2005.
- GEORGE, S. S. Streamflow in the Winnipeg River basin, Canada: Trends, extremes and climate linkages. Journal of Hydrology, v. 332, 396-411, 2007.
- GOMES JUNIOR, E. C.; ELY, D. F. **Métodos estatísticos não-paramétricos como ferramenta no monitoramento pluviométrico**. Revista Casa da Geografia de Sobral (RCGS), v. 23, p. 38-53, 2021.
- GUIMARÃES, V.; FILIZOLA, N.; OLIVEIRA E.; GUYOT, J. L.; CALLÈDE, J. O uso do ADCP para medição de vazão e estimativa do fluxo de sedimentos nos

grandes rios da Bacia Amazônica. Anais do XII Simpósio de Recursos Hídricos, Vitória (ES), 1997.

GUIMBERTEAU, M.; RONCHAIL, J.; ESPINOZA, J. C.; LENGAIGNE, M.; SULTAN, B.; POLCHER, J.; DRAPEAU, G.; GUYOT, J. L.; DUCHARNE, A.; CIAIS, P. Future changes in precipitation and impacts on extreme streamflow over Amazonian sub-basin. Environmental Research, v. 8, 2013.

GUSMÃO, A. M. **Alta da Bolívia**. Revista Climanálise, Ed. Especial, p. 143-146, 1996.

GUZHA, A. C.; NOBREGA, R.; SANTOS, C. A. G.; GEROLD, G. Investigating discharge and rainfall variability in na Amazonian watershed: do any trends exist?. Climate and surface changes in hydrology, 2013.

HACHEM, B. P. **Análise do comportamento da precipitação e da vazão em bacias hidrográficas Amazônicas**. Dissertação (Mestrado em Engenharia Civil). Universidade Federal do Pará, 2016.

HEERSPINK, B. P.; KENDALL, A. D.; Coe, M. T.; HYNDMAN, D. W. **Trends in streamflow, evapotranspiration, and groundwater storage across the Amazon Basin linked to changing precipitation and land cover**. Journal of Hydrology: Regional Studies, v. 32, 2020.

HIGASHINO, M.; STEFAN, H. G. Variability and change of precipitation and flood discharge in a Japanese river basin. Journal of Hydrology: Regional Studies, v. 21, p. 68-79, 2019.

HOLANDA, C. V. M; OLIVEIRA, E. **Programa para Homogeneização de Dados – PROHID**. In: Simpósio de Hidrologia, 3, Brasília, ABRH, p. 810-845, 1979.

Insituto Brasileiro de Geografia e Estatística (IBGE). **Bacias e Divisões Hidrográficas do Brasil** (2021). Disponível em:
.
Acesso em 14/12/2021.

Instituto Nacional de Meteorologia (INMET). **Municípios do Amazonas registram chuvas acima do Normal** (2013). Disponível em: https://no-am-cinco-municipios-registram-chuvas-acima-do-normal-para-marco.htm. Acesso em 08/01/2022.

Instituto de Pesquisas Espaciais (INPE). **Seca de 2010 na Amazônia foi a mais drástica já registrada** (2011). Disponível em: < http://www.inpe.br/noticias/noticia.php?Cod_Noticia=2639>. Acesso em 10/01/2022.

ISHIHARA, J. H.; FERNANDES, L. F.; DUARTE, A. A. M.; DUARTE, A. R. C. L. M.; PONTE, M. X.; LOUREIRO, G. E. Quantitative and spatial assessment of precipitation in the Brazilian Amazon (Legal Amazon) – (1978 to 2007). Revista Brasileira de Recursos Hídricos, v. 19, n. 1, p. 29-39, 2014.

- KENDALL, M. G. Rank correlation methods. London. Charles Griffin. 272p, 1975.
- KOUSKY, V. E.; MOLION, L. C. Uma contribuição a climatologia da dinâmica da troposfera sobre a Amazônia. Acta Amazônica, v. 15 (3-4), p. 311-320, 1985.
- LIMA, W.P. Hidrologia florestal: aplicada ao manejo de bacias hidrográficas. Piracicaba: USP/ESALQ. Departamento de Ciências Florestais, 1996.
- LIMA, J. B. M.; DIAS, L. C. **Evolução decenal das vazões do Rio Amazonas e seus afluentes**. Anais do XXI Simpósio Brasileiro de Recursos Hídricos, Brasília, 2015.
- LIMA JÚNIOR, A. F.; ZANELLA, M. E. **Aplicação do Teste de Mann-Kendall para Análise e tendência climática para o Município de Fortaleza-CE**. Revista Encontros Universitários da UFC, v. 2, n.1, 2017.
- LIMBERGER, L.; SILVA, M. E. S. **Precipitação e Vazão Mensal na Amazônia.** Revista Geonorte, Edição Epecial 2, v. 1, n. 5, p. 719-728, 2012.
- LIMBERGER, L. Estudos de teleconexões atmosféricas e possibilidades de avanços na climatologia geográfica: Conceitos, fontes de dados e técnicas. Revista Brasileira de Climatologia, v. 19, p. 10-17, 2016.
- LIRA, B. R. P. Avaliação do Comportamento e da Tendência Pluviométrica na Amazônia Legal no período de 1986 a 2015. Dissertação (Mestrado), Universidade Federal do Pará, 2019.
- LOPES, J. R. F.; SILVA, D.F. Aplicação do teste de Mann-Kendall para análise de tendência pluviométrica no estado do Ceará. Revista de Geografia, v. 30(3), 192-208, 2013.
- MACÊDO, M. N. C.; DIAS, H. C. T.; COELHO, F. M. G.; ARAÚJO, E. A.; SOUZA, M. L. H.; SILVA, E. Precipitação pluviométrica e vazão da bacia hidrográfica do Riozinho do Rôla, Amazônia Ocidental. Ambi-Água, v. 8, n.1, p. 206-221, 2013.
- MAGALHÃES, I. A. L.; ALMEIDA K, L.; THIAGO, C. R. L.; GARDIMAN JUNIOR, B. S; ZANETTI, S. S.; CECÍLIO, R. A. Análise de métodos de interpolação para espacialização da precipitação pluvial na região Norte do estado do Espírito Santo, Brasil. In: Anais do XVI Simpósio Brasileiro de Sensoriamento Remoto, INPE: Foz do Iguaçu, 2013.
- MANN, H. B. **Nonparametric tests against trend**. Econometrica, v. 13, p. 245-259, 1945.
- MARENGO, J. A. Variations and change in South American Streamflow. Climatic Change, v. 31, p. 99-117, 1995.
- MARENGO, J. A.; **Água e mudanças climáticas**. Dossiê Água. Estudos Avançados, v. 22, 2008.

- MARENGO, J. A.; TOMASELLA, J. **Trends in streamflow and rainfall in tropical South America: Amazonia, eastern Brazil, and northwestern Peru.** Journal of Geophysical Research, v. 103, n. D2, p. 1775-1783, 1998.
- MARENGO, J. A.; LIEVMAN, B.; WAINER, L.; KOUSKY, V. E. **On the characteristics of onset and demise of the rainy season in amazonia**. Journal of Climate, 2000.
- MELLO, Y. R.; KOHLS, W.; OLIVEIRA, T. M. N. **Uso de diferentes métodos para o preenchimento de falhas em estações pluviométricas**. Boletim Geografia, Maringá, v. 35, n. 1, p. 112-121, 2017.
- MOLINIER, M.; GUYOT, J. L.; OLIVEIRA, E.; GUIMARÃES, V.; CHAVES, A. **Hidrologia da Bacia do Rio Amazonas**. Ciência e Tecnologia, p. 32-36, 1995.
- MOLION, L. C. B. Climatologia Dinâmica da região Amazônica: mecanismos de precipitação. Revista Brasileira de Meteorologia, 2 (1), p. 107-117, 1987
- MORAIS, T. S. T.; SAFADI, T.; MENDONÇA, J. D. **Análise da tendência do Nível do Mar na Costa do Brasil.** Revista da Estatística da Universidade Federal de Ouro Preto, v. 3, n. 2, p. 29-32, 2014.
- MOLNÁR, P.; RAMÍREZ, J. A. Recent Trends in Precipitation and Sreamflow in the Rio Puerco Basin. American Meteorological Society, Journal of Climate, v. 14, 2000.
- MOURA, L. Z. Evaluation of monotonic trends for streamflow in austral Amazon, Brazil: a case study for the Xingu and Tapajós rivers. International Association of Hydrological Sciences, v. 371, p. 125-130, 2015.
- MOTA, P. Rio Amazonas. Clube dos Autores, ISBN 6500285816, 2021.
- NOBRE, C. A.; OBREGÓN, G. O.; MARENGO, J. A. **Características do Clima Amzônico: Aspectos Principais**. Amazonia and Global Change. Geophysical Monograph, series 186, p. 149 -162, 2009.
- NÓBREGA, R. L. B.; LAMPARTER, G.; HUGHES, H.; GUZHA, A. C.; AMORIM, R. S. S.; GEROLD, G. **A multi-approach and multi-scale study on water quantity and quality changes in the Tapajós River basin, Amazon**. International Association of Hydrological Sciences, v. 277, p. 3-7, 2018.
- NOVOTNY, E. V.; STEFAN, H. G. **Stream flow in Minnesota: Indicator of Climate change**. Journal of Hydrology, v.334, p.319-333, 2007.
- OLIVEIRA, G. B.; ALCÂNTARA, C. R.; SOUZA, E. P. Caracterização de perfis de vento no ambiente de formação das linhas de instabilidade amazônicas. Revista Ciência e Natura, v. 38, n. 1, p. 393 403, 2016.

- OLIVEIRA, L. F. C.; FIOREZE, A. P.; MEDEIROS, A. M. M.; SILVA, M. A. S. Comparação de metodologias de preenchimento de falhas e séries históricas de precipitação pluvial anual. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 14, n. 11, p. 1186-1192, 2010.
- Organização Mundial de Meteorologia (OMM). Guide to hydrological Practices, Data Acquisition and Processing, Analysis, forecasting and other Applications: Suíca, 1994.
- PORTO, M. F.A.; PORTO, R. L.L. **Gestão de bacias hidrográficas**. Estudos Avançados, v. 22, 2008.
- RODRIGUES, H. P. **Zona de Convergência do Atlântico Sul: Um estudo observacional e numérico.** Dissertação (Mestrado). Universidade Federal de Campina Grande, 2012.
- RODRIGUES, R. S. S.; FERNANDES, L. L.; PESSOA, F. C. L.; CRISPIM, D. L.; LIRA, B. R. P. **Análise de séries temporais hidrológicas em uma pequena bacia hidrográfica rural da Amazônia**. Revista AIDIS, v. 13, n. 2, 2020.
- RONCHAIL, J.; GUYOT, J.; VILLAR, J. C. E.; FRAIZY, P.; COCHONNEAU, G.; ORDENEZ, J. Impact of the Amazon tributaries on major flood in Óbidos. Procceedings of the Fith Friend World Conference held at Havana, IAHS, p. 220-225, 2005.
- ROSS, J. L. S.; PRETTE, M. E. D. **Recursos hídricos e as bacias hidrográficas: âncoras do planejamento e gestão ambiental**. Revista do Departamento de Geografia, n. 12, p. 89-121, 1998.
- SALATI, E.; Dos SANTOS, A. A.; KLABIN, I. **Temas ambientais relevantes**. Estudos Avançados, v. 20, n. 56, 2006.
- SALGUEIRO, J. H. P. B. Avaliação de rede pluviométrica e análise de variabilidade espacial da precipitação: estudo de caso na Bacia do Rio Ipojuca em Pernambuco. Dissertação (mestrado), Universidade Federal de Pernambuco, 2005.
- SALGUEIRO, J. H. P. B; MONTENEGRO, S. M. G. L.; PINTO, E. J. A.; SILVA, B. B.; SOUZA, W. M. **Análise de tendência da precipitação utilizando testes estatísticos**: Um estuo de Caso no município de Bom Conselho –PE. Anais do XII Simpósio de Recursos Hídricos do Nordeste, ABRH, Natal, 2014.
- SALVIANO, M. F.; GROPPO, J. D.; PELLEGRINO, F. Q. **Análise de Tendências em dados de precipitação e temperatura no Brasil**. Revista Brasileira de Meteorologia, v. 31, n. 1, p. 64-73, 2016.
- SANTANA, L. R.; BLANCO, C. J. C.; PESSOA, F. C. L. **Ottocodificação de pequenas bacias hidrográficas na Amazônia**. Revista de estudos ambientais (On line), v. 22, n. 1, p. 15-23, 2020.

- SANTOS, C. A. C.; SATYAMURTY, P.; SANTOS, E. M. **Tendências de índices de extremos climáticos para a região de Manaus-AM**. Ciências do Ambiente Acta Amazônica, v. 42, n. 3, 2012.
- SANTOS, C. A.; LIMA, A. M.M.; FARIAS, M. H. C. S.; AIRES, U. R. V.; SERRAO, E. A. O. **Análise estatística da não estacionariedade de séries temporais de vazão máxima anual diária na Bacia Hidrográfica do Rio Pardo**. HOLOS, ano 32, v. 7, p. 179-193, 2016.
- SANTOS, I.; FILL, H. D.; Sugal, M. R. V. B; BUBA, H.; KISHI, R. T.; MARONE, E.; LAUTERT, L. F. **Hidrometria Aplicada**, Editora: Lactec, 372 p., 2001.
- SANTOS, T. V. dos; FREITAS, L. dos A. de; GONÇALVES, R. D.; CHANG, H. K. **Teste de Mann-Kendall aplicado à dados hidrológicos Desempenho dos filtros TFPW e CV2 na análise de tendências.** Revista Ciência & Natura, v. 42, e87, 2020.
- SANTOS, V. O. Identificação e análise de tendências das variáveis hidrológicas e mudanças no uso e ocupação das terras no alto curso da bacia hidrográfica do Rio Uberava, em Minas Gerais. Dissertação (mestrado), Universidade Federal de Uberlândia, 2016.
- SERRÃO, E. A. de O.; SANTOS, C. A. dos; Wanzeler, R. T. S.; LIMA, A. M. M. Avaliação da seca de 2005 e 2010 na Amazônia: Análise da Bacia Hidrográfica do Rio Solimões. Revista Geográfica Acadêmica, v. 9, n. 2, 2015. SILVA, A. N. B. Índices de extremos climáticos e tendências da precipitação anual e sazonal na Amazônia Oriental. Dissertação (Mestrado). Universidade Federal do Pará, 2010.
- SILVA, J. P. R.; REBOITA, M. S.; ESCOBAR, G. C. J. **Caracterização da zona de convergência do Atlântico Sul em campos atmosféricos recentes**. Revista Brasileira de Climatologia, v. 25, p. 355 375, 2019.
- SILVA, N. C. Eventos extremos na Amazônia e seus efeitos na dinâmica hidrológica do rio e lagos de várzea amazônicos. Dissertação (mestrado), Instituto Nacional de Pesquisas Ambientais, 2020.
- SILVA JUNIOR, C. H. L.; ALMEIDA, C. T.; ARAGÃO, L. E. O. C.; ANDERSON, L. O. **Tendências espaço-temporais das chuvas na Amazônia brasileira**. Climatologia em Diferentes níveis escalares UNICAMP, v. 1, 2017.
- SOUZA, E. B.; CARMO, A. M. C.; MORAES, B. C.; NACIF, A.; FERREIRA, D. B. S.; ROCHA, E. J. P.; SOUZA, P. J. O. P. Sazonalidade da precipitação sobre a Amazônia Legal Brasileira: Clima atual e projeções futuraas usando o modelo REGCM 4. Revista Brasileira de Climatologia, ano 12, v. 18, 2016.
- TREJO, F. P.; BARBOSA, H. A.; GIOVANNETTONE, J.; KUMAR, T. V. L.; THAKUR, M. K.; BURITI, C. O. Long-Term Spatiotemporal Variation of Droughts in the Amazon River Basin. Water. V. 13, n. 351, p. 5-26, 2021.

- TUCCI, C. E. M. (org). **Hidrologia: Ciência e Aplicação**. 4ª Edição. Porto Alegre RS. Editora da UFRGS e EDUSP ABRH, 2013.
- VIEIRA, S. O.; OLIVEIRA, N. V.; SATYAMURTY, P.; ANDREOLI, R. V. **Aplicação** do método Fuzzy na classificação da zona de convergência do Atlântico Sul no sul da Amazônia. Revista Brasileira de Meteorologia, v. 29, n. 4, p. 621-631, 2014.
- VILLAR, J. C.; LAVADO, W.; ORDONEZ, J. J.; FRAIZY, P.; GUYOT, J. L.; RONCHAIL, J.; VAUCHEL, P.; COCHONNEAU, G.; FILIZOLA, N.; LABAT, D.; OLIVEIRA, E. Evolución regional de los caudales en el conjunto de la Cuenca del Amazonas para el período 1974-2004 y su relación con factores climáticos. Revista Peruano Geo-Atmosférica, v. 1, p. 1-11, 2009.
- YESTE, P.; DORADOR, J.; MARTIN-ROSALES, W.; ESTEBAN-PARRA, M. J.; RUEDA, F. J.; Climate-driven trends in the sttreamflow records of a reference hydrologic network in Southern Spain. Journal of Hydrology, v. 566, p. 55-72, 2018.
- ZHAO, G.; TIAN, P.; UM, X.; JIAO, J.; WANG, F.; GAO, P. Quantifying the impact of climate variability and human activities on streamflow in the middle reaches of the Yellow River basin, China. Journal of Hydrology, v. 519, 387-398, 2014.

APÊNDICE

Tabela 02 – Resultados dos testes de Mann-Kendall e Sen's Slope para as séries de vazões médias. NS- Não Significativo, S+- Tendência Positiva Significativa e S- Tendência Negativa Significativa.

(continua)

Código	Estação	Latitude	Longitude	Início	Fim	Anos	ZMK	pvalue	Sen's slope	Significância			
				1975	2014	40	2,02	0,044	227,30	S+			
				1980	2014	35	1,62	0,106	229,40	NS			
13150000	ITAPÉUA	-4,058	-63,028	1985	2014	30	0,96	0,335	160,08	NS			
				1995	2014	20	1,65	0,098	523,50	NS			
				2000	2014	15	1,09	0,276	502,00	NS			
				1985	2014	30	1,71	0,087	18,38	NS			
14110000	CUCUÍ	1,215	-66,853	1995	2014	20	1,14	0,256	32,29	NS			
				2000	2014	15	0,79	0,428	16,50	NS			
	NUOCÃO.			1985	2014	30	0,36	0,721	2,00	NS			
14230000	MISSÃO IÇANA	1,074	-67,595	1995	2014	20	0,00	1,000	-0,24	NS			
	IÇAIVA			2000	2014	15	0,20	0,843	-11,66	NS			
				1980	2014	35	2,56	0,011	42,62	S+			
14050000	SÃO FELIPE	0.272	67.040	1985	2014	30	1,18	0,239	23,00	NS			
14250000	SAU FELIPE	0,372	-67,313	1995	2014	20	0,55	0,581	19,42	NS			
				2000	2014	15	0,10	0,921	7,08	NS			
				1985	2014	30	0,12	0,901	0,80	NS			
14260000	UARAÇU	0,477	-69,128	1995	2014	20	0,29	0,770	5,23	NS			
				2000	2014	15	-0,49	0,621	-11,00	NS			
	5454			1985	2014	30	1,52	0,129	0,69	NS			
14300000	PARI CACHOEIRA	0,249	-69,785	1995	2014	20	0,16	0,871	0,20	NS			
	CACHOLINA			2000	2014	15	-1,19	0,234	2,09	NS			
14325000	TUMBIRA	-0,344	-67,536	2000	2014	15	1,39	0,166	8,92	NS			
				1980	2014	35	2,20	0,028	48,50	S+			
14220000	CLIDICLIDIADI	0.201	66 000	1985	2014	30	1,00	0,318	30,00	NS			
14330000	CURICURIARI	-0,201	-66,802	1995	2014	20	0,81	0,417	4,70	NS			
				2000	2014	15	0,59	0,553	3,32	NS			
	JUSANTE DA			1985	2014	30	-0,12	0,901	-0,47	NS			
	CACHOEIRA	-0,246	-67,009	1995	2014	20	0,75	0,456	5,76	NS			
	DO CAJU			2000	2014	15	0,59	0,553	6,57	NS			
				1980	2014	35	2,53	0,003	91,67	S+			
4.4400000	CEDDINII IA	0.400	C4 000	1985	2014	30	1,07	0,284	45,18	NS			
14420000	SERRINHA	-0,482	-64,829	1995	2014	20	0,36	0,721	40,20	NS			
							2000	2014	15	0,00	1,000	-11,90	NS

Tabela 02 – Resultados dos testes de Mann-Kendall e Sen's Slope para as séries de vazões médias. NS- Não Significativo, S+- Tendência Positiva Significativa e S- Tendência Negativa Significativa.

