COMPANHIA DE PESQUISA DE RECURSOS MINERAIS

PROJETO PERFURACȦO DE POCOS TUBULARES PARA O ESTADO DO RIO GRANDE DO NORTE

CONVÊNIO ESTADO DO RIO GRANDE DO NORTE/CPRM

Relotórlo Final-Poco 4MO-05-RN

PROJETO POÇOS TUBULARES PARA SIC/RN

RELATORIO FINAT DO
POÇO 4IKO-O5-RN

NORUALIDO TELEO DE LDEA LIIS

COMPANHIA DE PESQUISA DE PECUSSOS IETNERAIS

ADRESENTACKO

Este relatório descreve as atividades realizadas na perfuraŗ̃o do Poço 4MO-05-RN, localizado ne cidade de Mos soró - PN, construído através do convênio firmado entre •a CONPAINIA DE PESQUISA DE RECURSOS MINERAIS e O GOVERNO DO ESTADO DO RIO GRANDE DO NORTE.

Este poço visa reforçar o siṣtema de abastecimentod'água, da cidả̉e de Mossoró, atualmente coordenado pela CONPANFIA DE ACUAS E ESGOTOS DO RIO GRANDE DO NORTE.

SUMARIO

1. GENERALIDADES
1.1 - Histórico do Projeto
1.2-Objetivos
1.3 - Iocal'izzção do Poço 4MO-05-RN
2. GEOLOGIA
2.1-Geologia Regional
2.1.1 - Formação Gangorra
2.1.2 - Formação Açu
2.1.3-Forma̧ão Janđaíra
2.1.4 - Formação Barreiras
2.3.5 - ๕aミさernáric
2.2-Geologia Local
2.2.1. Sedimentos Terciários e Quaternários
2.2.2 - Formação Jandaíra
2.23 - Formaçã̃o Açu
2.2.3.1 - Membro Superior
2.2.3.2 - Membro Inferior
2.2.4 - Formação Gangorra
3. ASPECTOS FTDZOGEOIOCICOS
4. CONSTRUCẼ̃ DO FOCO
4.1 - Perfuração
4.2 - Compietação
4.3 - Desenvolvimento
4.4 - Teste de Produção
5. DADOS DO POCO
6. IESCRICAO DAS ABOSTRAS DE CALHA
7. - QQUIPAREMTOS UTIIIZADOS:NA PERFURACAO DO-POCO 4MO-O5-RN
 QUISA DE RECURSOS HINERAIS e o GOVERHO DO ESTADO DO RIO. GRAN DE DO NORTE, ficou estabelecida a construção de mais um poço na cidade de hossoró-RN, como reforço à bateria de poços já existentes para captação de água subterrânea.

1.2 - Objetivos

Este poço tem por objetivo a captação das águas con finadas do Árenito Açu, de qualidades compatíveis com as ne - cessidades humanas, nas áreas onde não há contaminação por águas salgadas. Dado o anteriormente exposto, a profundidade final do poço ficou ccndicionada ao posicionamento da .'faixa mais inferior do Arenito Açu.

1.3- Locaitizaç̃o do Poco

Este poço está situado na cidade de Mossoró, Estado do Rio Grande do Norte, no Bairro da Baixinha;-junto à caixa d'água de referência R-2-1 da CAERN, no centro do Conjunto Abolição.

2. GEOIOGIA

2.1-Geologia Regional

Com uma área aproximada de $22.000 \mathrm{~km}^{2}$, a Bacia Poti guar está localizada na extremidade nordeste do Escudo Brasí leiro, constituindo-se de sedjentos cretáceós, terciários e quaternários, com a maior parte da sua área coberta pelo ocea no Atlântico.

A parte continental. da Bacia Potiguar limita-se a nordeste e leste pelo Oceano Atlântico e sul e oeste pelas ro chas cristalinas pertencentes ao Escudo Brasileiro.

As rochas aflorantes do embasamento cristalino, so bre o qual repousa a Bacia Potiguar, constituem um complexo cristalino xistoso, gnáissico e granítico, intensamente dobra do. Os eixos dos anticlinais e sinclinais têm direção ST-NE e passam no extremo sudeste para a direção $S-\mathbb{N}$.

As rochas sedimentares constituintes da Bacia Poti guar podem ser agrupadas em cinco Formações distintas: Forma. ção Gangorra, Formação Açu, Calcário Jandaíra, Sedimentos Ter * ciários e Sedimentos Quaternários.

2.1.1 - Formação. Gangorra

Existe um fácies silte-argiloso, cinza esver deado, micáceo, abaixo do fácies conglomerático da Formação Açu, de espessura pouco precisa. Este fácies denominado Forma ção Gangorra, foi encontrado primeiramente en um poço perfura do pela PETROBRÁS, na fazenda Gangorra.

2.1. 2 - Formação Açu

Também conhecida como Arenito Açu, esta For mação pode ser dividida de ume maneira mais generalizada om dois membros, sendo o inferior representado por um arenito conglomerático, arcosiano na base e que passa gradativamente a arenito grosseiro, médio e fino, de cores variando de brancó, cinza escuro a vemelho. Os seixos de quartzo predominam sele tivamente da base spara o topo.

A espessura varia de 50 m na escarpa meridio nal. (Apodi-Limoeiro) a 300 血 nos poços perfurados, todos no domínio da estrutura perisinclinal de liossoró.

A seção superior apresenta-se com predoni nância de arenito calcífero, com intercalações de argilas va riegadas, folinelhos, margas e.calcários. A passagem entre os membros, ou nesmo do calcário Jandaíra, é gradativa.

Devido à impermeabilidede do membro superior
\#o Arenito Açu, o qquífero Açu:inferiar apresenta-se confina do, havendo em grande parte da bacia condições de artesianis mo surgente.
二: - \therefore - - M. Kege1, emil 1957, aprese
com una espessura média de 70 mos afloramentos da escarpa -que rodeia a Chapada do Apodi. Num perfil descrito por eale na escarpa ocidental (perto de Ifmoeira da Norte-CE) com uma es -pessura de 70 m , conseguiu distinguir um arenito inferior (30 m de espessura), constituído de arenitos felaspáticos, cinzen tos, com camadas conglomeráticas, um arenito médio (20 m de espessura), no qual predomina um folhelho vermelho arroxeado, intercalando-se um arenita cinzento, fino; e um arenito supe rior (20 m de espessura), constituído de arenito cinzento ; calcífero, pouco cimentado, co: benios calcários intercala dos.

> 2.1.3-Calcário janãaíra

Trata-se da ucidade superior do Grupo Apodi, repousando sobre a inferior, clástica, seß haver contudo un contato nítido entre elas.

Verifica-se apenas uma variação vertical dos fácies clásticos para o fácies calcário.

0 calcário está constituído de camadas . de cor anemela, cinze claro, as vezes escuro e branco. Litologi camente varia muito, tarto ro sentido horizortal, como ro sen tido vertical: s̃̃o rargosos litográficos, arenosos, gredosos, dolomíticos e travertinos. A espessura varia de algumas deze nas de metros, nas zoras de afloramentos, tendo sido erccrtra da uma espessura de 507 m no poço 1GR-01-RN:
2.1.4 - Terciário

E representado pela série Serra dos Miartins, intrusivas kásicas e sedimertos da Formeçăo Berreiras.

A série Serra dos Martins é constituída de
arenitos claros silicificados e estratificados. Restringe-se a pequenos testemunhos que coroam, discordantemente, as eleva çõ̃es do cristalino.

Kari Beurlen, em "Geologia da Região de Mos soró", de 1967, apresenta também como constituinte do terciá rio a Formação Nossoró. Esta Formação tem uma áréa de aflora mento muito restrita, limitando-se apenas à Serra de Mossoró: Ali está constituída de uma capa arenítica de 25 m . Lítologica mente esta Formação contém arenitos geralmente de cor. roaa. A estratificação é cruzada én alguns leitos e irregular em tros. Assemelha-se muito aos arenitos da série Serra dos Mar țins e o mesmo comportamento geológico torna provável que a Formação ${ }^{\text {Kon }}$ ssoró deve ser correlacionada com a série Serra dos Martins como foi sugerido por Iuciano Jacques de Morais em 1924.
A. Formação Rarreiras é um conjunto de sedi mentos argiloso-clésticos, não consolidado, ¿fossilífero, que aflora em uma faixa, ao longo do litoral do Espírito Santo até o Pará. Paricularmente, na Eacia Potiguar, repousa concordante merte sobre o calcário Jandaíra.

Morfologicaménte apresenta-se como um tabu leiro que bordeja a costa Norte e Leste, formando uma faixa de largura variável entre 5 km em média, dissecado em profundos grotões pelos.rios.

A maior extensão desta Foimação constitui \circ° divisor de águas entre os rios Mossoró e Açu e recebe a denomi nação de Serra do Carmo. Forma uma extensa chapada de superfí cie ligeiramente ondulada, com altitude em torno de 246 m .

Um vulcanismo relativamente recente de basal tos é diabásios no Rio Grande do Norte é conhecido já há muito tempo. O docurnento mais impressionante disso é o famoso Pico do Cabugi e outros análogos menores. Iuciano Jacques de Morais;
verificou numerosos diques de diabésio e basalto existindo principalmente, grandes e extensos diques de basalto na dire çã̃ W-E, e que são ligados ao Pico Cabugi.
W. Kegel em 1957 observou diques e sills de basalto na regiö de Macau, que perfuraram tóda a sequência cretácicaypers ficam na lapa do Grupo Barreiras, o que possibí
 ário inferfó

Karl Beurlen observou um sill de. diabảsio perto da cidade de Açu, qưe perfura o arenito Açu e aflora per to da cidade de Ipanguaçu.