Código	Estação	Latitude	Longitude	Início	Fim	Anos	ZMK	pvalue	Sen's slope	Significância
				1985	2014	30	1,48	0,139	4,88	NS
14488000	UAICÁS	3,550	-63,169	1995	2014	20	0,42	0,673	3,93	NS
				2000	2014	15	0,40	0,692	7,00	NS
				1980	2014	35	2,57	0,010	12,61	S+
14405000	FAZENDA	2.420	64 027	1985	2014	30	1,91	0,056	12,11	NS
14495000	CAJUPIRANGA	3,438	-61,037	1995	2014	20	0,97	0,330	14,03	NS
				2000	2014	15	0,10	0,921	7,08	NS
				1980	2014	35	2,27	0,023	15,21	S+
1.4515000	FAZENDA	2 200	CO E71	1985	2014	30	1,78	0,074	14,87	NS
14515000	PASSARÃO	3,208	-60,571	1995	2014	20	1,27	0,206	15,96	NS
				2000	2014	15	1,29	0,198	21,69	NS
				1985	2014	30	1,09	0,276	2,09	NS
14526002	BONFIM	3,381	-59,811	1995	2014	20	0,23	0,820	1,27	NS
				2000	2014	15	0,00	1,000	0,25	NS
				1985	2014	30	-0,75	0,454	-0,50	NS
14530000	VILA SURUMU	4,196	-60,794	1995	2014	20	-0,42	0,673	-0,50	NS
				2000	2014	15	0,10	0,921	0,71	NS
				1975	2014	40	1,05	0,294	0,43	NS
	FAZENDA			1980	2014	35	0,61	0,541	0,29	NS
14540000	BANDEIRA	4,631	-60,471	1985	2014	30	0,12	0,901	0,05	NS
	BRANCA			1995	2014	20	-0,49	0,627	-0,72	NS
				2000	2014	15	0,89	0,373	1,50	NS
				1985	2014	30	0,55	0,580	0,67	NS
14550000	MALOCA DO CONTÃO	4,168	-60,529	1995	2014	20	-0,58	0,559	- 11,63	NS
				2000	2014	15	0,94	0,347	3,70	NS
				1975	2014	40	2,85	0,004	3,60	S+
	FÉ E			1980	2014	35	3,08	0,002	4,32	S+
14680001	ESPERANÇA	2,871	-61,441	1985	2014	30	2,28	0,022	4,31	S+
				1995	2014	20	1,46	0,144	5,77	NS
				2000	2014	15	0,30	0,767	2,33	NS
14690000	MUCAJAÍ	2,471	-60,918	2000	2014	15	0,10	0,921	1,00	NS
	NAICO ÃO			1985	2014	30	2,52	0,012	2,00	S+
14750000	MISSÃO CATRIMANI	1,750	-62,283	1995	2014	20	0,62	0,538	1,58	NS
				2000	2014	15	0,44	0,661	1,50	NS
				1985	2014	30	2,00	0,046	2,75	S+
14845000	FAZENDA SÃO JOSÉ	0,518	-60,466	1995	2014	20	1,69	0,091	3,73	NS
				2000	2014	S	1,04	0,298	3,25	NS

Tabela 02 – Resultados dos testes de Mann-Kendall e Sen's Slope para as séries de vazões médias. NS- Não Significativo, S+- Tendência Positiva Significativa e S- Tendência Negativa Significativa.

Código	Estação	Latitude	Longitude	Início	Fim	Anos	ZMK	pvalue	Sen's slope	Significância
				1980	2014	35	2,54	0,011	2,85	S+
14850000	BASE	-0,859	-60,520	1985	2014	30	1,80	0,072	2,52	NS
14650000	ALALAÚ	-0,009	-00,520	1995	2014	20	1,14	0,256	3,46	NS
				2000	2014	15	1,39	0,166	6,29	NS
				1980	2014	35	2,53	0,011	592,30	S+
15030000	JATUARANA	-3,063	-59,648	1985	2014	30	1,28	0,199	329,59	NS
13030000	JATUARANA	-3,003	-39,040	1995	2014	20	1,91	0,056	879,15	NS
				2000	2014	15	1,29	0,198	1138,33	NS
15042000	RIO PRETO	-2,699	-59,704	1995	2014	20	-1,46	0,144	-0,53	NS
15042000	DA EVA	-2,699	-59,704	2000	2014	15	-1,19	0,235	-0,87	NS
	DON 1770 F			1985	2014	30	-1,64	0,101	-0,23	NS
15050000	PONTES E LACERDA	-15,215	-59,354	1995	2014	20	-1,14	0,256	-0,34	NS
	LAOLINDA			2000	2014	15	0,10	0,921	0,03	NS
				1980	2014	35	-2,07	0,038	-1,27	S-
15120001	MATO	15 000	E0 0E0	1985	2014	30	-1,75	0,080	-1,33	NS
15120001 GROSSO	GROSSO	-15,009	-59,958	1995	2014	20	-0,39	0,697	-0,57	NS
				2000	2014	15	1,34	0,181	2,67	NS
15124010	CABIXI	12 512	60 F20	1995	2014	20	1,78	0,074	0,54	NS
13124010	CADIAI	-13,512	-60,530	2000	2014	15	2,47	0,013	1,35	S+
				1985	2014	30	-0,25	0,803	-0,64	NS
15130000	PIMENTEIRAS	-13,486	-61,050	1995	2014	20	1,01	0,314	1,50	NS
				2000	2014	15	2,28	0,022	4,31	S+
	252240			1985	2014	30	-0,98	0,326	-2,65	NS
15150000	PEDRAS NEGRAS	-12,851	-62,899	1995	2014	20	-0,19	0,846	-0,55	NS
	NEORAG			2000	2014	15	0,99	0,322	6,82	NS
	BOCA DO	10.5.5		1995	2014	20	1,14	0,256	0,97	NS
15248010	POMPEU - JUSANTE	-10,918	-65,043	2000	2014	15	0,99	0,322	1,64	NS
				1975	2014	40	-2,20	0,028	-42,77	S-
	CHA IADÁ			1980	2014	35	-1,57	0,116	-58,83	NS
15250000	GUAJARÁ- MIRIM	-10,793	-65,348	1985	2014	30	-1,57	0,116	-58,83	NS
	MIRIM	- 10,7 93		1995	2014	20	0,81	0,417	40,90	NS
				2000	2014	15	1,78	0,075	117,50	NS

Tabela 02 – Resultados dos testes de Mann-Kendall e Sen's Slope para as séries de vazões médias. NS- Não Significativo, S+- Tendência Positiva Significativa e S- Tendência Negativa Significativa.

									Sen's	
Código	Estação	Latitude	Longitude				ZMK	pvalue	slope	Significância
				1985	2014	30	-0,50	0,617	36,58	NS
15320002	ABUNÃ	-9,705	-65,367	1995	2014	20	1,40	0,163	132,33	NS
				2000	2014	15	1,98	0,048	325,13	S+
15324000	PLÁCIDO DE	-10,338	-67,183	1995	2014	20	1,36	0,173	1,13	NS
10024000	CASTRO	10,550	07,100	2000	2014	15	2,18	0,029	2,50	S+
45226000	MORADA	0.705	CE E00	1995	2014	20	1,20	0,230	3,52	NS
15326000	NOVA - JUSANTE	-9,785	-65,528	2000	2014	15	2,08	0,038	10,67	S+
				1975	2014	40	-1,92	0,055	-74,09	NS
				1980	2014	35	-2,27	0,023	-113,13	S-
15400000	PORTO VELHO	-8,748	-63,917	1985	2014	30	-1,25	0,218	-73,92	NS
	VELHO			1995	2014	20	0,55	0,581	52,69	NS
				2000	2014	15	0,99	0,322	177,18	NS
				1975	2014	40	2,01	0,045	0,95	S+
				1980	2014	35	3,00	0,003	1,74	S+
15430000	ARIQUEMES	-9,926	-63,071	1985	2014	30	2,71	0,007	1,82	S+
				1995	2014	20	2,60	0,009	3,32	S+
				2000	2014	15	1,58	0,113	4,70	NS
				1985	2014	30	2,11	0,035	0,15	S+
15431000	FAZENDA RIO BRANCO	-9,887	-62,985	1995	2014	20	1,72	0,086	0,24	NS
	BRANCO			2000	2014	15	1,88	0,060	0,55	NS
	MINERAÇÃO			1985	2014	30	1,14	0,253	0,13	NS
15432000	PONTE	-9,761	-63,288	1995	2014	20	1,49	0,135	0,25	NS
	MASSANGANA			2000	2014	15	0,25	0,804	0,07	NS
				1985	2014	30	2,68	0,007	3,33	S+
15550000	SANTA ISABEL	-8,799	-63,711	1995	2014	20	1,88	0,060	3,94	NS
	ISABEL			2000	2014	15	1,39	0,166	5,14	NS
	FAZENDA			1995	2014	20	1,72	0,085	1,20	NS
15552600	FLOR DO CAMPO	-11,749	-60,868	2000	2014	15	2,28	0,022	2,43	S+
	PIMENTA	44.004	0.1.100	1995	2014	20	2,57	0,010	3,03	S+
15558000	BUENO	-11,684	-61,192	2000	2014	15	2,28	0,022	4,00	S+
15550000	SÍTIO BELA	11 CEO	64 045	1995	2014	20	2,86	0,004	4,94	S+
15559000	VISTA	-11,653	-61,215	2000	2014	15	2,57	0,010	8,33	S+
15500001	II DADANÁ	10.074	64.000	1995	2014	20	3,08	0,002	16,11	S+
15560001	JI-PARANÁ	-10,874	-61,936	2000	2014	15	3,17	0,002	20,30	S+
45505000	IADII	40.440	00.400	1995	2014	20	0,00	1,000	0,01	NS
15565000	JARU	-10,446	-62,466	2000	2014	15	0,79	0,429	0,66	NS
45500000	MINERAÇÃO	0.470	00.050	1995	2014	20	1,43	0,153	0,39	NS
15590000	JACUNDÁ	-9,179	-62,952	2000	2014	15	1,29	0,198	0,40	NS

Tabela 02 – Resultados dos testes de Mann-Kendall e Sen's Slope para as séries de vazões médias. NS- Não Significativo, S+- Tendência Positiva Significativa e S- Tendência Negativa Significativa.

Código	Estação	Latitude	Longitude	Início	Fim	Anos	ZMK	pvalue	Sen's slope	Significância
				1985	2014	30	1,03	0,301	69,50	NS
15630000	HUMAITÁ	-7,503	-63,018	1995	2014	20	1,66	0,098	176,11	NS
				2000	2014	15	2,08	0,038	389,40	S+
15650000	MALOCA	-7,958	-62,042	1995	2014	20	-0,49	0,626	-0,20	NS
13030000	TENHARIM	-7,900	-02,042	2000	2014	15	-0,45	0,656	-1,00	NS
15660000	MAICI-MIRIM	-7,630	-62,655	2000	2014	15	-0,20	0,843	-0,12	NS
				1985	2014	30	-0,75	0,454	66,26	NS
15700000	MANICORÉ	-5,817	-61,302	1995	2014	20	0,68	0,496	88,52	NS
				2000	2014	15	0,89	0,373	20,13	NS
15795000	LEONTINO	-7,739	-60,576	2000	2014	15	2,77	0,006	11,80	S+
	D004 D0			1985	2014	30	-0,14	0,887	-0,89	NS
15800000	BOCA DO GUARIBA	-7,706	-60,578	1995	2014	20	1,46	0,144	11,97	NS
	COARTIDA			2000	2014	15	1,58	0,113	16,33	NS
				1985	2014	30	0,32	0,748	3,09	NS
15830000	PRAINHA VELHA	-7,208	-60,650	1995	2014	20	2,17	0,030	47,42	S+
	VELITA			2000	2014	15	2,47	0,013	78,46	S+
				1985	2014	30	-0,09	0,929	-0,25	NS
15910000	SANTARÉM SUCUNDURI	-6,796	-59,042	1995	2014	20	1,56	0,119	6,04	NS
	COCONDON			2000	2014	15	0,84	0,400	6,50	NS
	4045155			1985	2014	30	-0,23	0,816	-0,14	NS
15930000	ACARI BR- 232	-7,101	-59,683	1995	2014	20	1,56	0,119	1,64	NS
	232			2000	2014	15	0,84	0,400	0,64	NS
				1985	2014	30	1,82	0,069	2,95	NS
16368000	MINERAÇÃO CAIMA	-1,438	-57,827	1995	2014	20	0,81	0,417	2,75	NS
	CAINA			2000	2014	15	0,30	0,767	2,00	NS
10120000	CARCANTA	0.000	F7.040	1995	2014	20	1,01	0,315	22,73	NS
16430000	GARGANTA	-0,998	-57,043	2000	2014	15	0,69	0,488	21,25	NS
40400004	CADAMILIO	4.005	F7.004	1995	2014	20	2,01	0,045	25,72	S+
16460001	CARAMUJO	-1,065	-57,061	2000	2014	15	0,59	0,553	23,63	NS
40500000	ESTIRÃO DA	4.404	F7.0F7	1995	2014	20	2,65	0,008	21,22	S+
16500000	ANGÉLICA	-1,101	-57,057	2000	2014	15	1,78	0,075	18,38	NS
				1980	2014	35	3,08	0,002	0,42	S+
40700000	TIDIOO	0.004	FF 050	1985	2014	30	2,18	0,030	0,37	S+
16700000	TIRIOS	2,224	-55,956	1995	2014	20	0,62	0,538	0,24	NS
				2000	2014	15	-0,49	0,621	-0,23	NS

Tabela 02 – Resultados dos testes de Mann-Kendall e Sen's Slope para as séries de vazões médias. NS- Não Significativo, S+- Tendência Positiva Significativa e S- Tendência Negativa Significativa.

Código	Estação	Latitude	Longitude	Início	Fim	Anos	ZMK	pvalue	Sen's slope	Significância
				1975	2014	40	1,11	0,268	206,20	NS
				1980	2014	35	2,22	0,027	549,42	S+
17050001	ÓBIDOS	-1,919	-55,513	1985	2014	30	1,50	0,134	414,64	NS
				1995	2014	20	2,11	0,035	1125,91	S+
				2000	2014	15	1,48	0,138	1244,71	NS
				1975	2014	40	2,09	0,037	3,22	S+
	5004.50			1980	2014	35	2,39	0,017	4,30	S+
17090000	BOCA DO INFERNO	-1,503	-54,873	1985	2014	30	1,46	0,143	3,69	NS
	IN LINIO			1995	2014	20	1,23	0,217	4,27	NS
				2000	2014	15	0,45	0,656	1,25	NS
47004000	FAZENDA	10.404	FO 000	1995	2014	20	-4,37	0,000	-1,67	S-
17091000	TUCUNARÉ	-13,461	-59,008	2000	2014	15	-2,49	0,013	-1,00	S-
				1985	2014	30	-3,00	0,003	-6,18	S-
17093000	FONTANILHAS	-11,358	-58,343	1995	2014	20	-1,20	0,230	-3,52	NS
				2000	2014	15	0,79	0,427	1,33	NS
				1985	2014	30	-0,66	0,509	-0,67	NS
17095000	FAZENDA TOMBADOR	-11,718	-58,048	1995	2014	20	0,23	0,820	0,94	NS
	TOMBADOR			2000	2014	15	1,98	0,048	5,80	S+
-				1985	2014	30	0,95	0,344	1,67	NS
17120001	PORTO DOS	-11,537	-57,424	1995	2014	20	1,65	0,098	6,22	NS
	GAUCHOS			2000	2014	15	1,98	0,048	7,00	S+
				1975	2014	40	-1,83	0,067	-1,17	NS
				1980	2014	35	-2,17	0,030	-1,89	S-
17200000	PORTO RONCADOR	-13,557	-55,335	1985	2014	30	-1,29	0,199	-1,26	NS
	KONCADOK			1995	2014	20	-0,68	0,495	-1,13	NS
				2000	2014	15	-0,40	0,692	-1,50	NS
				1985	2014	30	-0,52	0,605	-0,47	NS
17210002	TELES PIRES	-12,674	-55,793	1995	2014	20	0,23	0,820	0,84	NS
				2000	2014	15	0,15	0,882	1,55	NS
47000000	FAZENDA	40.050	55.554	1995	2014	20	1,62	0,105	10,88	NS
17300000	TRATEX	-10,956	-55,551	2000	2014	15	1,54	0,125	10,92	NS
				1985	2014	30	2,44	0,015	7,37	S+
17340000	INDECO	-10,113	-55,571	1995	2014	20	2,17	0,030	15,42	S+
				2000	2014	15	1,39	0,166	9,50	NS
				1985	2014	30	-0,20	0,844	-0,02	NS
17345000	BASE DO	-9,359	-54,904	1995	2014	20	-0,03	0,974	-0,05	NS
	CACHIMBO			2000	2014	15	-0,79	0,429	-0,35	NS

Tabela 02 – Resultados dos testes de Mann-Kendall e Sen's Slope para as séries de vazões médias. NS- Não Significativo, S+- Tendência Positiva Significativa e S- Tendência Negativa Significativa.

Código	Estação	Latitude	Longitude	Início	Fim	Anos	ZMK	pvalue	Sen's slope	Significância
				1985	2014	30	0,46	0,643	0,06	NS
17350002	CACHIMBO	-9,817	-54,886	1995	2014	20	1,01	0,315	0,20	NS
				2000	2014	15	0,40	0,692	0,09	NS
	JUSANTE FOZ			1985	2014	30	2,11	0,035	10,57	S+
17380000	PEIXOTO DE	-9,641	-56,019	1995	2014	20	1,78	0,074	25,32	NS
	AZEVEDO			2000	2014	15	0,49	0,621	10,00	NS
				1985	2014	30	1,64	0,101	20,60	NS
17420002	TRÊS MARIAS	-7,615	-57,950	1995	2014	20	2,95	0,003	61,10	S+
				2000	2014	15	2,18	0,029	54,60	S+
	5455456			1985	2014	30	0,82	0,412	29,90	NS
17430000	BARRA DO SÃO MANUEL	-7,340	-58,155	1995	2014	20	2,63	0,009	117,00	S+
	ONO WANGEE			2000	2014	15	2,18	0,029	128,25	S+
				1985	2014	30	0,46	0,643	18,40	NS
17500000	FORTALEZA	-6,045	-57,643	1995	2014	20	2,17	0,030	120,50	S+
				2000	2014	15	2,28	0,023	145,40	S+
47050000	ACARÁ DO	4.000	FC 700	1995	2014	20	3,22	0,001	207,11	S+
17650002	TAPAJÓS	-4,886	-56,723	2000	2014	15	2,38	0,018	165,00	S+
				1985	2014	30	0,14	0,887	0,13	NS
18200000	ARAPARI	-1,779	-54,397	1995	2014	20	-0,16	0,871	-1,10	NS
				2000	2014	15	-1,29	0,198	-5,37	NS
				1985	2014	30	-0,07	0,943	-0,09	NS
18250000	URUARÁ	-3,677	-53,554	1995	2014	20	0,16	0,871	0,18	NS
				2000	2014	15	-0,40	0,692	-0,55	NS
40400000	PASSAGEM	44044	50.000	1995	2014	20	-0,94	0,346	-0,06	NS
18409000	DA BR-309	-14,611	-53,999	2000	2014	15	0,00	1,000	0,00	NS
				1985	2014	30	-0,09	0,929	-0,02	NS
18420000	FAZENDA ITAGUAÇU	-13,141	-54,445	1995	2014	20	1,23	0,217	0,56	NS
	ITAGUAÇU			2000	2014	15	2,18	0,029	1,04	S+
18423000	CONSUL	-12,366	-54,489	2000	2014	15	2,68	0,007	2,17	S+
18435000	RIO COMANDANTE FONTOURA	-10,555	-52,183	2000	2014	15	2,73	0,006	2,06	S+
				1985	2014	30	2,02	0,044	10,50	S+
18500000	BOA ESPERANÇA	-6,745	-51,774	1995	2014	20	2,34	0,019	23,61	S+
	ESPERANÇA			2000	2014	15	1,83	0,067	27,44	NS
				1985	2014	30	0,20	0,844	2,00	NS
18600000	LARANJEIRAS	-5,697	-54,246	1995	2014	20	0,88	0,381	9,50	NS
				2000	2014	15	0,89	0,373	14,00	NS

Tabela 02 – Resultados dos testes de Mann-Kendall e Sen's Slope para as séries de vazões médias. NS- Não Significativo, S+- Tendência Positiva Significativa e S- Tendência Negativa Significativa.

(conclusão)

Código	Estação	Latitude	Longitude	Início	Fim	Anos	ZMK	pvalue	Sen's slope	Significância
				1985	2014	30	0,23	0,817	1,60	NS
18650002	CAJUEIRO	-5,650	-54,521	1995	2014	20	1,20	0,230	12,19	NS
				2000	2014	15	1,19	0,235	16,29	NS
				1985	2014	30	0,07	0,943	2,73	NS
18700000	PEDRA DO Ó	-4,528	-54,013	1995	2014	20	1,27	0,206	29,66	NS
				2000	2014	15	1,29	0,198	45,69	NS
				1985	2014	30	-0,36	0,721	-18,78	NS
18850000	ALTAMIRA	-3,215	-52,212	1995	2014	20	0,88	0,381	66,48	NS
				2000	2014	15	0,59	0,553	68,57	NS
				1985	2014	30	-0,04	0,972	-0,16	NS
18880000	FAZENDA CIPAUBA	-3,731	-51,568	1995	2014	20	0,59	0,553	3,78	NS
				2000	2014	15	0,88	0,381	4,04	NS
				1985	2014	30	0,32	0,748	0,20	NS
19100000	IRATAPURU	-0,554	-52,580	1995	2014	20	0,42	0,673	0,65	NS
				2000	2014	15	0,20	0,843	0,45	NS
				1975	2014	40	1,71	0,087	7,91	NS
	SÃO			1980	2014	35	2,81	0,005	14,67	S+
19150000	FRANCISCO	-0,569	-52,569	1985	2014	30	1,75	0,080	11,83	NS
				1995	2014	20	0,49	0,627	8,13	NS
				2000	2014	15	-0,20	0,843	-6,00	NS
19200000	SÃO PEDRO	-0,457	-52,078	2000	2014	15	0,69	0,488	0,30	NS
				1985	2014	30	-0,14	0,886	-0,13	NS
19985000	PACAJÁS	-3,851	-50,640	1995	2014	20	0,39	0,697	0,43	NS
				2000	2014	15	0,45	0,656	1,21	NS

Tabela 03 – Resultados dos testes de Mann-Kendall e Sen's Slope para as séries de vazões máximas. NS- Não Significativo, S+- Tendência Positiva Significativa e S- Tendência Negativa Significativa.