2.1.5 - Quaternário

E praticamente jmpossível, conforme os conhe cimentos atuais, determinar e marcar o limite entre.o tercié rio e o quaternário. Devido à falta de fósseis típicos e por causa da uniformidade das sedimentos não consolidados do Tex. ciário superior e do Quaternário, além do desenvolvimento clí mático durante estes tempos, os fundamentos para a delimitação do Terciário e do Quaternário são muito precários, de modo que, também com conhecimentos muito mais detalhados, a delimitação dos dois períodos ficará sempre um pouco problemática e teórí ca.

Distinguimos dois tipos distintos e bem ca racterizados, por suas ocorrências e litologia: As aluviões e as dunas.

Os depósitos aluvionares são encontrados ao longo dos principais rios que atravessam a área da Bacia.

A natureza litolósica e faciológica varia consideralvelmente; os cascalhos, geralmente de quartzo, estão mergulhados numa matriz argilosa cuja natureza varia de acordo com o substrato. Os depósitos dos termaços que se escalonam
desde as proximidades dos rics, onde ocorrem os mais inferio res, até regiões bem mais afastadas, onde encontramos os veis mais superiores, ocupam altitudes que variam de alguns me tros apenas, até perto de uma centena, em pleno domínio da cha pada.

As dunas são constituídas de areias brances, amarelas e as vezes com a parte lixiviada dos terienos terciá rios. Distingue-se dois tipos: as dunas antigas; geralmente co bertas de vegetação, e as dunas recentes; em geral móveis e formando finos cordões, dominando por vezes alguns metros de mentos de dunas antigas.
2.2 - Geologia Local.

A sondagen atravessou os sedimentos das Formações: Jandaíra e Açu tendo-se encerrado a perfuração no provável con tato entre as Formaçães Açu e Gangorra.

Dë acorāo com as mostras de cuina colinias duranto a perfuração, em intervalos de 2 m , damos a seguir uma descrí ção sumária e globəl das Foirmações àtravessadas:
2.2.1-0s sedimentos Terciários e/ou Quaternários, -aparecem até a profundidade de 5 m , constituindo-se na parte superior, de um siltito areno argiloso, com grãos de quartzo. bem visíveis, marrom avermelhado, e, na base, quartzo sub-angu loso com uma matriz silte-arenosa.
2.2.2 - A Formação Jandaíra ocorre de 5 m até prova velmente 340 m , o què dá uma espessura de 335 m . Repousando. concordantemente sobre os sedimentos da Formação Açu, consta de calcários duros, maciços recristalizados e frequentemente argilosos, cores cinza e cinza-esverdeados ou cinza esbranqui çados e crene. Ao longo de todo o pacote carbonático, ocorrem margas esbranquiçadas. Na parte inferior existem, também, cal coarenitos e siltitos, alér de folhelhos em pequenas intercala çães na parte médịa.
2.2.3.- Através de inưmeros poços executados ao lon go da Bacia Potiguar e dos trabalhos publicados sobre esta percebe-se uma uniformidade litológica da- Formação Açu, bem "e videnciada principelmente em-toda a árẹa-já perfuradaẏ
2.2.3.1 - Neste poço, o-membro-superior apa rece em contato coll o calcário Jandaíré provavelmente aos 340 m de profundidade. Está composto predominantemente de-arenitos finos e argilas avermelhadas, com sucessivas intercalações de siltitos argilosos, de colcração esverdeada: Foi atravessada uma camada de calcário de 18 m provavelmente já no membro supe rior da Formação Açu. Mais abaixo, outras camadas pouco espes sas difíceis de serem constatadas nas amostiras de-calha, uma vez que há sempre a possibilidade de queda das partes mais su periores do poço.

- 2.2.3.2 - 0 contato com o membro inferior é bastente aiffóci de ser pcrecbido, hevendo e-passegem gredeti va de um membro para outro a medida que cresce a granulometria do arenito.

No membro inferior predominam. , principalmente na parte basal, os arenitos grosseiros gradando a conglomeráticos, repousando concordantemente com a Formação Gangorra.
2.2 .4 - Formação Gangorra

Em torno dos 900 m surgem folhelhos cinza ne gros, provavelmente da Formação Gangorra.

Apesar de ainda não terem sido encontrados' afloramentos deste Formação, seus sedimentos foram reconheci dos nos poços perfurados no centro da Bacia, apenas nestes; 0 que parece indicar a ocorrência da Fornação restrita apenas à parte central da mesma, com possibilidade de espessamento mumo à plataforma continental.

3. ASPECROS HIDRCCEOIOGICOS

De toda a sequência sedimentar que constitui o Grupo Apodi, o aquífero mais importante que sem dúvida contém as mai. ores reservas de água subterrânea, é o Arenito Açu e dentro de le principalmente o membro inferior, enquanto \circ membro superi or com os calcários intercalados e coll 0° cimento calcário, a presenta comporiamento hidrogeológico diferente. A porosidade do membro inferior é, conforme o comportamento granulométrico, relativamente grande e varia provavelmente entre 35% e 40%. Também a permeabilidade é boa até muito boa.

Devido as argilas e folhelhos que se encontram tampo nando o aquífero Açu, este apresenta-se normalmente confinado.

4. CONSTRUCAO DO FOGO

As atividades do poç $4 \mathrm{MO}-05-\mathrm{RN}$ estão descritas abai XO:
4.1 - Perfuração
4.2 - Completação
4.3 - Desenvolvimento
4.4 - Aguardando a recuperação do poço
4.5 - Teste de produção
4.1 - Perfuração.

A perfuração do poço 4MO-05-RN foi prejudicada pela presença de uma fenda aos 14 m de profundidade, com perda. to tal de circulação, acarretando uma morosidade no avanço devida às constantes paralisações por falta d'água. Não houve condj. ções de se evitar as paralisações; havia o trabalho constantec de 5 caminhões-pipas, durante. 24:00 horas, ininterruptamente, mas mesmo assim aconteciam as paralisaçõ̃es.

Apesar da perda total de circulação, continuou-se a perfuração sem retorno do fluido de perfuração, no diâmetro de
$121 / 4^{\prime \prime}$ até $777,00 \mathrm{~m}$ de profundidade. Foi feito posteriormente o alargamento para 17 . $1 / 2^{\prime \prime}$ de 0 m a 100 m , e para $22^{\prime \prime}$ de 0 m a 14,70 m.

Para se conseguir circulação de lana no prosseguimen to da perfuração, o poço foi revestido provisoriamente de 0 m a 146 m com revestimento de $95 / 8^{\prime \prime}$ OD. \therefore A sondagem prosseguiu então nomblmente até 917 m de profundidjad, quändo se deư por encerredz a perfuração.

4.2-Completação

A retirade do reviestimento provisório de 9 5/8". OD , expediente bestante comum nas perfurações da CPMI nesta área, resultou en três dias de trabalho por estar o mesmo preso.
 pas:
4.2.I - Completação coml revestimento ae I2" ID , e $95 / 8^{\prime \prime}$ ob de 0 m a 177 m, sendo:

0 ma 98 m -rev. de 12° ID
98ma 177 m - rev. de 9 5/8" OD
Após'o revestimento desta faixa de 177 m, foi. feita uma cimeritação no espaço anular de 14 m a 777 m com uma pasta de cimento de 14, 1 PPG.
4.2 .2 - Completação com revestimento de $51 / 2^{\prime \prime}$ OD e filtros hidrosolo de 6", sendo:

80 m a 789 m - canos de $51 / 2^{\prime \prime}$ OD
789 mi a 900 m - canos de $51 / 2^{\prime \prime}$ OD rasgados revestidos com filtros hi arosolo
Foi efetuada una cinentação no espaço anular de 740 m a 80 m com uma pasta de 14,1 PPG.
4.3 - Descnvolvimento

O desenvolvimento do poço 4:0-05-RN foi feito em etiapas:

4.3.1- Lavagem

4.3.2 - Injeção de hexametafosfato de sódio
4.3.3 - Lavagem com solução de hexametafosfato de só dio
4.3.4 - Solicitação do poço com compressor

4.3.1 - Lavagem

Após a pega do cimento no anular, efetrou-se a lavagem do poço até a retirada de tọo o fluido de . perfura ção ainda existente.
4.3.2 - Injeção de hexametafosfato de sódio

A fim de se evitar a deposição de argilas nos filtros. e paredes do poço. em frente às teles, aplicou-se uma injeção de hexametafosfato d̈e sódio na zona telada deixando a solução, nesta zona, em repouso.
4.3.3 - Após: a atuação da solução de hexametafosfato de sódió, promoveu-se nova lavagem com uma solução mais frraca de hexametafosfato, por um espaço de 12:00 horas contínuas.
4.3.4 - Durante 73 dias o poço 4iiO-05-RN sofreu a so licitação de um compressor utilizando-se, ainda, jatos de ar de 10 em 10 minutos.
4.4 - Foram gastos 10 dias aguardando-se a recuperação do nível. estático do poço. Após este tempo verificou-se que havia em determinados momeñtos, variação do nível sem solicitação do poço. Foi utilizado para'o teste de produção o mais baixo ní vel anotado, o que ocorreu sempre por volta de 09:00 horas.
4.5 - Teste de Produção

0 teste de produção $\hat{\text { Inoi iniciado às nove horas do. dia }}$ 18 de setembro do ano de 1976, utilizando-se para sua execução - processo "air lift", com um compressor Le Roy com capacidade para até 250 PSI de pressão.-

Foram utilizados 75 m de canos de $95 / 8^{\prime \prime}$ OD e 70 m de canos para injeção de ar de 2 1/4" OD e l 29/32" ID de forma a
se ter uma câritara de emulsão de $\overline{5}$ m. 0 teste teve uma duraçã̃o de 48:00 horas, sendo 24:00 horas de solicitação com compres sor eo 24:00 horas de okservação da recuperação do nível está tico (ver, em anexo, takelas de bombementó é recuperação).

Pela okservação da takela de bombeamento verifica-se un comportamento anormal do aquífero a partir de 180 minutos quando em vez de cair meis o $W D$ ou pelo menos ficar estável, este sobe de $39,68 \mathrm{~m}$ para $39,4 \mathrm{~m}$ m coro: se houvesṣe uma recupe ração momentênea do aquífero até o terpo de 300 minutos quanão volta à posição anterior de $39,68 \mathrm{~m}$, recuperando novamente até $39,47 \mathrm{~m}$ ao tempo de 420 minutos; etc... (ver takelas).

Da mesma maneira, o acompanhamento da recuperação mostrou que hevia sempre úma varíaç̃̃o anormal no nível do po ço; mesmo depois de recuperado o TNE no temfo de 1.500 minutos, houve nova recuperação no tempo de 1.520 minutos; voltanão po Cém aos 6,30 min tempo 2 de 2.100 minutos. o própric NE sofre uma variação durante o dia, fato observado durante o tempo err que se aguardeva a recuperação, tenão sido considerado $6,30 \mathrm{~m}$ coro NE por ser o mais inferior dos níveis médidos.

5 - DADOS ID FOCG

Sigla : 41:0-05-RN
Localização: Bairro da Baixinha, junto ao reservatório R-2-1 da CAERil, na cidade de Mossoró-RN.
Inícịo da perfuração: 18.06 .76
Término dà.perfuração: 19.07:76
Início da compietação: 20.07.76
Térmìno da completação: 28.08 .76
Início do desenvolvimento: 29.08 .76
Término do desenvolvimento: 18.09 .76
Início do teste de prodữ̧̧ão: 18.09 .76
Término do teste de produsão: 20.09.76 Profundidade de perfuração: .917,00 m Diầmétros de perfuração:

Diâmetros de revestimento:

$$
\begin{aligned}
& 0,00 \text { m a } 10,50 \mathrm{~m}-18^{\prime \prime} \\
& \text { ID } \\
& 0,00 \text { m a } 98,00 \mathrm{~m}-12^{\prime \prime} \text { ID } \\
& \text { 98,00 m a } 177,00 \text { m }-95 / 8^{\prime \prime} \text {. OD } \\
& \text { 80,00 m a 789,00 m-5 1/2" OD } \\
& \text { 789,00 표 a } 900,00 \text { in - Canos rasga- }
\end{aligned}
$$

Cimenta̧̧ão:
Anular dos canos de 9 5/8" OD: cimentado de 177 . m até 0 m .
Anulär do cano de 5 工/2" OD: cimentado de 80 m até 740 m .

Nível estático : $6,30 \mathrm{~m}$.
Nível dinâmico : 40,23 m
Vazão bombeada : $80,00 \mathrm{~m}^{3}$
Vazão específica : $2,36 \mathrm{~m}^{3} / \mathrm{h} / \mathrm{m}$
Técnico responsável : Normando Telmo de Limà Lins
Sondadores : Lair Cordeiro dos Santos. José Nilson de Oliveira
Francisco Sales Caldas Pereira

1 sonda a percussão Speed-star 71
I Cavalo mecânico Scania-Wabis

1. Tanque Massari com capacidade para $16 \mathrm{~m}^{3}$

1 Pipa Mercedes Benz com capacidade para io m ${ }^{3}$
1 Carrega-tudo com capacidade para 30 ton.
2 Pick-Up Ford F-75
I Utilitária Brasília
I Compressor Le Roy para até 250 FSI
1 Guincho Krane-Car para 3 ton.
i Conversor de solda elétrica GE c/notor Volkswagem
1 Moto-gerador marca Negrini de 110 y e 220 V .
1 Conjunto de solda a oxigênio
I Laboratório portátil para controle de fluido de perfura çãọ.

TESTEDEPRODUCAO

POCO $415 O-05-R N$

Nível estático : 6,30 m
Nívél dinâmico : 40,23 m
Vazão : $80 \mathrm{~m}^{3}$
Início : 9:15 horas do dia 17.09.76.
Término do bombeamerto: 9:15 horas do dia 18.09.76
Início da recuperação: 9:15 horas do dia 18.09.76
Término da recuperação: 9:15 horas do dia 19.09.76
Duração do bombeamento: 24:00 horas
Duração do acomparhemento à recuperação: 24:00 horas

TABELA DE BO:TBEATENTO:

$\begin{aligned} & \text { tempo } \\ & (\min) \end{aligned}$	$\begin{aligned} & \text { ND } \\ & \text { (m) } \end{aligned}$	vazão $\left(\mathrm{m}^{3}\right)$
0	6,30	
1	31,44	120,000
3	-35,27	.100,000
5	39,25	84,706
10	39,32	84,706
20	39,38	82,759
30	39,45	82,759
60	39,68	82,759
120	39,68 ${ }^{\circ}$	80,000
180	39,41	80,000
240	39,41	80,000
300	39,41	80,000
360	39,68	80,000
420	39,47	80,000

TABELA DE RECUPERACHO:

1441	25,61
1442	16,53
1445	8,63
$1450{ }^{\circ}$	7,22
1460.	6,69
1470	6,46
1480	6,33
1490	6,32
1500	6,30
1520	6,29
1540	6,29
1560	6,29
1590	6,28
1620	6,28
1680	6,28
1740	6,28
1800	6,28
1860	6,28
1920	6,28
1980	6,28
2040	6,28
2100	6,30
2150.	6,30
2220	6,30
2280	6,30
$23 \div 0$	6,30
2400	6,30
2460	6,30
2520	6,30
2580	6,30

000-003 Siltito marron avermelhado, areno-argiloso com grãos de quartzo.

003-005 Seixos de quartzo sub"angulosos com matriz silto-areno sa averme Thada.

005-011 Calcário creme esbranquiçado arenẹso.
011-154 Sem amostra de cal̂ha: perda de circulação
154-170 Calcário cinza esbranquiçado intercalado com folhelhos cinza.
170-180 Arenito médio a fino, siltoso e bastante calcífero.
180-186 Calcário cinza esverdeado, intercalado com calcério creme esbranquiçado.
-186-194 Calcário cinza esbranquiçado e arenoso.
194-198 Calcário esbranquiçado.
-298-200 Calcário cinza esverdeado.
200-244 Calcário esbranquiçado com algimas intercalações: de calcário-cinza esverdeado e folhelho cinza.

244-276. Calcário esbranquiçado, alternando-se, e um" calcário creme claro com intercalações de arenito médio a fino e folhelho cinza esverdeado.

276-286 Siltito amarelo claro com intercalações de : folhelhos cinza esverdeado e calcífero.

286-300 Calcário creme claro coin intercalações de
folherios cinza e arenitos.

300-316 Arenito fino a médio silto-argiloso

316-334 Całcário canza esverdeado alternando-se a calcário $\approx:-$ branquiçado com intercalações de arenito fino síltico. 334-3.32 Argitito marron avermelhado com síltitos esverdeados. 382-388 Argilito marron avermelhado coin-intercalaços=de folhe Tho cinza esverdeado e arenito fino.

388-408 Fotheino esverdeado síltico com intercilaçõs-de areni to fino e médio, argịloso, cor marron avermelhada:

408-430 Argilito cinza esverdeado.
430-434 Arenito fino e médio, creme claro e argiloso. 434-462 Siltito areno-argiloso, cor cinza esbranquiçađa. 462-480 Argilito marron, bastante siltoso.
480-514 Arenito fino a médio gradando para médio, com algumas intercalações de folhelho marron e verde.

514-526 Arenito argiloso, coloração marron averme Ihada. 526-534 Arenito fino à médio, intercalado com folheiho esverde ado. O arenito apresenta-se axgiloso com uma coloração amarronzada.
534.533 Arenitos e siltitos cinza esverdeados e argilosos.

538-564 Arenito médio a fino com algumas intercalações de fo Ihe Tho cinza esverdeado.
564-578 Arenito médio, síltico, marron, com intercalaçõeṣ. de folhelho cinza esverdeado.

578-590 Arenito médio, equigranular, coloração clara.
590-615 Arenito fino e médio, bastante argiloso, cor marron a vermelhada.

615-618 Arenito médio, marron esbrenquiçado.
618-0.038 Arenito médio, anarronzado, intercalado com argilito
cinza esverdeado e siltoso.
638-684 Acenito médio, bege, com poucas intercalações de argilito marron escuro.

684-692 Folhelho marron escuro com intercalações de um arenito médio esbranquiçado.

692-700 Arenitos bege e folhelhos marrons escuro intercalados. 700-734 Argilito arenoso, marron tijolo.

734-756 Arenito fino e médio, esbranquiçado, com algumas inter calações de folhetho.marron escuro.

756-770 Arenito médio a grosseiro, cor marrc̣n esbranquiçada. 770-78் Arenito médio, cinza esbranquiçado.