(continua)

14110000 CUCUÍ 1,215 -66,853 1995 2014 20 -0,10 0,923 -9,32 NS NS NS 14230000 MISSÃO 1,074 -67,595 1995 2014 20 -0,06 0,928 -42,13 NS NS 14230000 MISSÃO 1,074 -67,595 1995 2014 20 0,36 0,721 2,60 NS 14250000 SÃO FELIPE 0,372 -67,313 1985 2014 30 -0,25 0,803 -10,35 NS 1995 2014 30 -0,25 0,803 -10,35 NS 1995 2014 30 -0,25 0,803 -10,35 NS 1995 2014 20 -0,42 0,673 -29,93 NS 1995 2014 20 -0,10 0,923 -2,46 NS 1995 2014 20 -0,10 0,923 -2,46 NS 1995 2014 20 -0,10 0,923 -2,46 NS NS 1995 2014 20 -0,10 0,923 -2,46 NS NS 1995 2014 20 -1,46 0,144 -6,52 NS 1995 2014 20 -1,46 0,144 -6,52 NS 1995 2014 20 -1,46 0,144 -6,52 NS NS 14325000 TUMBIRA -0,344 -67,536 2000 2014 15 -1,58 0,113 -12,38 NS 14325000 TUMBIRA -0,241 -66,802 1995 2014 20 -0,06 0,948 -9,58 NS NS 1995 2014	Código	Estação	Latitude	Longitude	Início	Fim	Anos	ZMK	pvalue	Sen's slope	Significância
14230000 MISSÃO 1,074 -67,595 1995 2014 20 0,48 0,430 2,38 NS NS 14250000 MISSÃO 1,074 -67,595 1995 2014 20 0,36 0,721 2,60 NS NS 14250000 SÃO FELIPE 0,372 -67,313 1985 2014 30 0,42 0,692 -3,75 NS NS 1985 2014 20 0,40 0,692 -3,75 NS NS 1985 2014 20 0,42 0,673 -29,93 NS 1985 2014 20 0,42 0,673 -29,93 NS 1985 2014 20 0,43 0,669 10,54 NS 1985 2014 20 0,43 0,669 10,54 NS 1985 2014 20 0,43 0,669 10,54 NS 1985 2014 20 0,10 0,923 -2,46 NS 1985 2014 30 0,48 0,072 -4,87 NS 1430000 1,460 0,44 -6,52 NS 1,46 0,144 -6,52 NS 1,46					1985	2014	30	-0,09	0,929	-4,15	NS
14230000 MISSÃO 1,074 -67,595 1985 2014 30 0,48 0,630 2,38 NS NS 14250000 NS 1,074 -67,595 1995 2014 20 0,36 0,721 2,60 NS NS 1,074	14110000	CUCUÍ	1,215	-66,853	1995	2014	20	-0,10	0,923	-9,32	NS
14230000					2000	2014	15	-0,69	0,488	-42,13	NS
14250000		N4100 Ã O			1985	2014	30	0,48	0,630	2,38	NS
14250000 SÃO FELIPE 0,372 -67,313 1985 2014 35 -0,40 0,692 -3,75 NS NS 1985 2014 30 -0,25 0,803 -10,35 NS NS 1985 2014 30 -0,25 0,803 -10,35 NS NS 1995 2014 20 -0,42 0,673 -29,93 NS NS 1995 2014 20 -0,42 0,673 -29,93 NS NS 1995 2014 20 -0,40 0,621 -75,00 NS NS 1995 2014 20 -0,40 0,621 -75,00 NS 1985 2014 20 -0,40 0,621 -75,00 NS 1995 2014 20 -0,10 0,923 -2,46 NS 2000 2014 15 -0,99 0,322 -50,80 NS 1995 2014 20 -1,46 0,144 -6,52 NS 2000 2014 15 -1,58 0,113 -12,38 NS 14325000 TUMBIRA -0,344 -67,536 2000 2014 15 1,93 0,653 23,00 NS 1995 2014 20 -0,06 0,948 -9,58 NS 2000 2014 15 -0,15 0,091 2,091 -10,67 NS 1995 2014 20 -0,06 0,948 -9,58 NS 2000 2014 15 -0,10 0,921 -10,67 NS 1995 2014 20 -0,06 0,948 -9,58 NS 2000 2014 15 -0,10 0,921 -10,67 NS 1995 2014 20 -0,06 0,948 -9,58 NS 2000 2014 15 -0,10 0,921 -10,67 NS 1995 2014 20 -0,06 0,948 -9,58 NS 2000 2014 15 -0,10 0,921 -10,67 NS 2000 2014 15 -0,10 0,921 -10,67 NS 2000 2014 15 -0,10 0,921 -10,67 NS 2000 2014 20 -0,04 0,347 -113,12 NS 2000 2014 15 -0,10 0,921 -10,67 NS 2000 2014 20 -0,04 0,347 -113,12 NS 2000 201	14230000		1,074	-67,595	1995	2014	20	0,36	0,721	2,60	NS
14250000 142500000 1425000000000000000000000000000000000000		iş/av/			2000	2014	15	-0,40	0,692	-3,75	NS
14250000					1980	2014	35	1,25	0,211	33,50	NS
1995 2014 20	14250000	SÃO EELIDE	0.272	67 212	1985	2014	30	-0,25	0,803	-10,35	NS
14260000 UARAÇU 0,477 -69,128 1995 2014 30 0,43 0,669 10,54 NS 14260000 UARAÇU 0,477 -69,128 1995 2014 20 -0,10 0,923 -2,46 NS 2000 2014 15 -0,99 0,322 -50,80 NS 14300000 PARI CACHOEIRA 0,249 -69,785 1995 2014 20 -1,46 0,144 -6,52 NS 2000 2014 15 -1,58 0,113 -12,38 NS 14325000 TUMBIRA -0,344 -67,536 2000 2014 15 -1,58 0,113 -12,38 NS 14330000 CURICURIARI -0,201 -66,802 1995 2014 30 0,09 0,929 9,80 NS 14350000 ACHOEIRA -0,246 -67,009 1995 2014 20 -0,06 0,948 -9,58 NS 14350000 ACHOEIRA -0,246 -67,009 1995 2014 20 0,06 0,948 -9,58 NS 14420000 SERRINHA -0,482 -64,829 1995 2014 20 0,23 0,820 2,26 NS 14488000 UAICÁS 3,55 -63,169 1995 2014 20 -0,94 0,347 -113,12 NS 14495000 FAZENDA CAJUPIRANGA 3,438 -61,037 2000 2014 15 -0,15 0,882 -4,00 NS 14455000 BONFIM 3,381 -59,811 1995 2014 20 0,06 0,843 -4,83 NS 14526002 BONFIM 3,381 -59,811 1995 2014 20 0,09 0,929 3,80 NS 14526002 BONFIM 3,381 -59,811 1995 2014 20 0,09 0,921 26,50 NS 14526002 BONFIM 3,381 -59,811 1995 2014 20 0,09 0,429 0,697 -4,18 NS 14526002 BONFIM 3,381 -59,811 1995 2014 20 0,16 0,871 9,35 NS 14526002 BONFIM 3,381 -59,811 1995 2014 20 0,16 0,871 9,35 NS 14526002 BONFIM 3,381 -59,811 1995 2014 20 0,09 0,697 -4,18 NS	14230000	SAU FELIFE	0,372	-07,313	1995	2014	20	-0,42	0,673	-29,93	NS
14260000					2000	2014	15	-0,49	0,621	-75,00	NS
1430000					1985	2014	30	0,43	0,669	10,54	NS
1430000	14260000	UARAÇU	0,477	-69,128	1995	2014	20	-0,10	0,923	-2,46	NS
14300000 PARI CACHOEIRA 0,249 -69,785 1995 2014 20 -1,46 0,144 -6,52 NS 14325000 TUMBIRA -0,344 -67,536 2000 2014 15 -1,58 0,113 -12,38 NS 14325000 TUMBIRA -0,344 -67,536 2000 2014 15 1,93 0,053 23,00 NS 14330000 CURICURIARI -0,201 -66,802 1985 2014 30 0,09 0,929 9,80 NS 14350000 DUSANTE DA CACHOEIRA DO CAJU -0,246 -67,009 1985 2014 20 -0,06 0,948 -9,58 NS 14350000 DO CAJU -0,246 -67,009 1995 2014 20 0,06 0,948 -9,58 NS 14420000 SERRINHA -0,246 -67,009 1995 2014 20 0,23 0,820 2,26 NS 14420000 SERRINHA -0,482 -64,829					2000	2014	15	-0,99	0,322	-50,80	NS
T4300000 CACHOEIRA CA		DADI			1985	2014	30	-1,80	0,072	-4,87	NS
14325000 TUMBIRA -0,344 -67,536 2000 2014 15 -1,58 0,113 -12,38 NS 14325000 TUMBIRA -0,344 -67,536 2000 2014 15 1,93 0,053 23,00 NS 14330000 CURICURIARI -0,201 -66,802 1985 2014 30 0,09 0,929 9,80 NS 1995 2014 20 -0,06 0,948 -9,58 NS 2000 2014 15 -0,10 0,921 -10,67 NS 14350000 CACHOEIRA DO CAJU -67,009 1995 2014 20 0,23 0,820 2,26 NS 14420000 SERRINHA -0,482 -64,829 1985 2014 30 0,11 0,915 0,71 NS 14488000 UAICÁS 3,55 -63,169 1995 2014 20 0,023 0,820 2,26 NS 14495000 FAZENDA CAJUPIRANGA 3,438 -61,037 2000 2014 15 -0,15 0,882 -4,00 NS 14515000 FAZENDA CAJUPIRANGA 3,208 -60,571 1995 2014 20 0,75 0,456 23,29 NS 14515000 BONFIM 3,381 -59,811 1995 2014 20 0,07 0,943 0,62 NS 1985 2014 30 0,07 0,943 0,62 NS 1985 2014 20 0,06 0,948 -9,58 NS 1985 2014 30 0,11 0,915 0,71 NS 2000 2014 15 -1,29 0,198 -181,40 NS 2000 2014 15 -0,20 0,843 -4,83 NS	14300000		0,249	-69,785	1995	2014	20	-1,46	0,144	-6,52	NS
14330000 CURICURIARI -0,201 -66,802		O/ (O) IOEII (/ (2000	2014	15	-1,58	0,113	-12,38	NS
14330000 CURICURIARI -0,201 -66,802	14325000	TUMBIRA	-0,344	-67,536	2000	2014	15	1,93	0,053	23,00	NS
14330000 CURICURIARI -0,201 -66,802					1980	2014	35	2,04	0,041	71,85	S+
1995 2014 20 -0,06 0,948 -9,58 NS 2000 2014 15 -0,10 0,921 -10,67 NS 14350000 CACHOEIRA DO CACHOEIRA DO CAJU 1985 2014 30 0,11 0,915 0,71 NS 2000 2014 15 0,79 0,429 10,67 NS 14420000 SERRINHA -0,482 -64,829 1985 2014 30 -0,18 0,858 -7,50 NS 1995 2014 20 -0,94 0,347 -113,12 NS 2000 2014 15 -1,29 0,198 -181,40 NS 14488000 UAICÁS 3,55 -63,169 1995 2014 20 0,19 0,846 1,45 NS 2000 2014 15 -0,15 0,882 -4,00 NS 14495000 FAZENDA CAJUPIRANGA 3,438 -61,037 2000 2014 15 -0,20 0,843 -4,83 NS 14515000 FAZENDA PASSARÃO 3,208 -60,571 1995 2014 20 0,16 0,871 9,35 NS 1985 2014 30 0,07 0,943 0,62 NS 1985 2014 30 0,07 0,943 0,62 NS	1.4220000	CHDICHDIADI	0.201	66 000	1985	2014	30	0,09	0,929	9,80	NS
14350000 CACHOEIRA -0,246 -67,009 1995 2014 20 0,23 0,820 2,26 NS	14330000	CURICURIARI	-0,201	-00,002	1995	2014	20	-0,06	0,948	-9,58	NS
14350000 CACHOEIRA DO CAJU -0,246 -67,009 1995 2014 20 0,23 0,820 2,26 NS 2000 2014 15 0,79 0,429 10,67 NS 14420000 SERRINHA -0,482 -64,829 1985 2014 30 -0,18 0,858 -7,50 NS 1995 2014 20 -0,94 0,347 -113,12 NS 2000 2014 15 -1,29 0,198 -181,40 NS 2000 2014 15 -1,29 0,198 -181,40 NS 2000 2014 15 -1,29 0,198 -181,40 NS 2000 2014 15 -0,15 0,882 -4,00 NS 2000 2014 15 -0,20 0,843 -4,83 NS 2000 2014 15 -0,20 0,843 -4,83 NS 2000 2014 15 -0,20 0,843 -4,83 NS 2000 2014 15 0,00 0,921 26,50 NS 2000 2014 15 0,10 0,921 26,50 NS 2000 2014 15 0,10 0,921 26,50 NS 2000 2014 15 0,10 0,921 26,50 NS 2014 20 0,07 0,943 0,62 NS 2000 2014 20 0,07 0,943 0,62 NS 2000 2014 20 0,07 0,943 0,62 NS 2000 2014 20 0,039 0,697 -4,18 NS					2000	2014	15	-0,10	0,921	-10,67	NS
14350000 CACHOEIRA DO CAJU -67,009 1995 2014 20 0,23 0,820 2,26 NS 2000 2014 15 0,79 0,429 10,67 NS 14420000 SERRINHA -0,482 -64,829 1985 2014 35 2,42 0,016 161,38 S+ 1985 2014 30 -0,18 0,858 -7,50 NS 1995 2014 20 -0,94 0,347 -113,12 NS 2000 2014 15 -1,29 0,198 -181,40 NS 14488000 UAICÁS 3,55 -63,169 1995 2014 20 0,19 0,846 1,45 NS 2000 2014 15 -0,15 0,882 -4,00 NS 14495000 FAZENDA CAJUPIRANGA 3,438 -61,037 2000 2014 15 -0,20 0,843 -4,83 NS 14515000 FAZENDA PASSARÃO 3,208 -60,571 1995 2014 20 0,16 0,871 9,35 NS 1485 2000 2014 15 0,00 0,921 26,50 NS 1985 2014 30 0,07 0,943 0,62 NS 1485 2000 2014 15 0,00 0,921 26,50 NS 1985 2014 30 0,07 0,943 0,62 NS 1485 2000 2014 15 0,00 0,921 26,50 NS		JUSANTE DA			1985	2014	30	0,11	0,915	0,71	NS
14420000 SERRINHA -0,482 -64,829 -64,8	14350000	CACHOEIRA	-0,246	-67,009	1995	2014	20	0,23	0,820	2,26	NS
14420000 SERRINHA -0,482 -64,829		DO CAJU			2000	2014	15	0,79	0,429	10,67	NS
14420000 SERRINHA -0,482 -64,829 1995 2014 20 -0,94 0,347 -113,12 NS 2000 2014 15 -1,29 0,198 -181,40 NS 1985 2014 30 1,11 0,269 8,75 NS 14488000 UAICÁS 3,55 -63,169 1995 2014 20 0,19 0,846 1,45 NS 2000 2014 15 -0,15 0,882 -4,00 NS 2000 2014 15 -0,15 0,882 -4,00 NS 2000 2014 15 -0,15 0,882 -4,00 NS 2000 2014 15 -0,20 0,843 -4,83 NS 2000 2014 15 -0,20 0,843 -4,83 NS 2000 2014 15 0,10 0,921 26,50 NS 1985 2014 20 0,07 0,943 0,62 NS 1985 2014 20 0,07 0,943 0,62 NS 1985 2014 20 -0,39 0,697 -4,18 NS					1980	2014	35	2,42	0,016	161,38	S+
1995 2014 20 -0,94 0,347 -113,12 NS 2000 2014 15 -1,29 0,198 -181,40 NS 14488000 UAICÁS 3,55 -63,169 1995 2014 20 0,19 0,846 1,45 NS 2000 2014 15 -0,15 0,882 -4,00 NS 14495000 FAZENDA CAJUPIRANGA 3,438 -61,037 2000 2014 15 -0,20 0,843 -4,83 NS 14515000 FAZENDA PASSARÃO 3,208 -60,571 1995 2014 20 0,16 0,871 9,35 NS 1985 2014 30 0,07 0,943 0,62 NS 1985 2014 30 0,07 0,943 0,62 NS 1985 2014 30 0,07 0,943 0,62 NS	14420000	QEDDINIHA	-0.482	-64 820	1985	2014	30	-0,18	0,858	-7,50	NS
14488000 UAICÁS 3,55 -63,169 1995 2014 20 0,19 0,846 1,45 NS 2000 2014 15 -0,15 0,882 -4,00 NS 14495000 FAZENDA CAJUPIRANGA 3,438 -61,037 2000 2014 15 -0,20 0,843 -4,83 NS 14515000 FAZENDA PASSARÃO 3,208 -60,571 1995 2014 20 0,75 0,456 23,29 NS 1995 2014 20 0,75 0,456 23,29 NS 1995 2014 20 0,16 0,871 9,35 NS 1995 2014 20 0,16 0,871 9,35 NS 1985 2014 20 0,07 0,943 0,62 NS 1985 2014 30 0,07 0,943 0,62 NS 1985 2014 20 -0,39 0,697 -4,18 NS	14420000	SERRINIA	-0,402	-04,029	1995	2014	20	-0,94	0,347	-113,12	NS
14488000 UAICÁS 3,55 -63,169 1995 2014 20 0,19 0,846 1,45 NS 2000 2014 15 -0,15 0,882 -4,00 NS 14495000 FAZENDA CAJUPIRANGA 3,438 -61,037 1995 2014 20 0,75 0,456 23,29 NS 14515000 FAZENDA PASSARÃO 3,208 -60,571 1995 2014 20 0,16 0,871 9,35 NS 1995 2014 15 0,10 0,921 26,50 NS 1985 2014 30 0,07 0,943 0,62 NS 14526002 BONFIM 3,381 -59,811 1995 2014 20 -0,39 0,697 -4,18 NS					2000	2014	15	-1,29	0,198	-181,40	NS
2000 2014 15 -0,15 0,882 -4,00 NS 14495000 FAZENDA CAJUPIRANGA 3,438 -61,037 2000 2014 15 -0,20 0,456 23,29 NS 14515000 FAZENDA PASSARÃO 3,208 -60,571 1995 2014 20 0,16 0,871 9,35 NS 14526002 BONFIM 3,381 -59,811 1995 2014 20 0,07 0,943 0,62 NS					1985	2014	30	1,11	0,269	8,75	NS
FAZENDA CAJUPIRANGA 3,438 -61,037 1995 2014 20 0,75 0,456 23,29 0,843 -4,83 0,8 NS 14515000 FAZENDA PASSARÃO 3,208 -60,571 1995 2014 20 0,16 0,871 9,35 0,85 0,85 0,85 0,85 0,85 0,85 0,85 0,8	14488000	UAICÁS	3,55	-63,169	1995	2014	20	0,19	0,846	1,45	NS
14495000 CAJUPIRANGA 3,438 -61,037 2000 2014 15 -0,20 0,843 -4,83 NS 14515000 FAZENDA PASSARÃO 3,208 -60,571 1995 2014 20 0,16 0,871 9,35 NS 2000 2014 15 0,10 0,921 26,50 NS 14526002 BONFIM 3,381 -59,811 1995 2014 20 -0,39 0,697 -4,18 NS					2000	2014	15	-0,15	0,882	-4,00	NS
TASSARÃO FAZENDA PASSARÃO REPRESENDA PASSARÃO PAS	1//05000		3 //38	-61 037	1995	2014	20	0,75	0,456	23,29	NS
PASSARÃO 3,208 -60,571 2000 2014 15 0,10 0,921 26,50 NS 1985 2014 30 0,07 0,943 0,62 NS 14526002 BONFIM 3,381 -59,811 1995 2014 20 -0,39 0,697 -4,18 NS	14480000	CAJUPIRANGA	J,430	-01,03 <i>1</i>	2000	2014	15	-0,20	0,843	-4,83	NS
1985 2014 15 0,10 0,921 26,50 NS 1985 2014 30 0,07 0,943 0,62 NS 14526002 BONFIM 3,381 -59,811 1995 2014 20 -0,39 0,697 -4,18 NS	1/515000		3 300	-60 571	1995	2014	20	0,16	0,871	9,35	NS
14526002 BONFIM 3,381 -59,811 1995 2014 20 -0,39 0,697 -4,18 NS		PASSARÃO	3,200	-00,371	2000	2014	15	0,10	0,921	26,50	NS
					1985	2014	30	0,07	0,943	0,62	NS
2000 2014 15 -0,74 0,457 -21,33 NS	14526002	BONFIM	3,381	-59,811	1995	2014	20	-0,39	0,697	-4,18	NS
					2000	2014	15	-0,74	0,457	-21,33	NS

Tabela 03 – Resultados dos testes de Mann-Kendall e Sen's Slope para as séries de vazões máximas. NS- Não Significativo, S+- Tendência Positiva Significativa e S- Tendência Negativa Significativa.