788-806 Arenito médio a grosseiro com intercalações de fo The Tho marron avermelhado e siltites esverdeados.

805-830 Arenito grosseiro, esbranquiçado, com poucas intercala ções de um argilito marron tijolo síltico.

830-836 Arenito médio a grosseiro, cor esbranquiçada.
836-900 Arenito médio, gradando a grosseiro e conglomerático. 900-917 Siltito argiloso, cinza esverdeado.

Poso rich5-n: - EAine 3

$454 \mathrm{~m}-5 \mathrm{~min}$
45 - 7 "
$450-5$ "

$$
477 n-5
$$

$$
\begin{aligned}
& 500 \\
& 4580-3 \%
\end{aligned}
$$

$$
450 \mathrm{~m}-2 .
$$

$$
451 \mathrm{~F}=5^{n}
$$

$$
462 n-5
$$

$$
453 \pi-2
$$

$$
4540-30
$$

$$
450-4
$$

$$
45 \mathrm{~m}-3
$$

$$
457 \mathrm{n}-4:
$$

$$
\text { Aexs - } 3
$$

$$
459_{a}-4
$$

$$
470 n-5
$$

$$
47 \mathrm{~m}-4.1
$$

$$
47 \mathrm{~m}:-\quad 4 \%
$$

$$
473 \pi-5
$$

$$
474 \pi^{\circ}-5
$$

$$
4750-10 .
$$

$$
475 \mathrm{~m}-10
$$

$$
4775-10^{\circ}
$$

$$
478 \mathrm{n}-11 \cdot "
$$

$$
4750-9
$$

$$
60 \mathrm{~m}-5
$$

$$
40-6 "
$$

$$
422 \pi-9
$$

$$
483-5
$$

$$
46405
$$

$$
4050-8
$$

$$
406-6: "
$$

$$
487 m-91
$$

$$
403 m-10 . "
$$

$$
408-60
$$

$$
400 m-7
$$

$$
4 \hat{y} 1 \mathrm{a}-\varepsilon
$$

DISTRIBUICĀO PERCENTUAL DAS 2215 HORAS DE TRABALHO
NO POCO $4 M O-05-R N$

HORAS PESCANDO
$\left[\begin{array}{l}+{ }_{+}^{+}+{ }_{+}^{+}+{ }^{+}\end{array}\right]$HORAS DESENVOLVENOO
horas mainobrinioo
\square

HORAS TRANSPORTANCO E INSTALANDO \qquad Hogas
REALIZANDO TESTE

HORAS PARADAS
$[\because:: \cap$ horas de Reparo e manutencĩo

HORAS DIVERSAS

horas perfilaidoo

PROJETO. POÇOS TUB. P/S/C-RN-CC. 1454040
POCO 4MO-O5-RN -:

CANO DE REVESTIAENTO
tela
ARENITO E SIETITO
4ROILITO E FOLHELHO
CALCARIO
AREMITO CONGLOMERATICO

$$
\text { MorusaloLDe }(\mathrm{m})
$$

\checkmark
 PROJETO PERFURACȦO DE POCOS tubulares para o estado do RIO GRANDE DO NORTE

CONVÊNIO: ESTADO DO
RIO GRANDE DO NORTE/CPRM

PROJETO POÇOS TUBULARES PARA SEPLAN RELATÓRIO FINAL DO POÇO 4MO-06-RN

COMPANHIA DE PESQUISA DE RECURSOS MINERAIS DIRFTORIA DA AREA DE PESQUISA SUPERINTENDENCIA RECIFE

APRESENTACNO

Este relatório descreve as atividades realizadas na perfuração do Poço 4MO-06-RN, localizado a 14 km da cida de de Mossoró-RN, no povoado de Riacho Grande, Município de Mossoró-RN, construído através do convênio firmado entre a CONPANHIA DE PESGUISA DE RECURSOS IIINERAIS e o GOVERNO DO ESTADO DO RIO GRande DO NORTE.

Este poço visa o abastecimento d'água da futura colônia penal de Mossoró-RN.

CPRM

SUMARIO

```
1 - GENERALIDADES
    I.1 - Histórico do Projeto
    1.2 - Objetivos
    1.3 - Localização do Poço 4MO-06-RN
2 - GEOLOGIA
    2.1 - Geologia Regional
        2.1.1 - Formação Gangorra
        2.1.2 - Formação Açu
        2.1.3. - Formação Jandaíra
        2.1.4 - Formação Barreiras
        2.1.5 - Quaternário
        2.2 - Geologia Local
        2.2.1 - Sedimentos Terciários e Quaternários
        2.2.2 - Formação Jandaíra
        2.2.3 - Formação Açu
            2.2.3.1 - Membro Superior
            2.2.3.2 - Membro Inferior
            2.2.4 - Formação Gangorra
            3 - ASPECTOS HIDROGEOLOGICOS
            4 - CONSTRUCAO DO POCO
            4.1 - Perfuração
            4.2 - Completação
            4.3-Desenvolvimento
            4.4.- Teste de Produção
```

5 - DADOS DO POCO
6 - DESCRIQÃO DAS AMOSTRAS DE CALHA

7 - EQUIPAMENTOS UTILIZADOS NA PERFURACÂO DO POCO 4MO-06-RN .

1 - GENERALIDADES

1.1 - Histórico do Projeto

Através de convênio firmado entre a CORPANHIA DE PESQUISA DE RECURSOS MINERAIS e o GOVERNO DO ESTADO DO RIO GRANDE DO NORTE, ficou estabelecida a perfuração de um poço no povoado de Riacho Grande, Município de Mossoró-RN, para abastecimento da futura colônia penal daquela cidade.
1.2-Objetivos

Este poço tem por objetivo a captação das águas confinadas do Arenito Açu, de qualidades compatíveis comas necessidades humanas, nas áreas onde não há contaminação por águas salgadas . A profundidade final do poçoficoucon dicionada ao posicionamento da faixa mais inferior do. Are nito Açu.
1.3 - Localização.

Este poço está situado no povoado deRiacho Gran de, Município de Mossoró, Estado do Rio Grande do Norte,na margem da estrada que liga as cidades de Mossoróe BARAUNAS.

2 - GEOLOGIA

2.1 - Geologia Regional

Com uma área aproximada de $22.000 \mathrm{~km}^{2}$, a Bacia Potiguar está localizada na extremidade nordeste do Escudo Brasileiro, constituindo-se de sedimentos cretáceos,terciá rios e quaternários, com a maior parte da sua área coberta pelo Oceano Atlântico.

A parte continental da Bacia Potiguar limita-se a nordeste e leste pelo Oceano Atlântico e sul e oeste pe las rochas cristalinas pertencentes ao Escudo Brasileiro.

As rochas aflorantes do embasamento cristalino, sobre o qual repousa a Bacia Potiguar, constituem um complexo cristalino xistoso, gnáissico e granítico,intensamen te dobrado. Os eixos dos anticlinais e sinclinais têm dire ção SH-NE e passam no extremo sudeste para a direļão S-N..

As rochas sedimentares constituintes da Bacia Potiguar podem ser agrupadas em cinco. Formações distintas: Formação Gangorra, Formação Açu, Calcário Jandaíra, Sedimen tos Terciários e Sedimentos Quaternários.

2.1.1 - Formação Gangorra

Existe um fácies silte-argiloso, cinza esverdea do, micáceo, abaixo do fácies conglomerático da. Formação Açu, de espessura pouco precisa. Este fácies denominado For mação Gangorra, foi encontrado primeiramente em um poço per furado pela Petrobrás, na fazenda Gangorra.

2.1.2 - Formação Açu

\therefore Também conhecida como Arenito Açu, esta Forma ção: pode ser dividida de uma maneira mais generalizada em dois membros, sendo o inferior representado por um arenito conglomerático, arcosiano na base e que passa gradativamen te a arenito grosseiro, médio e fino, de cores variando de branco, cinza escuro a vermelho. Os seixos de quartzo pre dominam seletivamente da base para o topo.

A espessura varia de 50 m na escarpa meridional (Apodi-Limoeiro) a 300 m nos poços perfurados, todos no do mínio da estrutura perisinclinal de Mossoró.

A seção superior apresenta-se com predominância de arenito calcífero, com intercalações de argilas variega das, folhelhos, margas e calcários. A passagem entre os mem bros, ou mesmo do calcário Jandaíra, é gradativa.

Devido à impermeabilidade do membro superior do Arenito Açu, o aquífero Açu inferior apresenta-se confina do, havendo em grande parte da bacia condições de artesia nismo surgente.
W. Kegel, em. 1957, apresenta o Arenito Açu com uma espessura média de 70 m nos afloramentos da escarpa que rodeia a Chapada do Apodi. Num perfil descrito por ele na escarpa ocidental (perto de Limoeiro do Norte-CE) com uma espessura de 70 m , conseguiu distinguir um arenito inferi or (30 m de espessura), constituído de arenitos feldspáticos, cinzentos, com camadas conglomeráticas, um areni to médio (20 m de espessura), no qual predomina um folhe Tho vermelho arroxeado, intercalando-se um arenito cinzen to, fino, e úm arenito superior (20.m de espessura), consti tuído de arenito cinzento, calcífero, pouco cimentado, com bancos calcários intercalados.

2.1.3 - Calcário Jandaíra

Trata-se da unidade superior do Grupo Apodi, re pousando sobre a inferior, clástica, sem haver contudo um contato nític̣o entre elas.

Verifica-se apenas uma variação vertical dos fá cies clás

- calcário está constituído de camadas de cor amarela, cinza claro, as vezes escuro e branco. Iitologica mente varia muito, tanto no sentido horizontal, como no sen
tido vertical: são margosos litográficos, arenosos, gredo sos, dolomíticos e travertinos. A espessurai varia de algu mas dezenas de metros, nas zonas de afloramentos,tendo si do encontrada uma espessura de 507 m no poço lGR-01-RN.

2.1.4 - Terciário

E representado pela série Serra dos Martins, in trusivas básicas e sedimentos da Formação Barreiras.

A série Serra dos Martins é constituída de are nitos claros silicificados e estratificados. Restringe-se a pequenos testemunhos que coroam, discordantemente, as e levações do cristalino.

Karl Beurlen, em " Geologia da Região de Mosso ró", de 1967, apresenta também como constituinte do tercié rio a Formação Mossoró. Esta Formação tem uma área de aflo ramento mioito restrita, Iimitando-se apenas à Serra de Mos soró. Ali está constituída de uma capa arenítica de 25 m . Litologicamente esta Formação contém arenitos geralmente de cor rosa. A estritificação é cruzada em alguns leitos e irregular em outros. Assemelha-se muito aos arenitos da sé rie Serra dos Martins e o mesmo comportamento geológico tor na prơvável que a Formação Mosṣoró deve ser correlacionada com a série Serra dos Martins como foi sugerido por Lucia no Jacques de Morais em 1924.

A Formação Barreiras é um conjunto de sedimentos argiloso-clásticos, não consolic̉ado, afossilífero, que aflora em uma faixa, ao longo do litoral do Espírito Santo até o Pará. Particularmente, na Bacia Potiguar, repousa con cordantemente sobre o calcárịo Jandaíra.

Morfologicamente apresenta-se como um tabuleiro que bordeja a costa Norte e Leste, formando uma faixa de largura variável entre 5 km em média, dissecado em profun
dos grotões pelos rios.
A maior extensão desta Formação constitui o di visor de águas entre os rios Mossoró e Açu e recebe a deno minação de Serra do Carmo. Forma uma extensa chapada de sú perfície ligeiramente ondulada, com altitude em torno de 246 m.

Um vulcanismo relativamente recente de basaltós e diabásios no Rio Grande do Norte é conhecido já há muito tempo. O documento mais impressionante disso é o famoso Pi co do Cabugi e outros análogos menores. Luciano Jacques de Morais verificou numerosos diques de diabásio e basalto e xistindo, principalmente, grandes e extensos diques de ba salto nạ direção W-E, e que são ligados ao Pico Cabugi.
W. Kegel em 1957 observou diques e sills de ba salto na região de inacau, que períuraram toda a sequência cretácica, mas ficam na lapa do Grupo Barreiras, o que pos sibilitou uma datação como terciário, muito provavelmente do terciário inferior.

Karl Beurlen observou um sill de diabásio perto da cidade de Açu, que perfura o arenito Açu e aflora perto da cidade de Ipanguaçu.
2.1.5 - Quaternário

E praticamente impossível, conforme os conheci mentos atuais, determinar e marcar o limite entre o terciá rio e o quaternário. Devido à falta de fósseis típicos e por. causa da uniformidade dos sedimentos não consolidados do Terciário superior e do Quaternário, além do desenvolvi mento climático durante esteṣ tempos, os fundamentos para a delimitação do Terciário e do Quaternário são muito pre cários, de modo que, também com conhecimentos muitomais de talhados, a delimitação dos dois períodos ficará sempre um
pouco problemática e teórica.
Distinguimos dois tipos distintos e bem caracte rizados, por suas ocorrências e litologia: As aluviões e as dunas.

Os depósitós aluvionares são encontrados ao lon go dos principais rios que atravessam a área da Bacia..

A natureza litológica e faciológica varia consi deravelmente; os cascalhós, geralmente de quartzo, estão mergulhados numa matriz argilosa cuja natureza varia de a cordo com o substrato. Os depósitos dos terraços que se es calonam desde as proximidades dos rios, onde ocorrem os mais inferiores, até regiões bem mais afastadas, onde encon tramos os níveis mais superiores, ocupam altitudes que va riam de alguins metros apenas, até perto de uma centena, em pleno aomínio da chapada.

As dunas são constituídas de areias brancas, ama relas e as vezes com a parte lixiviada dos terrenos terciá rios. Distingue-se dois tipos: as dunas antigas,geralmente cobertas de vegetação, e as dunas recentes, emgeral móveis e formando finos cordões, dominando por vezes alguns metros de mantos de dunas antigas.

2.2 - Geologia Local

A sondagem atravessou os sedimentos das Forma ções Jandaíra e Açu tendo-se encerrado a perfuração no pro vável contato entre as Formações Açu e Gangorra.

De acordo com as amostras de calha colhidas du rante a perfuração, em intervalos de 2 m , damos a seguir uma descrição sumária e global das Formações atravessadas:
2.2.1 - Os sedimentos Terciários e/ou Quaternários, es
tão até a profundidade de 1 m, consistindo de siltito are no-argiloso, com grãos de quartzo bem visíveis, marrom aver melhado.
2.2:2 - A Formação Janidaíra ocorre de I m até 340 m , o que dá uma espessura de 339 m. Repousando concordantemente sobre os sedimentos da. Formação Açu, consta de calcários duros, maciços recristalizados e frequentemente argilosos, cores cinza e cinza-esverdeados ou cinza esbranquiçados e creme. Ao longo de todo o pacote carbonático, ocorrem mar gas esbranquiçadas. Na parte inferior existem, também, cal coarenitos e siltitos, além de folhelhos em pequenas inter calações na parte média.
2.2.3. - Através de inúmeros poços executados ao longo da Bacia Potiguar e dos trabalhos publicados sobre esta , percebe-se uma uniformidade litológica da Formação Açu, bern evidenciada principalmente em toda a área já perfurada.
2.2:3.1 - Neste poço, o membro superior aparece em contato com o calcário Jandaíra aos 340 m de profundidade. Está composto predominantemente de arenitos finose argilas avermelhadas, com sucessivas intercalações de•siltitos ar gilosos, de coloração esverdeada. Foi atravessada uma cama da de calcário de 18 m provavelmente já no membro superior da Formação Açu.
2.2.3.2 - 0 contato com o membro inferior é bastante difícil de ser posioionado, havendo a passagem gradativa de um membro para outro a medida que cresce a granulometria do aremito.

No membro inferior predominam, principalmente na parte basal, os arenitos grosseiros gradando a conglomerá ticos, repousando concordantemente con a Formação Gangorra.
2.2.4 - Formação G̣angorra

Fm torno dos 900 m estão os folhelhos cinza ne gros, provavelmente da Formação Gangorra:

Apesar de ainda não terem sido encontrados aflo ramentos desta Formação, seus sedimentos foram reconheci dos nos poços perfurados no centro da Bacia, apenas nestes, - que parece indicar a ocorrência da Formação restrita ape nas à parte central da mesma, com possibilidade de espessa mento rumo à plataforma continental.

3 - ASPECTOS HIDROGEOLOGICOS

De toda a sequencia sedimentar que constitui o Grupo Apodi, o aquífero mais imporṭante que sem dúvida con tém as maiores reservas de água subterrânea, é o Arenito Aş e dentro dele principalmonto o mombro inferior, enquan to o membro superior com os calcários intercalados e com o cimento calcário, apresenta comportamento hidrogeológico diferente. A.porosidade do membro inferior é, conforme o comportamento granulométrico, relativamente grande e varia provavelmente entre 35% e 40%. Também a permeabilidade é boa até muito boa.

Devido as argilas efolhelhos que se encontram tamponando o aquífero Açu, este apreserita-se : normalmente confinado.

4 - CONSTRUCTAO DO POCO

As atividades do poço 4MO-06-RN estão descritas \therefore
abaixo :
4.1 - Perfuração.
4.2 - Completação
4.3 - Desenvolvimento
4.4 - Aguardando a recuperação do poço
4.5 - Teste de produção.
4.1 - A perfuração do poço 4MO-06-RN transcorreu normal mente sem que viessem prejudicar o andamento normal dos tra balhos como no caso do poço anterior, o 4MO-05-RN.

Foram perfurados $907,00 \mathrm{~m}$, sendo $200,00 \mathrm{mem}$ di $\hat{\underline{a}}$ metro de 12 1/4" e 707,00 m em 8 1/2".

Por segurança, como garantia da base da sonda, promoveu-se um alargamento de 0,00 a $14,50 \mathrm{~m}$ de $121 / 4$ " pa ra $22^{\prime \prime}$ revestindo esta faixa com tubos de 18" ID.

Para cumprimento do projeto do poço fez-se ain. da um alongamento para $17 \mathrm{l} / 2^{\prime \prime}$ entre $14,50 \mathrm{~m}$ e $107,00 \mathrm{~m}$.

$$
4.2 \text { - Completação }
$$

0 poço $4 \mathrm{MO}-06-\mathrm{RN}$ foi revestido de 0,00 : m a 902,94 m nos seguintes diâmetros:

- O, 00 m a $14,50 \mathrm{~m} \cdot$ com canos de 18". ID.
$0,00 \mathrm{~m}$ a $106,14 \mathrm{~m}$ com canos de 12" ID.
106,14 m a $195,00 \mathrm{~m}$ com canos de $95 / 8{ }^{\prime \prime} \mathrm{OD}$
781,89 m a 902,94 m com filtros hidrosolo de 6° involven do canos rasgados de $5 \mathrm{l} / 2^{\prime \prime} \mathrm{OD}$.
Föram efétuadas duas cimentações, a primeira de 0,00 a $14,50 \mathrm{~m}$ com uma Pasta de cimento de $14,1 \mathrm{PPG}$; a se gunda dè $728,31 \mathrm{~m}$ e $528,31 \mathrm{~m}$ com o espaço anular preenchi do támbém com uma pasta de cimento similar.
4.3.- Desenvolvimento.