MALOCA DO CONTÃO
TELEMENT 14680001 FÉE ESPERANÇA 2,871 -61,441 1995 2014 20 0,75 0,456 7,36 NS 14680001 ESPERANÇA 2,871 -61,441 1995 2014 15 -0,20 0,843 -0,80 NS 14690000 MUCAJAÍ 2,471 -60,918 2000 2014 15 -0,40 0,692 -16,40 NS 14750000 MISSÃO CATRIMANI 1,75 -62,283 2000 2014 15 -0,84 0,400 -5,83 NS 15050000 PONTES E LACERDA -15,215 -59,354 1995 2014 20 -0,62 0,537 -0,89 NS 15120001 MATO GROSSO -15,009 -59,958 1985 2014 30 -0,16 0,872 -0,64 NS 15150000 PEDRAS NEGRAS -12,851 -62,899 1995 2014 20 0,49 0,626 1,32 NS 15150000 PUNCAS NEGRAS -12,851 -62,899 1995 2014 20 0,49 0,626 1,32 NS 15250000 GUAJARÁ MIRIM -10,793 -65,348 1985 2014 30 -0,41 0,682 -33,45 NS 15326000 PLÁCIDO DE CASTRO CASTRO -10,338 -67,183 2000 2014 15 1,58 0,113 229,00 NS 15326000 PORTO -9,785 -65,528 2000 2014 15 2,43 0,015 53,50 S+ 15400000 PORTO -8,748 -63,917 1985 2014 30 -0,75 0,455 5,565 NS 1980 2014 35 -0,21 0,682 -33,45 NS 1995 2014 20 0,49 0,626 117,89 NS 15050000 RORADA NOVA - JUSANTE -10,793 -65,528 2000 2014 15 1,58 0,113 229,00 NS 15050000 PORTO -9,785 -65,528 2000 2014 15 2,43 0,015 53,50 NS 15050000 PORTO -8,748 -63,917 1985 2014 40 -1,03 0,305 -66,75 NS 15050000 PORTO -8,748 -63,917 1985 2014 40 -1,03 0,305 -66,75 NS 15050000 PORTO -8,748 -63,917 1985 2014 40 -1,03 0,305 -66,75 NS 1500000 PORTO -8,748 -63,917 1985 2014 40 -1,03 0,305 -66,75 NS 1500000 PORTO -8,748 -63,917 1985 2014 40 -1,03 0,305 -66,75 NS 150000 PORTO -8,748 -63,917 1985 2014 40 -1,03 0,305 -66,75 NS 1500000 PORTO -8,748 -63,917 1985 2014 40
14680001 ESPERANÇA 2,871 -61,441 2000 2014 15 -0,20 0,843 -0,80 NS 14690000 MUCAJAÍ 2,471 -60,918 2000 2014 15 -0,40 0,692 -16,40 NS 14750000 MISSÃO CATRIMANI 1,75 -62,283 2000 2014 15 -0,84 0,400 -5,83 NS 15050000 PONTES E LACERDA -15,215 -59,354 2000 2014 15 -0,55 0,586 0,90 NS 15120001 MATO GROSSO -15,009 -59,958 1995 2014 30 -0,41 0,678 -0,64 NS 15150000 PEDRAS NEGRAS -12,851 -62,899 1995 2014 20 0,49 0,626 1,32 NS 15150000 PUARS -12,851 -62,899 1995 2014 20 0,81 0,417 6,88 NS 1980 2014 35 -1,32 0,187 -79,33 NS 1980 2014 35 -1,32 0,187 -79,33 NS 15250000 GUAJARÁ- -10,793 -65,348 1985 2014 30 -0,41 0,682 -33,45 NS 15324000 PLÁCIDO DE CASTRO -10,338 -67,183 2000 2014 15 0,84 0,400 1,09 NS 15326000 PORTO -8,785 -65,528 2000 2014 35 -0,75 0,455 -66,55 NS 1980 2014 35 -0,75 0,452 -66,50 NS 1980 2014 30 -0,41 0,686 -33,71 NS 15400000 PORTO -8,748 -63,917 1995 2014 20 0,03 0,905 -66,75 NS 15400000 PORTO -8,748 -63,917 1995 2014 20 -1,03 0,005 -66,75 NS 15400000 PORTO -8,748 -63,917 1985 2014 30 -0,45 0,666 -33,771 NS 15400000 PORTO -8,748 -63,917 1985 2014 30 -0,45 0,666 -33,771 NS 15400000 PORTO -8,748 -63,917 1985 2014 30 -0,45 0,666 -33,771 NS 15400000 PORTO -8,748 -63,917 1985 2014 30 -0,45 0,666 -33,771 NS 154
14690000 MUCAJAÍ 2,471 -60,918 2000 2014 15 -0,20 0,843 -0,80 NS 14750000 MISSÃO CATRIMANI 1,75 -62,283 2000 2014 15 -0,40 0,692 -16,40 NS 14750000 PONTES E LACERDA -15,215 -59,354 1995 2014 20 -0,62 0,537 -0,89 NS 15050000 MATO GROSSO -15,009 -59,958 1985 2014 20 -0,62 0,537 -0,64 NS 15120001 MATO GROSSO -15,009 -59,958 1985 2014 20 -0,62 0,537 -0,64 NS 1995 2014 20 0,49 0,626 1,32 NS 1995 2014 20 0,49 0,626 1,32 NS 15150000 PEDRAS NEGRAS -12,851 -62,899 1995 2014 20 0,81 0,417 6,88 NS 15250000 GUAJARÁ-MIRIM -10,793 -65,348 1985 2014 30 -0,41 0,682 -33,45 NS 15324000 PLÁCIDO DE CASTRO -10,338 -67,183 2000 2014 15 1,58 0,113 229,00 NS 15326000 PORTO -8,785 -65,528 2000 2014 15 2,43 0,015 53,50 NS 1995 2014 20 1,82 0,069 27,50 NS 1980 2014 35 -0,75 0,452 -66,50 NS 19975 2014 30 -0,75 0,452 -66,50 NS 1980 2014 35 -0,75 0,452 -66,50 NS 19975 2014 30 -0,75 0,452 -66,50 NS 1980 2014 30 -0,75 0,452 -66,50 NS 1998 2014 30 -0,75 0,452 -66,50 NS 1998 2014 30 -0,75 0,452 -66,50 NS 1990 2014 35 -0,75 0,452 -66,50 NS 1990 2014 30 -0,65 0,656 -33,71 NS 15400000 PORTO -8,748 -63,917 1995 2014 30 -0,65 0,656 -33,71 NS 15400000 PORTO -8,748 -63,917 1995 2014 30 -0,65 0,656 -33,71 NS 15400000 PORTO -8,748 -63,917 1995 2014 30 -0,65 0,656 -33,71 NS 15400000 PORTO -8,748 -63,917 1995 2014 30 -0,65 0,656 -33,71 NS 15400000 PORTO -8,748 -63,917 1995 2014 30 -0,65 0,656 -33,71 NS 15400000 PORTO -8,748 -63,917 1995 2014 30 -0,65 0,656 -33,71 NS 15400000 PORTO -6,656 -33,71 NS
14750000 MISSÃO CATRIMANI 1,75 -62,283 2000 2014 15 -0,84 0,400 -5,83 NS 15050000 PONTES E LACERDA -15,215 -59,354 2000 2014 15 0,655 0,586 0,90 NS 15120001 MATO GROSSO -15,009 -59,958 1985 2014 30 -0,16 0,872 -0,64 NS 1995 2014 20 0,49 0,626 1,32 NS 2000 2014 15 1,24 0,216 8,25 NS 1985 2014 30 0,57 0,568 1,94 NS 2000 2014 15 1,24 0,216 8,25 NS 15150000 PEDRAS NEGRAS -12,851 -62,899 1995 2014 20 0,81 0,417 6,88 NS 2000 2014 15 1,04 0,298 15,62 NS 1980 2014 35 -1,32 0,187 -79,33 NS 1975 2014 40 -0,85 0,395 -34,37 NS 15250000 PLÁCIDO DE CASTRO -10,338 -67,183 2000 2014 15 1,58 0,113 229,00 NS 15326000 PORTO -8,748 -65,528 2000 2014 15 0,84 0,400 1,09 NS 1980 2014 35 -0,75 0,41 0,682 -33,45 NS 1980 2014 35 -1,32 0,015 53,50 S+ 1980 2014 35 -0,75 0,452 -66,50 NS 1975 2014 40 -1,03 0,045 0,656 -33,71 NS 15326000 PORTO -9,785 -65,528 2000 2014 15 2,43 0,015 53,50 S+ 1980 2014 35 -0,75 0,452 -66,50 NS 1975 2014 40 -1,03 0,035 -66,75 NS 1975 2014 40 -1,03 0,045 0,656 -33,71 NS 15400000 PORTO -8,748 -63,947 1,985 2014 30 -0,45 0,656 -33,71 NS 15400000 PORTO -8,748 -63,947 1,985 2014 30 -0,45 0,656 -33,71 NS 15400000 PORTO -8,748 -63,947 1,985 2014 30 -0,45 0,656 -33,71 NS 15400000 PORTO -8,748 -63,947 1,985 2014 30 -0,45 0,656 -33,71 NS 15400000 PORTO -8,748 -63,947 1,985 2
Table Tabl
15050000 LACERDA -15,215 -59,354 2000 2014 15 0,55 0,586 0,90 NS 1980 2014 35 -0,41 0,678 -0,64 NS 1985 2014 30 -0,16 0,872 -0,64 NS 2000 2014 15 1,24 0,216 8,25 NS 2000 2014 15 1,24 0,216 8,25 NS 2000 2014 15 1,24 0,216 8,25 NS 2000 2014 15 1,04 0,298 15,62 NS 2000 2014 15 1,04 0,256 117,89 NS 2000 2014 15 1,58 0,113 229,00 NS 2000 2014 15 1,58 0,113 229,00 NS 2000 2014 15 0,84 0,400 1,09 NS 2000 2014 15 2,43 0,015 53,50 S+ 1980 2014 35 -0,75 0,452 -66,50 NS 2000 2014 15 2,43 0,015 53,50 S+ 1975 2014 40 -1,03 0,305 -66,75 NS 2000 2014 35 -0,75 0,452 -66,50 NS 2000 2014 35 -0,75 0,452 -66,50 NS 2000 2014 35 2014 20 -1,03 0,305 -66,75 NS 2000 2014 35 2014 20 -1,03 0,305 -66,75 NS 2000 2014 20 -1,03 0,455 -66,75 NS 2000 2014 20 -1,03 0,305 -66,75 NS 2000 2014 20 -1,03 0,305 -66,75 NS 2000 2014 20 -1,03 0,305 -66,75 NS 2000 2014 20 -1,03 0,455 -
15120001 MATO GROSSO -15,009 -59,958 1985 2014 30 -0,16 0,872 -0,64 NS 1995 2014 20 0,49 0,626 1,32 NS 2000 2014 15 1,24 0,216 8,25 NS 185150000 PEDRAS NEGRAS -12,851 -62,899 1995 2014 20 0,81 0,417 6,88 NS 15250000 GUAJARÁ-MIRIM -10,793 -65,348 1985 2014 30 -0,41 0,682 -33,45 NS 1995 2014 20 1,14 0,256 117,89 NS 2000 2014 15 1,58 0,113 229,00 NS 15324000 PLÁCIDO DE CASTRO CASTRO JUSANTE -67,183 2000 2014 15 0,84 0,400 1,09 NS 1995 2014 20 1,82 0,069 27,50 NS 1995 2014 20 1,03 0,305 -66,75 NS 1995 2014 40 -1,03 0,305 -66,75 NS 1975 2014 40 -1,03 0,305 -
15120001 MATO GROSSO -15,009 -59,958 1985 2014 30 -0,16 0,872 -0,64 NS 2000 2014 15 1,24 0,216 8,25 NS 2000 2014 15 1,04 0,298 15,62 NS 2000 2014 20 0,81 0,417 6,88 NS 2000 2014 20 0,85 0,395 -34,37 NS 2000 2014 20 1,14 0,256 117,89 NS 2000 2014 20 1,14 0,256 117,89 NS 2000 2014 15 1,58 0,113 229,00 NS 2000 2014 15 1,58 0,113 229,00 NS 2000 2014 15 0,84 0,400 1,09 NS 2000 2014 15 0,84 0,400 1,09 NS 2000 2014 15 0,84 0,400 1,09 NS 2000 2014 15 2,43 0,015 53,50 S+ 180000 PORTO 28,748 263,917 1985 2014 20 1,03 0,305 -66,75 NS 2000 2014 15 2,43 0,015 53,50 S+ 2000 2014 20 1,03 0,305 -66,75 NS 2000 2014 20 0,04 0,05 0,05 0,05 0,05 0,05 0,05 0,0
15120001 GROSSO -15,009 -59,958 1995 2014 20 0,49 0,626 1,32 NS 2000 2014 15 1,24 0,216 8,25 NS 1985 2014 30 0,57 0,568 1,94 NS 1985 2014 20 0,81 0,417 6,88 NS NEGRAS NEGRAS -12,851 -62,899 1995 2014 20 0,81 0,417 6,88 NS 1985 2014 15 1,04 0,298 15,62 NS 1980 2014 15 1,04 0,298 15,62 NS 1980 2014 35 -1,32 0,187 -79,33 NS 1975 2014 40 -0,85 0,395 -34,37 NS 1975 2014 40 -0,85 0,395 -34,37 NS 1995 2014 20 1,14 0,256 117,89 NS 2000 2014 15 1,58 0,113 229,00 NS 1995 2014 20 1,14 0,256 117,89 NS 2000 2014 15 1,58 0,113 229,00 NS 15324000 PLÁCIDO DE CASTRO 10,338 -67,183 1995 2014 20 0,03 0,974 0,06 NS 15326000 NOVA - 9,785 -65,528 2000 2014 15 0,84 0,400 1,09 NS 15326000 PORTO 18,748 -63,917 1995 2014 20 1,82 0,069 27,50 NS 1995 2014 20 1,82 0,069 27,50 N
1995 2014 20 0,49 0,626 1,32 NS 2000 2014 15 1,24 0,216 8,25 NS PEDRAS NEGRAS -12,851 -62,899 1995 2014 20 0,81 0,417 6,88 NS 2000 2014 15 1,04 0,298 15,62 NS 1980 2014 35 -1,32 0,187 -79,33 NS 1975 2014 40 -0,85 0,395 -34,37 NS 1995 2014 20 1,14 0,256 117,89 NS 2000 2014 15 1,58 0,113 229,00 NS PLÁCIDO DE CASTRO CASTRO -10,338 -67,183 2000 2014 15 0,84 0,400 1,09 NS MORADA NOVA - JUSANTE -9,785 -65,528 2000 2014 15 2,43 0,015 53,50 S+ 1980 2014 35 -0,75 0,452 -66,50 NS 1980 2014 20 1,12 0,065 27,50 NS 2000 2014 15 2,43 0,015 53,50 S+
15150000 PEDRAS NEGRAS -12,851 -62,899 1995 2014 20 0,81 0,417 6,88 NS 2000 2014 15 1,04 0,298 15,62 NS 1980 2014 35 -1,32 0,187 -79,33 NS 1975 2014 40 -0,85 0,395 -34,37 NS 1995 2014 20 1,14 0,256 117,89 NS 2000 2014 15 1,58 0,113 229,00 NS 15324000 PLÁCIDO DE CASTRO -10,338 -67,183 1995 2014 20 1,14 0,256 117,89 NS 2000 2014 15 0,84 0,400 1,09 NS 15326000 NOVA - JUSANTE 1995 2014 20 1,82 0,069 27,50 NS 1995 2014 20 1,82 0,069 27,50 NS 1995 2014 20 1,82 0,069 27,50 NS 1995 2014 20 1,03 0,305 -66,50 NS 1975 2014 40 -1,03 0,305 -66,75 NS
15150000 PEDRAS NEGRAS -12,851 -62,899 1995 2014 20 0,81 0,417 6,88 NS 2000 2014 15 1,04 0,298 15,62 NS 1980 2014 35 -1,32 0,187 -79,33 NS 1975 2014 40 -0,85 0,395 -34,37 NS 1995 2014 20 1,14 0,256 117,89 NS 2000 2014 15 1,58 0,113 229,00 NS 15324000 PLÁCIDO DE CASTRO -10,338 -67,183 2000 2014 15 0,84 0,400 1,09 NS 15326000 NOVA - JUSANTE 1995 2014 20 1,82 0,069 27,50 NS 1995 2014 20 1,03 0,305 -66,75 NS 1995 2014 20 1,03 0,03 0,03 0,03 0,03 0,03 0,03 0,0
15150000 NEGRAS -12,851 -62,899 1995 2014 20 0,81 0,417 6,88 NS 2000 2014 15 1,04 0,298 15,62 NS 1980 2014 35 -1,32 0,187 -79,33 NS 1975 2014 40 -0,85 0,395 -34,37 NS 1995 2014 20 1,14 0,256 117,89 NS 2000 2014 15 1,58 0,113 229,00 NS 2000 2014 15 1,58 0,113 229,00 NS 2000 2014 15 1,58 0,113 229,00 NS 2000 2014 15 0,84 0,400 1,09 NS 2000 2014 15 0,84 0,400 1,09 NS 2000 2014 15 0,84 0,400 1,09 NS 2000 2014 15 2,43 0,015 53,50 S+ 1980 2014 35 -0,75 0,452 -66,50 NS 1975 2014 40 -1,03 0,305 -66,75 NS 1975 2014 20 1,04 15 10 10 10 10 10 10 10 10 10 10 10 10 10
2000 2014 15 1,04 0,298 15,62 NS 1980 2014 35 -1,32 0,187 -79,33 NS 1975 2014 40 -0,85 0,395 -34,37 NS 1995 2014 20 1,14 0,256 117,89 NS 2000 2014 15 1,58 0,113 229,00 NS PLÁCIDO DE CASTRO PLÁCIDO DE CASTRO 1995 2014 20 0,03 0,974 0,06 NS 2000 2014 15 0,84 0,400 1,09 NS MORADA NOVA - JUSANTE 1995 2014 20 1,82 0,069 27,50 NS 2000 2014 15 2,43 0,015 53,50 S+ 1980 2014 35 -0,75 0,452 -66,50 NS 1975 2014 40 -1,03 0,305 -66,75 NS 1975 2014 40 -1,03 0,305 -66,75 NS
15250000 GUAJARÁ- MIRIM -10,793 -65,348 1985 2014 30 -0,41 0,682 -33,45 NS 1995 2014 20 1,14 0,256 117,89 NS 2000 2014 15 1,58 0,113 229,00 NS 15324000 PLÁCIDO DE CASTRO -10,338 -67,183 2000 2014 15 0,84 0,400 1,09 NS 15326000 NOVA9,785 -65,528 2000 2014 15 2,43 0,015 53,50 S+ 1980 2014 35 -0,75 0,452 -66,50 NS 1975 2014 40 -1,03 0,305 -66,75 NS 1975 2014 40 -1,03 0,305 -66,75 NS
15250000 GUAJARĀ- MIRIM -10,793 -65,348 1985 2014 30 -0,41 0,682 -33,45 NS 1995 2014 20 1,14 0,256 117,89 NS 2000 2014 15 1,58 0,113 229,00 NS 15324000 PLÁCIDO DE CASTRO -10,338 -67,183 2000 2014 15 0,84 0,400 1,09 NS 15326000 NOVA9,785 -65,528 2000 2014 15 2,43 0,069 27,50 NS 1980 2014 35 -0,75 0,452 -66,50 NS 1975 2014 40 -1,03 0,305 -66,75 NS 1975 2014 40 -1,03 0,305 -66,75 NS
15250000 MIRIM -10,793 -65,348 1985 2014 30 -0,41 0,682 -33,45 NS 1995 2014 20 1,14 0,256 117,89 NS 2000 2014 15 1,58 0,113 229,00 NS 2000 2014 15 1,58 0,113 229,00 NS 2000 2014 15 0,84 0,400 1,09 NS 2000 2014 15 0,84 0,400 1,09 NS 2000 2014 15 0,84 0,400 1,09 NS 2000 2014 15 2,43 0,015 53,50 S+ 2000 2014 15 2,43 0,015 53,50 NS 2000 2014 15 2,43 0,015 53,50 NS 2014 20 1,82 0,069 27,50 NS 2014 20
1995 2014 20 1,14 0,256 117,89 NS 2000 2014 15 1,58 0,113 229,00 NS 15324000 PLÁCIDO DE CASTRO -10,338 -67,183 2000 2014 15 0,84 0,400 1,09 NS MORADA NOVA9,785 -65,528 2000 2014 15 2,43 0,015 53,50 S+ 1980 2014 35 -0,75 0,452 -66,50 NS 1975 2014 40 -1,03 0,305 -66,75 NS 15400000 PORTO -8 748 -63,917 1985 2014 30 -0,45 0,656 -33,71 NS
15324000 PLÁCIDO DE CASTRO -10,338 -67,183 1995 2014 20 0,03 0,974 0,06 NS 2000 2014 15 0,84 0,400 1,09 NS NS NOVA - 15326000 NOVA - 19,785 -65,528 2000 2014 15 2,43 0,015 53,50 S+ 1980 2014 35 -0,75 0,452 -66,50 NS 1975 2014 40 -1,03 0,305 -66,75 NS 15400000 PORTO -8,748 -63,917 1985 2014 30 -0,45 0,656 -33,71 NS
15324000 CASTRO -10,338 -67,183 2000 2014 15 0,84 0,400 1,09 NS MORADA 1995 2014 20 1,82 0,069 27,50 NS NOVA - 9,785 -65,528 2000 2014 15 2,43 0,015 53,50 S+ 1980 2014 35 -0,75 0,452 -66,50 NS 1975 2014 40 -1,03 0,305 -66,75 NS PORTO -8,748 -63,917 1985 2014 30 -0,45 0,656 -33,71 NS
15326000 MORADA 15326000 NOVA9,785 -65,528 1995 2014 20 1,82 0,069 27,50 NS 2000 2014 15 2,43 0,015 53,50 S+ 1980 2014 35 -0,75 0,452 -66,50 NS 1975 2014 40 -1,03 0,305 -66,75 NS 15400000 PORTO 18 748 -63 917 1985 2014 30 -0,45 0,656 -33 71 NS
15326000 NOVA9,785 -65,528 2000 2014 15 2,43 0,015 53,50 S+ 1980 2014 35 -0,75 0,452 -66,50 NS 1975 2014 40 -1,03 0,305 -66,75 NS PORTO -8,748 -63,917 1985 2014 30 -0,45 0,656 -33,71 NS
JUSANTE 2000 2014 15 2,43 0,015 53,50 S+ 1980 2014 35 -0,75 0,452 -66,50 NS 1975 2014 40 -1,03 0,305 -66,75 NS 15400000 PORTO 8 748 -63 917 1985 2014 30 -0.45 0,656 -33 71 NS
1975 2014 40 -1,03 0,305 -66,75 NS 15400000 PORTO -8.748 -63.917 1985 2014 30 -0.45 0.656 -33.71 NS
15/100000 PORTO -8.7/8 -63.917 1985 2017 30 -0.75 0.656 -33.71 NS
15/11111111 - X //X -63 U1/ 1UX5 /11// 31 -11//5 11656 -33 /1 NS
VELHO -0,740 -03,917 1903 2014 30 -0,43 0,030 -33,71 NS
1995 2014 20 -0,03 0,974 -11,61 NS
2000 2014 15 0,49 0,621 123,40 NS
FAZENDA 1995 2014 20 0,32 0,746 1,87 NS
15552600 FLOR DO -11,749 -60,868 2000 2014 15 0,00 1,000 0,00 NS
15558000 PIMENTA 1995 2014 15 1,48 0,138 8,75 NS
BUENO 211,084 201,192 2000 2014 20 2,17 0,030 10,20 S+
15559000 SÍTIO BELA -11,653 -61,215 1995 2014 20 2,17 0,030 16,21 S+
VISTA -11,053 -01,215 2000 2014 15 1,58 0,113 13,38 NS
15560001 JI-PARANÁ -10,874 -61,936 1995 2014 15 1,04 0,298 25,86 NS
2000 2014 20 1,82 0,069 33,45 NS

Tabela 03 – Resultados dos testes de Mann-Kendall e Sen's Slope para as séries de vazões máximas. NS- Não Significativo, S+- Tendência Positiva Significativa e S- Tendência Negativa Significativa.