0 desenvolvimento do poço 4iiO-05-RN foifeito em

4 etapas:
4.3.1 - Lavagem
4.3.2 - Injeção. de hexametafosfato de sódio
4.3.3 - Lavagem com solução de hexametafosfato de sódio
4.3.1 - Lavagem

Após a pega do cimento no anular, efetuou-se a lavagem do poço aṭé a retirada de todo o flúido de perfure ção ainda existente.
4.3.2 - Injeção de hexametafosfato de sódio

A fim de se evitar a deposição de argilas nos filtros e paredes do poço em frente às telas, aplicou-se uma injeção de hexametafosfato de sódio na zona telada deí xando a solução, nesta zona, em repouso.
4.3.3 - Após a atuação dessa solução promoveu-se. nova lavagem com a solução, por um período de 12:00 horas contí nuas.
4.3 .4 - Durante 8 dias o poço 4MO-06-RN sofreu a soli citação de um compressor Le Roi de 250 PSI, pelo processo "AIR IIFT" com utilização de jatos de ar regulares de lo em 10 minutos.

4.5 - Testes de Prođução

O. teste de produção foi iniciado às oito horas do dia 07 de outubro do ano de 1976, utilizando-se para sua execução o "processo "air lift", com um compressor Le Roi de 250 PSI.

Foram utilizados 92 m de canos de 9 5/8" OD e 85 m de canos para injeção de ar de 2 1/4" OD e 1 29/32"ID.
de forma a se ter uma câmara de emulsão de 7 m .0 teste te ve uma duração de 72:00 horas, sendo 48:00 horas de solici tação com compressor e 24:00 horas de observação da recupe ração do nível estático.

5 - DADOS DO.POCO

Sigla : 4MO-06-RN
Localização:Povoado de Riacho Grande, Nunicípio de Mos soró-RN.
Início dos trabalhos: 01.09.76
Termino dos trabalhos: 10.10.76
Profundidade de perfuração: 907,00 m. Diâmetros de perfuração:

$$
\begin{array}{r}
0,00 \text { m a } 14,50 \text { m - } 22^{\prime \prime} \\
14,50 \text { m a } 107,00 \text { m - } 171 / 2^{\prime \prime} \\
107,00 \text { m a } 200,00 \text { m - } 121 / 4^{\prime \prime} \\
200,00 \text { m a } 907,00 \text { m - } 81 / 2^{\prime \prime}
\end{array}
$$

Diâmetros de revestimento:

$$
\begin{gathered}
0,00 \mathrm{~m} \text { a } 14,50 \mathrm{~m}-18^{\prime \prime} \mathrm{ID} . \\
0,00 \mathrm{~m} \text { a } 106,14 \mathrm{~m}-12^{\prime \prime} \mathrm{ID} \\
106,14 \mathrm{~m} \text { a } 195,32 \mathrm{~m}-9 \mathrm{I} 8^{\prime \prime} \text { OD } \\
195,32 \mathrm{~m} \text { a } 781,89 \mathrm{~m}-5 \mathrm{I} 2^{\prime \prime} \mathrm{OD} . \\
781,89 \text { m a } 902,94 \mathrm{~m} \text { - Canos rasgados de } 5 \\
\text { I/2" com telas de } 6^{\prime \prime}
\end{gathered}
$$ ID.

Cimentação:
Anular de 18" OD: cimentado de 14,50maté a superîície.

Anular do cano de 5 l/2" OD: cimentado de 728 m até 528 m .

Nível estático : 39,37m
Nível dinâmico : 54,43 m
Vazão bombeada : $50,00 \mathrm{~m}^{3}$
Vazão específico: $3,32 \mathrm{~m}^{3} / \mathrm{h} / \mathrm{m}$

7 - EQUIPAMENTOS UTILIZADOS NA PERFURACAO DO POCO 4MO-05-RN

1 Sonda Faviling 3.000
1 Sonda a percussão Speed-star 71
1 Cavalo mecânico Scania-Wabis
I Tanque Massari com capacidade para $16 \mathrm{~m}^{3}$.
I Pipa Mercedes Benz com capacidade para $10 \mathrm{~m}^{3}$
1 Carrega-tudo com capacidade para 30 ton.
2 Pick-Up Ford F-75
1 Utilitária Brasília
1 Compressor Le Roy para até 250 PSI
1 Guincho Krane-Car para 3 ton.
1 Conversor de solda elétrica GE c/motor Volkswagem
1 Moto-gerador marca Negrini de 110 V e 220 V
1 Conjunto de solda oxi-acetileno
1 Laboratório portátil de lama.

TESTE DE PRODUCAO

POCO 4MO-O6-RN

Nível estático $: 39,37 \mathrm{~m}$.
Nível dinâmico $: 54,43 \mathrm{~m}$

Vazão	$: 50 \mathrm{~m}^{3}$
Início $\quad: 8: 00$ horas do dia 07.10.76.	
Término $\quad 8: 00$ horas do dia 09.10.76.	
Período de bombeamento: $48: 00 \mathrm{~h}$.	
Período de recuperação: $24: 00 \mathrm{~h}$.	

TABELA DE BOMBEAMENTO:

Tempo	ND	Vazão
(\min)	(m)	$\left(m^{3}\right)$

TABELA DE RECUPERAGAO.

PROJETO POCOS TUBULARES PARA A SEPLAN

DESCRICZ̃O IITOLOGICA DO FURO 4 TIO-O6-RN

DE	ATE	
0,00	1,00	Solo
1,00	3,00	Calcário amarelo esbranquiçado
3,00	44,00	Calcário cinża esbranquiçado
44,00	48,00	Calcário cinza esverdeado argiloso
48,00	68,00	Calcário cinza esbranquiçado
68,00	102,00	Calcário esbranquiçado com algumas inter calações de folhelho cinza siltosos.
102,00	130,00	Calcário cinza esbranquiçado bastante ar giloso com presença de siltito.
130,00	138,00	Caícário cinza esbranquiçado com interca lações de siltito argiloso
138,00	182,00	Calcário cinza esbranquiçado com interca lações de siltito argiloso
182,00	214,00	Calcário cinza escuro, ocasionalmente cin za claro silte argiloso, com -intercalações de arenito fino.
214,00	216,00	Arenito fino, pouco argiloso
216,00	310,00	Calcário cinza escuro siltoso-
310,00	331,00	Calcário cinza esverdeado bastante argi loso
331,00	432,00	Àrgilito cinza esverdeado, com intercala ções de arenito fino a médio compacto
432,00	469,00	Argilito cinza esverdeado, às vezes cinza escuro com intercalações de arenito fino.
469,00	506,00	Argilito cinza esverdeado com•intercala̧̧ões de arenito fino argiloso
506,00	562,00	Arenito fino com intercalações de folhe Thos cinza esverdeados e avermelhados
562,00	622,00	Arenito fino a médio com intercalações de folhelho cinza esverdeado
622,00	628,00	Arenito fino a médio compacto

DE	ATE	DESCRICAO
628,00	720,00	Arenito fino a médio com raras intercalações de folhelhos cinza esverdeados
720,00	734,00	Arenito médio a grosseiro com raras intercalações de siltitos marrom averme Ihados
734,00	818,00	Arenito grosseiro.com raras intercalà ções de folhelhos cinza esverdeados e \bar{a} vermelhados, silticos
818,00	907,00	Arenito médio grosseiro conglomerático.

NO POGO 4MO-OG-RN

HORAS PERFURANDO

HORAS TRANSPORTANDO E INSTALANDO

HORAS PESCANDO

horas de reparo e manut.

horas realizando teste de PRODUÇĀO

HORAS DIVERSAS
\square

SUPERINTENDÊNCIA REGIONAL DO RECIFE

\checkmark
 PROJETO PERFURACAAO DE POCOS turulanes para o estado do RIO GRANDE DO NORTE

CONVÊNIO ESTADO DO
RIO GRANDE DO NORTE/CPRM

RELATORIO FINAL DO

FOÇO 4RO-O8-RN

0272

COMPANHIA DE PESQUISA. DE RECURSOS RINERAIS

DIRETORIA DA AREA DE PESQUISA

O presente relatórijo descreve as atividades rea lizadas do poço 4ifo-08-RN, localizado na cidade de Mossoró, no bairro São lianuel, a 150 m da margern direita da BR-304. Construído através do convênio firmado entre a Companhia de Pesquisa de Recursos Minerais e o Governo do Estado do. Rio Grande do Norte, este poço visa reforçar o sistema de abas tecimento d'água da cidade de Niossoró.

SUMARIO

1 - GENERALTDADES

1. 1 - Histórico do Projeto
1.2-Objetivos.
1.3 - Localização do Poço 4MO-C8-Riv

2 - GFOLOGTA
2:1-Geologia Regional
2.1.1 - Formação Gangorra
2.1.2 - Formação Açu
2.1.3 - Formação Jandaíra
2.1.4 - Formação Barreiras
2.1.5 - Quatemário
2.2 - Geologia Local
2.2 .1 - Sedimentos Terciários e Quaternários
2.2.2 - Formação Jandaíra
2.2.3 - Formação Açu.
2.2.3.1 - Hembro Superior
2.2.3.2 - Membro Inferior
2.2.4 - Formação Gangorra

3 - ASPECTOS FIDPOGEOLOGICOS

4 - COMSTRUCTAO DO FOCO
4.1 - Perf̣uração
4.2 - Completação
4.3 - Desenvolvimento
4.4 - Teste de Produção

5 - DADOS DO FOCO
6 - DESCRICAO DAS AKOSTRAS DE CALHA
7 - EOUIPARENTOS UTILTZADOS NA PERFURAQAO DO POCO 4 INO-O8-RN.

1 - GENERATIDADES
I. 1 - Histórico do Projeto

Através de convênio firmado entre a Companhia de Pesquisa de Recursos liinerais e o Governo do Estado do Rio Grande do Norte, ficou definida a execução de mais um poço na cidade de Mossoró- RN, a fim de reforçar a bateria de po ços já existente para captação d'água.
1.2-Objetivos

Este poço tem por objetivo a captação das: águas confinadas do Arenito Açú, de qualidades compatíveis com as necessidades humanas, nas áreas onde não há contaminação por áfuas salgadas. A profundidade final do poço ficou condicio neda ao posicionamento de faixa mais inferior do Arenito Açu.
1.3-Localização

Este poço está situado no bairro de São Miguel, na cidade de Mossoró, a 150 m da margem direita da $B R-304$, sen tido Mossoró-Natal.

2 - GEOLOGIA

2.1 - Geologia Regional

Com uma área aproximada de $22.000 \mathrm{~km}^{2}$, a Bacia Po tiguar está localizada na extremidade nordeste do Escudo Bra sileiro, constituindo-se de sedimentos cretáceos, terciários e quaternários, com a maior parte da sua área coberta pelo Oceano Atlântico.

A parte cortinental da Bacia Potiguar limita-se a nordeste e leste pelo Oceano Atlântico e sul e oeste pelas rochas cristalinas pertencentes ao Escudo Brasileiro.

Suas camadas mergulham suavemente para norte e, no centro da Bacia, nos limites sul e oeste , encontram-se aflo ramentos das camadas mais antigas e inferiores.

As rochas aflorantes do embasemento cristalino, sobre o qual repousa a Bacia Potiguar, constituem um comple xo cristalino ristoso, gnáissico e granítico, intensamente dobrado. Os eixos dos anticlinais e sinclinais têm direção SW-NE e passam no extremo sudeste para a direção S-N.

As rochas sedimentares constituintes da Bacia Po tiguar poden ser agrupadas em cinco formações distintas, a saber :

2.1.1 - Formação Gengorra

Existe um fácies silte-argiloso, cinza esverdeado, micáceo, abaixo do fácies conglomerático da Formação Açu, de espessura pouco precisa. Este fácies denominado Formação Gan gorra, foi encontrado primeiramente em um poço perfurado pe la Petrobrás, na fazenda Gangorra.
2.1.2 - Formação Açu

Também conhecida como Arenito Açu , esta Formação pode ser dividida de uma maneira mais generalizada em dois membros, sendo o inferior representado por um arenito conglo merático, arcosiano na base e que passa gradativamente a are nito grosseiro, médio e fino, de cores variando de branco, cinza escuro a vermelho. Os seixos de quartzo predominam se
letivamente da base para o topo.
A espessura varia de 50 m na escarpa meridional (Apodi-Iimoeiro) a 300 m nos poços perfurados, todos no domí nio da estrutura perisinclinal de Nossoró.

A seção superior apresenta-se com predominâncja de arenito calcíf̃ero, com intercalações de argilas variega das, folhelhos, margas e calcários. A passagem entre os mem bros, ou mesmo do calcário Jandaíra, é gradativa.

Devido à impermeabilidade do membro superior ao Arenito Açu, o aquífero Açu inferior apresenta-se confinado, havendo em grande parte da bacia condições de artesianismo surgente.

2.1.3-Gaicário Janiaíra

Tra亡a-se da unidade superior do Grupo Apodi, re pousando sobre a inferior, clástica, sem haver contudo um contato nítido entre elas.

Verifica-se apenas uma variação vertical dos fá cies clásticos para o fácies calcário.

- calcário está constituído de camadas de cor amarela, cinza claro, às vezes escuro e branco. Litologica mente varia muito, tanto no sentido horizontal, como no sen tido veritical : são margosos, litográficos, arenosos, gredo sos, dolomíticos e travertinos. A. espessura varia de algumas dezenas de metrios, nas zonas de afloramentos, tendo sido en contrada uma espessura de 507 m no poço $1 \mathrm{IGR}-01-\mathrm{RN}$.
2.1.4-Terciário

E representado na área pela série Serra dos Mar tins, intrusivas básicas e sedimentos da Formação Barreiraṣ.

A série Serra dos Martins é constituída de areni tos claros silicificados e estratificados. Restringe-se a pe quenos testemunhos que coroam discordantemente, as elevações do cristalino:

Karl Beurlen, em "Geologia da Região de Mossoró", de 1967, apresenta também como constituinte do terciário a Formação Mossoró. Esta Formę̧ão tem uma área de afloramento muito restrita, limitando-se apenas à Serra de Mossoró. Ali está constituída de uma capa arenítica de 25 m . Litologicamen te esta Forma̧ão contém arenitos geralmente de cor rosa . A estratificação é cruzada em alguns leitos e irregular em our tros. Assemelha-se muito aos arenitos da série Serra dos Mar tins e o mesmo comportamento geológico torna provável que a Formação Mossoró deve ser correlacionada com a série Serra dos Martins como foi sugerido por Luciano Jacques de Morais em 1924.

A Formação Barreiras é um conjunto de sedimentos argiloso-clásticos, não consolidado, afossilífero, que aflo ra em uma faixa, ao longo do litoral do Espírito Santo até o Pará. Particularmente, na Bacia Potiguar , repousa concor dantemente sobre o calcário Jandaíra.

Morfolosicamente apresenta-se como um tabuleiro que bordeja a costa Norte e Leste, formando umo faixa de lar gura variável, de aproximadamente 5 km dissecado em profun dos grotões pelos rios.

A maior extensão desta Formação constitui o diví
sor de águas entre os rios Mossoró e Açu e recebe a denomina ¢̧ão de Serra do Carno. Forina uma extensa chapada de superfí cie ligeiramente ondulada, com altitude em torno de 24.6 m .

Um vulicanismo relativamente recente de basaltos e diabásios no Rio Grande do Norte é conhecido já há muito tempo. O documentos mais impressionante disso é o famoso Pi co do Cabugi e outros análogos.menores. Iuciano Jacques de Morais verificou numerosos diques de diabásio e basal to exis tindo, principalmente, grandes e extensos diques de basalto na direção W-E, e que são Iigados ao Pico C̣abugi.
W. Kegel em 1957 observou diques e sills de ba salto na região de liacau , que perfuraram toda a sequência cretácica, mas ficam na lapa do Grupo Barreiras; o que possi bilitou uma datação como terciário, muito provavelmente do terciário inferior.

Karl Eeurlen observou um sill de diabásio perto da cidade de Açu, que perfura o arenito Açu e: aflora perto da cidade de Ipanguaçu.

2.1.5 - Quaternário

E praticamente impossível, conforme os conhecimen tos atuais, determinar e marcar o limite entre o terciário e - quartenário, devido à falta de fósseis típicos e por causa da uniformidade dos sedimentos não consolidados do Terciário supperior e do Quaternário, além do desenvplvimento climátịco durante estes tempos.

Distinguimos dois tipos distintos e bem caracteri zados, por suas ocorrências e litologia : As aluviões e as
dunas.

Os depósitos aluvionares sã̉o encontrados ao Ion go dos principais rios que atravessam a área da Bacia.

A natureza litológica e faciológica varia conside ravelmente; os cascalhos, geralmente de quartzo, estão mer gulhados numa matriz argilosa cuja natureza varia de acordo com o substrato. Os depósitos dos terraços que se escalonam desde as proximidades dos rios, onde ocorrem os mais inferio res, até regiões bem mais afastadas, onde encontramos os ní veis mais superiores, ocupam altitudes que variam de alguns metros apenas, até perto de uma centena, em pleno domínio da chapada.

As dunas são constituídas de areias urancas, ama relas e as vezes com a parte lixiviada dos terxenos tercée rios. Distingue-se dois tipos : as dunas antigas, geralmente cobertas de vegetação, e as dunas recente, em geral móveis e formando finos cordões, dominando por vezes alguns metros de mantos de dunas antigas.

$$
2.2 \text { - Geologia Jocal }
$$

A sondagem atravessou os sedimentos das Formações Jandaíra e Açu tendo-se encerrado a perfuração no provável! contato entre as Formações Açu e Gangorra.