0′.1′	F -4~	1 - 44 1-	1	1	= '	A	78416		Sen's	01101
Código	Estação	Latitude	Longitude		Fim	Anos		pvalue	slope	Significância
15700000	MANICORÉ	-5,817	-61,302	1995	2014	20	1,04	0,299	130,05	NS
			-	2000	2014	15	1,44	0,151	289,14	NS
15795000	LEONTINO	-7,739	-60,576	2000	2014	15	3,07	0,002	42,50	S+
	BOCA DO			1985	2014	30	1,39	0,164	17,25	NS
15800000	GUARIBA	-7,706	-60,578	1995	2014	20	2,17	0,030	58,09	S+
				2000	2014	15	1,68	0,092	60,10	NS
				1985	2014	30	2,25	0,025	55,70	S+
15830000	PRAINHA VELHA	-7,208	-60,65	1995	2014	20	3,08	0,002	173,48	S+
	V = 2.11.			2000	2014	15	2,77	0,006	179,50	S+
15930000	ACARI BR-230	-7,101	-59,683	1995	2014	20	1,20	0,230	5,51	NS
15930000	ACARI BR-230	-7,101	-59,005	2000	2014	15	0,59	0,553	2,90	NS
16430000	GARGANTA	-0,998	-57,043	1995	2014	20	1,62	0,105	86,28	NS
10430000	GARGANTA	-0,996	-57,043	2000	2014	15	0,25	0,804	33,30	NS
16460001	CARAMILIO	1.065	E7 064	1995	2014	20	1,23	0,221	78,22	NS
16460001	CARAMUJO	-1,065	-57,061	2000	2014	15	0,00	1,000	-15,43	NS
				1975	2014	40	2,68	0,007	652,87	S+
				1980	2014	35	3,88	0,000	1190,18	S+
17050001	ÓBIDOS	-1,919	-55,513	1985	2014	30	3,34	0,001	1168,69	S+
				1995	2014	20	2,27	0,023	1575,17	S+
				2000	2014	15	2,08	0,038	2331,50	S+
				1975	2014	40	1,51	0,130	13,01	NS
				1980	2014	35	2,06	0,039	22,52	S+
17090000	BOCA DO INFERNO	-1,503	-54,873	1985	2014	30	1,30	0,193	18,67	NS
	INI LINIO			1995	2014	20	-0,16	0,871	-4,82	NS
				2000	2014	15	-0,49	0,621	-19,00	NS
47004000	FAZENDA	40.404	50,000	1995	2014	20	-2,11	0,035	-1,67	S-
17091000	TUCUNARÉ	-13,461	-59,008	2000	2014	15	0,25	0,804	0,33	NS
4700000	FONT AND LIAC	44.050	50.040	1995	2014	20	-0,55	0,581	-1,78	NS
17093000	FONTANILHAS	-11,358	-58,343	2000	2014	15	0,99	0,321	9,00	NS
				1985	2014	30	1,48	0,139	5,75	NS
17120001	PORTO DOS	-11,537	-57,424	1995	2014	20	0,47	0,640	2,88	NS
	GAUCHOS			2000	2014	15	0,59	0,553	12,44	NS
47000000	PORTO	40.555	FF 00F	1995	2014	20	-0,19	0,846	-1,65	NS
17200000	RONCADOR	-13,557	-55,335	2000	2014	15	-0,55	0,586	-3,64	NS
17210002	TELES PIRES	-12,674	-55,793	2000	2014	15	0,20	0,843	2,71	NS
4700000	FAZENDA	40.075		2000	2014	15	1,88	0,060	58,57	NS
17300000	TRATEX	-10,956	-55,551	1995	2014	20	1,92	0,055	39,13	NS
-							•	•	•	

Tabela 03 – Resultados dos testes de Mann-Kendall e Sen's Slope para as séries de vazões máximas. NS- Não Significativo, S+- Tendência Positiva Significativa e S- Tendência Negativa Significativa.

(conclusão)

									•	•
Código	Estação	Latitude	Longitude	Início	Fim	Anos	ZMK	pvalue	Sen's slope	Significância
17340000	INDECO	-10,113	-55,571	2000	2014	15	0,49	0,621	6,67	NS
17340000	INDECO	-10,113	-55,571	1995	2014	20	1,78	0,074	36,94	NS
				1985	2014	30	0,66	0,509	0,45	NS
17350002	CACHIMBO	-9,817	-54,886	1995	2014	20	0,75	0,456	1,40	NS
				2000	2014	15	-0,99	0,322	-2,00	NS
	JUSANTE FOZ			2000	2014	15	-0,20	0,843	-7,33	NS
17380000	PEIXOTO DE AZEVEDO	-9,641	-56,019	1995	2014	20	1,69	0,091	56,96	NS
47400000	TRÊS	7.045	F7.0F	1995	2014	20	1,65	0,098	100,44	NS
17420000	MARIAS	-7,615	-57,95	2000	2014	15	0,10	0,921	11,63	NS
	BARRA DO			1995	2014	20	2,30	0,021	287,83	S+
17430000	SÃO MANUEL	-7,34	-58,155	2000	2014	15	1,19	0,235	217,00	NS
				1985	2014	30	-0,32	0,748	-5,00	NS
18200000	ARAPARI	-1,779	-54,397	1995	2014	20	-0,36	0,721	-11,25	NS
				2000	2014	15	-1,58	0,113	-39,71	NS
18250000	URUARÁ	-3,677	-53,554	1995	2014	20	0,36	0,721	1,29	NS
	01(0/11(/(0,011	00,004	2000	2014	15	-0,10	0,921	-0,70	NS
				1985	2014	30	0,36	0,721	0,48	NS
19100000	IRATAPURU	-0,554	-52,58	1995	2014	20	-0,16	0,871	-0,83	NS
				2000	2014	15	-0,10	0,921	-0,90	NS
				1975	2014	40	1,50	0,133	24,30	NS
	2.40			1980	2014	35	2,36	0,018	42,00	S+
19150000	SÃO FRANCISCO	-0,569	-52,569	1985	2014	30	1,50	0,134	37,33	NS
				1995	2014	20	0,42	0,673	39,60	NS
				2000	2014	15	-0,30	0,767	-11,64	NS
19200000	SÃO PEDRO	-0,457	-52,078	2000	2014	15	0,50	0,620	2,43	NS
19985000	PACAJÁS	-3,851	-50,64	2000	2014	15	-0,45	0,656	-2,56	NS
13303000	I ACAJAS	-5,051	-50,04	1995	2014	20	-0,91	0,363	-3,27	NS

Tabela 04 – Resultados dos testes de Mann-Kendall e Sen's Slope para as séries de vazões mínimas. NS- Não Significativo, S+- Tendência Positiva Significativa e S- Tendência Negativa Significativa.

(continua)

Código	Estação	Latitude	Longitude	Início	Fim	Anos	ZMK	pvalue	Sen's slope	Significância
				1985	2014	30	1,14	0,253	15,82	NS
14110000	CUCUÍ	1,215	-66,853	1995	2014	20	0,84	0,398	27,08	NS
				2000	2014	15	0,60	0,552	34,91	NS
	MISSÃO			1985	2014	30	2,14	0,032	7,30	S+
14230000	IÇANA	1,074	-67,595	1995	2014	20	1,56	0,119	8,26	NS
				2000	2014	15	1,78	0,075	16,67	NS
				1980	2014	35	1,25	0,211	18,11	NS
14250000	SÃO FELIPE	0,372	-67,313	1985	2014	30	0,61	0,544	11,88	NS
14200000	O/ (O I EEII E	0,012	07,010	1995	2014	20	-0,10	0,930	3,78	NS
				2000	2014	15	0,40	0,692	17,67	NS
				1985	2014	30	2,07	0,038	8,75	S+
14260000	UARAÇU	0,477	-69,128	1995	2014	20	1,20	0,230	8,56	NS
				2000	2014	15	1,39	0,166	14,33	NS
	PARI			1985	2014	30	3,41	0,001	0,66	S+
14300000	CACHOEIRA	0,249	-69,785	1995	2014	20	0,59	0,558	0,11	NS
				2000	2014	15	0,79	0,427	0,45	NS
14325000	TUMBIRA	-0,344	-67,536	2000	2014	15	1,34	0,181	3,14	NS
				1980	2014	35	2,08	0,038	55,00	S+
14330000	CURICURIARI	-0,201	-66,802	1985	2014	30	1,39	0,164	53,15	NS
1400000	OOMOOMAM	0,201	00,002	1995	2014	20	1,33	0,183	91,15	NS
				2000	2014	15	1,88	0,060	223,75	NS
	JUSANTE DA			1985	2014	30	-1,20	0,232	2,04	NS
14350000	CACHOEIRA	-0,246	-67,009	1995	2014	20	0,23	0,820	0,69	NS
	DO CAJU			2000	2014	15	1,93	0,053	6,57	NS
				1980	2014	35	2,34	0,019	91,94	S+
14420000	SERRINHA	-0,482	-64,829	1985	2014	30	1,39	0,164	77,05	NS
14420000	OLIVIANI, V	0,402	04,020	1995	2014	20	0,91	0,363	80,44	NS
				2000	2014	15	1,34	0,181	157,00	NS
				1985	2014	30	2,12	0,034	3,66	S+
14488000	UAICÁS	3,55	-63,169	1995	2014	20	1,23	0,217	4,28	NS
				2000	2014	15	1,39	0,166	6,00	NS
	FAZENDA			1995	2014	20	1,04	0,299	9,44	NS
14495000	CAJUPIRANGA	3,438	-61,037	2000	2014	15	1,09	0,276	10,00	NS
	FAZENDA			1995	2014	20	1,66	0,098	11,65	NS
14515000	PASSARÃO	3,208	-60,571	2000	2014	15	1,19	0,234	13,11	NS
				1985	2014	30	1,40	0,162	0,03	NS
14526002	BONFIM	3,381	-59,811	1995	2014	20	0,46	0,648	0,02	NS
				2000	2014	15	0,35	0,728	0,03	NS

Tabela 04 – Resultados dos testes de Mann-Kendall e Sen's Slope para as séries de vazões mínimas. NS- Não Significativo, S+- Tendência Positiva Significativa e S- Tendência Negativa Significativa.

Código	Estação	Latitude	Longitude	Início	Fim	Anos	ZMK	pvalue	Sen's slope	Significância
	MALOCA DO		-60,529	1995	2014	20	0,75	0,455	0,23	NS
14550000	CONTÃO	4,168	00,020	2000	2014	15	0,74	0,457	0,36	NS
	FÉ E	2,871		1995	2014	20	1,52	0,127	2,83	NS
14680001	ESPERANÇA	2,071	-61,441	2000	2014	15	0,89	0,373	2,73	NS
14690000	MUCAJAÍ	2,471	-60,918	2000	2014	15	0,59	0,553	1,75	NS
14750000	MISSÃO CATRIMANI	1,75	-62,283	2000	2014	15	0,59	0,553	0,53	NS
	PONTES E			1995	2014	20	-1,89	0,059	-0,34	NS
15050000	LACERDA	-15,215	-59,354	2000	2014	15	-1,04	0,297	-0,31	NS
				1980	2014	35	-3,67	0,000	-0,23	S-
15120001	MATO	-15,009	-59,958	1985	2014	30	-3,39	0,001	-0,33	S-
10120001	GROSSO	10,000	00,000	1995	2014	20	-2,08	0,037	-0,33	S-
				2000	2014	15	0,00	1,000	0,00	NS
	PEDRAS			1985	2014	30	-1,96	0,050	-1,93	S-
15150000	NEGRAS	-12,851	-62,899	1995	2014	20	-0,81	0,417	-1,38	NS
				2000	2014	15	1,69	0,092	2,75	NS
				1980	2014	35	-3,01	0,003	-21,47	S-
	GUAJARÁ-			1975	2014	40	-2,28	0,022	-11,56	S-
15250000	MIRIM	-10,793	-65,348	1985	2014	30	-2,79	0,005	-26,56	S-
				1995	2014	20	-0,49	0,626	-6,33	NS
				2000	2014	15	-0,64	0,520	-16,86	NS
15324000	PLÁCIDO DE	-10,338	-67,183	1995	2014	20	2,41	0,016	0,40	S+
10024000	CASTRO	-10,550	-07,103	2000	2014	15	2,58	0,010	0,75	S+
15326000	MORADA NOVA -	-9,785	-65,528	1995	2014	20	0,84	0,399	0,64	NS
	JUSANTE			2000	2014	15	0,59	0,553	0,62	NS
				1980	2014	35	-3,44	0,001	-63,39	S-
	PORTO			1975	2014	40	-2,83	0,005	-41,48	S-
15400000	VELHO	-8,748	-63,917	1985	2014	30	-2,53	0,011	-48,50	S-
				1995	2014	20	-0,45	0,650	-9,16	NS
				2000	2014	15	-0,35	0,729	-15,33	NS
15552600	FAZENDA FLOR DO	-11,749	-60,868	1995 2000	2014	20	-0,94	0,346	-0,38	NS
	CAMPO				2014	15	0,00	1,000	0,00	NS
15558000	PIMENTA BUENO	-11,684	-61,192	1995	2014	15	1,64	0,101	0,53	NS
				2000	2014	20	0,81	0,416	0,20	NS
15559000	SÍTIO BELA VISTA	-11,653	-61,215	1995	2014	20	1,66	0,097	0,81	NS
	VISTA			2000	2014	15	2,13	0,033	2,00	S+
15560001	JI-PARANÁ	-10,874	-61,936	1995	2014	15	1,34	0,180	1,57	NS
				2000	2014	20	1,46	0,143	1,37	NS

Tabela 04 – Resultados dos testes de Mann-Kendall e Sen's Slope para as séries de vazões mínimas. NS- Não Significativo, S+- Tendência Positiva Significativa e S- Tendência Negativa Significativa.

Código	Estação	Latitude	Longitude	Início	Fim	Anos	ZMK	pvalue	Sen's slope	Significância
				1995	2014	20	-0,68	0,496	-37,23	NS
15700000	MANICORÉ	-5,817	-61,302	2000	2014	15	-0,69	0,488	-79,75	NS
15795000	LEONTINO	-7,739	-60,576	2000	2014	15	0,40	0,692	0,52	NS
	DOCA DO			1985	2014	30	-2,62	0,009	-1,85	S-
15800000	BOCA DO GUARIBA	-7,706	-60,578	1995	2014	20	-2,23	0,026	-2,51	S-
				2000	2014	15	-2,75	0,006	-5,52	S-
	PRAINHA			1985	2014	30	-2,59	0,010	-6,26	S-
15830000	VELHA	-7,208	-60,65	1995	2014	20	-0,13	0,897	-0,31	NS
				2000	2014	15	0,05	0,961	0,70	NS
		-7,101		1995	2014	20	0,03	0,974	0,00	NS
15930000	ACARI BR-230	7,101	-59,683	2000	2014	15	-1,10	0,274	-0,55	NS
				1995	2014	20	0,23	0,820	1,05	NS
16430000	GARGANTA	-0,998	-57,043	2000	2014	15	0,20	0,843	1,36	NS
16460001	CARAMUJO	-1,065	-57,061	1995	2014	20	0,84	0,401	4,22	NS
	OAI (AIWOOO	1,000	37,001	2000	2014	15	0,49	0,621	2,83	NS
				1975	2014	40	-1,51	0,130	-271,50	NS
				1980	2014	35	-0,68	0,495	-157,38	NS
17050001	ÓBIDOS	-1,919	-55,513	1985	2014	30	-0,92	0,363	-269,60	NS
				1995	2014	20	1,14	0,256	714,04	NS
				2000	2014	15	0,00	1,000	67,70	NS
				1975	2014	40	0,89	0,376	0,07	NS
	BOCA DO			1980	2014	35	2,60	0,009	0,16	S+
17090000	INFERNO	-1,503	-54,873	1985	2014	30	1,64	0,100	0,13	NS
				1995	2014	20	1,49	0,135	0,30	NS
				2000	2014	15	0,30	0,766	0,08	NS
17091000	FAZENDA	-13,461	-59,008	1995	2014	20	-4,96	0,000	-1,57	S-
	TUCUNARÉ	10,101		2000	2014	15	-3,37	0,001	-1,00	S-
				1995	2014	20	-3,05	0,002	-6,20	S-
17093000	FONTANILHAS	-11,358	-58,343	2000	2014	15	-1,98	0,047	-2,75	S-
	PORTO DOS			1985	2014	30	0,75	0,453	0,36	NS
17120001	GAUCHOS	-11,537	-57,424	1995	2014	20	0,72	0,474	0,37	NS
				2000	2014	15	0,00	1,000	0,00	NS
	PORTO			1995	2014	20	-1,41	0,160	-0,26	NS
17200000	RONCADOR	-13,557	-55,335	2000	2014	15	-0,65	0,514	-0,18	NS
17210002	TELES PIRES	-12,674	-55,793	2000	2014	15	-1,19	0,232	-0,57	NS
17300000	FAZENDA	-10,956	-55,551	2000	2014	15	-0,60	0,552	-2,00	NS
	TRATEX	10,000	00,001	1995	2014	20	0,00	1,000	0,00	NS

Tabela 04 – Resultados dos testes de Mann-Kendall e Sen's Slope para as séries de vazões mínimas. NS- Não Significativo, S+- Tendência Positiva Significativa e S- Tendência Negativa Significativa.

(conclusão)

									Sen's	
Código	Estação	Latitude	Longitude	Início	Fim	Anos	ZMK	pvalue	slope	Significância
				2000	2014	15	0,65	0,519	2,33	NS
17340000	INDECO	-10,113	-55,571	1995	2014	20	1,14	0,255	2,05	NS
				1985	2014	30	0,75	0,452	0,01	NS
17350002	CACHIMBO	-9,817	-54,886	1995	2014	20	1,14	0,254	0,04	NS
				2000	2014	15	1,20	0,229	0,07	NS
	JUSANTE FOZ PEIXOTO			2000	2014	15	-1,04	0,298	-2,40	NS
	DE									
17380000	AZEVEDO	-9,641	-56,019	1995	2014	20	0,26	0,795	0,84	NS
	TRÊS			1995	2014	20	0,52	0,603	3,97	NS
17420000	MARIAS	-7,615	-57,95	2000	2014	15	0,65	0,518	6,00	NS
E	BARRA DO SÃO			1995	2014	20	1,63	0,104	27,48	NS
17430000	MANUEL	-7,34	-58,155	2000	2014	15	2,04	0,042	46,63	S+
				1985	2014	30	2,80	0,005	0,36	S+
18200000	ARAPARI	-1,779	-54,397	1995	2014	20	1,10	0,269	0,29	NS
				2000	2014	15	-0,55	0,585	-0,15	NS
				1995	2014	20	0,52	0,602	0,02	NS
18250000	URUARÁ	-3,677	-53,554	2000	2014	15	-0,20	0,843	-0,01	NS
				1985	2014	30	-0,11	0,915	0,00	NS
19100000 IF	RATAPURU	-0,554	-52,58	1995	2014	20	-0,36	0,720	-0,08	NS
				2000	2014	15	-0,30	0,765	-0,12	NS
				1975	2014	40	1,41	0,158	1,80	NS
	SÃO			1980	2014	35	2,36	0,018	3,48	S+
19150000 _F	RANCISCO	-0,569	-52,569	1985	2014	30	0,86	0,392	2,13	NS
				1995	2014	20	-0,49	0,846	-0,95	NS
·	~			2000	2014	15	-0,19	0,621	-3,00	NS
19200000	SÃO PEDRO	-0,457	-52,078	2000	2014	15	1,64	0,101	0,02	NS
				2000	2014	15	1,04	0,297	0,19	NS
19985000	PACAJÁS	-3,851	-50,64	1995	2014	20	2,54	0,011	0,32	S+

Tabela 05 – Resultados dos testes de Mann-Kendall e Sen's Slope para as séries de totais anuais de precipitação. NS- Não Significativo, S+- Tendência Positiva Significativa e S- Tendência Negativa Significativa.

(continua)

Código	Estação	Latitude	Longitude	Início	Fim	Anos	ZMK	pvalue	Sen's slope	Significância
456002	ACAMPAMENTO URUÁ	-4,5500	-56,3000	1995	2014	20	2,04	0,041	23,07	S+
				2000	2014	15	1,68	0,092	28,54	NS
166000	ACANAUI	-1,8211	-66,6000	1975	2014	40	2,37	0,019	16,53	S+
				1980	2014	35	3,55	0,000	28,89	S+
				1985	2014	30	2,78	0,005	31,71	S+
				1995	2014	20	3,41	0,001	77,03	S+
				2000	2014	15	3,07	0,002	116,45	S+
250003	ACANGATA	-2,2450	-50,6297	1995	2014	20	-2,04	0,041	-71,17	S-
				2000	2014	15	-3,46	0,005	-177,03	S-
1054000	AGROPECUÁRIA CAJABI	-10,7461	-54,5461	1995	2014	20	-0,36	0,721	-4,59	NS
				2000	2014	15	1,29	0,198	40,19	NS
8460003	ÁGUA FRIA	4,6428	-60,4964	2000	2014	15	-0,30	0,767	-10,51	NS
49009	ANAJÁS	-0,9853	-49,9394	2000	2014	15	-0,59	0,553	-10,63	NS
150003	ANTÔNIO LEMOS	-1,7917	-50,4347	1985	2014	30	2,64	0,008	41,49	S+
				1995	2014	20	2,89	0,004	85,00	S+
				2000	2014	15	0,69	0,488	28,86	NS
154000	ARAPARI	-1,7736	-54,3972	1975	2014	40	1,20	0,230	5,41	NS
				1980	2014	35	1,05	0,293	6,19	NS
				1985	2014	30	0,86	0,392	6,23	NS
				1995	2014	20	0,42	0,673	5,46	NS
				2000	2014	15	-0,20	0,843	-7,34	NS
151002	AREIAS	-1,2131	-51,2622	1985	2014	30	1,61	0,108	14,68	NS
				1995	2014	20	1,91	0,056	31,82	NS
				2000	2014	15	0,69	0,488	21,07	NS
462001	ARUMÃ - JUSANTE	-4,7408	-62,1519	2000	2014	15	0,79	0,429	8,17	NS
359004	AUTAZES	-3,5764	-59,1339	2000	2014	15	-1,48	0,138	-32,28	NS
1358001	BACAVAL	-13,6414	-58,2892	1995	2014	20	-0,42	0,673	-6,52	NS
				2000	2014	15	1,48	0,138	13,30	NS
362002	BADAJÓS	-3,4183	-62,6786	1985	2014	30	0,79	0,433	15,65	NS
				1995	2014	20	0,68	0,496	49,92	NS
				2000	2014	15	1,39	0,166	119,30	NS
8050001	BAILIQUE (VILA PROGRESSO)	0,8731	-50,0522	2000	2014	15	0,40	0,692	14,53	NS
8066002	BALAIO	0,3875	-66,6492	1995	2014	20	2,69	0,007	41,09	S+
				2000	2014	15	2,08	0,038	51,05	S+

Tabela 05 – Resultados dos testes de Mann-Kendall e Sen's Slope para as séries de totais anuais de precipitação. NS- Não Significativo, S+- Tendência Positiva Significativa e S- Tendência Negativa Significativa.

Código	Estação	Latitude	Longitude	Início	Fim	Anos	ZMK	pvalue	Sen's slope	Significância
	BALSA DO							•	-	
358002	RIO URUBÚ	-2,9131	-59,0433		2014	30	-0,36	0,721	-2,85	
					2014	20	0,49	0,627	4,11	
	DADDA DO			2000	2014	15	0,49	0,621	8,20	NS
758000	BARRA DO SÃO MANUEL	-7 3389	-58,1550	1995	2014	20	2,04	0,041	64,28	S+
700000	0,10 11,11022	7,0000	00,1000		2014	15	1,48	0,138	74,54	
60000	BASE ALALAÚ	-0.8558	-60,5219		2014	20	2,82	0,005	57,17	
		0,000	00,02.0		2014	15	2,18	0,029	68,10	
563002	BATURITÉ	-5,7219	-63,5108		2014	20	-1,01	0,315	-31,48	•
000002	5,11011112	0,72.0	00,0100		2014	15	-2,28	0,023	-66,98	
462002	BEABÁ	-4,8586	-62,8683		2014	20	2,82	0,005	42,40	
.02002					2014	15	1,39	0,166	38,03	
361000	BERURI	-3,8978	-61,3747		2014	30	-0,07	0,943	-2,13	
					2014	20	-2,95	0,003	-56,57	
					2014	15	-2,28	0,023	-46,09	
268000	BOA UNIÃO	-2,8806	-68,7986		2014	30	-3,07	0,002	-93,12	
					2014	20	1,40	0,163	37,38	
					2014	15	1,88	0,060	99,64	
	BOA VISTA									
257002	DO RAMOS	-2,9703	-57,5900		2014	20	0,36	0,721	5,93	
	BOCA BO			2000	2014	15	0,89	0,373	22,59	NS
760001	BOCA DO GUARIBA	-7,7053	-60,5783	1985	2014	30	-1,39	0,164	-17,66	NS
					2014	20	-1,91	0,056	-51,35	
					2014	15	-0,79	0,429	-30,87	NS
	BOCA DO	-1,5000	-54,8714							
154001	INFERNO	-1,3000	-54,0714		2014	30	-0,32	0,748	-2,61	
					2014	20	-0,88	0,381	-8,64	
					2014	15	-2,18	0,029	-37,54	
51005		-0,7947	-51,6239	2000	2014	15	1,88	0,060	34,13	
8359000	BONFIM	3,3830	-59,8156		2014	30	-0,54	0,593	-3,99	NS
					2014	20	-1,65	0,098	-24,23	
					2014	15	0,10	0,921	8,08	•
459000	BORBA	-4,3914	-59,5983		2014	30	0,61	0,544	8,25	
					2014	20	0,29	0,770	4,46	
					2014	15	-0,99	0,322	-32,63	
1458002	BRASFOR	-14,3842	-58,2344		2014	20	2,30	0,021	46,93	
				2000	2014	15	2,87	0,004	55,07	S+

Tabela 05 – Resultados dos testes de Mann-Kendall e Sen's Slope para as séries de totais anuais de precipitação. NS- Não Significativo, S+- Tendência Positiva Significativa e S- Tendência Negativa Significativa.

Código	Estação	Latitude	Longitude	Início	Fim	Anos	ZMK	pvalue	Sen's slope	Significância
352005	BRASIL NOVO	-3,3078	-52,5419	1985	2014	30	3,10	0,002	32,82	S+
				1995	2014	20	3,67	0,000	57,10	S+
				2000	2014	15	2,38	0,018	48,36	S+
1257000	BRASNORTE	-12,1164	-58,0003	1985	2014	30	-0,57	0,568	-3,17	NS
				1995	2014	20	0,03	0,974	3,20	NS
				2000	2014	15	2,08	0,038	39,15	S+
157000	CACH DA PORTEIRA - CONJ 1	-1,0875	-57,0469	1995	2014	20	0,59	0,553	18,82	NS
				2000	2014	15	0,10	0,923	1,91	NS
954001	CACHIMBO	-9,8186	-54,8864	1995	2014	20	-1,33	0,183	-12,77	NS
				2000	2014	15	-2,28	0,023	-35,22	S-
765000	CACHOEIRA	-7,7156	-66,0583	1985	2014	30	-0,32	0,748	-3,29	NS
				1995	2014	20	2,04	0,041	28,43	S+
				2000	2014	15	0,79	0,429	20,17	NS
1155000	CACHOEIRÃO	-11,6511	-55,7025	1995	2014	20	-0,62	0,538	-10,10	NS
				2000	2014	15	-0,10	0,921	-9,60	NS
664001	CANUTAMA	-6,5389	-64,3858	1985	2014	30	1,46	0,144	11,73	NS
				1995	2014	20	0,36	0,721	5,94	NS
				2000	2014	15	0,79	0,429	11,90	NS
458001	CARAMURI	-4,2308	-58,6714	1995	2014	20	0,03	0,974	1,42	NS
				2000	2014	15	0,79	0,429	23,10	NS
8050000	CARMO	0,5081	-50,7483	1995	2014	20	0,88	0,381	29,93	NS
				2000	2014	15	-1,09	0,276	-39,28	NS
162000	CARVOEIRO	-1,3944	-61,9792	1980	2014	35	3,57	0,000	22,11	S+
				1985	2014	30	3,57	0,000	35,23	S+
				1995	2014	20	3,15	0,002	63,62	S+
				2000	2014	15	2,08	0,038	72,35	S+
1360001	CEREJEIRA	-13,1967	-60,8233	1985	2014	30	1,11	0,287	6,20	NS
				1995	2014	20	0,68	0,496	15,28	NS
				2000	2014	15	2,47	0,013	38,32	S+
49010	CHAVES	-0,1500	-50,0000	2000	2014	15	0,40	0,692	19,85	NS
250000	CIPOAL	-2,7850	-50,4536	1985	2014	30	0,14	0,887	1,76	NS
				1995	2014	20	0,03	0,974	0,38	NS
				2000	2014	15	0,00	1,000	3,53	NS
1055002	COLIDER	-10,7986	-55,4486	1985	2014	30	-0,95	0,344	-8,88	NS
				1995	2014	20	-0,06	0,948	-1,91	NS
				2000	2014	15	-0,89	18,800	18,80	NS

Tabela 05 – Resultados dos testes de Mann-Kendall e Sen's Slope para as séries de totais anuais de precipitação. NS- Não Significativo, S+- Tendência Positiva Significativa e S- Tendência Negativa Significativa.

Código	Estação	Latitude	Longitude	Início	Fim	Anos	ZMK	pvalue	Sen's slope	Significância
8361004	COLÔNIA DO TAIANO	32,8720	-61,0883	1985	2014	30	0,68	0,498	7,61	NS
				1995	2014	20	-0,49	0,627	-14,58	NS
				2000	2014	15	-0,30	0,767	-13,54	NS
1360000	COLORADO DO OESTE	-13,1142	-60,5483	1985	2014	30	1,03	0,301	7,59	NS
				1995	2014	20	2,69	0,007	20,59	S+
				2000	2014	15	1,29	0,198	24,25	NS
764003	CRISTO	-7,4650	-64,2433	2000	2014	15	-0,59	0,553	-31,40	NS
8166000	CUCUÍ	1,2147	-66,8522	1985	2014	30	1,07	0,284	5,95	NS
				1995	2014	20	-0,68	0,496	-7,03	NS
				2000	2014	15	-0,99	0,322	-14,56	NS
63000	CUMARU	-0,5983	-63,3978	1980	2014	35	1,96	0,050	12,28	S+
				1985	2014	30	1,28	0,199	10,08	NS
				1995	2014	20	1,65	0,098	24,42	NS
				2000	2014	15	0,89	0,373	23,00	NS
1457003	DECIOLÂNDIA	-14,1833	-57,5069	1985	2014	30	-1,03	0,301	-9,43	NS
				1995	2014	20	-0,29	0,770	-4,35	NS
	ESCOL A			2000	2014	15	-0,10	0,921	-5,10	NS
1063000	ESCOLA CARAMURÚ	-1,0505	-63,6461	1995	2014	20	2,11	0,035	39,74	S+
	FORÍDITO			2000	2014	15	1,29	0,198	39,29	NS
267001	ESPÍRITO SANTO	-2,7500	-67,5667	1995	2014	20	-0,62	0,538	-4,52	NS
	FOTÂNIOIA			2000	2014	15	0,00	1,000	-0,59	NS
1353001	ESTÂNCIA RODEIO	-13,8419	-53,2417	1995	2014	20	0,29	0,770	2,46	NS
				2000	2014	15	0,10	0,921	1,04	NS
470002	ESTIRÃO DO REPOUSO	-4,3833	-70,9667	1995	2014	20	0,00	1,000	0,19	NS
				2000	2014	15	-0,30	0,767	-14,29	NS
1560000	FAZENDA AREIÃO	-15,4003	-60,0317	1995	2014	20	1,91	0,056	14,07	NS
-				2000	2014	15	0,79	0,429	9,40	NS
152006	FAZENDA BELA VISTA	-1,0819	-53,1575	1995	2014	20	2,37	0,018	20,80	S+
				2000	2014	15	1,58	0,113	20,80	NS
1061002	FAZENDA CASTANHAL	-10,3969	-61,0453	2000	2014	15	-0,20	0,843	-13,22	NS
8260003	FAZENDA CASTELÃO	2,7606	-60,3250	1995	2014	20	0,16	0,871	1,91	NS
				2000	2014	15	0,10	0,921	1,63	NS
1256002	FAZENDA DIVISÃO	-12,9806	-56,3156	2000	2014	15	0,99	0,322	23,07	NS

Tabela 05 – Resultados dos testes de Mann-Kendall e Sen's Slope para as séries de totais anuais de precipitação. NS- Não Significativo, S+- Tendência Positiva Significativa e S- Tendência Negativa Significativa.

									Sen's	
Código	Estação	Latitude	Longitude	Início	Fim	Anos	ZMK	pvalue	slope	Significância
350000	FAZENDA ESTRELA DO NORTE	-3,8706	-504,6280	1985	2014	30	1,21	0,225	10,37	NS
				1995	2014	20	1,27	0,206	14,09	NS
				2000	2014	15	0,69	0,488	13,86	NS
1160002	FAZENDA FLOR DO CAMPO	-11,7489	-60,8678	1995	2014	20	2,43	0,015	22,03	S+
				2000	2014	15	1,78	0,075	22,07	NS
1156000	FAZENDA ITAUBA	-11,4714	-56,4333	1985	2014	30	-0,11	0,915	-1,14	NS
				1995	2014	20	1,78	0,074	20,05	NS
				2000	2014	15	0,20	0,848	1,05	NS
8160001	FAZENDA PARANÁ	1,1264	-60,3994	1980	2014	35	1,28	0,201	8,59	NS
				1985	2014	30	1,14	0,254	10,88	NS
				1995	2014	20	2,11	0,035	27,76	S+
				2000	2014	15	0,99	0,322	18,58	NS
8360002	FAZENDA PASSARÃO	3,2078	-60,5711	1995	2014	20	-0,29	0,770	-6,92	NS
	~			2000	2014	15	-0,79	0,429	-46,35	NS
60001	FAZENDA SÃO LUCAS	-0,2275	-60,6908	1995	2014	20	-0,23	0,820	-7,99	NS
				2000	2014	15	-1,58	0,113	-51,75	NS
8261001	FAZENDA TRÊS PODERES	2,2628	-60,9728	1995	2014	20	-1,20	0,230	-15,11	NS
				2000	2014	15	-1,09	0,276	-24,36	NS
1358002	FAZENDA TUCUNARÉ	-13,4667	-58,9750	1995	2014	20	1,72	0,086	44,27	NS
	,			2000	2014	15	0,89	0,373	39,59	NS
8261000	FÉ E ESPERANÇA	2,8708	-61,4406	1975	2014	40	-0,24	0,807	-1,55	NS
				1980	2014	35	-0,40	0,691	-2,48	NS
				1985	2014	30	0,25	0,803	2,61	NS
				1995	2014	20	-0,68	0,496	-19,14	NS
				2000	2014	15	-0,89	0,373	-34,39	NS
1158001	FONTANILHAS	-11,3417	-58,3383	1980	2014	35	-2,61	0,009	-9,62	S-
				1985	2014	30	-2,21	0,027	-10,64	S-
				1995	2014	20	-1,27	0,206	-9,45	NS
1076555	0.5	10.15=5		2000	2014	15	-0,40	0,692	-2,88	NS
1352001	GARAPU	-13,4956	-52,4544	1995	2014	20	0,49	0,627	5,29	NS
	~			2000	2014	15	0,00	1,000	2,33	NS
466001	GAVIÃO	-4,8392	-66,8506	2000	2014	15	-2,97	0,003	157,94	S-

Tabela 05 – Resultados dos testes de Mann-Kendall e Sen's Slope para as séries de totais anuais de precipitação. NS- Não Significativo, S+- Tendência Positiva Significativa e S- Tendência Negativa Significativa.

Código	Estação	Latitude	Longitude	Início	Fim	Anos	ZMK	pvalue	Sen's slope	Significância
351000	GRANJA GAZELA	-3,4194	-51,2558	1995	2014	20	1,59	0,112	17,99	NS
				2000	2014	15	-0,20	0,843	-3,46	NS
763001	HUMAITÁ	-7,5153	-63,0286	1985	2014	30	-4,92	0,001	-76,06	S-
				1995	2014	20	-2,56	0,010	-23,61	S-
				2000	2014	15	-1,29	0,010	-10,83	NS
1055001	INDECO	-10,1125	-55,5700	1995	2014	20	-0,62	0,538	-13,92	NS
				2000	2014	15	-1,29	0,198	-28,20	NS
269001	IPIRANGA NOVO	-2,9297	-69,6931	2000	2014	15	-0,69	0,488	-6,28	NS
250002	IRAPURU	-2,4533	-50,9228	1995	2014	20	-2,37	0,018	-34,15	S-
				2000	2014	15	-1,88	0,060	-36,82	NS
252001	ITAPÉUA DO PARÁ	-2,3364	-52,9186	1995	2014	20	2,43	0,015	37,63	S+
				2000	2014	15	1,98	0,048	44,25	S+
657000	JACAREACANGA	-6,2356	-57,7753	1985	2014	30	-1,25	0,212	-9,69	NS
				1995	2014	20	-0,42	0,673	-8,89	NS
				2000	2014	15	-1,58	0,113	-39,63	NS
151000	JARILÂNDIA	-1,1233	-51,9964	1985	2014	30	-0,93	0,354	-8,33	NS
				1995	2014	20	0,16	0,871	2,48	NS
				2000	2014	15	1,19	0,235	29,24	NS
1157001	JUARA	-11,2531	-57,5067	1985	2014	30	-0,43	0,669	-3,32	NS
				1995	2014	20	-0,10	0,923	-2,95	NS
				2000	2014	15	0,20	0,843	-5,67	NS
1158002	JUÍNA	-11,4081	-58,7186	1985	2014	30	1,64	0,101	12,83	NS
				1995	2014	20	1,40	0,163	26,50	NS
				2000	2014	15	1,98	0,048	48,83	S+
662001	JUMA	-7,0083	-62,7872	2000	2014	15	2,08	0,038	82,88	S+
256001	JURUTI	-2,1522	-56,0875	1985	2014	30	1,82	0,069	20,94	NS
				1995	2014	20	1,72	0,086	38,09	NS
				2000	2014	15	1,19	0,235	31,73	NS
555002	KM 1130 BR-163	-6,6714	-55,4958	1995	2014	20	1,33	0,183	23,49	NS
				2000	2014	15	1,48	0,138	35,91	NS
555000	KM 1326 BR-163	-5,1825	-56,0578	1985	2014	30	1,50	0,134	10,52	NS
				1995	2014	20	1,98	0,048	23,37	S+
				2000	2014	15	1,98	0,048	28,80	S+

Tabela 05 – Resultados dos testes de Mann-Kendall e Sen's Slope para as séries de totais anuais de precipitação. NS- Não Significativo, S+- Tendência Positiva Significativa e S- Tendência Negativa Significativa.