Damos a seguir uma descrição sumária das formações atravessadas, de acordo com as amostras de calha recolhidas
em intervalos de 2 m :
2.2.1 - Os sedimentos Terciários e/ou Quartenários, apa recem até 22 in de profundidade, constituindo-se na parte su perior de um arenito de granulação média, com seixos de quart zo disseminados, aumentando a quantidade gradativamente do topo para a base.
2.2.2-A Formação Jandaíra ocorre de 22 m até provavel mente 370 m , o que dá uma espessura de 348 m . Repousando con cordantemente sobre os sedinentos da Formação Açu, consta de calcários duros, cinza esbranquiçados e cinza esverdeados , com intercalações de seixos de quartzo sub-arredondados, de até $1,5 \mathrm{~cm}$ de diâmetro.
2.2.3-Através de inúmeros poços executados ao longo da Bacia Potiguar percebe-se a existência de uma uniformidade li tológica da Formação Açu, bem evidenciada principalmente em toda a área já perfurada.
2.2.3.1 - 0 membro superior da formação Açu está em con tato, neste poço, com a Formação Jandaíra, aos $370,00 \mathrm{~m}$ de profindidade. Aparece composto por argilitos vermelho - ti jolo e folhelhos cinza com intercalações de arenitos de gra nulação fina a média e folheihos cinza esverdeados.
2.2.3.2-0 contato entre o membro superior e o infe rior da Formação Açu é bastante difícil de posicionar, haven do a passagen gradativa de um para outro à medida que cresce a granulometria do arenito.

No membro inferior predominarn sempre os arenitos
grosseiros, gradendo a conglomeráticos, na base.

3 - ASPECTOS HIDROGEOIVGICOS

De toda a sequência sedimentar que constitui o Grupo Apodi, o aquífero mais importante que sem dúvida con tém as maiores reservas de água subterrânea, é o Arenito Açu e dentro dele principalmente o membro inferior, enquanto o membro superior coll os calcários intercalados e com o cimen to calcário, apresenta comportamento hidrogeológico diferen te. A porosidade do membro inferior é, conforme o comporta mento granulométrico, relativamente grande e varia provavel mente entre 35% e 40%. Também a permeabilidade é boa até mui to boa.

Devido as argilas e folhelhos que se encontram tamponando o aquáfero Açu, este apresenta-se normalmente con finado.

4 - COISTRUCTAO DO POCO

As atividades do poço 4MO-08-RN estão descritas abaixo :

4.1 - Perfuração

A perfuração do poço 4MO-08-RN transcorreu normal mente, considerando-se que perda de circulação, na área des te poço, é tão frequente que já se tornou normal acontecex.

Foram perfurados $977,00 \mathrm{~m}$, dos quais $40,00 \mathrm{~m}$ em 22", $70,00 \mathrm{~m}$ em $17 \mathrm{l} / \mathrm{L}^{\prime \prime}, 50 \mathrm{~m}$ em $121 / 4^{\prime \prime}$ e $817,00 \mathrm{~m}$ em $8 \mathrm{l} / \mathrm{L}^{\prime \prime}$

Para combater perdade circulação o poço foi reves tido com canos de 19 " ID de $0,00 \mathrm{~m}$ até 24,70 e com canos de $95 / 8^{\prime \prime} O D$, de $0,00 \mathrm{~m}$ até 260,00 sendo este último revestimen to usado em caráter provisório.
4.2 - Completação

0 poço 4MO-08-RN f̣oi revestido de 0,00 m até 959,00 mos seguintes diâmetros:
0,00 m até $24,70 \mathrm{~m}$ com canos de 19"ID
$0,00 \mathrm{~m}$ até $105,00 \mathrm{~m}$ com canos de 12 IID
105,00 m até $156,00 \mathrm{~m}$ com canos de $95 / 8$ "OD
156,00 m até $831,00 \mathrm{~m}$ com canos de $5 \cdot 1 / 2^{\prime \prime} O D$
$831,00 \mathrm{~m}$ até $959,00 \mathrm{~m}$ com filtros Hidrosolo de $6^{\prime \prime}$,
envolvendo canos rasgados de
5 l/2" OD.

Foram efetuadas duas cimentações, ambas com pastia de cimento de 14.1 PPG : a primeira de $24,70 \mathrm{~m}$ até $0,00 \mathrm{~m}$ no anular dos canos de 19 ", e a segunda de $570,00 \mathrm{~m}$ até $370,00 \mathrm{~m}$, no anular dos canos de 5 1/2".
4.3-Desenvolvimento.

O desenvolvimento do poço 4MO-08-RN foi feito nas seguintes etapas :

4.3.1 - Lavagem

Após a pega do cimento no anuilar dos canos de $51 / 2 \prime$ efetuou-se a lavagem do poço até a retirada de todo o fluido de perfùração ainda existente.
4.3.2-Injeção de Hexametafosfato de Sódio

A fim de evitar a deposição de argilas nos fill tros e paredes do poço em frente às telas, aplicou-se uma in jeção de hexametafosfato de sódio na zona telada deixando a solução em repouso.
4.3.3 - Lavagen com Solução de Hexametafosfato de Sódio

Após a atuação desta solução promoveu-se nova la vagem por um período de 12:00 horas contínuas.
4.3.4 - Desenvolvimento com Compressor.

Durante 2 dias o poģo 4MO-08-RN sofreu a solicita ção de um compressor IJE ROT de 250 PSI, pelo processo " AIR IIFTl". com utilização de jatos do ar regulares, de io em 10 minutos.

4.4 - Teste de Produção

0 teste de produção foi iniciado as 9 horas do dia 15/01/77, utilizando-se para sua execução o processo "AIR LIFT", com um compressor LE ROI de 250 PSI.

Foram utilizados $85,70 \mathrm{~m}$ de canos de $95 / 8^{\prime \prime}$ OD e $79,30 \mathrm{~m}$ de canos de $13 / 4 "$ OD para injeção de ar. 0 teste te ve uma duração de 28:30 horas, sendo 14 horas de solicitação com compressor e 14:30 horas de observação de recuperação do nível estático.

5 - DADOS DO POCO
. SIGLA : 4MO-03-RIV

- Localização : Bairro São Manoel, sede do município de Mos
soró- RN , a 150 m da margem direita da BR - 304 , sentido Mossoró-Natal. .

Início dos trabalhos": 08/12/76 Término dos trabalhos : 05/01/77
Profundidade de perfuração : $977,00 \mathrm{~m}$ Diâmetros de perfuração :

Diâmetros de Revestimento :

$$
\begin{array}{rrl}
0,00 \mathrm{~m} \mathrm{a} & 24,70 \mathrm{~m} & -19 " \mathrm{ID} \\
0,00 \mathrm{~m} \text { a } & 105,00 \mathrm{ml} & - \\
12^{\prime \prime} \mathrm{ID} \\
105,00 \mathrm{ma} & 156,00 \mathrm{~m} & - \\
156,00 \mathrm{~m} \text { a } & 831,00 \mathrm{~m} & - \\
\hline
\end{array}
$$

$$
831,00 \mathrm{~m} \text { a } 959,00 \mathrm{~m} \text { - Filtros Hidrosolo de } 6^{\prime \prime} \text { eng }
$$ volvendo canos rasgados de 5 I/2" OD.

Cimentação :
Anular do cano de $19 "$ ID, de $24,70 \mathrm{~m}$ até $0,00 \mathrm{~m}$ e' anuiar do cano de 5 I/2"OD, de 570,00 m até $370,00 \mathrm{~m}$.

Nível estático : $10,50 \mathrm{~m}$
Nível Dinâmico : 47,90 m
Vazão Bombeada : $73,47 \mathrm{~m}^{3} / \mathrm{h}$
Vazão específica : $1,96 \mathrm{~m}^{3} / \mathrm{h} / \mathrm{m}$

6 - DESCRICTÃO DAS AMOSTRAS DE CALHA
○-8-Arenito vermelho tijolo, granulação
nédia.

8-16 - Arenit to vermelho tijolo, granulação média com seixos sub-angulosos de quartzo disse minados, aumentando a quantidade gradativa mente do topo para a base, chegando a ha ver uma substituição quase que total de arenito pelos seixos a.os $14,00 \mathrm{~m}$.
$16-18$ - Seixos sub-angulosos de quartzo de até lcm.
$18-22$ - Argilito cinza amarelado.
$22-30$ - Calcário cinza esbranquiçado
$30-32-$ Seixos de quartzo sub-arredondados de àér 1,5 cm.

32-368 - - Calcáric cinza esòranquiçado.
368-392 - Argilito areno-siltoso com intercalaçõesde arenitos e folhelhos cinza.

392-488- Argilito vermelho tijolo com algumas inter calações de siltitos e arenitos.

488-554 - Arenito fino a médio parte arbiloso com ra. ras intercalações de folhelho cinza esver deado.
554.-750 - Arenito. fino a.médio com algumas intercala ¢̧ões de siltitos e folhelhos. Sua granula ção tende a aumentar do topo para a base.

750-977 - Arenito médio a grosso com algumas interca lações de argila. O teor de argila a par tir de 960,00 aumenta consideravelmente no arenito.

7 - EQUTPAMETYOS UMILIZADOS NA PERFURACAOO DO POCO 4MO-O8-RN
1 Sonda Failing 3.000

1. Sonda a percussão Speed - Star 71

1 Cavalo mecânico Scania-Vabis
I Tanque Nassari com capacidade para $16 \mathrm{~m}^{3}$
1 Pipa Mercedes Benz com capacidade para $10 \mathrm{~m}^{3}$
I Carrega-tudo com capacidade para 30 ton.
2 Pick-Up.Ford F-75
1 Utilitária Brasília
1 Compressor Le Roy para até 250 PSI
I Guincho Krane-Car para 3 ton.
1 Conversor de solda elétrica GE c/motor Volkswagem
I Moto-gerador marca Negrini de 110 V e 2.20 V
1 Conjunto de solda oxi-acetileno
I Laboratório portátil de lama.

PERFIL LITOLOGIGO E GRÁFICO DE VELOCIDADE
DE PERFUKAGÁO