A55003 KM 1385 BR-163 -4,7547 -56,0794 1985 2014 30	Código	Estação	Latitude	Longitude	Início	Fim	Anos	ZMK	pvalue	Sen's slope	Significância
Section Sect	455003	KM 1385 BR-163	-4,7547	-56,0794	1985	2014	30	0,57	0,568	6,49	NS
R55000 KM 947 BR-163 -8,1872 -55,1194 1985 2014 30 -1,71 0,087 -13,69 NS 1995 2014 20 -2,11 0,035 -32,95 S- 2000 2014 15 -1,19 0,235 -28,75 NS 363002 LIBERDADE -3,4564 -63,3922 2000 2014 15 -1,39 0,166 -62,42 NS 66000 LIVRAMENTO -0,2889 -66,1533 1980 2014 35 3,89 0,000 26,18 S+ 1985 2014 20 1,33 0,183 24,10 NS 2000 2014 15 0,40 0,692 11,35 NS 8051002 MACAPÁ 0,0450 -51,1100 1975 2014 40 -1,01 0,311 -3,77 NS 1985 2014 30 -1,75 0,080 -7,39 NS 1985 2014 20 -0,55 0,581 -2,27 NS 1985 2014 20 -0,15 0,682 -1,10 NS 762002 MAICI-MIRIM -7,6308 -62,6606 1995 2014 20 -2,17 0,030 -39,21 S- 2000 2014 15 -0,40 0,692 -5,10 NS 8360000 MALOCA DO 0,1758 -63,9458 1985 2014 30 -0,18 0,858 -2,36 NS 1995 2014 20 -0,16 0,871 -3,41 NS 2000 2014 15 0,59 0,553 27,88 NS 1995 2014 20 1,65 0,098 22,49 NS 2000 2014 15 1,09 0,276 22,51 NS 360000 MANAUS -3,1167 -59,9500 1975 2014 40 1,46 0,445 7,11 NS 1995 2014 20 0,49 0,627 7,65 NS 1995 2014 20 0,49 0,692 -25,08 NS 1995 2014					1995	2014	20	2,37	0,018	57,97	S+
1995 2014 20 -2,11 0,035 -32,95 NS					2000	2014	15	3,86	0,000	109,80	S+
363002 LIBERDADE -3,4564 -63,3922 2000 2014 15 -1,19 0,235 -28,75 NS	855000	KM 947 BR-163	-8,1872	-55,1194	1985	2014	30	-1,71	0,087	-13,69	NS
363002 LIBERDADE -3,4564 -63,3922 2000 2014 15 -1,39 0,166 -62,42 NS 66000 LIVRAMENTO -0,2889 -66,1533 1980 2014 35 3,89 0,000 26,18 S+ 1985 2014 30 3,35 0,001 30,47 S+ 1995 2014 20 1,33 0,183 24,10 NS 2000 2014 15 0,40 0,692 11,35 NS 8051002 MACAPÁ 0,0450 -51,1100 1975 2014 40 -1,01 0,311 -3,77 NS 1980 2014 35 -0,28 0,776 -0,89 NS 1985 2014 30 -1,75 0,080 -7,39 NS 1985 2014 20 -0,55 0,581 -2,27 NS 2000 2014 15 -0,40 0,692 -5,10 NS 762002 MAICI-MIRIM -7,6308 -62,6606 1995 2014 20 -2,17 0,030 -39,21 S- 2000 2014 15 -2,08 0,038 -50,93 S- 8360000 MALOCA DO CONTÃO 4,1667 -60,5289 1980 2014 35 0,31 0,755 2,75 NS 8067002 MAICO MALOCA DO CONTÃO TOMÉ (Com. Curiri) 1995 2014 20 -0,16 0,871 -3,41 NS 2000 2014 15 0,59 0,553 27,88 NS 8067000 MANAUS -3,1167 -59,9500 1975 2014 20 1,65 0,098 22,49 NS 2000 2014 15 1,09 0,276 22,51 NS 360000 MANAUS -3,1167 -59,9500 1975 2014 20 0,49 0,627 7,65 NS 1995 2014 20 1,65 0,098 2,59 NS 1995 2014 20 0,49 0,627 7,65 NS 1995 2014 20 0,49 0,627 7,65 NS 1995 2014 20 1,78 0,074 38,29 NS 251000 MARAÂ -1,8611 -65,5906 1985 2014 30 -1,75 0,080 -16,23 NS 1995 2014 20 0,23 0,820 -3,15 NS					1995	2014	20	-2,11	0,035	-32,95	S-
Best Company Company					2000	2014	15	-1,19	0,235	-28,75	NS
1985 2014 30 3,35 0,001 30,47 S+	363002	LIBERDADE	-3,4564	-63,3922	2000	2014	15	-1,39	0,166	-62,42	NS
1995 2014 20 1,33 0,183 24,10 NS 2000 2014 15 0,40 0,692 11,35 NS NS NS 2010 2014 15 0,40 0,692 11,35 NS NS NS NS NS NS NS N	66000	LIVRAMENTO	-0,2889	-66,1533	1980	2014	35	3,89	0,000	26,18	S+
NS NS NS NS NS NS NS NS					1985	2014	30	3,35	0,001	30,47	S+
MACAPÁ					1995	2014	20	1,33	0,183	24,10	NS
1980 2014 35 -0,28 0,776 -0,89 NS 1985 2014 30 -1,75 0,080 -7,39 NS 1995 2014 20 -0,55 0,581 -2,27 NS 2000 2014 15 -0,40 0,692 -5,10 NS 2000 2014 15 -0,40 0,692 -5,10 NS 2000 2014 15 -2,08 0,038 -50,93 S- 2000 2014 15 -2,08 0,038 -50,93 S- 2000 2014 20 -0,18 0,858 -2,36 NS 2000 2014 20 -0,16 0,871 -3,41 NS 2000 2014 20 -0,16 0,871 -3,41 NS 2000 2014 15 0,59 0,553 27,88 NS 2000 2014 20 1,65 0,098 22,49 NS 2000 2014 20 1,65 0,098 22,49 NS 2000 2014 20 1,65 0,098 22,51 NS 2000 2014 20 1,65 0,098 22,51 NS 2000 2014 20 1,65 0,098 2,59 NS 2000 2014 20 1,78 0,074 38,29 NS 2000 2014 20 1,75 0,080 16,23 NS 251000 MARACACUERA FLORESTAL 2,2450 -51,1794 1985 2014 20 -0,23 0,820 -3,15 NS 251000 MARACACUERA FLORESTAL 2,2450 -51,1794 1985 2014 20 -0,23 0,820 -3,15 NS 251000 MARACACUERA FLORESTAL 2,2450 -51,1794 1985 2014 20 -0,23 0,820 -3,15 NS 251000 MARACACUERA FLORESTAL 2,2450 -51,1794 1985 2014 20 -0,23 0,820 -3,15 NS 251000 2014 2014 2014 2014					2000	2014	15	0,40	0,692	11,35	NS
1985 2014 30 -1,75 0,080 -7,39 NS 1995 2014 20 -0,55 0,581 -2,27 NS 2000 2014 15 -0,40 0,692 -5,10 NS 762002 MAICI-MIRIM -7,6308 -62,6606 1995 2014 20 -2,17 0,030 -39,21 S- 2000 2014 15 -2,08 0,038 -50,93 S- 8360000 MALOCA DO CONTÃO 4,1667 -60,5289 1980 2014 35 0,31 0,755 2,75 NS 1995 2014 20 -0,16 0,871 -3,41 NS 2000 2014 15 0,59 0,553 27,88 NS 1995 2014 20 -0,16 0,871 -3,41 NS 2000 2014 15 0,59 0,553 27,88 NS 1995 2014 20 1,65 0,098 22,49 NS 2000 2014 15 1,09 0,276 22,51 NS 360000 MANAUS -3,1167 -59,9500 1975 2014 40 1,46 0,145 7,11 NS 1986 2014 30 0,46 0,643 2,59 NS 1995 2014 20 0,49 0,627 7,65 NS 1995 2014 20 1,78 0,074 38,29 NS 251000 MARACACUERA FLORESTAL -2,2450 -51,1794 1985 2014 30 -1,75 0,080 -16,23 NS 251000 MARACACUERA FLORESTAL -2,2450 -51,1794 1985 2014 20 -0,23 0,820 -3,15 NS 251000 MARACACUERA FLORESTAL -2,2450 -51,1794 1985 2014 20 -0,23 0,820 -3,15 NS	8051002	MACAPÁ	0,0450	-51,1100	1975	2014	40	-1,01	0,311	-3,77	NS
1995 2014 20 -0,55 0,581 -2,27 NS					1980	2014	35	-0,28	0,776	-0,89	NS
Total Tota					1985	2014	30	-1,75	0,080	-7,39	NS
T62002 MAICI-MIRIM -7,6308 -62,6606 1995 2014 20 -2,17 0,030 -39,21 S-2000 2014 15 -2,08 0,038 -50,93 S-2000 2014 15 -2,08 0,038 -50,93 S-2000 2014 35 0,31 0,755 2,75 NS 1985 2014 30 -0,18 0,858 -2,36 NS 1995 2014 20 -0,16 0,871 -3,41 NS 2000 2014 15 0,59 0,553 27,88 NS 2000 2014 15 0,59 0,553 27,88 NS 2000 2014 15 0,59 0,553 27,88 NS 2000 2014 15 1,09 0,276 22,51 NS 2000 2014 15 1,09 0,276 22,51 NS 2000 2014 35 0,99 0,320 5,59 NS 1995 2014 20 0,49 0,627 7,65 NS 1995 2014 20 1,78 0,074 38,29 NS 1995 2014 20 1,78 0,074 38,29 NS 2000 2014 15 0,40 0,692 -25,08 NS 251000 MARAĞ -1,8611 -65,5906 1985 2014 20 0,49 0,692 -25,08 NS 251000 MARAĞ -2,2450 -51,1794 1985 2014 30 -1,75 0,080 -16,23 NS 1995 2014 20 0,23 0,820 -3,15 NS 1995 2014 20 0,23 0,23 0,23 0,23 0,23 0,23 0,23 0,23 0,23 0,23 0,23					1995	2014	20	-0,55	0,581	-2,27	NS
8360000					2000	2014	15	-0,40	0,692	-5,10	NS
MALOCA DO CONTÃO 4,1667 -60,5289 1980 2014 35 0,31 0,755 2,75 NS 1985 2014 30 -0,18 0,858 -2,36 NS 1995 2014 20 -0,16 0,871 -3,41 NS 2000 2014 15 0,59 0,553 27,88 NS MALOCA SÃO TOMÉ (Com. Curiri) 1995 2014 20 1,65 0,098 22,49 NS 2000 2014 15 1,09 0,276 22,51 NS 360000 MANAUS -3,1167 -59,9500 1975 2014 40 1,46 0,145 7,11 NS 1995 2014 20 0,49 0,627 7,65 NS 165000 MARAÃ -1,8611 -65,5906 1985 2014 30 -0,75 0,454 -9,13 NS 1995 2014 20 1,78 0,074 38,29 NS 2000 2014 15 -0,40 0,692 -25,08 NS 251000 MARACACUERA FLORESTAL -2,2450 -51,1794 1985 2014 20 -0,23 0,820 -3,15 NS	762002	MAICI-MIRIM	-7,6308	-62,6606	1995	2014	20	-2,17	0,030	-39,21	S-
CONTÃO					2000	2014	15	-2,08	0,038	-50,93	S-
1995 2014 20 -0,16 0,871 -3,41 NS	8360000		4,1667	-60,5289	1980	2014	35	0,31	0,755	2,75	NS
MALOCA SÃO TOMÉ (Com. Curiri) 1995 2014 15 0,59 0,553 27,88 NS NS 1986 2014 30 1,68 0,094 16,59 NS 1995 2014 20 1,65 0,098 22,49 NS 2000 2014 15 1,09 0,276 22,51 NS 2000 2014 15 1,09 0,276 22,51 NS 2000 2014 35 0,99 0,320 5,59 NS 1985 2014 30 0,46 0,643 2,59 NS 1995 2014 20 0,49 0,627 7,65 NS 2000 2014 15 1,39 0,166 34,65 NS 1995 2014 20 1,78 0,074 38,29 NS 1995 2014 20 1,78 0,074 38,29 NS 2000 2014 15 0,40 0,692 -25,08 NS 251000 MARACACUERA FLORESTAL -2,2450 -51,1794 1985 2014 20 -0,23 0,820 -3,15 NS 1995 2014 20 -0,23 -0,23 -0,23 -0,23 -0,23 -0,23 -0,23 -0,23 -0,23					1985	2014	30	-0,18	0,858	-2,36	NS
MALOCA SÃO TOMÉ (Com. Curiri)					1995	2014	20	-0,16	0,871	-3,41	NS
8067002 TOMÉ (Com. Curiri) 0,1758 -67,9458 1985 2014 30 1,68 0,094 16,59 NS 1995 2014 20 1,65 0,098 22,49 NS 2000 2014 15 1,09 0,276 22,51 NS 360000 MANAUS -3,1167 -59,9500 1975 2014 40 1,46 0,145 7,11 NS 1980 2014 35 0,99 0,320 5,59 NS 1985 2014 30 0,46 0,643 2,59 NS 1995 2014 20 0,49 0,627 7,65 NS 165000 MARAÃ -1,8611 -65,5906 1985 2014 30 -0,75 0,454 -9,13 NS 251000 MARACACUERA FLORESTAL -2,2450 -51,1794 1985 2014 30 -1,75 0,080 -16,23 NS 251000 MARACACUERA FLORESTAL		~~~			2000	2014	15	0,59	0,553	27,88	NS
2000 2014 15 1,09 0,276 22,51 NS 360000 MANAUS -3,1167 -59,9500 1975 2014 40 1,46 0,145 7,11 NS 1980 2014 35 0,99 0,320 5,59 NS 1985 2014 30 0,46 0,643 2,59 NS 1995 2014 20 0,49 0,627 7,65 NS 2000 2014 15 1,39 0,166 34,65 NS 165000 MARAÃ -1,8611 -65,5906 1985 2014 30 -0,75 0,454 -9,13 NS 1995 2014 20 1,78 0,074 38,29 NS 2000 2014 15 -0,40 0,692 -25,08 NS 251000 MARACACUERA FLORESTAL -2,2450 -51,1794 1985 2014 30 -1,75 0,080 -16,23 NS	8067002	TOMÉ (Com.	0,1758	-67,9458	1985	2014	30	1,68	0,094	16,59	NS
360000 MANAUS -3,1167 -59,9500 1975 2014 40 1,46 0,145 7,11 NS 1980 2014 35 0,99 0,320 5,59 NS 1985 2014 30 0,46 0,643 2,59 NS 1995 2014 20 0,49 0,627 7,65 NS 2000 2014 15 1,39 0,166 34,65 NS 1995 2014 20 1,78 0,074 38,29 NS 1995 2014 20 1,78 0,074 38,29 NS 2000 2014 15 -0,40 0,692 -25,08 NS 2000 2014 15 -0,40 0,692 -25,08 NS 2000 2014 15 -0,40 0,692 -25,08 NS 1995 2014 20 -0,23 0,820 -3,15 NS					1995	2014	20	1,65	0,098	22,49	NS
1980 2014 35 0,99 0,320 5,59 NS 1985 2014 30 0,46 0,643 2,59 NS 1995 2014 20 0,49 0,627 7,65 NS 2000 2014 15 1,39 0,166 34,65 NS 1995 2014 20 1,78 0,074 38,29 NS 1995 2010 2014 15 -0,40 0,692 -25,08 NS 251000 MARACACUERA FLORESTAL -2,2450 -51,1794 1985 2014 30 -1,75 0,080 -16,23 NS 1995 2014 20 -0,23 0,820 -3,15 NS					2000	2014	15	1,09	0,276	22,51	NS
1985 2014 30 0,46 0,643 2,59 NS 1995 2014 20 0,49 0,627 7,65 NS 2000 2014 15 1,39 0,166 34,65 NS 165000 MARAÃ -1,8611 -65,5906 1985 2014 30 -0,75 0,454 -9,13 NS 1995 2014 20 1,78 0,074 38,29 NS 2000 2014 15 -0,40 0,692 -25,08 NS 251000 MARACACUERA FLORESTAL -2,2450 -51,1794 1985 2014 30 -1,75 0,080 -16,23 NS 1995 2014 20 -0,23 0,820 -3,15 NS	360000	MANAUS	-3,1167	-59,9500	1975	2014	40	1,46	0,145	7,11	NS
1995 2014 20 0,49 0,627 7,65 NS 2000 2014 15 1,39 0,166 34,65 NS 165000 MARAÃ -1,8611 -65,5906 1985 2014 30 -0,75 0,454 -9,13 NS 1995 2014 20 1,78 0,074 38,29 NS 2000 2014 15 -0,40 0,692 -25,08 NS 251000 MARACACUERA FLORESTAL -2,2450 -51,1794 1985 2014 30 -1,75 0,080 -16,23 NS 1995 2014 20 -0,23 0,820 -3,15 NS					1980	2014	35	0,99	0,320	5,59	NS
2000 2014 15 1,39 0,166 34,65 NS 165000 MARAÃ -1,8611 -65,5906 1985 2014 30 -0,75 0,454 -9,13 NS 1995 2014 20 1,78 0,074 38,29 NS 2000 2014 15 -0,40 0,692 -25,08 NS 251000 MARACACUERA FLORESTAL -2,2450 -51,1794 1985 2014 30 -1,75 0,080 -16,23 NS 1995 2014 20 -0,23 0,820 -3,15 NS					1985	2014	30	0,46	0,643	2,59	NS
165000 MARAÃ -1,8611 -65,5906 1985 2014 30 -0,75 0,454 -9,13 NS 1995 2014 20 1,78 0,074 38,29 NS 2000 2014 15 -0,40 0,692 -25,08 NS 251000 MARACACUERA FLORESTAL -2,2450 -51,1794 1985 2014 30 -1,75 0,080 -16,23 NS 1995 2014 20 -0,23 0,820 -3,15 NS					1995	2014	20	0,49	0,627	7,65	NS
1995 2014 20 1,78 0,074 38,29 NS					2000	2014	15	1,39	0,166	34,65	NS
251000 MARACACUERA FLORESTAL -2,2450 -51,1794 1985 2014 20 -0,23 0,820 -3,15 NS	165000	MARAÃ	-1,8611	-65,5906	1985	2014	30	-0,75	0,454	-9,13	NS
251000 MARACACUERA FLORESTAL -2,2450 -51,1794 1985 2014 30 -1,75 0,080 -16,23 NS 1995 2014 20 -0,23 0,820 -3,15 NS					1995	2014	20	1,78	0,074	38,29	NS
FLORESTAL -2,2450 -51,1794 1985 2014 30 -1,75 0,080 -16,23 NS 1995 2014 20 -0,23 0,820 -3,15 NS					2000	2014	15	-0,40	0,692	-25,08	NS
	251000		-2,2450	-51,1794			30		•		
2000 2014 15 0,30 0,767 11,90 NS											
					2000	2014	15	0,30	0,767	11,90	NS

Tabela 05 – Resultados dos testes de Mann-Kendall e Sen's Slope para as séries de totais anuais de precipitação. NS- Não Significativo, S+- Tendência Positiva Significativa e S- Tendência Negativa Significativa.

Código	Estação	Latitude	Longitude	Início	Fim	Anos	ZMK	pvalue	Sen's slope	Significância
1160000	MARCO RONDON	-12,0153	-60,8550	1995	2014	20	0,36	0,721	4,07	NS
				2000	2014	15	1,68	0,092	23,36	NS
1559006	MATO GROSSO	-15,0081	-59,9492	1985	2014	30	-0,39	0,695	-1,70	NS
				1995	2014	20	1,85	0,064	17,51	NS
-				2000	2014	15	2,18	0,029	32,63	S+
357001	MAUÉS	-3,4006	-57,7156	1995	2014	20	1,52	0,127	37,58	NS
				2000	2014	15	-0,59	0,553	-15,75	NS
357004	MENINO DEUS	-3,7728	-57,3031	2000	2014	15	-0,10	0,921	-0,34	NS
1063001	MINERAÇÃO PONTE MASSANGANA	-9,7608	-63,2875	2000	2014	15	-0,59	0,553	-21,90	NS
1161003	MINISTRO ANDREAZZA	-11,1969	-61,5281	2000	2014	15	1,29	0,198	30,80	NS
8464001	MISSÃO AUARIS - JUSANTE	4,0031	-64,4431	2000	2014	15	1,58	0,113	30,04	NS
8167000	MISSÃO IÇANA	1,0742	-67,5933	1985	2014	30	1,82	0,069	20,55	NS
				1995	2014	20	0,36	0,721	12,96	NS
	~			2000	2014	15	0,40	0,692	13,91	NS
8263000	MISSÃO SURUCUCU	2,8358	-63,6417	1985	2014	30	0,50	0,617	6,57	NS
				1995	2014	20	0,36	0,721	8,97	NS
				2000	2014	15	0,00	1,000	-2,18	NS
257003	MOCAMBO	-2,4556	-57,2825	1995	2014	20	-2,17	0,030	-46,79	S-
				2000	2014	15	-3,37	0,008	-92,68	S
452000	MONTE ALEGRE DO XINGU	-4,6656	-52,7203	1995	2014	20	-0,03	0,974	-1,86	NS
				2000	2014	15	-0,79	0,429	-18,02	NS
161002	MOURA	-1,4589	-61,6331	1980	2014	35	2,85	0,004	22,20	S+
				1985	2014	30	2,57	0,010	27,98	S+
				1995	2014	20	1,46	0,144	33,56	NS
				2000	2014	15	0,30	0,767	11,08	NS
357003	MUCAJÁ	-3,8967	-57,5042	1995	2014	20	-0,62	0,538	-7,35	NS
				2000	2014	15	-0,99	0,322	-14,09	NS
8260004	MUCAJAÍ	2,4714	-60,9178	2000	2014	15	-0,10	0,921	-4,48	NS
8459000	MUTUM	-3,4936	-54,8869	1995	2014	20	1,27	0,206	19,77	NS
				2000	2014	15	1,29	0,198	35,83	NS
	N/A1 // G			2000	2014	15	0,20	0,843	2,73	NS
51002	NAVIO	-0,3992	-51,4203	1985	2014	30	-3,28	0,001	-34,87	S-
				1995	2014	20	-1,59	0,112	-34,66	NS
		0	0 = 0.5	2000	2014	15	-1,09	0,276	-34,30	NS
8067003	NAZARÉ	0,5878	-67,8064	2000	2014	15	-0,40	0,692	-11,93	NS

Tabela 05 – Resultados dos testes de Mann-Kendall e Sen's Slope para as séries de totais anuais de precipitação. NS- Não Significativo, S+- Tendência Positiva Significativa e S- Tendência Negativa Significativa.

Código	Estação	Latitude	Longitude	Início	Fim	Anos	ZMK	pvalue	Sen's slope	Significância
256002	NHAMUNDÁ	-2,1897	-56,7106	1985	2014	30	-0,46	0,643	-2,67	NS
				1995	2014	20	1,91	0,056	32,70	NS
				2000	2014	15	2,38	0,018	66,35	S+
459001	NITERÓI (TERRA PRETA II)	-4,7497	-59,2494	1995	2014	20	0,23	0,820	2,93	NS
				2000	2014	15	-0,49	0,621	-7,04	NS
966000	NOVA CALIFORNIA	-9,7556	-66,6117	1985	2014	30	1,03	0,301	5,63	NS
				1995	2014	20	-0,68	0,496	-5,88	NS
				2000	2014	15	-1,29	0,198	-10,75	NS
661001	NOVA ESPERANÇA	-6,3606	-61,7667	1985	2014	30	-5,57	0,000	- 106,30	S-
				1995	2014	20	-3,86	0,000	-74,33	S-
				2000	2014	15	-2,38	0,002	-51,28	S-
1459003	NOVA LACERDA	-14,4694	-59,5939	2000	2014	15	-0,10	0,921	-3,48	NS
1357000	NOVA MARINGÁ	-13,0661	-57,1133	1995	2014	20	1,85	0,064	24,15	NS
				2000	2014	15	1,09	0,276	16,80	NS
564001	NOVA OLINDA	-5,5831	-64,3353	1995	2014	20	1,33	0,183	36,86	NS
				2000	2014	15	0,00	1,000	-0,04	NS
260006	NOVO AIRÃO	-2,6200	-60,9478	1985	2014	30	-3,68	0,000	-33,81	S-
				1995	2014	20	-1,85	0,064	-32,48	NS
				2000	2014	15	-1,09	0,276	-31,70	NS
957001	NOVO PLANETA	-9,5664	-57,3947	1995	2014	20	1,14	0,256	17,62	NS
				2000	2014	15	0,00	1,000	7,55	NS
1255002	NÚCLEO COLONIAL RIO FERRO	-12,5178	-54,9125	1995	2014	20	0,03	0,974	0,33	NS
				2000	2014	15	0,20	0,843	12,27	NS
149003	OEIRAS DO PARÁ	-2,0019	-49,8636	1985	2014	30	0,57	0,568	5,49	NS
				1995	2014	20	0,42	0,673	6,86	NS
				2000	2014	15	-0,89	0,373	-20,68	NS
1157002	OLHO D'ÁGUA	-11,7150	-57,0419	2000	2014	15	-0,20	0,843	-4,92	NS
155000	ORIXIMINÁ	-1,7597	-55,8614	1995	2014	20	0,94	0,347	13,03	NS
	,			2000	2014	15	-0,10	0,921	-3,80	NS
358003	OSÓRIO FONSECA	-3,8167	-58,2861	1985	2014	30	-1,86	0,064	-13,29	NS
				1995	2014	20	-1,27	0,206	-19,53	NS
				2000	2014	15	-1,68	0,092	-24,13	NS

Tabela 05 – Resultados dos testes de Mann-Kendall e Sen's Slope para as séries de totais anuais de precipitação. NS- Não Significativo, S+- Tendência Positiva Significativa e S- Tendência Negativa Significativa.

Código	Estação	Latitude	Longitude	Início	Fim	Anos	ZMK	pvalue	Sen's slope	Significância
1359000	PADRONAL	-13,1831	-59,8769	1985	2014	30	2,11	0,035	14,74	S+
				1995	2014	20	1,72	0,086	17,13	NS
				2000	2014	15	1,48	0,138	24,99	NS
572000	PALMEIRAS DO JAVARI	-5,1375	-72,8136	1985	2014	30	-0,04	0,972	-0,67	NS
				1995	2014	20	0,55	0,581	6,20	NS
				2000	2014	15	1,48	0,138	32,91	NS
956002	PARANAITA	-9,6939	-56,4742	2000	2014	15	0,10	0,921	3,70	NS
1261001	PARECIS	-12,2092	-61,6286	2000	2014	15	0,99	0,322	8,55	NS
8059003	PCH JATAPU	0,9333	-59,3167	2000	2014	15	0,30	0,767	7,65	NS
1161001	PIMENTA BUENO	-11,6836	-61,1922	1995	2014	20	0,81	0,417	9,83	NS
				2000	2014	15	0,49	0,621	9,70	NS
1360002	PIMENTEIRAS	-13,4797	-61,0464	1985	2014	30	-1,00	0,318	-37,01	NS
				1995	2014	20	0,42	0,673	29,04	NS
				2000	2014	15	1,68	0,092	92,40	NS
8069004	PIRARARA POÇO	0,1428	-69,2133	1995	2014	20	0,36	0,721	5,59	NS
				2000	2014	15	-0,10	0,921	-5,35	NS
1559000	PONTES E LACERDA	-15,2242	-59,3503	1975	2014	40	-3,23	0,001	-11,20	S-
				1980	2014	35	-2,58	0,011	-11,06	S-
				1985	2014	30	-1,46	0,144	-8,52	NS
				1995	2014	20	-0,62	0,538	-6,93	NS
				2000	2014	15	0,99	0,322	19,10	NS
266004	PORTO ANTUNES	-2,8903	-66,9492	1995	2014	20	0,62	0,538	10,37	NS
				2000	2014	15	3,46	0,001	64,48	S+
8051010	PORTO ARIRI	0,3031	-51,1267	1985	2014	30	2,93	0,003	18,61	S+
				1995	2014	20	1,52	0,127	18,08	NS
				2000	2014	15	1,88	0,060	33,83	NS
367001	PORTO SEGURO	-3,3372	-67,4889	1995	2014	20	-2,89	0,004	-55,12	S-
				2000	2014	15	-2,67	0,008	-89,99	S-
157002	PORTUGUÊS	-1,8683	-57,0506	1995	2014	20	-3,08	0,002	-85,90	S-
				2000	2014	15	-2,38	0,018	-97,40	S-
160000	POSTO ABONARI - FUNAI	-1,2989	-60,3997	1995	2014	20	-0,16	0,871	-4,60	NS
				2000	2014	15	-0,40	0,692	-6,24	NS

Tabela 05 – Resultados dos testes de Mann-Kendall e Sen's Slope para as séries de totais anuais de precipitação. NS- Não Significativo, S+- Tendência Positiva Significativa e S- Tendência Negativa Significativa.

Código	Estação	Latitude	Longitude	Início	Fim	Anos	ZMK	pvalue	Sen's slope	Significância
8062000	POSTO AJURICABA	0,8842	-62,6222	1985	2014	30	3,46	0,001	68,71	S+
				1995	2014	20	4,51	0,000	152,43	S+
				2000	2014	15	2,87	0,004	124,27	S+
153000	PRAINHA	-1,8011	-53,4800	1985	2014	30	-0,43	0,669	-4,60	NS
				1995	2014	20	1,20	0,230	11,50	NS
				2000	2014	15	0,69	0,488	8,39	NS
760000	PRAINHA VELHA	-7,2050	-60,6436	1975	2014	40	1,71	0,087	9,09	NS
				1980	2014	35	2,11	0,036	17,15	S+
				1985	2014	30	2,18	0,030	27,46	S+
				1995	2014	20	3,08	0,002	109,80	S+
				2000	2014	15	2,57	0,010	167,55	S+
260007	PRESIDENTE FIGUEIREDO	-2,0417	-60,0258	1985	2014	30	0,00	1,000	0,31	NS
				1995	2014	20	2,30	0,021	41,04	S+
				2000	2014	15	0,49	0,621	13,20	NS
1264000	PRINCIPE DA BEIRA	-12,4269	-64,4225	1995	2014	20	-1,49	0,135	-32,65	NS
				2000	2014	15	0,84	0,400	10,35	NS
967000	RIO BRANCO	-9,9758	-67,8000	1985	2014	30	-0,32	0,748	-3,30	NS
				1995	2014	20	0,62	0,538	0,54	NS
				2000	2014	15	1,39	0,166	0,17	NS
259004	RIO PRETO DA EVA	-2,7003	-59,6997	1995	2014	20	0,23	0,820	2,93	NS
				2000	2014	15	0,99	0,322	12,50	NS
1061003	RONDOMINAS (BARROCAS)	-10,5169	-62,0014	1995	2014	20	0,03	0,974	1,30	NS
				2000	2014	15	1,29	0,198	20,40	NS
253000	SANTA CRUZ	-1,1789	-53,5994	1985	2014	30	-0,68	0,498	-10,62	NS
				1995	2014	20	1,98	0,048	43,61	S+
				2000	2014	15	2,18	0,029	71,66	S+
49011	SANTA CRUZ DO ARARI	-0,6167	-49,1667	2000	2014	15	-1,48	0,138	-37,33	NS
1154001	SANTA FELICIDADE	-11,9292	-54,9981	1995	2014	20	2,82	0,005	62,00	S+
				2000	2014	15	2,57	0,010	88,64	S+
61000	SANTA MARIA DO BOIAÇU	-0,5067	-61,7858	1975	2014	40	3,69	0,000	21,19	S+
				1980	2014	35	3,78	0,000	26,86	S+
				1985	2014	30	3,32	0,001	30,15	S+
				1995	2014	20	2,50	0,012	34,12	S+
				2000	2014	15	1,48	0,138	30,50	NS

Tabela 05 – Resultados dos testes de Mann-Kendall e Sen's Slope para as séries de totais anuais de precipitação. NS- Não Significativo, S+- Tendência Positiva Significativa e S- Tendência Negativa Significativa.

Código	Estação	Latitude	Longitude	Início	Fim	Anos	ZMK	pvalue	Sen's slope	Significância
369000	SANTA RITA DO WEIL	-3,5731	-69,3708	1985	2014	30	-3,53	0,000	-46,29	S-
				1995	2014	20	-1,59	0,112	-42,48	NS
				2000	2014	15	-1,09	0,276	-42,80	NS
470005	SANTA TERESA NOVA (PARAÍSO)	-4,1344	-70,5489	1995	2014	20	-1,40	0,163	-22,82	NS
				2000	2014	15	1,29	0,198	16,34	NS
658000	SANTARÉM SUCUNDURI	-6,7953	-59,0408	1985	2014	30	2,60	0,009	26,73	S+
				1995	2014	20	2,39	0,025	33,02	S+
				2000	2014	15	-0,20	0,843	-3,74	NS
963001	SANTO ANTÔNIO BR-364	-9,2606	-63,1619	1985	2014	30	-1,07	0,284	-8,38	NS
				1995	2014	20	-0,68	0,496	-7,70	NS
				2000	2014	15	-0,30	0,767	-4,77	NS
367000	SANTO ANTÔNIO DO IÇÁ	-3,1017	-67,9356	1975	2014	40	-3,69	0,000	-30,40	S-
	,			1980	2014	35	-2,81	0,005	-28,60	S-
				1985	2014	30	-2,82	0,005	-37,08	S-
				1995	2014	20	-1,01	0,315	-26,88	NS
				2000	2014	15	-1,48	0,138	-66,80	NS
668000	SANTOS DUMONT	-6,4417	-68,2439	1985	2014	30	0,36	0,721	1,35	NS
				1995	2014	20	2,89	0,004	32,53	S+
				2000	2014	15	1,58	0,113	29,05	NS
765001	SÃO BENTO	-7,5306	-65,3500	1985	2014	30	3,25	0,001	45,59	S+
				1995	2014	20	4,51	0,000	102,12	S+
				2000	2014	15	3,86	0,000	94,13	S+
8067001	SÃO FELIPE	0,3711	-67,3136	1980	2014	35	3,04	0,002	23,52	S+
				1985	2014	30	2,57	0,010	29,38	S+
				1995	2014	20	1,85	0,064	38,61	NS
				2000	2014	15	0,10	0,921	7,98	NS
8059002	SÃO JOÃO DA BALIZA	0,9578	-59,9139	2000	2014	15	0,69	0,488	20,42	NS
368001	SÃO PAULO DE OLIVENÇA	-3,4569	-68,9119	1975	2014	40	0,03	0,972	0,59	NS
	-			1980	2014	35	1,05	0,293	8,90	NS
				1985	2014	30	1,07	0,284	13,39	NS
				1995	2014	20	0,88	0,381	22,78	NS
				2000	2014	15	1,39	0,166	39,74	NS
265000	SÃO PEDRO	-2,3500	-65,1167	1995	2014	20	-2,11	0,035	-74,60	S-
				2000	2014	15	0,30	0,767	15,40	NS

Tabela 05 – Resultados dos testes de Mann-Kendall e Sen's Slope para as séries de totais anuais de precipitação. NS- Não Significativo, S+- Tendência Positiva Significativa e S- Tendência Negativa Significativa.

Código	Estação	Latitude	Longitude	Início	Fim	Anos	ZMK	pvalue	Sen's slope	Significância
867002	SÃO ROMÃO (TABOCAL)	-8,2500	-67,3667	1995	2014	20	-0,03	0,974	-0,22	NS
				2000	2014	15	0,40	0,692	4,16	NS
1062002	SERINGAL 70	-10,2364	-62,6272	1985	2014	30	-1,18	0,239	-10,29	NS
				1995	2014	20	-1,40	0,163	-16,96	NS
				2000	2014	15	-1,58	0,113	-36,31	NS
766001	SERINGAL FORTALEZA	-7,7172	-66,9847	2000	2014	15	-1,19	0,235	-23,30	NS
660000	SERINGAL JENIPAPO	-6,0003	-60,1878	1985	2014	30	-1,87	0,061	11,10	NS
				1995	2014	20	1,75	0,080	17,16	NS
				2000	2014	15	1,39	0,166	24,60	NS
564002	SERINGAL SAUDADE (TAPIRI)	-5,9533	-64,3164	1995	2014	20	-1,20	0,230	-25,09	NS
	(1741 1141)			2000	2014	15	-0,40	0,692	-20,63	NS
1156001	SINOP (FAZENDA SEMPRE VERDE)	-11,6914	-55,4486	1995	2014	20	0,81	0,417	6,41	NS
	,			2000	2014	15	0,10	0,921	5,00	NS
8059001	SÍTIO SANTA MARIA	0,8069	-59,4283	1995	2014	20	0,75	0,456	15,91	NS
				2000	2014	15	-0,40	0,692	-14,22	NS
354000	SÍTIO SÃO PEDRO	-3,8889	-54,3150	1995	2014	20	0,00	1,000	-1,18	NS
				2000	2014	15	0,00	1,000	0,58	NS
1358005	SPERÁFICO	-13,9100	-58,8981	2000	2014	15	2,87	0,004	58,10	S+
65001	TAPURUQUARA	-0,4203	-65,0153	1995	2014	20	0,55	0,581	8,01	NS
				2000	2014	15	0,49	0,621	16,64	NS
8068000	TARAQUÁ	0,1314	-68,5406	1975	2014	40	-3,67	0,000	-38,13	S-
				1980	2014	35	-2,81	0,005	-38,26	S-
				1985	2014	30	-1,93	0,054	-34,19	NS
				1995	2014	20	-1,78	0,074	-78,42	NS
				2000	2014	15	-1,68	0,092	-108,27	NS
1255001	TELES PIRES	-1,2675	-55,7931	1995	2014	20	1,75	0,080	23,13	NS
				2000	2014	15	-0,30	0,767	-5,20	NS
8361005	TEPEQUEM	3,7592	-61,7181	1995	2014	20	-2,43	0,015	-72,56	S-
				2000	2014	15	-2,47	0,013	-109,46	S-
61001	TERRA PRETA	-0,8731	-61,9317	1995	2014	20	2,04	0,041	29,53	S+
				2000	2014	15	1,58	0,113	31,99	NS

Tabela 05 – Resultados dos testes de Mann-Kendall e Sen's Slope para as séries de totais anuais de precipitação. NS- Não Significativo, S+- Tendência Positiva Significativa e S- Tendência Negativa Significativa.

(conclusão)

Código	Estação	Latitude	Longitude	Início	Fim	Anos	ZMK	pvalue	Sen's slope	Significância
1062004	THEOBROMA	-10,2364	-62,3458	1995	2014	20	-0,68	0,496	-12,38	NS
				2000	2014	15	0,10	0,921	1,78	NS
1057001	TRIVELATO	-9,9417	-57,1331	1995	2014	20	0,49	0,627	4,79	NS
				2000	2014	15	0,89	0,373	20,78	NS
67002	TUMBIRA	-0,3444	-67,5358	2000	2014	15	2,77	0,006	53,29	S+
8168000	TUNUI	1,3889	-68,1536	1985	2014	30	-0,07	0,943	-4,85	NS
				1995	2014	20	-3,73	0,000	-102,65	S-
				2000	2014	15	-3,07	0,002	-125,97	S-
162002	UMANAPANA	-1,8872	-62,4367	1985	2014	30	0,25	0,803	2,15	NS
				1995	2014	20	1,40	0,163	19,99	NS
				2000	2014	15	2,28	0,023	55,94	S+
1359001	VILA ALEGRE	-13,7781	-59,7675	1995	2014	20	0,00	1,000	0,17	NS
				2000	2014	15	0,00	1,000	-0,58	NS
155002	VILA CURUA	-1,8881	-55,1156	1995	2014	20	0,75	0,455	11,70	NS
				2000	2014	15	-1,88	0,060	-38,66	NS
759000	VILA DO APUI	-7,2044	-59,8931	1985	2014	30	-0,29	0,775	-5,19	NS
				1995	2014	20	0,23	0,820	23,13	NS
				2000	2014	15	-2,28	0,023	-42,78	S-
51004	VILA DO MARACÁ	-0,1806	-51,7358	2000	2014	15	1,39	0,166	16,00	NS
250001	VILA SÃO BENEDITO	-1,9917	-50,3686	1985	2014	30	-1,18	0,239	-13,32	NS
				1995	2014	20	-0,75	0,456	-16,39	NS
				2000	2014	15	-1,09	0,276	-34,73	NS
8460001	VILA SURUMU	4,1961	-60,7939	1995	2014	20	0,00	1,000	2,39	NS
				2000	2014	15	0,59	0,553	25,40	NS
353002	VILA UNIÃO DA FLORESTA	-3,5181	-53,1406	2000	2014	15	-0,79	0,429	-29,36	NS
156000	VISTA ALEGRE - CONJ 1	-1,1014	-56,0400	1995	2014	20	-0,62	0,538	-16,72	NS
				2000	2014	15	-0,40	0,692	-15,37	NS
567001	XIBAUA	-5,8936	-67,8569	1980	2014	35	2,29	0,003	57,41	S+
				1985	2014	30	3,28	0,001	101,76	S+
				1995	2014	20	3,73	0,000	218,61	S+
				2000	2014	15	2,97	0,003	270,52	S+

Tabela 06 – Resultados dos testes de Mann-Kendall e Sen's Slope para as séries de precipitação máxima anual. NS- Não Significativo, S+- Tendência Positiva Significativa e S- Tendência Negativa Significativa.

Código	Estação	Latitude	Longitude	Início	Fim	Anos	ZMK	pvalue	Sen's slope	Significância
166000	ACANAUI	-1,8211	-66,6000	1985	2014	30	1,16	0,246	0,87	NS
				1995	2014	20	1,33	0,183	1,91	NS
				2000	2014	15	-0,10	0,921	-0,31	NS
361000	BERURI	-3,8978	-61,3747	2000	2014	15	-1,29	0,198	-1,75	NS
268000	BOA UNIÃO	-2,8806	-68,7986	2000	2014	15	0,45	0,653	0,02	NS
51005	BOM JARDIM	-0,7947	-51,6239	2000	2014	15	1,19	0,235	1,20	NS
162000	CARVOEIRO	-1,3944	-61,9792	1985	2014	30	0,96	0,335	0,61	NS
				1995	2014	20	0,81	0,417	1,17	NS
				2000	2014	15	-0,69	0,488	-1,18	NS
8166000	CUCUÍ	1,2147	-66,8522	1995	2014	20	-0,68	0,496	-0,90	NS
				2000	2014	15	-0,69	0,488	-1,00	NS
8160001	FAZENDA PARANÁ	1,1264	-60,3994	2000	2014	15	1,04	0,298	1,08	NS
269001	IPIRANGA NOVO	-2,9297	-69,6931	2000	2014	15	-1,68	0,092	-3,34	NS
8051002	MACAPÁ	0,0450	-51,1100	2000	2014	15	0,55	0,586	1,77	NS
				1995	2014	20	0,71	0,475	0,91	NS
360000	MANAUS	-3,1167	-59,9500	1985	2014	30	0,07	0,943	0,05	NS
				2000	2014	15	0,00	1,000	0,10	NS
				1995	2014	20	-0,10	0,923	-0,11	NS
8167000	MISSÃO IÇANA	1,0742	-67,5933	1995	2014	20	0,29	0,770	0,49	NS
				2000	2014	15	-0,30	0,767	-0,33	NS
1359000	PADRONAL	-13,1831	-59,8769	2000	2014	15	0,59	0,553	0,57	NS
				1995	2014	20	-1,07	0,284	-1,16	NS
956002	PARANAITA	-9,6939	-56,4742	2000	2014	15	-0,30	0,767	-0,39	NS
8062000	POSTO AJURICABA	0,8842	-62,6222	2000	2014	15	1,29	1,287	1,00	NS
	SANTA			1995	2014	20	2,99	0,003	2,09	S+
61000	MARIA DO BOIAÇU	-0,5067	-61,7858	1995	2014	20	0,91	0,364	0,84	NS
	SANTARÉM			2000	2014	15	0,35	0,729	0,56	NS
658000	SUCUNDURI	-6,7953	-59,0408	2000	2014	15	1,39	0,166	3,00	NS
61001	TERRA PRETA	-0,8731	-61,9317	1995	2014	20	1,69	0,091	1,92	NS
				2000	2014	15	2,47	0,013	3,60	S+
67002	TUMBIRA	-0,3444	-67,5358	2000	2014	15	0,99	0,322	1,30	NS
162002	UMANAPANA	-1,8872	-62,4367	2000	2014	15	0,30	0,767	0,57	NS
759000	VILA DO APUI	-7,2044	-59,8931	2000	2014	15	2,67	0,008	3,53	S+
				1995	2014	20	3,86	0,000	2,85	S+